EP3401628B1 - Fördern eines förderguts - Google Patents

Fördern eines förderguts Download PDF

Info

Publication number
EP3401628B1
EP3401628B1 EP17170804.3A EP17170804A EP3401628B1 EP 3401628 B1 EP3401628 B1 EP 3401628B1 EP 17170804 A EP17170804 A EP 17170804A EP 3401628 B1 EP3401628 B1 EP 3401628B1
Authority
EP
European Patent Office
Prior art keywords
fluid
chamber
conveying
secondary chamber
installation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17170804.3A
Other languages
English (en)
French (fr)
Other versions
EP3401628A1 (de
Inventor
Gerald Rosenfellner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Austria GmbH
Original Assignee
Primetals Technologies Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PL17170804.3T priority Critical patent/PL3401628T3/pl
Application filed by Primetals Technologies Austria GmbH filed Critical Primetals Technologies Austria GmbH
Priority to EP17170804.3A priority patent/EP3401628B1/de
Priority to ES17170804T priority patent/ES2927909T3/es
Priority to RS20220924A priority patent/RS63657B1/sr
Priority to US16/611,033 priority patent/US11650013B2/en
Priority to MX2019013432A priority patent/MX2019013432A/es
Priority to CA3061834A priority patent/CA3061834A1/en
Priority to PCT/EP2018/061298 priority patent/WO2018206383A1/de
Priority to RU2019136871A priority patent/RU2764669C2/ru
Priority to TW107115452A priority patent/TWI759478B/zh
Publication of EP3401628A1 publication Critical patent/EP3401628A1/de
Priority to SA519410494A priority patent/SA519410494B1/ar
Application granted granted Critical
Publication of EP3401628B1 publication Critical patent/EP3401628B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/02Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity of multiple-track type; of multiple-chamber type; Combinations of furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/04Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity adapted for treating the charge in vacuum or special atmosphere
    • F27B9/045Furnaces with controlled atmosphere
    • F27B9/047Furnaces with controlled atmosphere the atmosphere consisting of protective gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B19/00Combinations of furnaces of kinds not covered by a single preceding main group
    • F27B19/02Combinations of furnaces of kinds not covered by a single preceding main group combined in one structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/04Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity adapted for treating the charge in vacuum or special atmosphere
    • F27B9/045Furnaces with controlled atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/04Circulating atmospheres by mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • F27D2007/063Special atmospheres, e.g. high pressure atmospheres

Definitions

  • the invention relates to a conveyor system and a method for conveying a conveyed item.
  • the invention relates to the conveying of reactive and/or hot and/or abrasive material to be conveyed.
  • a reactive conveyed material is understood here to mean a conveyed material that reacts chemically and/or physically with the substances surrounding the conveyor system, for example with air, in particular with the oxygen in the air.
  • various requirements are placed on a conveyor system.
  • the conveying mechanism of the conveyor system is also exposed to high temperatures, so that it has to be cooled or made of expensive, heat-resistant materials.
  • US20040063058A1 describes a heating furnace in which gas is discharged in order to set a specific temperature profile Cooling chambers in heating chambers flows without specifically addressing the conveyor mechanics.
  • the invention is based on the object of specifying a conveyor system and a method for conveying a conveyed material which are improved in particular with regard to the conveyance of reactive, hot and/or abrasive conveyed material.
  • the at least one passage opening and the fluid atmospheres in the delivery chamber and in the at least one secondary chamber are designed to set a defined fluid flow in the system housing.
  • a chamber of a system housing is understood here to mean a substantially closed cavity of the system housing.
  • a fluid atmosphere in a chamber is understood to mean the chemical and physical properties, for example the chemical composition, the pressure or the temperature, of a fluid which is located in the chamber.
  • a fluid is understood to be a gas or a liquid.
  • a conveyor system thus enables a defined fluid flow in a system housing of the conveyor system. This is achieved by dividing the system housing into a delivery chamber and at least one secondary chamber, which have different fluid atmospheres and are connected by at least one passage opening.
  • the arrangement of the conveying path in a conveying chamber enables the conveying path to be largely encapsulated in relation to the environment, so that the conveyed material is largely sealed off from ambient substances and in particular oxygen from the environment.
  • the setting of a defined fluid flow through the mutually different fluid atmospheres in the conveying chamber and the at least one secondary chamber also allows environmental substances and in particular oxygen to be kept away from the area of the conveyed goods, as well as the defined discharge of gases and dust that are harmful to health and/or the environment with the fluid flow from the feed chamber.
  • An embodiment of the invention provides that the system housing has at least one fluid inlet and at least one fluid outlet and is designed to be fluid-tight except for the at least one fluid inlet and the at least one fluid outlet.
  • Fluid tightness is understood here to mean fluid tightness that satisfies a technical specification.
  • This largely fluid-tight design of the system housing limits the escape of fluid from the system housing to the fluid outlets, so that only a relatively small amount of fluid escapes from the system housing.
  • the escape of fluid through the defined fluid outlets enables fluid escaping from the system housing to be collected at least partially in a targeted manner and fed back to the system housing.
  • the largely fluid-tight design of the system housing also advantageously reduces penetration from the materials surrounding the conveyor system into the system housing.
  • a further embodiment of the invention provides that a conveying chamber end of the conveying chamber arranged in the region of a conveying path start of the conveying path is closed or can be closed. As a result, the direction of the fluid flow can be adjusted in a simple manner to the transport direction of the material to be conveyed.
  • the invention provides that at least one component of a conveying mechanism for conveying the material to be conveyed is arranged in at least one secondary chamber.
  • This advantageously makes it possible to arrange sensitive components of the conveying mechanism not in the conveying chamber but in an ancillary chamber and thereby avoid the influence of high temperatures, dust and/or corrosive gases in the conveying chamber.
  • components of the conveying mechanism can be protected from the often adverse fluid atmosphere in the conveying chamber by relocating them to an ancillary chamber.
  • the arrangement of components of the conveyor mechanism in a secondary chamber can be used to cool these components in the secondary chamber in a relatively simple manner, for example by fluid conducted into the secondary chamber and/or by a separate cooling device.
  • the conveying mechanism has a traction mechanism with at least one traction mechanism arranged in a secondary chamber, with which carrier elements can be moved in order to convey the conveyed goods.
  • the material to be conveyed is transported, for example, directly through the carrier elements or in containers arranged on the carrier elements.
  • the carrier elements separate, for example, the conveying chamber from an auxiliary chamber in which at least one traction means is arranged.
  • the carrier elements are arranged in the conveying chamber and protrude through a passage opening into at least one secondary chamber, in particular into a secondary chamber arranged laterally on the conveying chamber, in which a traction device is arranged.
  • Traction drives and carrier elements moved with them are particularly suitable for transporting reactive, hot and/or abrasive conveyed goods, among other things because of their robustness and their low maintenance requirements.
  • the arrangement of a traction mechanism in an auxiliary chamber protects the traction mechanism from high temperatures, dust and/or corrosive fluids in the conveying chamber. If the conveying chamber is separated from an ancillary chamber in which at least one traction mechanism is arranged, the carrier elements can be used not only to transport the material to be conveyed but also to isolate the ancillary chamber from the conveying chamber.
  • the traction mechanism When a traction mechanism is arranged in an auxiliary chamber arranged on the side of the conveying chamber, the traction mechanism is spatially further separated from the conveyed goods, which is particularly advantageous when transporting hot conveyed goods, since in this case the traction mechanism is heated to a lesser extent by the conveyed goods and therefore also less must be heavily cooled.
  • a further embodiment of the invention provides that an opening width of at least one through-opening varies along the course of the through-opening. Regions of a secondary chamber with narrower through-openings are particularly advantageously suitable for cooling components of the conveying mechanism arranged there with fluid conducted into the secondary chamber, since particularly high fluid flows of the fluid occur in these regions. Furthermore, areas of a secondary chamber with narrower passage openings are particularly advantageous for introducing fluid into the secondary chamber, because in these areas less fluid flows from the secondary chamber into the delivery chamber than in areas with further passage openings, so that the fluid introduced over larger areas of the secondary chamber can be distributed.
  • areas with further through-openings are advantageously suitable for guiding larger amounts of fluid into the delivery chamber in a targeted manner and thereby influencing the fluid flow in the delivery chamber more strongly. Therefore, by deliberately varying the opening width of a passage opening suitable areas of the secondary chamber for cooling components of the conveyor mechanism or other components of the conveyor system, for example the above-mentioned support elements, for positioning fluid inlets and for influencing the fluid flow in the system housing are defined.
  • a further embodiment of the invention provides a cooling device for cooling at least one secondary chamber.
  • a further embodiment of the invention provides a fluid circuit system which comprises at least one secondary chamber and is designed to conduct a fluid through at least one passage opening from the secondary chamber into the delivery chamber.
  • a fluid circuit system can advantageously further reduce the consumption of fluid, since fluid discharged from a secondary chamber is fed back to a secondary chamber via the fluid circuit system, so that this fluid remains in the fluid circuit system.
  • the fluid circuit system can have at least one heat exchanger for cooling a fluid fed to an auxiliary chamber.
  • the fluid which has been cooled by the heat exchanger and then conducted into an auxiliary chamber can advantageously also be used to cool components of the conveying mechanism which are arranged in the auxiliary chamber.
  • the conveyor system can have a fluid recycling unit for receiving fluid from the conveyor chamber and feeding fluid back into the conveyor chamber, wherein the fluid can be fed back directly and/or via the fluid circuit system.
  • the fluid recycling unit can be a Have fluid cleaning unit for cleaning the fluid received from the pumping chamber.
  • fluid emerging or drawn off from the conveying chamber can be at least partially collected and reused by being fed back into the conveying chamber.
  • the fluid recycling unit does not need to be supplied with fluid directly from the conveying chamber, but fluid can also be discharged from the conveying chamber into a unit downstream of the conveying system, for example into a bunker into which the conveyed goods are conveyed, and the fluid recycling unit can be fed from this unit.
  • the consumption of fluid can be further advantageously reduced. Since fluid exiting or drawn off from the conveying chamber often contains dust and/or gas which has escaped from the conveyed material, a fluid cleaning unit for cleaning the fluid received from the conveying chamber can be advantageous.
  • a further embodiment of the invention provides a control system for controlling a fluid flow from at least one secondary chamber into the delivery chamber as a function of a differential pressure between a pressure in the secondary chamber and a pressure in the delivery chamber.
  • a higher fluid pressure is set in each secondary chamber than in the conveyor chamber. This ensures that fluid flows from each secondary chamber into the delivery chamber and not vice versa from the delivery chamber into a secondary chamber.
  • the higher fluid pressure in each secondary chamber compared to the conveying chamber and the resulting fluid flow from each secondary chamber into the conveying chamber also advantageously prevent fluid that has escaped from the conveyed material and/or dust produced during the transport of the conveyed material from penetrating into a secondary chamber.
  • One embodiment of the method provides that fluid is fed back from the conveying chamber directly into the conveying chamber by a fluid recycling unit and/or via at least one secondary chamber.
  • the consumption of fluid can advantageously be reduced.
  • FIG 1 shows schematically a first exemplary embodiment of a conveyor system 1 for conveying a conveyed item along a conveying path.
  • the conveyor system 1 comprises a system housing 3 which has a conveyor chamber 5 and an auxiliary chamber 7 . At least the conveying path is arranged in the conveying chamber 5 .
  • the secondary chamber 7 is arranged on the side of the delivery chamber 5 and is connected to the delivery chamber 5 by a plurality of passage openings 9 .
  • the conveyor system 1 has a fluid circuit system 11 which includes the secondary chamber 7 and is designed to conduct a fluid, for example an inert gas, through the passage openings 9 from the secondary chamber 7 into the conveying chamber 5 .
  • Flow directions of the fluid are in figure 1 indicated by arrows. Instead of several passage openings 9, a continuous slot-like passage opening 9 can also be provided.
  • the material to be conveyed is, for example, a reactive and/or hot and/or abrasive material to be conveyed.
  • off fluid that is harmful to health and/or the environment can escape from the conveyed material, which should therefore not escape uncontrolled into the environment.
  • dust can arise during the transport of the conveyed material in the conveying chamber 5 .
  • the conveying chamber 5 and the secondary chamber 7 have physically and/or chemically different fluid atmospheres.
  • the fluid atmosphere in the secondary chamber 7 has a higher fluid pressure than the fluid atmosphere in the delivery chamber 5 . This ensures that fluid essentially flows through the passage openings 9 from the secondary chamber 7 into the conveying chamber 5 and not vice versa from the conveying chamber 5 into the secondary chamber 7 of the secondary chamber 7 have a higher temperature and/or contain gas which has escaped from the conveyed material and/or dust which has arisen during the transport of the conveyed material.
  • the higher fluid pressure in the secondary chamber 7 and the resulting fluid flow from the secondary chamber 7 into the delivery chamber 5 advantageously also prevent this gas and/or dust from penetrating the delivery chamber 5 into the secondary chamber 7.
  • the conveying path runs in the conveying chamber 5 between a first end 13 of the conveying chamber and a second end 15 of the conveying chamber.
  • the material to be conveyed is discharged from the conveying chamber 5 at the second end 15 of the conveying chamber.
  • the first end of the delivery chamber 13 is, for example, designed to be closed or closable, while the second end of the delivery chamber 15 has a first fluid outlet 17 through which fluid flows out of the delivery chamber 5, for example together with the material being conveyed.
  • the system housing 3 also has a second fluid outlet 18 through which circulating in the fluid circuit system 11 Fluid is discharged from the secondary chamber 7.
  • the system housing 3 can have further fluid outlets 19, through which fluid can be drawn off from the delivery chamber 5, for example if a fluid pressure in the delivery chamber 5 exceeds a pressure threshold value (such fluid outlets 19 can, for example, each have a safety element, for example a safety valve, for example if a safety study deems it necessary).
  • the system housing 3 also has a first fluid inlet 21 through which fluid circulating in the fluid circuit system 11 is fed into the secondary chamber 7 .
  • the system housing 3 can have further fluid inlets 22 through which fluid can be supplied to the delivery chamber 5 , for example in order to influence a fluid flow in the delivery chamber 5 . Except for the fluid outlets 17 to 19 and the fluid inlets 21, 22, the system housing 3 is designed to be fluid-tight.
  • the first fluid inlet 21 and/or the second fluid outlet 18 can also be located at locations other than those in FIG figure 1 shown locations of the secondary chamber 7 arranged, for example opposite figure 1 interchanged, to be.
  • This largely fluid-tight design of the system housing 3 limits the escape of fluid from the system housing 3 to the fluid outlets 17 to 19 so that only a relatively small amount of fluid escapes from the system housing 3 .
  • fluid discharged from the second fluid outlet 18 is fed back to the secondary chamber 7 through the fluid circuit system 11 via the first fluid inlet 21 .
  • fluid escaping from the first fluid outlet 17 and/or at least one further fluid outlet 19 can optionally be at least partially collected and fed to the fluid circuit system 11 (possibly after cleaning, cf figure 2 and figure 8 ) and recycled. Overall, this means that the amount of fluid to be supplied to the system housing 3 can be relatively be kept low. This advantageously reduces fluid consumption and fluid costs.
  • Another advantage of the largely fluid-tight design of the system housing 3 and the higher fluid pressure in the secondary chamber 7 compared to the conveying chamber 5 is that fluid that is harmful to health and/or the environment that has escaped from the conveyed material also only escapes from the conveying chamber 5 at the fluid outlets 17, 19 and there can be disposed of. The same applies to dust that is in the conveying chamber 5.
  • Components of a conveying mechanism for conveying the material to be conveyed are arranged in the secondary chamber 7 .
  • the fluid circuit system 11 conducts fluid through the secondary chamber 7, through the second fluid outlet 18 out of the secondary chamber 7 and, for example by means of pipelines, via a turbomachine 25 and optionally via a heat exchanger 27 through the first fluid inlet 21 back into the secondary chamber 7. Furthermore, the fluid circuit system 11 has a fluid supply 29 through which fluid can be supplied to the fluid circuit system 11 , in particular to replace fluid that is discharged from the secondary chamber 7 through the passage openings 9 into the delivery chamber 5 .
  • the fluid machine 25 is a fan or a pump depending on whether the fluid is a gas or a liquid.
  • the optional heat exchanger 27 serves to cool the fluid.
  • the conveyor system can have a separate cooling device (not shown) for cooling the secondary chamber 7 exhibit.
  • the cooling device can have a cooling tube that can be filled with a coolant or a plurality of cooling tubes, with at least one cooling tube being able to be located within the secondary chamber 7 .
  • FIG 2 shows schematically a second embodiment of a conveyor system 1.
  • the conveyor system 1 differs from that in figure 1 illustrated embodiment essentially by a fluid recycling unit 70 for receiving through the fluid outlet 17 emerging from the pumping chamber 5 fluid.
  • the fluid recycling unit 70 has a fluid cleaning unit 72 for cleaning the fluid taken from the delivery chamber 5 .
  • a portion of the cleaned fluid is fed back directly into the delivery chamber 5 via a fluid inlet 22 .
  • the other part of the cleaned fluid is fed back indirectly into the conveying chamber 5 by being fed to the fluid circulation system 11 via the fluid supply 29 .
  • all of the fluid emerging from the conveying chamber 5 is fed back into the conveying chamber 5, so that no further feeding of fluid into the conveying system 1 is required.
  • the exemplary embodiment shown can provide that the fluid recycling unit 70 alternatively or additionally receives fluid escaping from another fluid outlet 19 from the delivery chamber 5 . Furthermore, it can be provided that fluid is alternatively or additionally fed back directly into the delivery chamber 5 through the fluid outlet 17 . Further modifications of the in figure 2 The exemplary embodiment shown can provide for fluid to be fed back into the pumping chamber 5 either only indirectly via the fluid circuit system 11 or only directly. Furthermore, fluid can be supplied to the fluid circuit system 11 at a different point instead of via the fluid supply 29, for example upstream of the heat exchanger 27, in order to cool the fluid. Furthermore, the fluid cleaning unit 72 can be omitted if cleaning of the fluid is not required.
  • FIGs 3 and 4 show a third exemplary embodiment of a conveyor system 1 for conveying a conveyed item along a conveying path.
  • figure 3 shows a perspective view of the conveyor system 1.
  • figure 4 shows a sectional view of the conveyor system 1.
  • the conveyor system 1 comprises a system housing 3 which has a conveyor chamber 5, three secondary chambers 6 to 8 and two additional chambers 31,32.
  • the conveying chamber 5 is ring-shaped with two horizontally running horizontal sections 34, 36 and two vertically running deflection sections 38, 40.
  • a lower horizontal section 34 extends below and spaced from an upper horizontal section 36 .
  • the deflection sections 38, 40 form opposite pumping chamber ends 13, 15 of the pumping chamber 5 and connect the two horizontal sections 34, 36 to each other.
  • the conveying path runs in the upper horizontal section 36 of the conveying chamber 5 between a first conveying chamber end 13 formed by a first deflection section 38 and a second conveying chamber end 15 formed by a second deflecting section 40.
  • the system housing 3 In the vicinity of the first conveying chamber end 13, the system housing 3 has a section above the upper horizontal section 36 arranged charging inlet 42 through which the material to be conveyed is introduced into the conveying chamber 5 . In the region of the second end 15 of the conveying chamber, the system housing 3 has a discharge opening 44 which is arranged below the second deflection section 40 and through which the conveyed material is discharged from the conveying chamber 5 .
  • the secondary chambers 6 to 8 are each also ring-shaped.
  • the conveying chamber 5 runs around a first secondary chamber 6, with an underside of the upper horizontal section 36, an upper side of the lower horizontal section 34 and the two deflection sections 38, 40 of the conveying chamber 5 border on the first secondary chamber 6 .
  • a second secondary chamber 7 and the third secondary chamber 8 are arranged on different sides of the first secondary chamber 6 and each border on an outside of the first secondary chamber 6 along its entire annular course.
  • the conveying chamber 5 and the first secondary chamber 6 are separated from one another by carrier elements 46 with which the material to be conveyed is transported.
  • the material to be conveyed is transported, for example, directly by the carrier elements 46 or in containers arranged on the carrier elements 46 .
  • the carrier elements 46 are designed, for example, as carrier plates.
  • Tension means 48 are arranged in the first secondary chamber 6 , each of which runs around inside the first secondary chamber 6 along its annular course and is connected to the carrier elements 46 .
  • the traction means 48 are designed, for example, as drive chains.
  • the carrier elements 46 can be moved in the system housing 3 with the traction means 48 along a closed path that includes the conveying path.
  • Each traction device 48 runs below the upper horizontal section 36 and above the lower horizontal section 34 of the delivery chamber 5 in a straight line between two deflection regions 50, 52, which are each located in the region of one end of the delivery chamber 13, 15 and in which the traction device 48 is deflected.
  • the traction means 48 are each driven via two drive wheels 54 which are each arranged in a deflection area 50, 52 of the traction means 48.
  • the traction means 48 and drive wheels 54 form a traction drive with which the carrier elements 46 are moved.
  • At each deflection area 50, 52 one of the two additional chambers 31, 32 is arranged, in which the drive wheels 54 of this deflection area 50, 52 are arranged.
  • Each additional chamber 31, 32 borders on the first secondary chamber 6 and has connecting openings 56 to the first secondary chamber 6 for each of the drive wheels 54 arranged in it, through which openings the drive wheel 54 protrudes into the first secondary chamber 6.
  • the second secondary chamber 7 and the third secondary chamber 8 are each connected to the delivery chamber 5 and to the first secondary chamber 6 by a slot-like passage opening 9 that runs around, for example, in the form of a ring.
  • the carrier elements 46 protrude through these passage openings 9 into the second secondary chamber 7 and into the third secondary chamber 8 .
  • Guide wheels 58 are arranged in the second auxiliary chamber 7 and in the third auxiliary chamber 8, with which the carrier elements 46 are guided.
  • At least one secondary chamber 6 to 8 can also be additionally connected to the delivery chamber 5 by at least one further passage opening 10 .
  • further passage openings 10 can be realized between the first secondary chamber 6 and the delivery chamber 5 through gaps between the carrier elements 46 .
  • the system housing 3 fluid outlets 17 to 19 and fluid inlets 21, 22.
  • a first fluid outlet 17 coincides with the discharge opening 44, for example.
  • the second secondary chamber 7 and/or the third secondary chamber 8 can have at least one second fluid outlet 18 and/or the delivery chamber 5 can have at least one further fluid outlet 19 .
  • the second secondary chamber 7 and/or the third secondary chamber 8 can have at least one first fluid inlet 21, and/or the delivery chamber 5 and/or the first secondary chamber 6 and/or at least one additional chamber 31, 32 can have at least one further fluid inlet 22.
  • the charging inlet 42 can be a fluid inlet 22 .
  • the system housing 3 is designed to be fluid-tight except for the fluid outlets 17 to 19 and the fluid inlets 21, 22, resulting in the advantages already described above with regard to a reduced need for fluid and a controlled discharge and disposal of gas and dust from the conveying chamber 5 result.
  • the fluid atmospheres in each secondary chamber 6 to 8 connected to the delivery chamber 5 by at least one passage opening 9 , 10 have a higher fluid pressure than the fluid atmosphere in the delivery chamber 5 . This ensures that fluid, dust and gas that has escaped from the conveyed material do not flow directly from the conveying chamber 5 into the secondary chambers 6 to 8 and flow in the conveying chamber 5 to the fluid outlets 17 to 19 in a controlled manner.
  • the components of the conveying mechanism arranged in the secondary chambers 6 to 8 in particular the traction means 48 and drive wheels 54 , can be cooled by fluid conducted into the secondary chambers 6 to 8 .
  • the opening widths of the passage openings 9, 10 can vary along the courses of the passage openings 9, 10.
  • the slot-like passage openings 9 in the deflection areas 50, 52 of the traction means 48 can be wider than between the deflection areas 50, 52.
  • Areas of the secondary chambers 6 to 8 with narrower passage openings 9, 10 are particularly advantageous for cooling from there in the secondary chambers 6 to 8 arranged components of the conveyor mechanism such as the traction means 48 and drive wheels 54 with fluid, since there are particularly high fluid flows of the fluid in these areas.
  • areas of the secondary chambers 6 to 8 with narrower passage openings 9, 10 are particularly advantageous for introducing fluid into the secondary chambers 6 to 8, because in these areas less fluid flows from the secondary chambers 6 to 8 into the pumping chamber 5 than in areas with further passage openings 9, 10, so that the introduced fluid can be distributed over larger areas of the secondary chambers 6-8.
  • Analogous to the in figure 1 illustrated first embodiment can also in the Figures 3 and 4 shown embodiment have a fluid circuit system 11 to control and optimize the fluid flow.
  • the Figures 4 to 7 show block diagrams of various embodiments of such fluid circuit systems 11.
  • traction means 48 can be arranged below, above and/or to the side of the conveying chamber 5 and/or a different number of traction means 48 can be provided, for example only one traction means 48.
  • separate additional chambers 31, 32 for the drive wheels 54 can be omitted.
  • the conveying path can also run at an angle to the horizontal instead of horizontally or have a course that deviates from a straight course, for example an S- or Z-shaped course, with the system housing 3 being designed to correspond to the course of the conveying path.
  • the fluid outlet 17 can also be operated as a (further) fluid inlet.
  • FIG. 5 shows a fluid circuit system 11, in which the secondary chambers 6 to 8 and the additional chambers 31, 32 are integrated.
  • the fluid circuit system 11 conducts fluid through each secondary chamber 6 to 8 and each additional chamber 31, 32, discharges fluid from the secondary chambers 6 to 8 and the additional chambers 31, 32 and directs it via a turbomachine 25 and optionally via a heat exchanger 27 to the secondary chambers 6 to 8 and/or the additional chambers 31, 32 are closed again. Fluid is also conducted from the secondary chambers 6 to 8 through the passage openings 9 , 10 into the delivery chamber 5 .
  • the fluid circuit system 11 has a fluid supply 29 through which fluid can be supplied to the fluid circuit system 11, in particular to replace fluid that is discharged from the secondary chambers 6 to 8 through the passage openings 9, 10 into the delivery chamber 5.
  • the first sub-chamber 6 has a higher fluid pressure than the others Sub-chambers 7, 8, the additional chambers 31, 32 and the pumping chamber 5, so that fluid flows from the first sub-chamber 6 into the other sub-chambers 7, 8, the additional chambers 31, 32 and the pumping chamber 5. Furthermore, the second secondary chamber 7 and the third secondary chamber 8 have a higher fluid pressure than the delivery chamber 5 , so that fluid flows from the second secondary chamber 7 and the third secondary chamber 8 into the delivery chamber 5 .
  • figure 6 shows a fluid circuit system 11, which differs from that in figure 5
  • the fluid circuit system 11 shown differs only in that the secondary chambers 6 to 8 and the additional chambers 31, 32 have the same fluid pressure, so that fluid is exchanged between the secondary chambers 6 to 8 and the additional chambers 31, 32.
  • the fluid pressure in the secondary chambers 6 to 8 is in turn higher than in the delivery chamber 5 so that fluid flows from each secondary chamber 6 to 8 into the delivery chamber 5 .
  • FIG 7 shows a fluid circuit system 11, which differs from that in figure 6 shown fluid circuit system 11 differs only by a control system 80 for controlling fluid flows between the secondary chambers 6 to 8 and the pumping chamber 5.
  • the control system 80 includes pressure measuring devices 82 for detecting pressures in the secondary chambers 6 to 8 and the delivery chamber 5 and control units 84 for monitoring differential pressures between these pressures and for controlling the fluid flows between the secondary chambers 6 to 8 and the delivery chamber 5 as a function of the differential pressures .
  • the fluid flows are regulated by activating control valves 86 of the fluid circuit system 11.
  • figure 8 shows a fluid circuit system 11, which differs from that in figure 7 shown fluid circuit system 11 differs only in that through fluid outlets 17, 19 emerging from the pumping chamber 5 fluid collected by a fluid recycling unit 70 and partially is fed back to the fluid circuit system 11 .
  • the fluid recycling unit 70 can have a fluid cleaning unit 72 , which cleans fluid that has escaped from the conveying chamber 5 , for example to remove gas and/or dust that has escaped from the conveyed goods, before it is fed to the fluid circulation system 11 .
  • figure 9 shows a sectional view of a fourth exemplary embodiment of a conveyor system 1.
  • This exemplary embodiment differs from that in FIGS Figures 3 and 4 shown embodiment essentially only in that the first secondary chamber 6 is omitted and the pumping chamber 5 extends into an area in which in the Figures 3 and 4 shown embodiment is occupied by the first secondary chamber 6.
  • the traction means 48 in which in the Figures 3 and 4 shown embodiment are arranged in the first secondary chamber 6, are in the in figure 9 shown embodiment in the secondary chambers 7, 8, wherein in each of these secondary chambers 7, 8, a traction means 48 is arranged.
  • the secondary chambers 7, 8 are each connected to the delivery chamber 5 by a slot-like passage opening 9 that runs around in the shape of a ring.
  • the support elements 46 protrude through these passage openings 9 into the secondary chambers 7 , 8 .
  • guide wheels 58 are arranged, with which the carrier elements 46 are guided.
  • Each traction means 48 is analogous to that in the Figures 3 and 4 shown embodiment driven via two drive wheels 54, which are each arranged in a deflection area 50, 52 of the traction means 48 and are in contact with the traction means 48.
  • An additional chamber 31, 32 is in turn arranged on each deflection area 50, 52, in which the drive wheels 54 of this deflection area 50, 52 are arranged are.
  • Each additional chamber 31, 32 borders on both secondary chambers 7, 8 and has connecting openings 57 for each of the drive wheels 54 arranged in it, through which the drive wheel 54 protrudes into the secondary chamber 7, 8 in which the traction means 48 connected to the drive wheel 54 is arranged is.
  • the carrier elements 46 do not delimit the delivery chamber 5, but are spaced from a delivery chamber wall 60 of the delivery chamber 5.
  • the pumping chamber wall 60 can have a thermal insulation layer 62 .
  • the construction of the system housing 3 is simplified compared to that in the Figures 3 and 4 shown embodiment by the omission of the first secondary chamber 6, which forms a separate traction means chamber for the traction means 48 in that embodiment.
  • the cooling of the traction means 48 is simplified when transporting hot conveyed goods. On the one hand, there is no cooling of the first secondary chamber 6.
  • the traction means 48 are heated to a lesser extent when hot conveyed goods are being transported and therefore also need to be cooled to a lesser extent, since the traction means 48 are no longer arranged in a central area of the carrier elements 46, the is particularly strongly heated by the conveyed material, but at the cooler edge regions of the carrier elements 46 at a significantly greater distance from the conveyed material.
  • the spacing of the carrier elements 46 from the pumping chamber wall 60 Due to the spacing of the carrier elements 46 from the pumping chamber wall 60, a largely homogeneous fluid atmosphere is also formed above and below the carrier elements 46, which advantageously reduces temperature differences and turbulent flows within the pumping chamber 5 in particular.
  • the spacing of the support elements 46 from the pumping chamber wall 60 and thermal insulation of the pumping chamber wall 60 by the Thermal insulation layer 62 also advantageously reduce the heat losses from the conveying chamber 5, so that when hot conveyed goods are being transported, the temperature of the conveyed goods can be better kept at an approximately constant level along the conveying path.
  • the exemplary embodiment of a conveyor system 1 shown can, for example, be modified in such a way that the additional chambers 31, 32 are omitted.
  • the secondary chambers 7, 8 can be enlarged so that each drive wheel 54 is arranged in a secondary chamber 7, 8.
  • the system housing 3 can be designed for discharging conveyed material that falls down from carrier elements 46 during conveying along the conveying path, so that the conveying chamber 5 is not gradually blocked by conveyed material falling from carrier elements 46 .
  • the bottom of the upper area of the pumping chamber 5 is, for example, as in figure 9 trough-like and inclined relative to the horizontal, so that conveyed material falling from carrier elements 46 can slide to a disposal opening in the conveying chamber wall 60, for example in the bottom of the upper region of the conveying chamber 5, and can be removed from the conveying chamber 5 through the disposal opening.
  • the bottom of the upper region of the conveying chamber 5 can also have a continuous disposal opening, under which, for example, fluid-tight chutes are arranged, via which conveyed material falling from carrier elements 46 is disposed of.
  • the ones in the Figures 1 to 4 The shown system housing 3 of conveyor systems 1 can be designed in a similar way for discharging conveyed material that falls down from carrier elements 46 during conveying along the conveying path.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Tunnel Furnaces (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Cleaning In General (AREA)
  • Air Transport Of Granular Materials (AREA)
  • Belt Conveyors (AREA)
  • Intermediate Stations On Conveyors (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

  • Die Erfindung betrifft eine Förderanlage und ein Verfahren zum Fördern eines Förderguts.
  • Insbesondere betrifft die Erfindung das Fördern von reaktivem und/oder heißem und/oder abrasivem Fördergut. Unter einem reaktiven Fördergut wird hier ein Fördergut verstanden, das chemisch oder/und physikalisch mit die Förderanlage umgebenden Umgebungsstoffen, beispielsweise mit Luft, insbesondere mit dem Sauerstoff der Luft, reagiert. Bei dem Fördern derartigen Förderguts werden verschiedene Anforderungen an eine Förderanlage gestellt. Bei der Förderung heißen Förderguts wird auch die Fördermechanik der Förderanlage hohen Temperaturen ausgesetzt, so dass sie gekühlt werden oder aus teuren hitzebeständigen Materialien gefertigt sein muss. Bei der Förderung reaktiven Förderguts kann, beispielsweise durch chemische Reaktionen des Förderguts mit beispielsweise Sauerstoff aus der Umgebung, aus dem Fördergut gesundheitsschädliches und/oder umweltschädliches Gas entweichen, und/oder das Fördergut kann sich durch die Reaktionen stark erhitzen, was zu Materialschädigungen des Förderguts und/oder zu Sicherheitsproblemen führen kann. Um den Kontakt reaktiven Förderguts beispielsweise mit Sauerstoff zu vermeiden, wird oft ein Inertgas, beispielsweise Stickstoff, eingesetzt, um Sauerstoff aus der Umgebung des Förderguts fernzuhalten. Ferner entsteht bei der Förderung von Fördergut oft Staub, der ebenfalls gesundheitsschädlich und/oder umweltschädlich wirken und/oder schädlich für Teilkomponenten der Förderanlage sein kann, und abgezogen und entsorgt werden muss.
  • US20040063058A1 beschreibt einen Heizofen, bei dem zwecks Einstellung eines spezifischen Temperaturprofils Gas aus Kühlkammern in Heizkammern strömt, ohne speziell auf die Fördermechanik einzugehen.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Förderanlage und ein Verfahren zum Fördern eines Förderguts anzugeben, die insbesondere hinsichtlich der Förderung von reaktivem, heißem und/oder abrasivem Fördergut verbessert sind.
  • Die Aufgabe wird erfindungsgemäß hinsichtlich der Förderanlage durch die Merkmale des Anspruchs 1 und hinsichtlich des Verfahrens durch die Merkmale des Anspruchs 11 gelöst.
  • Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
  • Eine erfindungsgemäße Förderanlage zum Fördern eines Förderguts entlang eines Förderwegs umfasst ein Anlagengehäuse mit einer Förderkammer, in der zumindest der Förderweg angeordnet ist, und mit wenigstens einer Nebenkammer, die durch wenigstens eine Durchlassöffnung mit der Förderkammer verbunden ist und eine sich von einer Fluidatmosphäre in der Förderkammer physikalisch und/oder chemisch unterscheidende Fluidatmosphäre aufweist. Die wenigstens eine Durchlassöffnung und die Fluidatmosphären in der Förderkammer und in der wenigstens einen Nebenkammer sind zur Einstellung eines definierten Fluidstroms in dem Anlagengehäuse ausgebildet.
  • Unter einer Kammer eines Anlagengehäuses wird hier ein im Wesentlichen abgeschlossener Hohlraum des Anlagengehäuses verstanden. Unter einer Fluidatmosphäre in einer Kammer werden die chemischen und physikalischen Eigenschaften, beispielsweise die chemische Zusammensetzung, der Druck oder die Temperatur, eines Fluids verstanden, das sich in der Kammer befindet. Unter einem Fluid wird ein Gas oder eine Flüssigkeit verstanden.
  • Eine erfindungsgemäße Förderanlage ermöglicht also einen definierten Fluidstrom in einem Anlagengehäuse der Förderanlage. Dies wird durch eine Aufteilung des Anlagengehäuses in eine Förderkammer und wenigstens eine Nebenkammer erreicht, die voneinander verschiedene Fluidatmosphären aufweisen und durch wenigstens eine Durchlassöffnung verbunden sind. Die Anordnung des Förderwegs in einer Förderkammer ermöglicht eine weitgehende Kapselung des Förderwegs gegenüber der Umgebung, so dass das Fördergut gegenüber Umgebungsstoffen und insbesondere Sauerstoff aus der Umgebung weitgehend abgeschottet ist. Die Einstellung eines definierten Fluidstroms durch die voneinander verschiedenen Fluidatmosphären in der Förderkammer und der wenigstens einen Nebenkammer ermöglicht zusätzlich das Fernhalten von Umgebungsstoffen und insbesondere von Sauerstoff aus dem Bereich des Förderguts, sowie die definierte Ableitung von gesundheitsschädlichen und/oder umweltschädlichen Gasen und Staub mit dem Fluidstrom aus der Förderkammer.
  • Eine Ausgestaltung der Erfindung sieht vor, dass das Anlagengehäuse wenigstens einen Fluideinlass und wenigstens einen Fluidauslass aufweist und bis auf den wenigstens einen Fluideinlass und den wenigstens einen Fluidauslass fluiddicht ausgeführt ist. Unter Fluiddichtheit wird hier eine einer technischen Spezifikation genügende Fluiddichtheit verstanden. Durch diese weitgehend fluiddichte Ausführung des Anlagengehäuses wird ein Austreten von Fluid aus dem Anlagengehäuse auf die Fluidauslässe begrenzt, so dass eine nur relativ geringe Menge von Fluid aus dem Anlagengehäuse entweicht. Ferner ermöglicht der Austritt von Fluid durch die definierten Fluidauslässe, aus dem Anlagengehäuse austretendes Fluid gezielt wenigstens teilweise aufzufangen und dem Anlagengehäuse wieder zuzuführen. Dadurch werden der Verbrauch und die Kosten des eingesetzten Fluids vorteilhaft reduziert. Die weitgehend fluiddichte Ausführung des Anlagengehäuses reduziert außerdem vorteilhaft das Eindringen von die Förderanlage umgebenden Umgebungsstoffen in das Anlagengehäuse.
  • Eine weitere Ausgestaltung der Erfindung sieht vor, dass ein im Bereich eines Förderweganfangs des Förderwegs angeordnetes Förderkammerende der Förderkammer geschlossen oder verschließbar ist. Dadurch kann die Richtung des Fluidstroms in einfacher Weise der Transportrichtung des Förderguts angeglichen werden.
  • Die Erfindung sieht vor, dass in wenigstens einer Nebenkammer wenigstens eine Komponente einer Fördermechanik zur Förderung des Förderguts angeordnet ist. Dies ermöglicht vorteilhaft, empfindliche Komponenten der Fördermechanik nicht in der Förderkammer, sondern in einer Nebenkammer anzuordnen und dadurch dem Einfluss von hohen Temperaturen, Staub und/oder korrosiven Gasen in der Förderkammer zu entziehen. Mit anderen Worten können Komponenten der Fördermechanik vor der oft widrigen Fluidatmosphäre in der Förderkammer durch Auslagerung in eine Nebenkammer geschützt werden. Ferner kann die Anordnung von Komponenten der Fördermechanik in einer Nebenkammer genutzt werden, um diese Komponenten in der Nebenkammer relativ einfach zu kühlen, beispielsweise durch in die Nebenkammer geleitetes Fluid oder/und durch eine separate Kühlvorrichtung.
  • Die Erfindung sieht vor, dass die Fördermechanik einen Zugmitteltrieb mit wenigstens einem in einer Nebenkammer angeordneten Zugmittel aufweist, mit dem Trägerelemente zur Förderung des Förderguts bewegbar sind. Das Fördergut wird beispielsweise direkt durch die Trägerelemente oder in an den Trägerelementen angeordneten Behältern transportiert. Dabei trennen die Trägerelemente beispielsweise die Förderkammer von einer Nebenkammer, in der wenigstens ein Zugmittel angeordnet ist. Alternativ sind die Trägerelemente in der Förderkammer angeordnet und ragen durch eine Durchlassöffnung in wenigstens eine Nebenkammer hinein, insbesondere in eine seitlich an der Förderkammer angeordnete Nebenkammer, in der ein Zugmittel angeordnet ist. Zugmitteltriebe und damit bewegte Trägerelemente eignen sich unter anderem aufgrund ihrer Robustheit und ihres geringen Wartungsbedarfs besonders gut zum Transport von reaktivem, heißem und/oder abrasivem Fördergut. Die Anordnung eines Zugmittels in einer Nebenkammer schützt das Zugmittel vor hohen Temperaturen, Staub und/oder korrosiven Fluiden in der Förderkammer. Bei einer Trennung der Förderkammer von einer Nebenkammer, in der wenigstens ein Zugmittel angeordnet ist, durch die Trägerelemente können die Trägerelemente neben dem Transport des Förderguts gleichzeitig zur Abschottung der Nebenkammer von der Förderkammer eingesetzt werden. Bei der Anordnung eines Zugmittels in einer seitlich an der Förderkammer angeordneten Nebenkammer wird das Zugmittel räumlich weiter von dem Fördergut getrennt, was insbesondere bei dem Transport heißen Förderguts vorteilhaft ist, da das Zugmittel in diesem Fall von dem Fördergut weniger stark erhitzt wird und somit auch weniger stark gekühlt werden muss.
  • Eine weitere Ausgestaltung der Erfindung sieht vor, dass eine Öffnungsweite wenigstens einer Durchlassöffnung entlang des Verlaufs der Durchlassöffnung variiert. Bereiche einer Nebenkammer mit schmaleren Durchlassöffnungen eignen sich besonders vorteilhaft zur Kühlung von dort angeordneten Komponenten der Fördermechanik mit in die Nebenkammer geleitetem Fluid, da sich in diesen Bereichen besonders hohe Fluidströme des Fluids ergeben. Ferner eignen sich Bereiche einer Nebenkammer mit schmaleren Durchlassöffnungen besonders vorteilhaft für die Einleitung von Fluid in die Nebenkammer, weil in diesen Bereichen weniger Fluid aus der Nebenkammern in die Förderkammer strömt als in Bereichen mit weiteren Durchlassöffnungen, so dass das eingeleitete Fluid über größere Bereiche der Nebenkammer verteilt werden kann. Bereiche mit weiteren Durchlassöffnungen eignen sich dagegen vorteilhaft, um gezielt größere Mengen von Fluid in die Förderkammer zu leiten und dadurch den Fluidstrom in der Förderkammer stärker zu beeinflussen. Daher können durch gezielte Variation der Öffnungsweite einer Durchlassöffnung geeignete Bereiche der Nebenkammer zur Kühlung von Komponenten der Fördermechanik oder von anderen Komponenten der Förderanlage, beispielsweise den oben genannten Trägerelementen, zur Positionierung von Fluideinlässen und zur Beeinflussung des Fluidstroms in dem Anlagengehäuse definiert werden.
  • Eine weitere Ausgestaltung der Erfindung sieht eine Kühlvorrichtung zur Kühlung wenigstens einer Nebenkammer vor. Dadurch können insbesondere in der Nebenkammer angeordnete Komponenten der Fördermechanik gekühlt werden, wenn eine Kühlung durch das Fluid nicht vorgesehen oder nicht ausreichend ist.
  • Eine weitere Ausgestaltung der Erfindung sieht ein Fluidkreislaufsystem vor, welches wenigstens eine Nebenkammer umfasst und zur Leitung eines Fluids durch wenigstens eine Durchlassöffnung aus der Nebenkammer in die Förderkammer ausgebildet ist. Durch ein derartiges Fluidkreislaufsystem kann vorteilhaft der Verbrauch von Fluid weiter gesenkt werden, da aus einer Nebenkammer abgeführtes Fluid über das Fluidkreislaufsystem wieder einer Nebenkammer zugeführt wird, so dass dieses Fluid in dem Fluidkreislaufsystem verbleibt.
  • Das Fluidkreislaufsystem kann wenigstens einen Wärmetauscher zur Kühlung eines einer Nebenkammer zugeführten Fluids aufweisen. Dadurch kann das durch den Wärmetauscher abgekühlte und danach in eine Nebenkammer geleitete Fluid vorteilhaft auch zur Kühlung von in der Nebenkammer angeordneten Komponenten der Fördermechanik eingesetzt werden.
  • Ferner kann die Förderanlage eine Fluidwiederverwertungseinheit zur Aufnahme von Fluid aus der Förderkammer und Rückspeisung von Fluid in die Förderkammer aufweisen, wobei die Rückspeisung von Fluid direkt oder/und über das Fluidkreislaufsystem erfolgen kann. Die Fluidwiederverwertungseinheit kann eine Fluidreinigungseinheit zur Reinigung des aus der Förderkammer aufgenommenen Fluids aufweisen. Dadurch kann aus der Förderkammer austretendes oder abgezogenes Fluid wenigstens teilweise aufgefangen und wieder verwertet werden, indem es in die Förderkammer rückgespeist wird. Der Fluidwiederverwertungseinheit braucht Fluid dabei nicht direkt aus Förderkammer zugeführt werden, sondern Fluid kann auch aus der Förderkammer in ein der Förderanlage nachgeschaltetes Aggregat, beispielsweise in einen Bunker, in den das Fördergut gefördert wird, abgegeben werden, und der Fluidwiederverwertungseinheit aus diesem Aggregat zugeführt werden. Dadurch kann der Verbrauch von Fluid weiter vorteilhaft gesenkt werden. Da aus der Förderkammer austretendes oder abgezogenes Fluid oft Staub und/oder aus dem Fördergut entwichenes Gas enthält, kann eine Fluidreinigungseinheit zur Reinigung des aus der Förderkammer aufgenommenen Fluids vorteilhaft sein.
  • Eine weitere Ausgestaltung der Erfindung sieht ein Regelungssystem zur Regelung eines Fluidstroms von wenigstens einer Nebenkammer in die Förderkammer in Abhängigkeit von einem Differenzdruck zwischen einem Druck in der Nebenkammer und einem Druck in der Förderkammer vor. Dadurch kann der Fluidstrom vorteilhaft erforderlichenfalls besonders genau eingestellt werden.
  • Bei einem erfindungsgemäßen Verfahren zum Betrieb einer erfindungsgemäßen Förderanlage wird in jeder Nebenkammer ein höherer Fluiddruck als in der Förderkammer eingestellt. Dadurch wird erreicht, dass Fluid aus jeder Nebenkammer in die Förderkammer strömt und nicht umgekehrt aus der Förderkammer in eine Nebenkammer. Der gegenüber der Förderkammer höhere Fluiddruck in jeder Nebenkammer und die daraus resultierende Fluidströmung aus jeder Nebenkammer in die Förderkammer verhindern vorteilhaft auch das Eindringen von aus dem Fördergut entwichenem Fluid und/oder von bei dem Transport des Förderguts entstehendem Staub in eine Nebenkammer.
  • Eine Ausgestaltung des Verfahrens sieht vor, dass Fluid aus der Förderkammer durch eine Fluidwiederverwertungseinheit direkt oder/und über wenigstens eine Nebenkammer in die Förderkammer rückgespeist wird. Dadurch kann der Verbrauch von Fluid vorteilhaft gesenkt werden. Insbesondere kann vorgesehen sein, dass Fluid in der Fluidwiederverwertungseinheit vor der Rückspeisung in die Förderkammer gereinigt wird. Dadurch kann vorteilhaft vermieden werden, dass mit dem rückgespeisten Fluid Staub und/oder aus dem Fördergut entwichenes Fluid in die Förderkammer gelangt.
  • Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung von Ausführungsbeispielen, die im Zusammenhang mit den Zeichnungen näher erläutert werden. Dabei zeigen:
    • FIG 1 schematisch ein erstes Ausführungsbeispiel einer Förderanlage mit einem ersten Ausführungsbeispiel eines Fluidkreislaufsystems,
    • FIG 2 schematisch ein zweites Ausführungsbeispiel einer Förderanlage,
    • FIG 3 eine perspektivische Darstellung eines dritten Ausführungsbeispiels einer Förderanlage,
    • FIG 4 eine Schnittdarstellung der in Figur 3 dargestellten Förderanlage,
    • FIG 5 ein Blockdiagramm eines zweiten Ausführungsbeispiels eines Fluidkreislaufsystems einer Förderanlage,
    • FIG 6 ein Blockdiagramm eines dritten Ausführungsbeispiels eines Fluidkreislaufsystems einer Förderanlage,
    • FIG 7 ein Blockdiagramm eines vierten Ausführungsbeispiels eines Fluidkreislaufsystems einer Förderanlage,
    • FIG 8 ein Blockdiagramm eines fünften Ausführungsbeispiels eines Fluidkreislaufsystems einer Förderanlage, und
    • FIG 9 eine Schnittdarstellung eines vierten Ausführungsbeispiels einer Förderanlage.
  • Einander entsprechende Teile sind in den Figuren mit denselben Bezugszeichen versehen.
  • Figur 1 zeigt schematisch ein erstes Ausführungsbeispiel einer Förderanlage 1 zum Fördern eines Förderguts entlang eines Förderwegs. Die Förderanlage 1 umfasst ein Anlagengehäuse 3, das eine Förderkammer 5 und eine Nebenkammer 7 aufweist. In der Förderkammer 5 ist zumindest der Förderweg angeordnet. Die Nebenkammer 7 ist seitlich an der Förderkammer 5 angeordnet und ist durch mehrere Durchlassöffnungen 9 mit der Förderkammer 5 verbunden. Ferner weist die Förderanlage 1 ein Fluidkreislaufsystem 11 auf, welches die Nebenkammer 7 umfasst und zur Leitung eines Fluids, beispielsweise eines Inertgases, durch die Durchlassöffnungen 9 aus der Nebenkammer 7 in die Förderkammer 5 ausgebildet ist. Strömungsrichtungen des Fluids sind in Figur 1 durch Pfeile angedeutet. Statt mehrerer Durchlassöffnungen 9 kann auch eine durchgehende schlitzartige Durchlassöffnung 9 vorgesehen sein.
  • Das Fördergut ist beispielsweise ein reaktives und/oder heißes und/oder abrasives Fördergut. Insbesondere kann aus dem Fördergut gesundheitsschädliches und/oder umweltschädliches Fluid entweichen, das daher nicht unkontrolliert in die Umgebung entweichen soll. Ferner kann bei dem Transport des Förderguts in der Förderkammer 5 Staub entstehen.
  • Die Förderkammer 5 und die Nebenkammer 7 weisen sich physikalisch und/oder chemisch unterscheidende Fluidatmosphären auf. Insbesondere weist die Fluidatmosphäre in der Nebenkammer 7 einen höheren Fluiddruck als die Fluidatmosphäre in der Förderkammer 5 auf. Dadurch wird erreicht, dass Fluid durch die Durchlassöffnungen 9 aus der Nebenkammer 7 im Wesentlichen in die Förderkammer 5 strömt und nicht umgekehrt aus der Förderkammer 5 in die Nebenkammer 7. Die Fluidatmosphäre in der Förderkammer 5 kann insbesondere bei einem heißem Fördergut eine gegenüber der Fluidatmosphäre in der Nebenkammer 7 höhere Temperatur aufweisen und/oder aus dem Fördergut entwichenes Gas und/oder bei dem Transport des Förderguts entstehenden Staub enthalten. Der höhere Fluiddruck in der Nebenkammer 7 und die daraus resultierende Fluidströmung aus der Nebenkammer 7 in die Förderkammer 5 verhindern vorteilhaft auch das Eindringen dieses Gases und/oder Staubes aus der Förderkammer 5 in die Nebenkammer 7.
  • Der Förderweg verläuft in der Förderkammer 5 zwischen einem ersten Förderkammerende 13 und einem zweiten Förderkammerende 15. Im Bereich des ersten Förderkammerendes 13 wird Fördergut in die Förderkammer 5 eingebracht. An dem zweiten Förderkammerende 15 wird das Fördergut aus der Förderkammer 5 ausgegeben. Das erste Förderkammerende 13 ist beispielsweise geschlossen oder verschließbar ausgebildet, während das zweite Förderkammerende 15 einen ersten Fluidauslass 17 aufweist, durch den Fluid aus der Förderkammer 5 ausströmt, beispielsweise zusammen mit dem Fördergut. Das Anlagengehäuse 3 weist ferner einen zweiten Fluidauslass 18 auf, durch den in dem Fluidkreislaufsystem 11 zirkulierendes Fluid aus der Nebenkammer 7 abgeführt wird. Darüber hinaus kann das Anlagengehäuse 3 weitere Fluidauslässe 19 aufweisen, durch die Fluid aus der Förderkammer 5 abgezogen werden kann, beispielsweise wenn ein Fluiddruck in der Förderkammer 5 einen Druckschwellenwert überschreitet (derartige Fluidauslässe 19 können beispielsweise jeweils ein Sicherheitsorgan, beispielsweise ein Sicherheitsventil, aufweisen, beispielsweise wenn eine Sicherheitsstudie dies als notwendig erachtet). Das Anlagengehäuse 3 weist ferner einen ersten Fluideinlass 21 auf, durch den in dem Fluidkreislaufsystem 11 zirkulierendes Fluid in die Nebenkammer 7 eingespeist wird. Ferner kann das Anlagengehäuse 3 weitere Fluideinlässe 22 aufweisen, durch die der Förderkammer 5 Fluid zugeführt werden kann, beispielsweise um einen Fluidstrom in der Förderkammer 5 zu beeinflussen. Bis auf die Fluidauslässe 17 bis 19 und die Fluideinlässe 21, 22 ist das Anlagengehäuse 3 fluiddicht ausgeführt. Bei anderen Ausführungsbeispielen können der erste Fluideinlass 21 und/oder der zweite Fluidauslass 18 auch an anderen Stellen als an den in Figur 1 gezeigten Stellen der Nebenkammer 7 angeordnet, beispielsweise gegenüber Figur 1 miteinander vertauscht, sein.
  • Durch diese weitgehend fluiddichte Ausführung des Anlagengehäuses 3 wird ein Austreten von Fluid aus dem Anlagengehäuse 3 auf die Fluidauslässe 17 bis 19 begrenzt, so dass eine nur relativ geringe Menge von Fluid aus dem Anlagengehäuse 3 entweicht. Ferner wird der Nebenkammer 7 aus dem zweiten Fluidauslass 18 abgeführtes Fluid durch das Fluidkreislaufsystem 11 über den ersten Fluideinlass 21 wieder zugeführt. Überdies kann aus dem ersten Fluidauslass 17 und/oder wenigstens einem weiteren Fluidauslass 19 austretendes Fluid gegebenenfalls wenigstens teilweise aufgefangen, dem Fluidkreislaufsystem 11 zugeführt (gegebenenfalls nach einer Reinigung, siehe dazu Figur 2 und Figur 8) und wiederverwertet werden. Insgesamt kann dadurch die dem Anlagengehäuse 3 zuzuführende Menge von Fluid relativ gering gehalten werden. Dadurch werden der Verbrauch von Fluid und die Kosten für das Fluid vorteilhaft reduziert. Ein weiterer Vorteil der weitgehend fluiddichten Ausführung des Anlagengehäuses 3 und des gegenüber der Förderkammer 5 höheren Fluiddrucks in der Nebenkammer 7 ist, dass aus dem Fördergut entwichenes gesundheitsschädliches und/oder umweltschädliches Fluid ebenfalls nur an den Fluidauslässen 17, 19 aus der Förderkammer 5 austreten und dort entsorgt werden kann. Gleiches gilt für Staub, der sich in der Förderkammer 5 befindet.
  • In der Nebenkammer 7 sind Komponenten einer Fördermechanik zur Förderung des Förderguts angeordnet.
  • Das Fluidkreislaufsystem 11 führt Fluid durch die Nebenkammer 7 hindurch, durch den zweiten Fluidauslass 18 aus der Nebenkammer 7 heraus und, beispielsweise mittels Rohrleitungen, über eine Strömungsmaschine 25 und optional über einen Wärmetauscher 27 durch den ersten Fluideinlass 21 wieder in die Nebenkammer 7 hinein. Ferner weist das Fluidkreislaufsystem 11 eine Fluidzuführung 29 auf, durch die dem Fluidkreislaufsystem 11 Fluid zuführbar ist, insbesondere um Fluid zu ersetzen, das aus der Nebenkammer 7 durch die Durchlassöffnungen 9 in die Förderkammer 5 abgegeben wird. Die Strömungsmaschine 25 ist ein Gebläse oder eine Pumpe, je nachdem, ob das Fluid ein Gas oder eine Flüssigkeit ist. Der optionale Wärmetauscher 27 dient der Kühlung des Fluids. Er ist besonders in Fällen vorteilhaft, in denen in der Förderkammer 5 ein heißes Fördergut transportiert wird und in der Nebenkammer 7 zu kühlende Komponenten einer Fördermechanik zur Förderung des Förderguts angeordnet sind. In diesen Fällen kann das in die Nebenkammer 7 geleitete und durch den Wärmetauscher 27 abgekühlte Fluid vorteilhaft auch zur Kühlung der in der Nebenkammer 7 angeordneten Komponenten der Fördermechanik eingesetzt werden. Alternativ oder zusätzlich kann die Förderanlage eine (nicht dargestellte) separate Kühlvorrichtung zur Kühlung der Nebenkammer 7 aufweisen. Beispielsweise kann die Kühlvorrichtung ein mit einem Kühlmittel befüllbares Kühlrohr oder mehrere Kühlrohre aufweisen, wobei sich wenigstens ein Kühlrohr innerhalb der Nebenkammer 7 befinden kann.
  • Figur 2 zeigt schematisch ein zweites Ausführungsbeispiel einer Förderanlage 1. Die Förderanlage 1 unterscheidet sich von dem in Figur 1 dargestellten Ausführungsbeispiel im Wesentlichen durch eine Fluidwiederverwertungseinheit 70 zur Aufnahme von durch den Fluidauslass 17 aus der Förderkammer 5 austretendem Fluid. Die Fluidwiederverwertungseinheit 70 weist eine Fluidreinigungseinheit 72 zur Reinigung des aus der Förderkammer 5 aufgenommenen Fluids auf. Ein Teil des gereinigten Fluids wird über einen Fluideinlass 22 direkt in die Förderkammer 5 rückgespeist. Der andere Teil des gereinigten Fluids wird indirekt in die Förderkammer 5 rückgespeist, indem er dem Fluidkreislaufsystem 11 über die Fluidzuführung 29 zugeführt wird. Im Idealfall wird sämtliches aus der Förderkammer 5 austretendes Fluid in die Förderkammer 5 rückgespeist, so dass keine weitere Einspeisung von Fluid in die Förderanlage 1 erforderlich ist.
  • Abwandlungen des in Figur 2 gezeigten Ausführungsbeispiels können vorsehen, dass die Fluidwiederverwertungseinheit 70 alternativ oder zusätzlich aus einem anderen Fluidauslass 19 aus der Förderkammer 5 austretendes Fluid aufnimmt. Ferner kann vorgesehen sein, dass Fluid alternativ oder zusätzlich durch den Fluidauslass 17 direkt in die Förderkammer 5 rückgespeist wird. Weitere Abwandlungen des in Figur 2 gezeigten Ausführungsbeispiels können vorsehen, dass Fluid entweder nur indirekt über das Fluidkreislaufsystem 11 oder nur direkt in die Förderkammer 5 rückgespeist wird. Ferner kann Fluid statt über die Fluidzuführung 29 an einer anderen Stelle dem Fluidkreislaufsystem 11 zugeführt werden, beispielsweise vor dem Wärmetauscher 27, um das Fluid abzukühlen. Des Weiteren kann die Fluidreinigungseinheit 72 entfallen, wenn eine Reinigung des Fluids nicht erforderlich ist.
  • Die Figuren 3 und 4 zeigen ein drittes Ausführungsbeispiel einer Förderanlage 1 zum Fördern eines Förderguts entlang eines Förderwegs. Figur 3 zeigt eine perspektivische Ansicht der Förderanlage 1. Figur 4 zeigt eine Schnittdarstellung der Förderanlage 1.
  • Die Förderanlage 1 umfasst ein Anlagengehäuse 3, das eine Förderkammer 5, drei Nebenkammern 6 bis 8 und zwei Zusatzkammern 31, 32 aufweist.
  • Die Förderkammer 5 ist ringförmig mit zwei horizontal verlaufenden Horizontalabschnitten 34, 36 und zwei vertikal verlaufenden Umlenkabschnitten 38, 40 ausgebildet. Ein unterer Horizontalabschnitt 34 verläuft unterhalb eines oberen Horizontalabschnitts 36 und von diesem beabstandet. Die Umlenkabschnitte 38, 40 bilden sich gegenüber liegende Förderkammerenden 13, 15 der Förderkammer 5 und verbinden die beiden Horizontalabschnitte 34, 36 jeweils miteinander. Der Förderweg verläuft in dem oberen Horizontalabschnitt 36 der Förderkammer 5 zwischen einem von einem ersten Umlenkabschnitt 38 gebildeten ersten Förderkammerende 13 und einem von einem zweiten Umlenkabschnitt 40 gebildeten zweiten Förderkammerende 15. In der Nähe des ersten Förderkammerendes 13 weist das Anlagengehäuse 3 einen oberhalb des oberen Horizontalabschnitts 36 angeordneten Chargiereinlass 42 auf, durch den Fördergut in die Förderkammer 5 eingebracht wird. Im Bereich des zweiten Förderkammerendes 15 weist das Anlagengehäuse 3 eine unterhalb des zweiten Umlenkabschnitts 40 angeordnete Abwurföffnung 44 auf, durch die Fördergut aus der Förderkammer 5 ausgegeben wird.
  • Die Nebenkammern 6 bis 8 sind jeweils ebenfalls ringförmig ausgebildet. Die Förderkammer 5 verläuft um eine erste Nebenkammer 6 herum, wobei eine Unterseite des oberen Horizontalabschnitts 36, eine Oberseite des unteren Horizontalabschnitts 34 und die beiden Umlenkabschnitte 38, 40 der Förderkammer 5 an die erste Nebenkammer 6 grenzen. Eine zweite Nebenkammer 7 und die dritte Nebenkammer 8 sind an verschiedenen Seiten der ersten Nebenkammer 6 angeordnet und grenzen jeweils an eine Außenseite der ersten Nebenkammer 6 entlang deren gesamten ringförmigen Verlaufs.
  • Die Förderkammer 5 und die erste Nebenkammer 6 sind voneinander durch Trägerelemente 46 getrennt, mit denen das Fördergut transportiert wird. Das Fördergut wird beispielsweise direkt durch die Trägerelemente 46 oder in an den Trägerelementen 46 angeordneten Behältern transportiert. Die Trägerelemente 46 sind beispielsweise als Trägerplatten ausgeführt. In der ersten Nebenkammer 6 sind Zugmittel 48 angeordnet, die jeweils innerhalb der ersten Nebenkammer 6 entlang deren ringförmigen Verlaufs umlaufen und mit den Trägerelementen 46 verbunden sind. Die Zugmittel 48 sind beispielsweise als Antriebsketten ausgebildet. Mit den Zugmitteln 48 sind die Trägerelemente 46 entlang eines geschlossenen Wegs, der den Förderweg umfasst, in dem Anlagengehäuse 3 bewegbar. Jedes Zugmittel 48 verläuft unterhalb des oberen Horizontalabschnitts 36 und oberhalb des unteren Horizontalabschnitts 34 der Förderkammer 5 geradlinig zwischen zwei Umlenkbereichen 50, 52, die sich jeweils im Bereich eines Förderkammerendes 13, 15 befinden und in denen das Zugmittel 48 umgelenkt wird.
  • Die Zugmittel 48 werden jeweils über zwei Antriebsräder 54 angetrieben, die jeweils in einem Umlenkbereich 50, 52 der Zugmittel 48 angeordnet sind. Die Zugmittel 48 und Antriebsräder 54 bilden einen Zugmitteltrieb, mit dem die Trägerelemente 46 bewegt werden. An jedem Umlenkbereich 50, 52 ist eine der beiden Zusatzkammern 31, 32 angeordnet, in der die Antriebsräder 54 dieses Umlenkbereichs 50, 52 angeordnet sind. Jede Zusatzkammer 31, 32 grenzt an die erste Nebenkammer 6 und weist für jedes der in ihr angeordneten Antriebsräder 54 Verbindungsöffnungen 56 zu der ersten Nebenkammer 6 auf, durch die das Antriebsrad 54 in die erste Nebenkammer 6 hineinragt.
  • Die zweite Nebenkammer 7 und die dritte Nebenkammer 8 sind jeweils durch eine beispielsweise ringförmig umlaufende, schlitzartige Durchlassöffnung 9 mit der Förderkammer 5 und mit der ersten Nebenkammer 6 verbunden. Durch diese Durchlassöffnungen 9 ragen die Trägerelemente 46 in die zweite Nebenkammer 7 und in die dritte Nebenkammer 8 hinein. In der zweiten Nebenkammer 7 und in der dritten Nebenkammer 8 sind jeweils Führungsräder 58 angeordnet, mit denen die Trägerelemente 46 geführt werden. Wenigstens eine Nebenkammer 6 bis 8 kann ferner zusätzlich durch wenigstens eine weitere Durchlassöffnung 10 mit der Förderkammer 5 verbunden sein. Beispielsweise können weitere Durchlassöffnungen 10 zwischen der ersten Nebenkammer 6 und der Förderkammer 5 durch Spalte zwischen den Trägerelementen 46 realisiert sein.
  • Analog zu dem in Figur 1 dargestellten ersten Ausführungsbeispiel weist das Anlagengehäuse 3 Fluidauslässe 17 bis 19 und Fluideinlässe 21, 22 auf. Ein erster Fluidauslass 17 fällt beispielsweise mit der Abwurföffnung 44 zusammen. Ferner können die zweite Nebenkammer 7 und/oder die dritte Nebenkammer 8 wenigstens einen zweiten Fluidauslass 18 aufweisen, und/oder die Förderkammer 5 kann wenigstens einen weiteren Fluidauslass 19 aufweisen. Ferner können die zweite Nebenkammer 7 und/oder die dritte Nebenkammer 8 wenigstens einen ersten Fluideinlass 21 aufweisen, und/oder die Förderkammer 5 und/oder die erste Nebenkammer 6 und/oder wenigstens eine Zusatzkammer 31, 32 können wenigstens einen weiteren Fluideinlass 22 aufweisen, wobei beispielsweise der Chargiereinlass 42 ein Fluideinlass 22 sein kann.
  • Wie in dem in Figur 1 dargestellten ersten Ausführungsbeispiel ist das Anlagengehäuse 3 bis auf die Fluidauslässe 17 bis 19 und die Fluideinlässe 21, 22 fluiddicht ausgeführt, wodurch die bereits oben beschriebenen Vorteile hinsichtlich eines reduzierten Bedarfs an Fluidmenge und eines kontrollierten Abführens und Entsorgens von Gas und Staub aus der Förderkammer 5 resultieren.
  • Ferner weisen die Förderkammer 5 und die Nebenkammern 6 bis 8 wie in dem in Figur 1 dargestellten ersten Ausführungsbeispiel sich physikalisch und/oder chemisch unterscheidende Fluidatmosphären auf. Insbesondere weisen die Fluidatmosphären in jeder mit der Förderkammer 5 durch wenigstens eine Durchlassöffnung 9, 10 verbundenen Nebenkammer 6 bis 8 einen höheren Fluiddruck als die Fluidatmosphäre in der Förderkammer 5 auf. Dadurch wird erreicht, dass Fluid, Staub und aus dem Fördergut entwichenes Gas nicht unmittelbar aus der Förderkammer 5 in die Nebenkammern 6 bis 8 strömen und in der Förderkammer 5 kontrolliert zu den Fluidauslässen 17 bis 19 strömen. Ferner können die in den Nebenkammern 6 bis 8 angeordneten Komponenten der Fördermechanik, insbesondere die Zugmittel 48 und Antriebsräder 54, durch in die Nebenkammern 6 bis 8 geleitetes Fluid gekühlt werden. Die Öffnungsweiten der Durchlassöffnungen 9, 10 können entlang der Verläufe der Durchlassöffnungen 9, 10 variieren. Beispielsweise können die schlitzartigen Durchlassöffnungen 9 in den Umlenkbereichen 50, 52 der Zugmittel 48 weiter sein als zwischen den Umlenkbereichen 50, 52. Bereiche der Nebenkammern 6 bis 8 mit schmaleren Durchlassöffnungen 9, 10 eignen sich besonders vorteilhaft zur Kühlung von dort in den Nebenkammern 6 bis 8 angeordneten Komponenten der Fördermechanik wie der Zugmittel 48 und Antriebsräder 54 mit Fluid, da sich in diesen Bereichen besonders hohe Fluidströme des Fluids ergeben. Ferner eignen sich Bereiche der Nebenkammern 6 bis 8 mit schmaleren Durchlassöffnungen 9, 10 besonders vorteilhaft für die Einleitung von Fluid in die Nebenkammern 6 bis 8, weil in diesen Bereichen weniger Fluid aus den Nebenkammern 6 bis 8 in die Förderkammer 5 strömt als in Bereichen mit weiteren Durchlassöffnungen 9, 10, so dass das eingeleitete Fluid über größere Bereiche der Nebenkammern 6 bis 8 verteilt werden kann.
  • Analog zu dem in Figur 1 dargestellten ersten Ausführungsbeispiel kann auch das in den Figuren 3 und 4 gezeigte Ausführungsbeispiel ein Fluidkreislaufsystem 11 aufweisen, um den Fluidstrom zu steuern und zu optimieren. Die Figuren 4 bis 7 zeigen Blockdiagramme verschiedener Ausführungsformen derartiger Fluidkreislaufsysteme 11.
  • Das in den Figuren 3 und 4 dargestellte Ausführungsbeispiel einer Förderanlage 1 kann in verschiedener Weise abgewandelt werden. Beispielsweise können Zugmittel 48 unterhalb, oberhalb und/oder seitlich der Förderkammer 5 angeordnet sein oder/und es kann eine andere Anzahl von Zugmitteln 48 vorgesehen sein, beispielsweise nur ein Zugmittel 48. Ferner können separate Zusatzkammern 31, 32 für die Antriebsräder 54 entfallen. Des Weiteren kann der Förderweg statt horizontal auch unter einem Winkel zur Horizontalen verlaufen oder einen von einem geraden Verlauf abweichenden Verlauf, beispielsweise einen S- oder Z-förmigen Verlauf, aufweisen, wobei das Anlagengehäuse 3 dem Verlauf des Förderwegs entsprechend ausgeführt ist. Ferner kann der Fluidauslass 17 auch als ein (weiterer) Fluideinlass betrieben werden.
  • Figur 5 zeigt ein Fluidkreislaufsystem 11, in das die Nebenkammern 6 bis 8 und die Zusatzkammern 31, 32 integriert sind. Das Fluidkreislaufsystem 11 leitet Fluid durch jede Nebenkammer 6 bis 8 und jede Zusatzkammer 31, 32 hindurch, führt Fluid aus den Nebenkammern 6 bis 8 und den Zusatzkammern 31, 32 ab und leitet es über eine Strömungsmaschine 25 und optional über einen Wärmetauscher 27 den Nebenkammern 6 bis 8 und/oder den Zusatzkammern 31, 32 wieder zu. Aus den Nebenkammern 6 bis 8 wird ferner Fluid durch die Durchlassöffnungen 9, 10 in die Förderkammer 5 geleitet. Das Fluidkreislaufsystem 11 weist eine Fluidzuführung 29 auf, durch die dem Fluidkreislaufsystem 11 Fluid zuführbar ist, insbesondere um Fluid zu ersetzen, das aus den Nebenkammer 6 bis 8 durch die Durchlassöffnungen 9, 10 in die Förderkammer 5 abgegeben wird. Die erste Nebenkammer 6 weist einen höheren Fluiddruck als die anderen Nebenkammern 7, 8, die Zusatzkammern 31, 32 und die Förderkammer 5 auf, so dass Fluid aus der ersten Nebenkammer 6 in die anderen Nebenkammern 7, 8, die Zusatzkammern 31, 32 und die Förderkammer 5 strömt. Ferner weisen die zweite Nebenkammer 7 und die dritte Nebenkammer 8 einen höheren Fluiddruck als die Förderkammer 5 auf, so dass Fluid aus der zweiten Nebenkammer 7 und der dritten Nebenkammer 8 in die Förderkammer 5 strömt.
  • Figur 6 zeigt ein Fluidkreislaufsystem 11, das sich von dem in Figur 5 gezeigten Fluidkreislaufsystem 11 lediglich dadurch unterscheidet, dass die Nebenkammern 6 bis 8 und die Zusatzkammern 31, 32 einen gleichen Fluiddruck aufweisen, so dass zwischen den Nebenkammern 6 bis 8 und den Zusatzkammern 31, 32 Fluid ausgetauscht wird. Der Fluiddruck in den Nebenkammern 6 bis 8 ist wiederum höher als in der Förderkammer 5, so dass so dass Fluid aus jeder Nebenkammer 6 bis 8 in die Förderkammer 5 strömt.
  • Figur 7 zeigt ein Fluidkreislaufsystem 11, das sich von dem in Figur 6 gezeigten Fluidkreislaufsystem 11 lediglich durch ein Regelungssystem 80 zur Regelung von Fluidströmen zwischen den Nebenkammern 6 bis 8 und der Förderkammer 5 unterscheidet. Das Regelungssystem 80 umfasst Druckmessvorrichtungen 82 zum Erfassen von Drücken in den Nebenkammern 6 bis 8 und der Förderkammer 5 sowie Steuereinheiten 84 zur Überwachung von Differenzdrücken zwischen diesen Drücken und zur Regelung der Fluidströme zwischen den Nebenkammern 6 bis 8 und der Förderkammer 5 in Abhängigkeit von den Differenzdrücken. Die Regelung der Fluidströme erfolgt mittels einer Ansteuerung von Steuerventilen 86 des Fluidkreislaufsystems 11.
  • Figur 8 zeigt ein Fluidkreislaufsystem 11, das sich von dem in Figur 7 gezeigten Fluidkreislaufsystem 11 lediglich dadurch unterscheidet, dass durch Fluidauslässe 17, 19 aus der Förderkammer 5 austretendes Fluid durch eine Fluidwiederverwertungseinheit 70 teilweise aufgefangen und dem Fluidkreislaufsystem 11 wieder zugeführt wird. Optional kann die Fluidwiederverwertungseinheit 70 eine Fluidreinigungseinheit 72 aufweisen, durch die aus der Förderkammer 5 ausgetretenes Fluid gereinigt wird, beispielsweise von aus dem Fördergut entwichenem Gas und/oder von Staub, bevor es dem Fluidkreislaufsystem 11 zugeführt wird.
  • Figur 9 zeigt eine Schnittdarstellung eines vierten Ausführungsbeispiels einer Förderanlage 1. Dieses Ausführungsbeispiel unterscheidet sich von dem in den Figuren 3 und 4 gezeigten Ausführungsbeispiel im Wesentlichen nur dadurch, dass die erste Nebenkammer 6 entfällt und sich die Förderkammer 5 in einen Bereich erstreckt, der bei dem in den Figuren 3 und 4 gezeigten Ausführungsbeispiel von der ersten Nebenkammer 6 eingenommen wird. Die Zugmittel 48, die in dem in den Figuren 3 und 4 gezeigten Ausführungsbeispiel in der ersten Nebenkammer 6 angeordnet sind, sind bei dem in Figur 9 gezeigten Ausführungsbeispiel in den Nebenkammern 7, 8 angeordnet, wobei in jeder dieser Nebenkammern 7, 8 ein Zugmittel 48 angeordnet ist.
  • Analog zu dem in den Figuren 3 und 4 gezeigten Ausführungsbeispiel sind die Nebenkammern 7, 8 jeweils durch eine ringförmig umlaufende, schlitzartige Durchlassöffnung 9 mit der Förderkammer 5 verbunden. Durch diese Durchlassöffnungen 9 ragen die Trägerelemente 46 in die Nebenkammern 7, 8 hinein. In den Nebenkammern 7, 8 sind jeweils wiederum Führungsräder 58 angeordnet, mit denen die Trägerelemente 46 geführt werden.
  • Jedes Zugmittel 48 wird analog zu dem in den Figuren 3 und 4 gezeigten Ausführungsbeispiel über zwei Antriebsräder 54 angetrieben, die jeweils in einem Umlenkbereich 50, 52 des Zugmittels 48 angeordnet sind und mit dem Zugmittel 48 in Kontakt stehen. An jedem Umlenkbereich 50, 52 ist wiederum eine Zusatzkammer 31, 32 angeordnet, in der die Antriebsräder 54 dieses Umlenkbereichs 50, 52 angeordnet sind. Jede Zusatzkammer 31, 32 grenzt an beide Nebenkammern 7, 8 und weist für jedes der in ihr angeordneten Antriebsräder 54 Verbindungsöffnungen 57 auf, durch die das Antriebsrad 54 in diejenige Nebenkammer 7, 8 hineinragt, in der das mit dem Antriebsrad 54 verbundene Zugmittel 48 angeordnet ist.
  • Im Unterschied zu dem in den Figuren 3 und 4 gezeigten Ausführungsbeispiel begrenzen die Trägerelemente 46 nicht die Förderkammer 5, sondern sind von einer Förderkammerwand 60 der Förderkammer 5 beabstandet. Die Förderkammerwand 60 kann eine Wärmeisolationsschicht 62 aufweisen.
  • Durch die Verlagerung der Zugmittel 48 in die Nebenkammern 7, 8 vereinfacht sich die Konstruktion des Anlagengehäuses 3 gegenüber dem in den Figuren 3 und 4 gezeigten Ausführungsbeispiel durch den Wegfall der ersten Nebenkammer 6, die in jenem Ausführungsbeispiel eine separate Zugmittelkammer für die Zugmittel 48 bildet. Darüber hinaus vereinfacht sich die Kühlung der Zugmittel 48 bei einem Transport heißen Förderguts. Einerseits entfällt nämlich die Kühlung der ersten Nebenkammer 6. Andererseits werden die Zugmittel 48 bei einem Transport heißen Förderguts weniger stark erhitzt und müssen daher auch weniger stark gekühlt werden, da die Zugmittel 48 nun nicht mehr an einem mittleren Bereich der Trägerelemente 46 angeordnet sind, der durch das Fördergut besonders stark erhitzt wird, sondern an den kühleren Randbereichen der Trägerelemente 46 in einem deutlich größeren Abstand zu dem Fördergut.
  • Durch die Beabstandung der Trägerelemente 46 von der Förderkammerwand 60 bildet sich ferner oberhalb und unterhalb der Trägerelemente 46 eine weitgehend homogene Fluidatmosphäre aus, wodurch vorteilhaft insbesondere Temperaturunterschiede und turbulente Strömungen innerhalb der Förderkammer 5 reduziert werden. Die Beabstandung der Trägerelemente 46 von der Förderkammerwand 60 und eine Wärmeisolierung der Förderkammerwand 60 durch die Wärmeisolationsschicht 62 reduzieren ferner vorteilhaft die Wärmeverluste aus der Förderkammer 5, so dass bei einem Transport heißen Förderguts die Temperatur des Förderguts entlang des Förderwegs besser auf einem näherungsweisen konstanten Niveau gehalten werden kann.
  • Das in Figur 9 gezeigte Ausführungsbeispiel einer Förderanlage 1 kann beispielsweise dahingehend abgewandelt werden, dass die Zusatzkammern 31, 32 entfallen. Beispielsweise können die Nebenkammern 7, 8 vergrößert werden, so dass jedes Antriebsrad 54 in einer Nebenkammer 7, 8 angeordnet ist.
  • Ferner kann das Anlagengehäuse 3 zum Abführen von Fördergut ausgebildet sein, das beim Fördern entlang des Förderwegs von Trägerelementen 46 herunterfällt, damit die Förderkammer 5 nicht allmählich durch von Trägerelementen 46 herunterfallendes Fördergut verstopft wird. Dazu ist der Boden des oberen Bereichs der Förderkammer 5 beispielsweise wie in Figur 9 trogartig ausgebildet und gegenüber der Horizontalen geneigt, so dass von Trägerelementen 46 herunterfallendes Fördergut zu einer Entsorgungsöffnung in der Förderkammerwand 60, beispielsweise in dem Boden des oberen Bereichs der Förderkammer 5, rutschen kann und durch die Entsorgungsöffnung aus der Förderkammer 5 abgeführt werden kann. Alternativ kann der Boden des oberen Bereichs der Förderkammer 5 auch eine durchgängige Entsorgungsöffnung aufweisen, unter der beispielsweise fluiddichte Schurren angeordnet sind, über die von Trägerelementen 46 herunterfallende Fördergut entsorgt wird. Auch die in den Figuren 1 bis 4 gezeigten Anlagengehäuse 3 von Förderanlagen 1 können in ähnlicher Weise zum Abführen von Fördergut ausgebildet sein, das beim Fördern entlang des Förderwegs von Trägerelementen 46 herunterfällt.
  • Obwohl die Erfindung im Detail durch bevorzugte Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung , wie gemäß Ansprüche 1 bis 13 definiert, 2- zu verlassen.
  • Bezugszeichenliste
  • 1
    Förderanlage
    3
    Anlagengehäuse
    5
    Förderkammer
    6 bis 8
    Nebenkammer
    9, 10
    Durchlassöffnung
    11
    Fluidkreislaufsystem
    13, 15
    Förderkammerende
    17 bis 19
    Fluidauslass
    21, 22
    Fluideinlass
    25
    Strömungsmaschine
    27
    Wärmetauscher
    29
    Fluidzuführung
    31, 32
    Zusatzkammer
    34, 36
    Horizontalabschnitt
    38, 40
    Vertikalabschnitt
    42
    Chargiereinlass
    44
    Abwurföffnung
    46
    Trägerelement
    48
    Zugmittel
    50, 52
    Umlenkbereich
    54
    Antriebsrad
    56, 57
    Verbindungsöffnung
    58
    Führungsrad
    60
    Förderkammerwand
    62
    Wärmeisolationsschicht
    70
    Fluidwiederverwertungseinheit
    72
    Fluidreinigungseinheit
    80
    Regelungssystem
    82
    Druckmessvorrichtung
    84
    Steuereinheit
    86
    Steuerventil

Claims (13)

  1. Förderanlage (1) zum Fördern eines Förderguts entlang eines Förderwegs, die Förderanlage (1) umfassend ein Anlagengehäuse (3) mit einer Förderkammer (5), in der der Förderweg angeordnet ist, und mit wenigstens einer Nebenkammer (6 bis 8), die durch wenigstens eine Durchlassöffnung (9,10) mit der Förderkammer (5) verbunden ist und eine sich von einer Fluidatmosphäre in der Förderkammer (5) physikalisch und/oder chemisch unterscheidende Fluidatmosphäre aufweist, wobei die wenigstens eine Durchlassöffnung (9, 10) und die Fluidatmosphären in der Förderkammer (5) und in der wenigstens einen Nebenkammer (6 bis 8) zur Einstellung eines definierten Fluidstroms in dem Anlagengehäuse (3) ausgebildet sind,
    dadurch gekennzeichnet, dass in wenigstens einer Nebenkammer (6 bis 8) wenigstens eine Komponente (48,54) einer Fördermechanik zur Förderung des Förderguts angeordnet ist, wobei die Fördermechanik einen Zugmitteltrieb mit wenigstens einem in einer Nebenkammer (6 bis 8) angeordneten Zugmittel (48) aufweist, mit dem Trägerelemente (46) zur Förderung des Förderguts bewegbar sind.
  2. Förderanlage (1) nach Anspruch 1,
    dadurch gekennzeichnet, dass das Anlagengehäuse (3) wenigstens einen Fluideinlass (21, 22) und wenigstens einen Fluidauslass (17 bis 19) aufweist und bis auf den wenigstens einen Fluideinlass (21, 22) und den wenigstens einen Fluidauslass (17 bis 19) fluiddicht ausgeführt ist.
  3. Förderanlage (1) nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass die Trägerelemente (46) die Förderkammer (5) von einer Nebenkammer (6), in der wenigstens ein Zugmittel (48) angeordnet ist, trennen.
  4. Förderanlage (1) nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass die Trägerelemente (46) in der Förderkammer (5) angeordnet sind und durch eine Durchlassöffnung (9) in wenigstens eine Nebenkammer (7, 8) hineinragen.
  5. Förderanlage (1) nach Anspruch 4,
    dadurch gekennzeichnet, dass die Trägerelemente (46) in wenigstens eine seitlich an der Förderkammer angeordnete Nebenkammer (7, 8) hineinragen, in der wenigstens ein Zugmittel (48) angeordnet ist.
  6. Förderanlage (1) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein Fluidkreislaufsystem (11), welches wenigstens eine Nebenkammer (6 bis 8) umfasst und zur Leitung eines Fluids durch wenigstens eine Durchlassöffnung (9, 10) aus der Nebenkammer (6 bis 8) in die Förderkammer (5) ausgebildet ist.
  7. Förderanlage (1) nach Anspruch 6,
    dadurch gekennzeichnet, dass das Fluidkreislaufsystem (11) wenigstens einen Wärmetauscher (27) zur Kühlung eines einer Nebenkammer (6 bis 8) zugeführten Fluids aufweist.
  8. Förderanlage (1) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Fluidwiederverwertungseinheit (70) zur Aufnahme von Fluid aus der Förderkammer (5) und Rückspeisung von Fluid in die Förderkammer (5).
  9. Förderanlage (1) nach Anspruch 8,
    dadurch gekennzeichnet, dass die Fluidwiederverwertungseinheit (70) eine Fluidreinigungseinheit (72) zur Reinigung des aus der Förderkammer (5) aufgenommenen Fluids aufweist.
  10. Förderanlage (1) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein Regelungssystem (80) zur Regelung eines Fluidstroms von wenigstens einer Nebenkammer (6 bis 8) in die Förderkammer (5) in Abhängigkeit von einem Differenzdruck zwischen einem Druck in der Nebenkammer (6 bis 8) und einem Druck in der Förderkammer (5).
  11. Verfahren zum Betrieb einer gemäß einem der vorhergehenden Ansprüche ausgebildeten Förderanlage (1), wobei in jeder Nebenkammer (6 bis 8) ein höherer Fluiddruck als in der Förderkammer (5) eingestellt wird.
  12. Verfahren nach Anspruch 11,
    dadurch gekennzeichnet, dass Fluid aus der Förderkammer (5) durch eine Fluidwiederverwertungseinheit (70) direkt oder/und über wenigstens eine Nebenkammer (6 bis 8) in die Förderkammer (5) rückgespeist wird.
  13. Verfahren nach Anspruch 12,
    dadurch gekennzeichnet, dass Fluid in der Fluidwiederverwertungseinheit (70) vor der Rückspeisung in die Förderkammer gereinigt wird.
EP17170804.3A 2017-05-12 2017-05-12 Fördern eines förderguts Active EP3401628B1 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP17170804.3A EP3401628B1 (de) 2017-05-12 2017-05-12 Fördern eines förderguts
ES17170804T ES2927909T3 (es) 2017-05-12 2017-05-12 Transporte de un material para transportar
RS20220924A RS63657B1 (sr) 2017-05-12 2017-05-12 Transportovanje transportovanog materijala
PL17170804.3T PL3401628T3 (pl) 2017-05-12 2017-05-12 Przenoszenie materiału przenoszonego
MX2019013432A MX2019013432A (es) 2017-05-12 2018-05-03 Transportacion de un material a transportar.
CA3061834A CA3061834A1 (en) 2017-05-12 2018-05-03 Conveying a material to be conveyed
US16/611,033 US11650013B2 (en) 2017-05-12 2018-05-03 Conveying a material to be conveyed
PCT/EP2018/061298 WO2018206383A1 (de) 2017-05-12 2018-05-03 Fördern eines förderguts
RU2019136871A RU2764669C2 (ru) 2017-05-12 2018-05-03 Транспортировка транспортируемого материала
TW107115452A TWI759478B (zh) 2017-05-12 2018-05-07 輸送設備及操作輸送設備的方法
SA519410494A SA519410494B1 (ar) 2017-05-12 2019-11-05 نقل مادة مُراد نقلها

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17170804.3A EP3401628B1 (de) 2017-05-12 2017-05-12 Fördern eines förderguts

Publications (2)

Publication Number Publication Date
EP3401628A1 EP3401628A1 (de) 2018-11-14
EP3401628B1 true EP3401628B1 (de) 2022-07-13

Family

ID=58709293

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17170804.3A Active EP3401628B1 (de) 2017-05-12 2017-05-12 Fördern eines förderguts

Country Status (11)

Country Link
US (1) US11650013B2 (de)
EP (1) EP3401628B1 (de)
CA (1) CA3061834A1 (de)
ES (1) ES2927909T3 (de)
MX (1) MX2019013432A (de)
PL (1) PL3401628T3 (de)
RS (1) RS63657B1 (de)
RU (1) RU2764669C2 (de)
SA (1) SA519410494B1 (de)
TW (1) TWI759478B (de)
WO (1) WO2018206383A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2927909T3 (es) 2017-05-12 2022-11-11 Primetals Technologies Austria GmbH Transporte de un material para transportar
EP3766809A1 (de) 2019-07-15 2021-01-20 Primetals Technologies Austria GmbH Fördern eines förderguts

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3036440A (en) * 1960-02-03 1962-05-29 United States Steel Corp Method of cooling briquettes of iron particles
SU521443A1 (ru) 1973-06-21 1976-07-15 Юго-Восточное производственно-техническое предприятие "Ювэнергочермет" Конвейерна туннельна печь дл сушки и обжига эмалевого покрыти
RU2011134C1 (ru) 1990-10-10 1994-04-15 Юрий Александрович Титов Туннельная печь для производства декоративно-облицовочных плит
RU2013731C1 (ru) 1991-02-19 1994-05-30 Юрий Александрович Федоров Туннельная печь для производства декоративно-облицовочных плит
RU2146033C1 (ru) * 1999-05-31 2000-02-27 Белгородская государственная технологическая академия строительных материалов Туннельная печь-утилизатор
DE10023702A1 (de) * 2000-05-16 2001-11-22 Forsch Anorganische Werkstoffe Brennofen und Verfahren zum Brennen keramischer Rohlinge
JP4480231B2 (ja) * 2000-05-30 2010-06-16 トーヨーユニバーサル株式会社 金属製ワークピースのコンベクション式ろう付け方法およびその装置
US6854319B2 (en) 2002-09-25 2005-02-15 Continental Cement Company Methods and apparatus for providing a gas tight enclosure
US8328551B2 (en) * 2002-09-26 2012-12-11 Btu International, Inc. Convection furnace thermal profile enhancement
KR20040042020A (ko) * 2002-11-12 2004-05-20 이상만 부상식 벨트콘베이어 장치
DE20302678U1 (de) * 2003-02-19 2003-05-22 AUMUND-Fördererbau GmbH & Co. KG, 47495 Rheinberg Heißgutförderer
DE20305423U1 (de) 2003-04-04 2004-08-12 Ipsen International Gmbh Vorrichtung zum Transportieren metallischer Werkstücke
US7150627B2 (en) 2005-04-30 2006-12-19 Siddhartha Gaur Transported material heating with controlled atmosphere
AT502904B1 (de) 2005-12-07 2008-02-15 Voest Alpine Ind Anlagen Förderanlage, anlagenverbund und verfahren zur kopplung von metallurgischen verfahren
EP1898170A3 (de) * 2006-09-05 2008-08-27 Elino Industrie-Ofenbau Carl Hanf GmbH & Co. KG Vorrichtung zur physikalischen und/oder chemischen Behandlung von Teilen
JP2010038531A (ja) 2008-07-10 2010-02-18 Ihi Corp 熱処理装置
FR2942629B1 (fr) * 2009-03-02 2011-11-04 Cmi Thermline Services Procede de refroidissement d'une bande metallique circulant dans une section de refroidissement d'une ligne de traitement thermique en continu, et installation de mise en oeuvre dudit procede
RU2429435C1 (ru) * 2010-03-17 2011-09-20 Открытое акционерное общество "Научно-исследовательский институт металлургической теплотехники (ОАО "ВНИИМТ") Способ газодинамической герметизации загрузочных и разгрузочных окон протяжной печи (варианты)
RU2443960C1 (ru) * 2010-06-17 2012-02-27 Открытое акционерное общество "Научно-исследовательский институт металлургической теплотехники" (ОАО "ВНИИМТ") Способ газодинамической герметизации загрузочных и разгрузочных окон протяжной печи (варианты)
US20110318698A1 (en) * 2010-06-28 2011-12-29 Siddhartha Gaur Zero water discharge oven cooling
CN201842461U (zh) * 2010-09-30 2011-05-25 山东建设机械股份有限公司 全密封皮带输送机
DE102013223040A1 (de) * 2013-11-12 2015-05-13 Sms Siemag Ag Verfahren zum Verarbeiten von erhitztem Gut
CN106191444B (zh) * 2014-09-04 2018-08-24 浦项产业科学研究院 热还原设备、该设备的闸门装置和冷凝系统及其控制方法
ES2937938T3 (es) * 2017-05-12 2023-04-03 Primetals Technologies Austria GmbH Transporte de un artículo por transportar
ES2927909T3 (es) 2017-05-12 2022-11-11 Primetals Technologies Austria GmbH Transporte de un material para transportar

Also Published As

Publication number Publication date
RU2019136871A3 (de) 2021-09-23
ES2927909T3 (es) 2022-11-11
MX2019013432A (es) 2020-01-13
EP3401628A1 (de) 2018-11-14
TW201900534A (zh) 2019-01-01
RS63657B1 (sr) 2022-11-30
TWI759478B (zh) 2022-04-01
US11650013B2 (en) 2023-05-16
PL3401628T3 (pl) 2022-11-14
RU2019136871A (ru) 2021-06-16
RU2764669C2 (ru) 2022-01-19
US20200103170A1 (en) 2020-04-02
SA519410494B1 (ar) 2022-08-09
CA3061834A1 (en) 2019-11-19
WO2018206383A1 (de) 2018-11-15

Similar Documents

Publication Publication Date Title
DE60133520T2 (de) Kontinuierlicher Sinterofen und Nutzung desselben
DE112009001647B4 (de) Wärmebehandlungsvorrichtung
AT398207B (de) Kühlvorrichtung für schüttgut
EP2411752B1 (de) Verfahren zum vorwärmen von glühgut in einer haubenglühanlage, sowie haubenglühanlage
DE102009048797B3 (de) Wärmebehandlungsanlage und Verfahren zur Wärmebehandlung von Einsatzgut
EP0120233A2 (de) Verfahren zur Wärmerückgewinnung bei der Wärmebehandlung von metallischem Nutzgut und Durchlaufofen dazu
DE112009004328B4 (de) Wärmebehandlungsvorrichtung und wärmebehandlungsverfahren
EP3401628B1 (de) Fördern eines förderguts
EP2671035B1 (de) Verfahren zum kontrollieren einer schutzgasatmosphäre in einer schutzgaskammer zur behandlung eines metallbandes
DE3342572C2 (de)
EP1957679A2 (de) Förderanlage, anlagenverbund und verfahren zur kopplung von metallurgischen verfahren
EP3766809A1 (de) Fördern eines förderguts
DE102009000201A1 (de) Chargiergestell sowie Abschreckvorrichtung mit Chargiergestell
DE102018100745B3 (de) Konvektionsofen
WO2018206384A1 (de) Fördern eines förderguts
DE3011369A1 (de) Absperrvorrichtung fuer gasfoermige medien hoher temperatur
DE112008000152T5 (de) Ableitvorrichtung
EP0094928B1 (de) Austragungsvorrichtung für einen Schachtofen
DE1962502C3 (de) Vorrichtung zur Stabilisierung des Flatterns eines in seiner Längsrichtung bewegten Metallstreifens
CH640758A5 (de) Stranggiessvorrichtung.
AT526925B1 (de) Temperiereinrichtung
DE2636639C2 (de) Ofen zur Wärmebehandlung von Metallbändern
DE3523655C2 (de)
DE2553808C2 (de) Stetigförderer für Heißgut
AT526905A1 (de) Durchlaufkühlvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190514

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200821

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220218

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017013449

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1504479

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2927909

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20221111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221114

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221013

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221113

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017013449

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

26N No opposition filed

Effective date: 20230414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230526

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230512

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240521

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240521

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240521

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RS

Payment date: 20240507

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240627

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240522

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240528

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240506

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240503

Year of fee payment: 8

Ref country code: SE

Payment date: 20240521

Year of fee payment: 8