EP2135834B1 - Kran, vorzugsweise Mobil- oder Raupenkran - Google Patents

Kran, vorzugsweise Mobil- oder Raupenkran Download PDF

Info

Publication number
EP2135834B1
EP2135834B1 EP09004392.8A EP09004392A EP2135834B1 EP 2135834 B1 EP2135834 B1 EP 2135834B1 EP 09004392 A EP09004392 A EP 09004392A EP 2135834 B1 EP2135834 B1 EP 2135834B1
Authority
EP
European Patent Office
Prior art keywords
crane
receivers
boom
components
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09004392.8A
Other languages
English (en)
French (fr)
Other versions
EP2135834A1 (de
Inventor
Erwin Morath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liebherr Werk Ehingen GmbH
Original Assignee
Liebherr Werk Ehingen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr Werk Ehingen GmbH filed Critical Liebherr Werk Ehingen GmbH
Publication of EP2135834A1 publication Critical patent/EP2135834A1/de
Application granted granted Critical
Publication of EP2135834B1 publication Critical patent/EP2135834B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements

Definitions

  • the invention relates to a crane, preferably a mobile or crawler crane, with a series of mobile crane components, such as a main boom, guy blocks, a hook block and other moving elements.
  • Mobile crane components may be, for example, the following elements: the main boom, the luffing jib, the derrick boom, the jib and guying rods, the derrick ballast and the hook hook on which the load is received.
  • the determination of the position of the movable components is primarily used to determine the unloading of the load. Load unloading is a significant amount of overload protection.
  • the respective positions of the moving components are calculated from existing geometric data, such as the component length, and from geometry values obtained via sensors.
  • the ejection state of the telescopic shots of the main boom and the rocking angle of the main boom can serve.
  • the outreach can be calculated from this.
  • the respective data are passed on from the existing sensors to a crane control and processed there. For example, this calculates the load that can be picked up at a given radius.
  • the aforementioned methods all have in common that they use the existing geometric data of the components as a basis for calculating the position.
  • the existing geometry data of the components deviate from the theoretical geometry data. These are - especially for large cranes - not just negligible inaccuracies that are not to be considered.
  • the components are subject to severe and insufficiently detectable deformations in crane operation, which can lead to sometimes considerable deviations of the ideal geometry data. These deformations thus justify the uncertainties of the measurement and calculation results.
  • the FIG. 2 represents with the dashed lines how the various components can be deformed in reality.
  • document P 2006 219 246 A discloses a crane which detects the position of a fairlead by means of a GPS system.
  • the object of the present invention is now to provide a crane that allows the exact position determination of the various components or elements of the crane in operation, the real deformations of the components are fully taken into account.
  • a crane is provided with a boom with a control and with means for determining the position of the different crane components, in which these means for determining the position consist of receivers of a satellite-based system for global positioning. Each of these receivers receives its exact position via the satellite-supported system, which can be passed on to the crane control and used there for exact position determination.
  • the control of the end positions of the mobile crane component can be specified exactly.
  • the receivers of the satellite-based system for worldwide position determination are receivers for the GPS system which is used worldwide. These GPS receivers can be used to precisely determine the position of the respective mobile crane components.
  • a controller can calculate distances from the respective signals of the GPS receiver. If absolute and unaltered signals are supplied, they can be processed directly by the controller.
  • a reference receiver is arranged on the crane, to which the values of the remaining receivers can be related.
  • inaccuracies and distortions that actually occur can be compensated for by reference to the reference receiver. If all GPS receivers now supply their data to the controller, the difference in position between the reference receiver and the respective receivers on the moving components or elements can be used to determine the position inaccuracies actually applied be filtered out again. This means that even changing inaccuracies can be filtered out because the reception time of each receiver is known exactly.
  • the reference receiver is located near the axis of rotation of the crane, preferably near the axis of rotation of the mobile crane's uppercarriage.
  • the values originating from the receivers can be transmitted wirelessly to the controller. But it is also possible to connect all receivers via cable, in particular a bus system.
  • the data transmitted via the receiver can also be used to determine the working area via the controller.
  • the work area is here the freedom of movement in relation to the working area of other cranes or, for example, the inclusion of fixed interfering edges, for example of neighboring houses.
  • the workspace is composed of the "envelope" of each of the receiver-provided locations and resulting links. Thus, turning and rocking movements are always detected and collisions are avoided.
  • the working space of the crane is provided and monitored over the known widths of the components with appropriate safety impacts.
  • the controller can respond appropriately. This can be a warning or an intervention in the speed of movement of the component in question to the standstill of the entire crane range. Power lines, other cranes, houses, trees or areas that may not be used for any other reason can be referred to as interference edges.
  • the superstructure 10 of a mobile crane not shown here is shown schematically.
  • the superstructure 10 is rotatable about a rotation axis 12 in a known manner.
  • a main boom 14 At the superstructure is a main boom 14 and at this a luffing jib 16 hinged.
  • two guy blocks 18A and 18B are provided.
  • the mobile crane shown here also has a derrick boom 20 and a derrick ballast 22. On the boom hangs a load 24. Further details of the structure of the mobile crane are known in the art, so that can be dispensed with a further detailing of the structure at this point.
  • the respective position of the mobile crane components or elements 14, 16, 18A, 18B and 22 can now be determined by corresponding receivers of a satellite-supported system for global position determination 26.
  • receivers are the currently marketed system so-called GPS receiver.
  • the GPS receivers 26 provide the spatial position (X, Y, Z position) of any mobile crane component.
  • the GPS receiver 26 are each arranged at the distal end of the respective components.
  • a reference GPS receiver 28 is mounted in the vicinity of the axis of rotation 12 of the superstructure 10. So here is always a difference calculation between the reference GPS receiver 28 and the individual GPS receivers 26 at the end of each movable components are carried out for position determination. Also suddenly applied position inaccuracies can be averaged out again. Also, a position determination of the load 24 is possible via a specially attached to the load GPS receiver 30.
  • FIG. 2 is in turn the schematic representation of the mobile crane superstructure 10 accordingly FIG. 1 played.
  • FIG. 2 is in turn the schematic representation of the mobile crane superstructure 10 accordingly FIG. 1 played.
  • dashed lines possible deformations of the moving parts under load.
  • prior art inclinometers have been arranged at various locations on the main boom 14, as indicated by reference numeral 32 in FIG FIG. 2 is clarified.
  • FIG. 3 the displacement of the spatial position at the end of the jib 16 by the inclusion of the load 24.
  • This composite displacement now no longer needs to be calculated, but can be detected directly by the GPS receiver.

Description

  • Die Erfindung betrifft einen Kran, vorzugsweise Mobil- oder Raupenkran, mit einer Reihe von beweglichen Kranbauteilen, wie beispielsweise einem Hauptausleger, Abspann-böcken, einer Hakenflasche und weiteren beweglichen Elementen.
  • Für den Kranbetrieb ist es grundsätzlich wichtig, die genaue Position der beweglichen Bauteile und Elemente zu kennen. Bewegliche Kranbauteile können beispielsweise folgende Elemente sein: der Hauptausleger, der Spitzenausleger, der Derrickausleger, die Abspannböcke und Abspannstangen, der Derrickballast sowie die Hakenflasche, an der die Last aufgenommen ist. Diese Aufzählung ist selbstverständlich nur beispielhaft. Die Positionsbestimmung der beweglichen Bauteile dient in erster Linie dazu, die Ausladung der Last festzustellen. Bei der Ausladung der Last handelt es sich um eine wesentliche Größe der Überlastsicherung. Bei konventionellen Kranen werden die jeweiligen Positionen der beweglichen Bauteile aus vorhandenen geometrischen Daten, wie beispielsweise die Bauteillänge, und aus Geometriewerten, die über Sensoren ermittelt werden, errechnet. Im Fall eines Mobilkrans kann als Beispiel der Ausschubzustand der Teleskopschüsse des Hauptauslegers und der Wippwinkel des Hauptauslegers dienen. Bei einer Reihe von Krankonfigurationen kann hieraus die Ausladung berechnet werden. Die jeweiligen Daten werden von den vorhandenen Sensoren an eine Kransteuerung weitergegeben und dort verarbeitet. So wird hier beispielsweise errechnet, welche Last bei einer bestimmten Ausladung aufgenommen werden kann.
  • Aus der EP 0 921 093 B1 ist es in diesem Zusammenhang bekannt, ein System zur Messung des Kippwinkels eines Kranes über einen berührungslosen Entfernungsmesser zu realisieren, der an der Nasensektion eines ersten Auslegers befestigt ist und den Abstand zu einem zweiten Ausleger mißt, der schwenkbar mit dem ersten Ausleger verbunden ist. Die berührungslose Entfernungsmeßeinrichtung erfaßt den Abstand zwischen den beiden Auslegern und gibt diesen an eine Steuereinrichtung weiter, die den gemessenen Abstand in den Kippwinkel umwandelt.
  • Die vorgenannten Verfahren haben alle gemein, dass sie zur Positionsbestimmung die vorhandenen Geometriedaten der Bauteile als Berechnungsgrundlage verwenden. Im realen Betrieb weichen die vorhandenen Geometriedaten der Bauteile von den theoretischen Geometriedaten ab. Hierbei handelt es sich - insbesondere bei großen Kranen - nicht nur um zu vernachlässigende Ungenauigkeiten die nicht zu berücksichtigen sind. Die Bauteile sind im Kranbetrieb nämlich nur schwer und unzureichend feststellbaren Verformungen unterworden, die zu teilweise beträchtlichen Abweichungen der idealen Geometriedaten führen können. Diese Verformungen begründen somit die Unsicherheiten der Meß- und Rechenergebnisse. Um derartige Verformungsunsicherheiten zu kompensieren, wurde es bereits vorgeschlagen, mehrere Neigungsmesser an einem Ausleger einzusetzen, wie dies beispielhaft in der Figur 2 gezeigt ist. Die Figur 2 stellt mit den gestrichelten Linien dar, wie die verschiedenen Bauteile in der Realität verformt werden können.
  • Dokument P 2006 219 246 A offenbart ein Kran der die Position einer Auslegespitze mittels eines GPS-System erfasst.
  • Aufgabe der vorliegenden Erfindung ist es nun, einen Kran an die Hand zu geben, der die genaue Positionsbestimmung der unterschiedlichen Bauteile bzw. Elemente des Kranes im Betrieb erlaubt, wobei die realen Verformungen der Bauteile vollständig berücksichtigt werden.
  • Erfindungsgemäß wird diese Aufgabe durch die Kombination der Merkmale des Anspruchs 1 gelöst.
  • Demnach wird ein Kran mit einem Ausleger mit einer Steuerung und mit Mitteln zur Ermittlung der Stellung der unterschiedlichen Kranbauteile zur Verfügung gestellt, bei dem diese Mittel zur Ermittlung der Stellung aus Empfängern eines satellitengestützten Systems zur weltweiten Positionsbestimmung bestehen. Jeder dieser Empfänger erhält über das satellitengestützte System seine exakte Position, die an die Kransteuerung weitergegeben werden kann und dort zur exakten Positionsbestimmung verwendet werden kann. Damit können der Steuerung die Endlagen von dem beweglichen Kranbauteil genau angegeben werden. Diese Positionsangaben sind nun vollständig unabhängig von eventuellen Durchbiegungen oder anderen Verformungen der beweglichen Kranbauteile bzw. Elemente.
  • Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den sich an den Hauptanspruch anschließenden Unteransprüchen.
  • Gemäß einer ersten vorteilhaften Ausgestaltung der Erfindung handelt es sich bei den Empfängern des satellitengestützten Systems zur weltweiten Positionsbestimmung um Empfänger für das weltweit verbreitete GPS-System. Durch diese GPS-Empfänger kann die Position der jeweiligen beweglichen Kranbauteile exakt bestimmt werden. Eine Steuerung kann aus den jeweiligen Signalen der GPS-Empfänger Abstände berechnen. Falls absolute und unverfälschte Signale geliefert werden, können diese direkt von der Steuerung verarbeitet werden.
  • Besonders vorteilhaft ist es, wenn an dem Kran ein Referenzempfänger angeordnet ist, zu dem die Werte der übrigen Empfänger in Relation gesetzt werden können. Hierdurch können real auftretende Ungenauigkeiten und Verfälschungen aufgrund der Bezugnahme auf den Referenzempfänger ausgeglichen werden. Liefern nun alle GPS-Empfänger ihre Daten an die Steuerung, so kann über die Differenzrechnung zwischen dem Referenzempfänger und den jeweiligen Empfängern an den beweglichen Bauteilen bzw. Elementen die real aufgebrachten Positionsungenauigkeiten wieder herausgefiltert werden. So können auch wechselnde Ungenauigkeiten herausgefiltert werden, da die Empfangszeit jedes Empfängers exakt bekannt ist.
  • Zur Vereinfachung der Berechnung ist der Referenzempfänger in der Nähe der Drehachse des Krans, vorzugsweise in der Nähe der Drehachse des Oberwagens des Mobilkranes, angeordnet.
  • Besonders vorteilhaft ist es, dass die von den Empfängern stammenden Werte kabellos an die Steuerung übertragbar sind. Es ist aber ebenso möglich, alle Empfänger über Kabel, insbesondere ein Bussystem, zu verbinden.
  • Vorteilhaft werden von den GPS-Empfängern alle Arten von Bewegungen erfaßt. So ist es unerheblich, aufgrund welcher Bewegung sich die Ausladung verändert. Beispiele für solche Bewegungen sind
    • das Teleskopieren eines Auslegers,
    • das Wippen eines Auslegers und/oder
    • das Verändern der Durchbiegung eines Auslegers, beispielsweise wegen der Aufnahme bzw. dem Absetzen einer Last.
  • Durch Anbringen eines GPS-Empfängers an der Last kann auch die Position der Last selbst bestimmt werden.
  • Schließlich können über die Steuerung auch die über die Empfänger übermittelten Daten zur Bestimmung des Arbeitsbereichs verwendet werden. Bei dem Arbeitsbereich handelt es sich hier um die Bewegungsfreiheit gegenüber dem Arbeitsbereich anderer Krane oder beispielsweise auch um die Einbeziehung von festen Störkanten, beispielsweise von benachbarten Häusern. Der Arbeitsbereich setzt sich aus der "Hüllkurve" der einzelnen von den Empfängern bereitgestellten Positionen und resultierenden Verbindungen zusammen. Somit werden Dreh- und Wippbewegungen stets erfaßt und Kollisionen werden vermieden. Der Arbeitsraum des Kranes wird dabei über die bekannten Breiten der Bauteile mit entsprechenden Sicherheitsaufschlägen versehen und überwacht. Bei definierten Abständen des Arbeitsbereiches zu Störkanten kann die Steuerung geeignet reagieren. Dies kann eine Warnung oder ein Eingriff in die Bewegungsgeschwindigkeit der betreffenden Komponente bis hin zum Stillstand des gesamten Krans reichen. Als Störkanten können Stromleitungen, andere Krane, Häuser, Bäume oder Bereiche, die aus anderweitigen Gründen nicht benutzt werden dürfen, bezeichnet werden.
  • Das hier vorgestellte System zur Positionsbestimmung der Bauteile kann neben einen an sich bekannten in der Kransteuerung vorhandenen Kranüberwachungssystem konventioneller Art einsetzbar sein um so ein diversitäres Überwachungssystem zu schaffen. Neben dem aus dem konventionellen System errechneten Werten würden hier durch das satellitengestützte System zur weltweiten Positionsbestimmung die exakte Position bestimmbar sein.
  • Die Positionen, welche die GPS-Empfänger an die Steuerung liefern, können zusätzlich zur Überprüfung des Rüstzustandes verwendet werden. Üblicherweise gibt der Kranfahrer in die Steuerung Daten bezüglich des vorhandenen Auslegersystems und weiterer Komponenten am Kran, sowie Daten zur Länge des Hauptauslegers und des weiteren Auslegersystems ein. Über die empfangenen Signale können einige Angaben des Kranfahrers erstmalig gegengeprüft werden. Beispielhaft sind hier zu erwähnen:
    1. 1. Die Länge des Hauptauslegers und des weiteren Auslegersystems und
    2. 2. Prüfung auf vorhandenes Auslegersystem und teilweise vorhandene Komponenten. Diese ist möglich, da bei Fehlen einer Komponenten ja kein Positionssignal gesendet werden kann.
  • Weitere Merkmale, Einzelheiten und Vorteile der Erfindung ergeben sich aus einem in der Zeichnung dargestellten Ausführungsbeispiel. Es zeigen:
  • Figur 1:
    eine schematische Darstellung des Oberwagens eines Mobilkrans gemäß der vorliegenden Erfindung,
    Figur 2:
    eine schematische Darstellung des Oberwagens eines Mobilkrans, anhand der die möglichen Durchbiegungen langgestreckter Bauteile verdeutlicht sind und
    Figur 3:
    eine schematische Darstellung gemäß Figur 1 zur Verdeutlichung der Durchbiegung in Folge der Lastaufnahme.
  • In der Figur 1 ist der Oberwagen 10 eines hier nicht vollständig dargestellten Mobilkrans schematisch dargestellt. Der Oberwagen 10 ist um eine Drehachse 12 in bekannter Art und Weise drehbar. Am Oberwagen ist ein Hauptausleger 14 und an diesem ein Spitzenausleger 16 angelenkt. Zusätzlich sind zwei Abspannböcke 18A und 18B vorgesehen. Der hier dargestellte Mobilkran weist weiterhin einen Derrickausleger 20 und einen Derrickballast 22 auf. Am Ausleger hängt eine Last 24. Weitere Einzelheiten des Aufbaus des Mobilkrans sind dem Fachmann bekannt, so dass auf eine weitere Detaillierung des Aufbaus an dieser Stelle verzichtet werden kann.
  • Gemäß der vorliegenden Erfindung kann nun die jeweilige Position der beweglichen Kranbauteile bzw. Elemente 14, 16, 18A, 18B und 22 durch entsprechende Empfänger eines satellitengestützten Systems zur weltweiten Positionsbestimmung 26 bestimmt werden. Bei diesen Empfängern handelt es sich bei dem derzeit marktüblichen System um sogenannte GPS-Empfänger.
  • Die GPS-Empfänger 26 liefern die räumliche Position (X-, Y-, Z-Position) eines jeglichen beweglichen Kranbauteils. Hierzu sind die GPS-Empfänger 26 jeweils an dem distalen Ende der jeweiligen Bauteile angeordnet. Am Mobilkran ist ein Referenz-GPS-Empfänger 28 in der Nähe der Drehachse 12 des Oberwagens 10 angebracht. Hier kann also immer eine Differenzrechnung zwischen dem Referenz-GPS-Empfänger 28 und den einzelnen GPS-Empfängern 26 am Ende der jeweils beweglichen Bauteile zur Positionsbestimmung durchgeführt werden. Auch plötzlich aufgebrachte Positionsungenauigkeiten können so wieder herausgemittelt werden. Auch eine Positionsbestimmung der Last 24 ist über einen eigens an der Last angebrachten GPS-Empfänger 30 möglich.
  • In der Figur 1 bezeichnet A die Ausladung der Last 24, die aufgrund der GPS-Empfänger sehr genau bestimmbar ist.
  • In der Figur 2 ist wiederum die schematische Darstellung des Mobilkranoberwagens 10 entsprechend Figur 1 wiedergegeben. Hier sind durch die gestrichelten Linien mögliche Verformungen der beweglichen Teile unter Belastung dargestellt. Um diese Verformungen festzustellen, sind im Stand der Technik Neigungsmesser an verschiedenen Stellen des Hauptauslegers 14 angeordnet worden, wie dies mit den Bezugszeichen 32 in der Figur 2 verdeutlicht wird.
  • Schließlich verdeutlicht die Figur 3 die Verschiebung der räumlichen Lage am Ende des Spitzenauslegers 16 durch die Aufnahme der Last 24. Wie hier anhand der Figur 3 deutlich wird, verschiebt sich die Spitze des Spitzenauslegers 16 zum einen aufgrund der Verschiebung des Befestigungspunktes 34 vom Hauptausleger und zum anderen aufgrund der eigenen Durchbiegung. Diese zusammengesetzte Verlagerung braucht nun nicht mehr berechnet werden, sondern kann direkt durch den GPS-Empfänger erfaßt werden.

Claims (9)

  1. Kran, vorzugsweise Mobil- oder Raupenkran, mit einem Ausleger, mit einer Steuerung und mit Mitteln zur Ermittlung der Stellung unterschiedlicher Kranbauteile wie beispielsweise Hauptausleger, Spitzenausleger, Derrickausleger, Abspannböcke, Derrickballast und/oder Hakenflasche,
    wobei diese Mittel aus Empfängern eines satellitengestützten Systems zur weltweiten Positionsbestimmung bestehen,
    dadurch gekennzeichnet, dass
    die Empfänger ieweils an den jeweiligen Kranbauteilen angeordnet sind und die jeweilige Position der beweglichen Kranbauteile direkt liefern können.
  2. Kran nach Anspruch 1, dadurch gekennzeichnet, dass die Mittel aus GPS-Empfängern bestehen.
  3. Kran nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass am Kran ein Referenzempfänger angeordnet ist, zu dem die Werte der übrigen Empfänger in Relation gesetzt werden können.
  4. Kran nach Anspruch 3, dadurch gekennzeichnet, dass der Referenzempfänger in der Nähe der Drehachse des Krans, vorzugsweise in der Nähe der Drehachse des Oberwagens eines Mobilkranes, angeordnet ist.
  5. Kran nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die von den Empfängern stammenden Werte kabellos an die Steuerung übertragbar sind.
  6. Kran nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zusätzlich ein Empfänger an der Last angeordnet ist.
  7. Kran nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass über die Steuerung die über die Empfänger übermittelten Daten zur Bestimmung des Arbeitsbereichs verwendbar sind.
  8. Kran nach Anspruch 7, dadurch gekennzeichnet, dass die aktuell vorhandene Ausladung der Last unmittelbar an die Steuerung zur Berechnung der Lastmomentbegrenzung gegeben wird.
  9. Kran nach Anspruch 7, dadurch gekennzeichnet, dass aus den aufgenommenen Positionen der GPS-Empfänger mit ihren Verbindungslinien eine Hüllkurve um den Kran erzeugbar ist und dass der Arbeitsraum des Kranes mit entsprechenden Sicherheitsaufschlägen versehen überwachbar ist.
EP09004392.8A 2008-06-18 2009-03-26 Kran, vorzugsweise Mobil- oder Raupenkran Active EP2135834B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200820008174 DE202008008174U1 (de) 2008-06-18 2008-06-18 Kran, vorzugsweise Mobil- oder Raupenkran

Publications (2)

Publication Number Publication Date
EP2135834A1 EP2135834A1 (de) 2009-12-23
EP2135834B1 true EP2135834B1 (de) 2015-07-29

Family

ID=40974603

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09004392.8A Active EP2135834B1 (de) 2008-06-18 2009-03-26 Kran, vorzugsweise Mobil- oder Raupenkran

Country Status (2)

Country Link
EP (1) EP2135834B1 (de)
DE (1) DE202008008174U1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105836627A (zh) * 2016-04-20 2016-08-10 中船第九设计研究院工程有限公司 一种基于三维坐标定位的门座起重机位姿确定方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009014066U1 (de) 2009-10-16 2011-03-03 Liebherr-Werk Ehingen Gmbh Hubendschalter und Hebevorrichtung
DE202011001850U1 (de) 2011-01-24 2012-04-30 Liebherr-Werk Ehingen Gmbh Kran
DE102011050857A1 (de) * 2011-06-06 2012-12-06 Hoppe Bordmesstechnik Gmbh Verfahren und Vorrichtung zum Ausgleichen eines Lastmoments sowie Verfahren und Messausrüstung zur Positionsbestimmung einer Last
US9238570B2 (en) 2011-07-05 2016-01-19 Trimble Navigation Limited Crane maneuvering assistance
DE102012004739A1 (de) 2012-03-08 2013-09-12 Liebherr-Werk Nenzing Gmbh Kran und Verfahren zur Kransteuerung
CN104058343B (zh) * 2014-06-10 2016-05-11 山东瑞鲁机电设备有限公司 一种塔机安全监控系统及监控方法
DE202017104706U1 (de) 2017-08-07 2017-09-27 Liebherr-Werk Ehingen Gmbh Raupenkran
DE202019102393U1 (de) 2019-03-08 2020-06-09 Liebherr-Werk Biberach Gmbh Kran sowie Vorrichtung zu dessen Steuerung
DE102020214291B3 (de) 2020-11-13 2022-03-17 Tadano Faun Gmbh Kran, insbesondere Mobilkran
CN113896105A (zh) * 2021-05-27 2022-01-07 徐州重型机械有限公司 一种起重机状态监控系统
CN113247775A (zh) * 2021-05-28 2021-08-13 徐州重型机械有限公司 起重机和起重机的控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08133678A (ja) * 1994-11-07 1996-05-28 Shimizu Corp クレーンの作業領域外飛出し警報方法およびその警報システム
DE19631623C2 (de) * 1996-08-05 1999-01-14 Siemens Ag Vorrichtung zur Bestimmung der Position einer Lastaufnahme bei Hebezeugen
CA2255105C (en) 1997-12-05 2006-01-31 Grove U.S. L.L.C. Luffing angle measurement system
JP4218449B2 (ja) * 2003-07-11 2009-02-04 株式会社大林組 クレーンの動作監視システム及び方法
US20050242052A1 (en) * 2004-04-30 2005-11-03 O'connor Michael L Method and apparatus for gantry crane sway determination and positioning
JP2006219246A (ja) * 2005-02-09 2006-08-24 Tadano Ltd 移動式クレーンのフック位置検出装置
JP2007084336A (ja) * 2005-08-26 2007-04-05 Topcon Corp クレーン接近警報システム
DE102006001279A1 (de) * 2006-01-10 2007-07-12 Moba-Mobile Automation Ag Kran oder kranähnliche Fördereinrichtung mit einem Positionsmesssystem
DE102006025002A1 (de) * 2006-05-30 2007-12-06 Pat Gmbh Mobile oder stationäre Arbeitsvorrichtung mit teleskopierbaren Auslegerelementen, deren Position zueinander mittels RFID-Technik erfasst wird

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105836627A (zh) * 2016-04-20 2016-08-10 中船第九设计研究院工程有限公司 一种基于三维坐标定位的门座起重机位姿确定方法

Also Published As

Publication number Publication date
DE202008008174U1 (de) 2009-11-05
EP2135834A1 (de) 2009-12-23

Similar Documents

Publication Publication Date Title
EP2135834B1 (de) Kran, vorzugsweise Mobil- oder Raupenkran
EP3134344B2 (de) Verfahren und vorrichtung zum betreiben eines mobilkrans sowie mobilkran
EP2289834B1 (de) Kran
EP1598303B1 (de) Mobilkran
DE102011107754B4 (de) Winkelbezogenes Verfahren zur Überwachung der Kransicherheit während des Rüstvorgangs, sowie Kran und Kransteuerung
DE102013014626B4 (de) Bestimmung der Position eines verlagerbaren Messpunktes an einer Maschine
EP2524892B1 (de) Kransteuerung
EP3219662B1 (de) Verfahren zum ermitteln der tragfähigkeit eines krans sowie kran
EP3259224B1 (de) Klettersystem für einen kran
EP3470362B1 (de) Verfahren und vorrichtung zur standsicherheitsüberwachung eines auf einem fahrzeug montierten ladekrans
DE2629031A1 (de) Last- und radiusanzeigeanordnung fuer einen kran mit variabler auslegerlaenge
EP2186405A1 (de) Spritzgestänge und Verfahren zu dessen Steuerung
DE2849144A1 (de) Teleskopauslegerkran mit zusatzausleger
EP2113481A1 (de) Mobilkran mit einer Kranüberwachungseinrichtung
DE102018118703B4 (de) Raupenkran
EP3853167B1 (de) Kran mit einer antikollisionseinrichtung sowie verfahren zum einrichten einer solchen antikollisionseinrichtung
DE102009048846A1 (de) Kran
EP2719652B1 (de) Vorrichtung zur Beförderung von Personen mittels eines Krans, und Kran mit einer Vorrichtung zur Beförderung von Personen
DE202019102393U1 (de) Kran sowie Vorrichtung zu dessen Steuerung
DE102009007310A1 (de) Vorrichtung zur Verteilung von Beton mit einem Knickmast
EP1925586B1 (de) Mobilkran
AT524349A2 (de) Kran, insbesondere Mobilkran
DE112014002081B4 (de) Sensorbasierte Überwachung von Windrichtung und Wärmeeinstrahlung für ein mobiles Arbeitsgerät
EP0387399B1 (de) Verfahren und Vorrichtung zur Steuerung der Kranfunktionen eines mobilen Teleskopauslegerkrans
EP0672889A2 (de) Verfahren zur Erfassung der Änderung des Radius eines Auslegers eines Kranes unter Last

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20091215

17Q First examination report despatched

Effective date: 20100426

AKX Designation fees paid

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150407

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009011300

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009011300

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160502

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230322

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230323

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230331

Year of fee payment: 15