EP3394861B1 - Conducteur electrique isole - Google Patents

Conducteur electrique isole Download PDF

Info

Publication number
EP3394861B1
EP3394861B1 EP17711216.6A EP17711216A EP3394861B1 EP 3394861 B1 EP3394861 B1 EP 3394861B1 EP 17711216 A EP17711216 A EP 17711216A EP 3394861 B1 EP3394861 B1 EP 3394861B1
Authority
EP
European Patent Office
Prior art keywords
layer
electric conductor
insulating layer
insulating
electrical conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17711216.6A
Other languages
German (de)
English (en)
Other versions
EP3394861A1 (fr
Inventor
Jürgen Hochstöger
Rudolf Schrayvogel
Ewald Koppensteiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HPW Metallwerk GmbH
Original Assignee
Gebauer and Griller Metallwerk GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebauer and Griller Metallwerk GmbH filed Critical Gebauer and Griller Metallwerk GmbH
Priority to EP18191902.8A priority Critical patent/EP3441986B8/fr
Priority to PL17711216T priority patent/PL3394861T3/pl
Priority to PL18191902T priority patent/PL3441986T3/pl
Priority to RS20190780A priority patent/RS58877B1/sr
Publication of EP3394861A1 publication Critical patent/EP3394861A1/fr
Application granted granted Critical
Publication of EP3394861B1 publication Critical patent/EP3394861B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • H01B13/141Insulating conductors or cables by extrusion of two or more insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/003Apparatus or processes specially adapted for manufacturing conductors or cables using irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • H01B13/145Pretreatment or after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/301Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen or carbon in the main chain of the macromolecule, not provided for in group H01B3/302
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/307Other macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0216Two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0225Three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0275Disposition of insulation comprising one or more extruded layers of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0291Disposition of insulation comprising two or more layers of insulation having different electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/305Polyamides or polyesteramides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes

Definitions

  • the invention relates to an insulated electrical conductor comprising an electrical conductor, preferably of copper or aluminum, with an insulating coating, wherein the insulating coating comprises at least one outer insulating layer made of thermoplastic material, and to a method for producing such an insulated electrical conductor.
  • Insulated electrical conductors are installed in almost any electrical device to conduct electrical current without causing short circuits that may be caused by the contact of non-electrically insulated conductors.
  • Such insulated electrical conductors comprise a copper electrical conductor and a coating electrically insulating the electrical conductor, which usually comprises one or more layers.
  • the insulating coating comprises an insulating layer of thermoplastic material.
  • a round cut is usually carried out on the insulated electrical conductor perpendicular to a conductor axis, the electrical conductor is stretched by 20% and then the detachment of the insulating coating from the electrical conductor is measured. The lower the detachment of the insulating coating from the electrical conductor, the better the adhesion.
  • the JPH03222210A discloses a method of making an insulated electrical conductor in which the conductor surface is cleaned in a gas plasma.
  • the electrical conductor of generic insulated electrical conductors consists of copper or an alloy with a high copper content or aluminum or other electrically conductive materials. Under the electrical conductor is understood to mean both a single conductor and a strand containing several individual conductors.
  • the cross-sectional geometry of the electrical conductor which is normal to a conductor axis, can have any geometric shape: square, rectangular, circular or elliptical, where it Usually, any edges should be rounded off or profiled.
  • the insulation of the electrical conductor is ensured by the provided at least one insulating layer of thermoplastic material, wherein the at least one insulating layer can advantageously form the outermost layer of the insulating coating. However, it is also conceivable that one or more further insulation layers are applied to the at least one insulation layer.
  • an oxide layer for example of copper oxide or aluminum oxide, forms on the surface of the electrical conductor.
  • the oxide layer has a negative effect on the adhesion properties of a layer of the insulating coating applied to the surface of the electrical conductor.
  • the adhesion of the layer of the insulating coating applied to the surface of the electrical conductor removed from the oxide layer is significantly improved. It has been found that the oxide layer can be completely removed by a plasma treatment under an oxygen-free protective gas atmosphere, wherein other impurities can be removed by the plasma treatment. It is even possible that the top atomic layers of the electrical conductor are removed by the plasma treatment.
  • a gas plasma is generated in the protective gas atmosphere and the electrical conductor in the plasma is bombarded with ions of the protective gas in order to remove at least the oxide layer by the ion bombardment.
  • Suitable protective gas or process gas are, for example, nitrogen, argon or hydrogen.
  • the plasma treatment has, in addition to the removal of the oxide layer, further positive effects on the insulated electrical conductor: on the one hand, the electrical conductor is heated by the impact energy of the ions on the surface and can be annealed during the plasma treatment to On the other hand, the surface energy of the electrical conductor can be increased by the ion bombardment, which additionally improves the adhesion of the insulating coating to the surface of the electrical conductor.
  • Another effect of the plasma treatment is to increase the micro-roughness of the surface of the electrical conductor, which also has a positive effect on the adhesion of the insulating coating.
  • At least part of the insulating coating is applied to the surface of the electrical conductor under a protective gas atmosphere, preferably under the same protective gas atmosphere under which the plasma treatment is carried out.
  • An inventive insulated electrical conductor has by the direct application of a plastic-containing intermediate layer of the insulating coating or by the direct application of the insulating layer of thermoplastic material on the plasma-treated and thus oxide layer-free surface of the electrical conductor particularly good adhesion properties: Is a wrap around the insulated electrical conductor vertically carried out to a conductor axis and the conductor stretched by 20% so the detachment of the insulating coating from the electrical conductor measured in the direction of the conductor axis is only a maximum of 3 mm, preferably a maximum of 2 mm, in particular a maximum of 1 mm.
  • the adhesion effect is thus achieved in both variants in that a plastic layer, which preferably consists of plastic, is applied directly under inert gas atmosphere on the plasma-cleaned and thus oxide layer-free surface of the electrical conductor.
  • the plastic layer may directly be the at least one insulating layer of thermoplastic material if no intermediate layer is provided.
  • the plastic layer may also be a plastic-containing intermediate layer, preferably a plasma polymer layer or at least one fluoropolymer layer. If the insulating coating has a plastic-containing intermediate layer, the at least one insulating layer is preferably applied directly to the plastic-containing intermediate layer. However, it is also conceivable that one or more further intermediate layers are provided between the plastic-containing intermediate layer and the at least one insulating layer.
  • the plastic-containing intermediate layer of the insulating coating is preferably the plasma polymer layer or the at least one fluoropolymer layer.
  • the insulating coating consists of the at least one insulating layer, ie has no further intermediate layers.
  • the detachment of the insulating coating from the electrical conductor usually remains well below 1 mm, in particular at most 0.2 mm, preferably at most 0.1 mm, preferably at most 0.05 mm, particularly preferably at maximum 0.01 mm, is when the at least one insulating layer is applied directly to the surface of the electrical conductor.
  • the at least one insulating layer comprises a polyaryletherketone [PAEK], in particular polyetheretherketone [PEEK], or consists of polyaryletherketone [PAEK], in particular polyetheretherketone [PEEK].
  • an insulated electrical conductor generally comprising an electrical conductor, preferably made of copper or aluminum, with an insulating coating the insulating coating either comprises at least one insulating layer of thermoplastic material or at least one insulating layer of thermoplastic Plastic and a plastic-containing intermediate layer, preferably a plasma polymer layer or at least one fluoropolymer layer comprises, wherein a formed on a surface of the electrical conductor oxide layer, preferably by bombardment of the electrical conductor with ions of a protective gas of a protective gas atmosphere in a gas plasma, is removed and subsequently either the at least one insulating layer is applied directly to the oxide layer-free surface of the electrical conductor or, in the case that the coating comprises the plastic-containing intermediate layer, at least the plastic-containing intermediate layer of the insulating coating is applied directly to the oxide layer-free surface of the electrical conductor.
  • a variant of the invention provides that the electrical conductor is arranged continuously until the application of the insulating coating under a protective gas atmosphere in order to prevent the formation of a new oxide layer on the surface of the electrical conductor. It is also possible to pass through several inert gas atmospheres in succession, as long as the plasma-treated electrical conductor is arranged uninterruptedly under one of the inert gas atmospheres.
  • the gas plasma for bombarding the electrical conductor is a low-pressure plasma, preferably with a pressure below 80 mbar, which can be produced in a manner known per se. For example, pressures below 50 mbar or even below 20 mbar are conceivable.
  • the insulating coating in particular the at least one insulating layer, a temperature resistance of at least 180 ° C, preferably of at least 200 ° C, in particular of at least 220 ° C.
  • thermoplastic of the at least one insulating layer is selected from the group consisting of polyaryletherketone [PAEK], polyimide [PI], polyamideimide [PAI], polyetherimide [PEI], polyphenylene sulfide [PPS], and combinations thereof.
  • PAEK polyaryletherketone
  • PI polyimide
  • PAI polyamideimide
  • PEI polyetherimide
  • PPS polyphenylene sulfide
  • thermoplastic material may comprise one or more of the above-mentioned plastics and optionally further constituents, such as fiber material, fillers or other plastics.
  • Polyaryl ether ketones are composed of oxygen bridges, ie ether or ketone groups, linked phenyl groups, the number and sequence of the ether or ketone groups within the polyaryl ether ketones being variable.
  • Polyimides are plastics whose most important structural feature is the imide group. These include u. a. Polysuccinimide (PSI), polybismaleimide (PBMI) and polyoxadiazobenzimidazole (PBO), polyimide sulfone (PISO) and polymethacrylimide (PMI).
  • thermoplastic of the at least one insulation layer is a polyaryletherketone [PAEK] selected from the group consisting of polyetherketone [PEK], polyetheretherketone [PEEK], polyetherketone ketone [PEKK ], Polyether ether ketone ketone [PEEKK], polyether ketone ether ketone ketone [PEKEKK] and combinations thereof.
  • PAEK polyaryletherketone
  • Polyetheretherketone [PEEK] has proven particularly suitable for the at least one insulating layer.
  • the at least one insulating layer has a thickness between 10 and 1000 ⁇ m, preferably between 25 ⁇ m and 750 ⁇ m, particularly preferably between 30 ⁇ m and 500 ⁇ m, in particular between 50 ⁇ m and 250 ⁇ m.
  • layer thicknesses are conceivable, for example 40 .mu.m, 60 .mu.m, 80 .mu.m, 100 .mu.m or 200 .mu.m, to name a few possibilities.
  • the stated values can relate both to the thickness of a single layer of the insulating layer and to the total thickness of the insulating layer if the insulating layer comprises more than one layer.
  • the at least one insulating layer can be produced cheaply and quickly if it is applied by an extrusion process, that is, it is extruded. Therefore, in a further preferred embodiment variant of the invention, it is provided that the, preferably outer, insulating layer can be produced by means of an extrusion method.
  • the insulating coating consists of the at least one insulating layer and the at least one insulating layer is applied directly to the surface of the electrical conductor, a particularly simple and cost-effective production of an insulated electrical conductor according to the invention is made possible because the adhesion of the at least one insulating layer to the surface of the electrical conductor by the plasma treatment is already so good that no intermediate layers are necessary.
  • the insulating coating consists of the at least one insulating layer and that, when applied directly to the surface of the electrical conductor, Plastic containing intermediate layer is the at least one insulating layer.
  • the particularly preferred embodiment relates to an insulated electrical conductor comprising an electrical conductor, preferably made of copper or aluminum, with an insulating coating, wherein the insulating coating consists of at least one insulating layer of thermoplastic material, obtainable by a method in which the electrical conductor below an inert gas atmosphere in a gas plasma is bombarded with ions of the protective gas to remove an oxide layer formed on a surface of the electrical conductor and / or to increase the surface energy of the electrical conductor, and the at least one insulating layer applied directly to the surface of the electrical conductor is applied, the at least one insulating layer under a protective gas atmosphere on the electrical conductor.
  • the particularly preferred embodiment also relates to an insulated electrical conductor comprising an electrical conductor, preferably of copper or aluminum, with an insulating coating, wherein the insulating coating consists of at least one insulating layer of thermoplastic material, wherein according to the invention it is provided that an oxide layer formed on a surface of the electrical conductor is removed by bombardment of the electrical conductor with ions of a protective gas of a protective gas atmosphere in a gas plasma and subsequently the at least one insulation layer is applied directly to the oxide layer-free surface of the electrical conductor.
  • the insulating coating may, for example, consist only of a single insulating layer, which is applied directly on the surface of the electrical conductor, in order to allow a particularly simple production.
  • the insulating Coating consists of exactly two or more than two, for example, three or four, insulating layers.
  • a lowermost insulating layer is applied directly on the surface of the electrical conductor, wherein the further insulating layers are respectively applied to one of the preceding insulating layers.
  • At least one, for example one, two, three or four, further insulating layer of thermoplastic material can be applied to the insulating coating or to the insulating coating consisting of the at least one insulating layer.
  • the at least one further insulating layer is preferably constructed analogously to the at least one insulating layer, so that the thermoplastic of the at least one further insulating layer is selected from the group consisting of polyaryletherketone [PAEK], in particular polyetheretherketone [PEEK], polyimide [PI], polyamideimide [PAI], polyetherimide [PEI], polyphenylene sulfide [PPS] and combinations thereof.
  • the defective sections of the at least one insulating layer are generally relatively small areas, it is also conceivable for at least one further insulating layer outside the protective gas atmosphere to be applied to the insulating coating in order to cover any defective sections of the insulating coating in the region of the defective portions of the insulating coating, the adhesion of the further insulating layer is not improved.
  • other insulation layers can be applied if a greater thickness of the insulation is required. Therefore, in a further embodiment of the invention, it is provided that at least one, preferably one, two or three, further insulating layer is applied to the insulating coating, wherein the at least one further insulating layer is not applied under a protective gas atmosphere.
  • the insulating coating in order to improve the adhesion of the insulating coating to the surface of the electrical conductor, it is provided that the insulating coating has a plasma polymer layer of crosslinked macromolecules of non-uniform chain length applied directly to the surface of the electrical conductor, which plasma polymer layer by polymerization of a gaseous monomer in a gas plasma, preferably in the gas plasma for bombarding the electrical conductor, can be produced.
  • the intermediate layer of the insulating coating which is applied directly to the surface of the electrical conductor, is the plasma polymer layer in this exemplary embodiment.
  • the plasma polymer layer serves as an intermediate layer and, on the one hand, adheres excellently to the surface of the electrical conductor and, on the other hand, enables increased adhesion of the layer of the insulating coating applied to the plasma polymer layer, for example the at least one insulation layer.
  • a further embodiment variant of the first alternative embodiment provides that the plasma polymer layer has a thickness of 1 ⁇ m or less. It is conceivable thicknesses up to one hundredth of a micrometer as the lower limit. Due to the small layer thickness, the plasma polymer layer affects only insignificantly on the entire thickness of the insulated electrical conductor.
  • the monomer for producing the plasma polymer layer is ethylene, buthenol, acetone or tetrafluoromethane [CF 4 ].
  • the plasma polymer layers formed by these monomers in the plasma are distinguished by particularly good adhesion properties.
  • the plasma polymer layer should have similar properties as polytetrafluoroethylene [PTFE] or perfluoroethylene propylene [FEP], CF 4 is suitable as a monomer.
  • the insulating coating has at least one, applied directly to the surface of the electrical conductor, preferably polytetrafluoroethylene [PTFE] or perfluoroethylene propylene [FEP] comprising fluoropolymer layer.
  • PTFE polytetrafluoroethylene
  • FEP perfluoroethylene propylene
  • the fluoropolymer layer is also distinguished by excellent adhesion properties, both on the electrical conductor and on the layer applied to the fluoropolymer layer, and serves as an intermediate layer of the insulating coating. It is also conceivable that several fluoropolymer layers, for example two three or four, are applied one above the other to the electrical conductor.
  • the thickness of the at least one fluoropolymer layer is between 1 ⁇ m and 120 ⁇ m, preferably between 5 ⁇ m and 100 ⁇ m, more preferably between 10 ⁇ m and 80 ⁇ m, in particular between 20 ⁇ m and 50 ⁇ m ,
  • the entire insulating coating in one preferred embodiment of the invention applied under a protective gas atmosphere.
  • the at least one insulating layer is applied directly to the plasma polymer layer or the at least one fluoropolymer layer.
  • the insulating coating consists of at least two layers: the first lower, directly applied to the electrical conductor layer according to the first or second alternative embodiment and the second upper layer in the form of at least one insulating layer of thermoplastic material.
  • the outermost layer of the insulating coating can be formed either by the at least one insulation layer itself or by one or more further layers.
  • the electrical conductor preferably made of copper or aluminum, is subjected to the process in the form of a band or a wire.
  • the electrical conductor is either "in-line", ie directly after the production of the electrical conductor (such as by cold forming or extrusion), treated according to the inventive method or the electrical conductor is provided in a wound-up form via a coil outlet.
  • the electrical conductor is subjected to a mechanical and / or chemical pre-cleaning before the plasma treatment.
  • the plasma treatment is carried out analogously to the previous embodiments, wherein the electrical conductor is continuously conveyed through the plasma treatment unit performing the plasma treatment.
  • the thickness of the layer removed by the plasma treatment from the electrical conductor can be adjusted precisely.
  • the insulating coating is applied to the treated surface of the electrical conductor.
  • the insulating coating adheres particularly well on the surface of the electrical conductor due to the removal of the oxide layer or by the activation of the surface by increasing the surface energy of the electrical conductor.
  • the electrical conductor is arranged continuously until the application of the insulating coating under a protective gas atmosphere.
  • thermoplastic material if two, three or more insulating layers of thermoplastic material are provided, at least the first of the insulating layers is applied directly to the surface of the electrical conductor and the subsequent insulation layers are at least partially applied to the underlying insulating layers.
  • thermoplastic of the at least one insulating layer is selected from the group consisting of polyaryletherketone [PAEK], in particular polyetheretherketone [PEEK], polyimide [PI], polyamideimide [PAI], polyetherimide [PEI], polyphenylene sulfide [ PPS] and combinations thereof.
  • PAEK polyaryletherketone
  • PEEK polyetheretherketone
  • PI polyimide
  • PAI polyamideimide
  • PEI polyetherimide
  • PPS polyphenylene sulfide
  • a variant of the method provides that the at least one insulating layer is extruded. Extrusion is a cost-effective method for applying the insulation layer and is particularly suitable for PAEK, in particular PEEK, and PPS.
  • the at least one insulating layer can thus also be applied in a simple manner as the outermost layer of the insulating coating.
  • the electrical conductor By preheating the electrical conductor, which is particularly advantageous when the at least one insulating layer or the insulating coating is extruded directly onto the surface of the electrical conductor, a sudden cooling of the plastic-containing intermediate layer is reduced in contact with the electrical conductor and thus negative influences on the adhesion minimized.
  • the electrical conductor is cooled before the application of the insulating coating in order to overheat, such as a melt, the plastic-containing intermediate layer in contact with the electrical conductor to prevent. Therefore, in a further preferred embodiment variant of the method according to the invention, provision is made for the electrical conductor to be brought to a temperature of at least 200 ° C., preferably at least 400 ° C., before the application of the insulating coating.
  • the insulated electrical conductor is cooled depending on the strength of the at least one insulation layer to be achieved.
  • the adjustment of the mechanical properties of the at least one insulating layer, in particular the mechanical strength, takes place, inter alia, by the defined cooling of the insulated electrical conductor and the consequent adjustment of the degree of crystallization and is particularly important if the at least one insulating layer is the outermost layer the insulating coating is. If, for example, the insulated electrical conductor is cooled slowly, for example by cooling in the air, the crystallinity of the at least one insulation layer is high. It is also conceivable quenching in a water bath, so an abrupt cooling, or a combination of abrupt and slow cooling.
  • the insulating coating consists of the at least one insulating layer and that the at least one insulating layer as a plastic-containing intermediate layer of the insulating coating under a protective gas atmosphere directly on the surface of the electrical Ladder is applied.
  • the following process step is carried out accordingly: Applying an insulating coating on the surface of the electrical conductor, wherein the insulating coating consists of at least one insulating layer of thermoplastic material and wherein the at least one insulating layer is applied directly under inert gas atmosphere on the surface of the electrical conductor.
  • the insulating coating consists of at least two, preferably exactly two, insulating layers and the insulating coating is produced by tandem extrusion under a protective gas atmosphere.
  • the tandem extrusion the at least two insulation layers are produced independently of one another, so that blockage of an extrusion tool only causes an error in one of the insulation layers.
  • the defective section is covered by the subsequent extrusion steps with high probability.
  • thermoplastic of the at least one further insulating layer is preferably selected from the group consisting of polyaryletherketone [PAEK], in particular polyetheretherketone [PEEK], polyimide [PI], polyamideimide [PAI], polyetherimide [PEI], polyphenylene sulfide [PPS] and combinations thereof.
  • PAEK polyaryletherketone
  • PEEK polyetheretherketone
  • PI polyimide
  • PAI polyamideimide
  • PEI polyetherimide
  • PPS polyphenylene sulfide
  • the insulating coating comprises at least one fluoropolymer layer which is applied directly to the surface of the electrical conductor as a plastic-containing intermediate layer
  • the steps required for producing the insulating coating can be reduced by the fact that the at least one insulating layer and the at least one fluoropolymer Layer can be prepared by co-or tandem extrusion.
  • both layers can be produced in a single manufacturing step and with an extrusion unit.
  • a plasma polymer layer is applied as a plastic-containing intermediate layer.
  • an inventive insulated electrical conductor is used as a winding wire for electric machines, preferably electric motors or transformers.
  • Fig. 1 shows a schematic representation of a method for producing an insulated electrical conductor, as shown in the FIGS. 2a to 2d or. 3a to 3d is shown.
  • the insulated electrical conductor comprises an electrical conductor 1 made of copper, wherein other materials such as aluminum are conceivable, and an insulating coating 2, which has at least one insulating layer 3 of thermoplastic, preferably high temperature resistant, plastic.
  • the at least one insulating layer 3 is formed as an outer insulating layer 3 and thus forms the outermost layer of insulating coating 2.
  • one or more further layers, preferably insulating layers can be applied, which can then form the outermost layer of the insulating coating 2.
  • the electrical conductor 1 is continuously supplied in the illustrated embodiment as a belt or wire via a coil outlet 7 to the process and can be prepared for example by means of cold forming process, such as drawing or rolling, or extrusion, for example by means of Conform® technology. It goes without saying that the method according to the invention can also be carried out "in-line", that is, directly connected to the production process.
  • the electrical conductor 1 is prepurified in a pre-cleaning unit 8 mechanically, for instance by means of a grinding process, or chemically, for instance by means of suitable solvents or acids, in order to remove coarse dirt from the electrical conductor 1.
  • the pre-cleaned electrical conductor 1 enters a plasma treatment unit 9 in which a protective gas atmosphere of nitrogen, argon or hydrogen prevails and a gas plasma in the form of a low-pressure plasma with less than 20 mbar pressure is produced.
  • a low-pressure plasma can be produced even at a pressure of less than 80 mbar.
  • the surface of the electrical conductor 1 is bombarded with ions of the protective gas in order to remove or remove an oxide layer formed on a surface of the electrical conductor 1.
  • the electrical conductor 1 is soft-annealed by the plasma treatment and the surface energy of the electrical conductor 1 therefore increases, activating the surface.
  • the adhesion between the electrical conductor 1 made of copper and the applied on the electrical conductor 1 insulating coating 2 can be significantly improved.
  • the insulating coating 2 consists only of an insulating layer 3.
  • the insulating layer 3 has a temperature resistance of over 180 ° C, preferably of over 220 ° C, so that the insulated electrical conductor can be used even at high operating temperatures.
  • the outer insulation layer 3 consists of polyetheretherketone [PEEK], which has both high temperature resistance and high resistance to a large number of organic and inorganic substances.
  • the outer insulation layer 3 may also consist of polyphenylene sulfide [PPS] or comprise PEEK and / or PPS.
  • the electrical conductor 1 passes after passing through the plasma treatment unit 9 in the extrusion unit 11 in which the outer insulating layer 3 is extruded onto the electrical conductor 1.
  • the electrical conductor 1 is preheated to a temperature of at least 200 ° C, preferably at least 300 ° C.
  • both the extrusion and the transport of the conductor 1 in the extrusion unit 11 takes place under a protective gas atmosphere.
  • An insulated electrical conductor produced in this way can be used, for example, as a winding wire, which is also known in English as "magnet wire", in an electric machine, such as an electric motor or a transformer.
  • the thickness of the outer insulating layer 3 is about 30 microns in the present embodiment.
  • the insulating layer 3 consists of a polyaryletherketone [PAEK] such as polyetheretherketone [PEEK], particularly good adhesion properties are achieved.
  • PAEK polyaryletherketone
  • PEEK polyetheretherketone
  • the detachment of the insulating layer 3 from the electrical conductor 1 usually remains well below 1 mm, and in particular is at most 0.2 mm, preferably at most 0.1 mm, preferably at most 0.05 mm, particularly preferably at most 0.01 mm.
  • the thermoplastic material of the insulation layer 3 is polyimide [PI], polyamide-imide [PAI], polyetherimide [PEI], polyphenylene sulfide [PPS], increased adhesion properties can be achieved.
  • the at least one insulation layer 3 may also comprise two, three, four or more individual insulation layers 3, all of which are produced under a protective gas atmosphere in the extrusion unit 11.
  • the probability of errors in the insulating coating 2 can be drastically reduced, since errors in the lowermost of the insulation layers 3 are compensated by subsequent insulation layers 3. Tandem extrusion processes are particularly suitable for such a preparation.
  • further insulation layers which are preferably constructed analogously to the at least one insulation layer 3, ie in particular of a polyaryletherketone [PAEK] such as polyetheretherketone [PEEK] or another of the aforementioned plastics, outside the inert gas atmosphere in a further extrusion unit 12 are applied to the insulating coating 2.
  • PAEK polyaryletherketone
  • PEEK polyetheretherketone
  • This plasma polymer layer 4 is in process according to the invention in a plasma polymerization unit 10, which is arranged after the plasma treatment unit 9 and before the extrusion unit 11. It is also conceivable that the plasma treatment and the plasma polymerization are carried out in a combined device.
  • the plasma polymer layer 4 is formed on the surface of the electrical conductor 1 by reacting a gaseous monomer such as ethylene, butenol, acetone or tetrafluoromethane [CF 4 ] is activated by the plasma and thereby highly crosslinked macromolecules of different chain length and a proportion of free radicals form, which deposit as a plasma polymer layer 4 on the surface of the electrical conductor 1.
  • a gaseous monomer such as ethylene, butenol, acetone or tetrafluoromethane [CF 4 ]
  • the resulting plasma polymer layer 4 is less than 1 ⁇ m thick and adheres particularly well to the activated and oxide-free surface of the electrical conductor 1.
  • the outer insulation layer 3 is in turn extruded onto the plasma polymer layer 4 in the extrusion unit 11 as described above, whereby the adhesion between the plasma polymer layer 4 and the outer insulation layer 3 is also high.
  • the insulating coating 2 comprises, in addition to the outer insulation layer 3 made of PEEK, a plastic layer formed as a fluoropolymer layer 5 of polytetrafluoroethylene [PTFE] or perfluoroethylene propylene [FEP], which is applied directly to the surface of the electrical conductor 1 and the adhesion between the electrical conductor 1 and the outer insulating layer 3 further improved.
  • the fluoropolymer layer 5 is produced together with the outer insulation layer 3 in the extrusion unit 11 by means of a co-or tandem extrusion process.
  • the thickness of the fluoropolymer layer 5 is in the present embodiment about 30 microns.
  • the insulated electrical conductor After extruding the outer insulation layer 3, the insulated electrical conductor is cooled in a controlled manner, for example by air cooling, and passed over a series of pressure rollers which further improve adhesion by applying pressure to the insulated electrical conductor. Finally, the insulated electrical conductor is wound on a Spulenaufwickler 13.
  • Fig. 1 it is an overview, in which all the facilities are shown, which are necessary for the production of the individual variants. While the order, from right to left, of the devices passed through are independent of the embodiment and in any case, the plasma treatment unit 9 and the extrusion unit 11 have to be traversed, the plasma polymerization unit 9 and the further extrusion unit 12 optional equipment that is used only in the production of specific design variants. It goes without saying that instead of a co-or tandem extrusion process, several individual extrusions can be carried out sequentially.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Laminated Bodies (AREA)
  • Insulated Conductors (AREA)
  • Insulating Of Coils (AREA)
  • Organic Insulating Materials (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Paints Or Removers (AREA)
  • Physical Vapour Deposition (AREA)

Claims (30)

  1. Conducteur électrique isolé comprenant
    un conducteur électrique (1), de préférence en cuivre ou en aluminium, avec un revêtement isolant (2),
    lequel revêtement isolant (2) contient soit
    au moins une couche d'isolation (3) en matière thermoplastique,
    soit
    au moins une couche d'isolation (3) en matière thermoplastique et une couche intermédiaire (4, 5) contenant une matière plastique, de préférence une couche de polymère déposé par plasma (4) ou au moins une couche de fluoropolymère (5),
    pouvant être produit par un procédé dans lequel le conducteur électrique (1) est bombardé, sous atmosphère de gaz protecteur, avec des ions du gaz protecteur dans un plasma de gaz, afin d'éliminer une couche d'oxyde formée sur une surface du conducteur électrique (1) et/ou d'augmenter l'énergie de surface du conducteur électrique (1),
    après quoi, soit
    l'au moins une couche d'isolation (3) est appliquée directement sur la surface du conducteur électrique (1) sous atmosphère de gaz protecteur,
    soit, si le revêtement (2) comprend la couche intermédiaire contenant une matière plastique (4, 5),
    la couche intermédiaire contenant une matière plastique (4, 5), au moins, est appliquée directement sur la surface du conducteur électrique (1) sous atmosphère de gaz protecteur.
  2. Conducteur électrique isolé selon la revendication 1, caractérisé en ce que le conducteur électrique (1) est entièrement disposé sous atmosphère de gaz protecteur jusqu'à l'application du revêtement isolant (2), afin d'empêcher la formation d'une couche d'oxyde sur la surface du conducteur électrique (1).
  3. Conducteur électrique isolé selon la revendication 1 ou 2, caractérisé en ce que le plasma de gaz utilisé pour le bombardement du conducteur électrique est un plasma à basse pression, de préférence à une pression inférieure à 80 mbar.
  4. Conducteur électrique isolé selon l'une des revendications 1 à 3, caractérisé en ce que le revêtement isolant (2), en particulier l'au moins une couche d'isolation (3), présente une résistance aux hautes températures d'au moins 180 °C, de préférence au moins 200 °C, en particulier au moins 220 °C.
  5. Conducteur électrique isolé selon l'une des revendications 1 à 4, caractérisé en ce que la matière thermoplastique de l'au moins une couche d'isolation (3) est choisie parmi le groupe comprenant la polyaryléthercétone [PAEK], le polyimide [PI], le polyamideimide [PAI], le polyéther-imide [PEI], le sulfure de polyphénylène [PPS] et des combinaisons de ceux-ci.
  6. Conducteur électrique isolé selon l'une des revendications 1 à 5, caractérisé en ce que la matière thermoplastique de l'au moins une couche d'isolation (3) est une polyaryléthercétone [PAEK] choisie dans le groupe comprenant la polyéthercétone [PEK], la polyétheréthercétone [PEEK], la polyéthercétonecétone [PEKK], la polyétheréthercétonecétone [PEEKK], la polyéthercétone-éthercétonecétone [PEKEKK] et des combinaisons de celles-ci.
  7. Conducteur électrique isolé selon l'une des revendications 1 à 6, caractérisé en ce que l'au moins une couche d'isolation (3) présente une épaisseur comprise entre 10 et jusqu'à 1000 µm, de préférence entre 25 µm et 750 µm, en particulier entre 30 µm et 500 µm, tout particulièrement entre 50 µm et 250 µm.
  8. Conducteur électrique isolé selon l'une des revendications 1 à 7, caractérisé en ce que l'au moins une couche d'isolation (3) peut être fabriquée au moyen d'un procédé d'extrusion.
  9. Conducteur électrique isolé selon l'une des revendications 1 à 8, caractérisé en ce que le revêtement isolant (2) se compose de l'au moins une couche d'isolation (3).
  10. Conducteur électrique isolé selon la revendication 9, caractérisé en ce que le revêtement isolant (2) se compose d'une couche d'isolation (3).
  11. Conducteur électrique isolé selon la revendication 9, caractérisé en ce que le revêtement isolant (2) se compose d'au moins deux, de préférence d'exactement deux, couches d'isolation (3).
  12. Conducteur électrique isolé selon l'une des revendications 1 à 11, caractérisé en ce qu'au moins une autre couche d'isolation en matière thermoplastique est appliquée sur le revêtement isolant (2), l'au moins une autre couche d'isolation n'étant pas appliquée sous atmosphère de gaz protecteur.
  13. Conducteur électrique isolé selon la revendication 12, caractérisé en ce que la matière thermoplastique de l'au moins une autre couche d'isolation est choisie dans le groupe comprenant la polyaryléthercétone [PAEK], de préférence la polyétheréthercétone [PEEK], le polyimide [PI], le polyamide-imide [PAI], le polyéther-imide [PEI], le sulfure de polyphénylène [PPS] et des combinaisons de ceux-ci.
  14. Conducteur électrique isolé selon l'une des revendications 1 à 8, caractérisé en ce que le revêtement isolant (2) comporte au moins une couche de fluoropolymère (5) et en ce que la couche intermédiaire contenant une matière plastique appliquée directement sur la surface du conducteur électrique (1) est la couche de fluoropolymère (5).
  15. Conducteur électrique isolé selon la revendication 14, caractérisé en ce que la couche de fluoropolymère (5) contient du polytétrafluoroéthylène [PTFE] ou du perfluoroéthylènepropylène [FEP].
  16. Conducteur électrique isolé selon l'une des revendications 14 à 15, caractérisé en ce que l'épaisseur de l'au moins une couche de fluoropolymère (5) est comprise entre 1 µm et 120 µm, de préférence entre 5 µm et 100 µm, en particulier entre 10 µm et 80 µm, tout particulièrement entre 20 µm et 50 µm.
  17. Conducteur électrique isolé selon l'une des revendications 1 à 16, caractérisé en ce que l'ensemble du revêtement isolant (2) est appliqué sur le conducteur électrique (1) sous atmosphère de gaz protecteur.
  18. Procédé pour la fabrication d'un conducteur électrique isolé, comprenant les étapes de procédé suivantes :
    - bombardement d'un conducteur électrique (1), de préférence en cuivre ou en aluminium, placé sous atmosphère de gaz protecteur avec des ions du gaz protecteur dans un plasma de gaz, de préférence un plasma à basse pression, afin d'éliminer une couche d'oxyde formée à la surface du conducteur électrique (1) et/ou d'augmenter l'énergie de surface du conducteur électrique (1) ;
    - application d'un revêtement isolant (2) sur la surface du conducteur électrique (1), le revêtement isolant (2) comprenant soit
    au moins une couche d'isolation (3) en matière thermoplastique,
    soit
    au moins une couche d'isolation (3) en matière thermoplastique et une couche intermédiaire (4, 5) contenant une matière plastique, de préférence une couche de polymère déposé par plasma (4) ou au moins une couche de fluoropolymère (5),
    dans lequel soit
    l'au moins une couche d'isolation (3) est appliquée directement sur la surface du conducteur électrique (1) sous atmosphère de gaz protecteur,
    soit, si le revêtement (2) comprend la couche intermédiaire contenant une matière plastique (4, 5),
    la couche intermédiaire contenant une matière plastique (4, 5), au moins, est appliquée directement sur la surface du conducteur électrique (1) sous atmosphère de gaz protecteur.
  19. Procédé selon la revendication 18, caractérisé en ce que la matière thermoplastique de l'au moins une couche d'isolation (3) est choisie parmi le groupe comprenant la polyaryléthercétone [PAEK], le polyimide [PI], le polyamide-imide [PAI], le polyéther-imide [PEI], le sulfure de polyphénylène [PPS] et des combinaisons de ceux-ci.
  20. Procédé selon l'une des revendications 18 à 19, caractérisé en ce que la matière thermoplastique de l'au moins une couche d'isolation (3) est une polyaryléthercétone [PAEK] choisie dans le groupe comprenant la polyéthercétone [PEK], la polyétheréthercétone [PEEK], la polyéthercétonecétone [PEKK], la polyétheréthercétonecétone [PEEKK], la polyéthercétone-éthercétonecétone [PEKEKK] et des combinaisons de celles-ci.
  21. Procédé selon l'une des revendications 18 à 20, caractérisé en ce que l'au moins une couche d'isolation (3) est appliquée par extrusion.
  22. Procédé selon l'une des revendications 18 à 21, caractérisé en ce que le conducteur électrique (1) est amené, avant l'application du revêtement isolant (2), à une température d'au moins 200 °C, de préférence d'au moins 400 °C.
  23. Procédé selon la revendication 21 ou 22, caractérisé en ce que le conducteur électrique isolé est refroidi, après l'application par extrusion de l'au moins une couche d'isolation (3), en fonction de la solidité que doit atteindre l'au moins une couche d'isolation (3).
  24. Procédé selon l'une des revendications 21 à 23, caractérisé en ce que le conducteur électrique isolé (1) est passé sur des rouleaux, de préférence des rouleaux presseurs, après l'application par extrusion de l'au moins une couche d'isolation (3).
  25. Procédé selon l'une des revendications 21 à 24, caractérisé en ce que le revêtement isolant (2) se compose de l'au moins une couche d'isolation (3).
  26. Procédé selon la revendication 25, caractérisé en ce que le revêtement isolant (2) se compose d'au moins deux, de préférence d'exactement deux couches d'isolation (3) et le revêtement isolant (2) est produit au moyen d'une extrusion en tandem sous atmosphère de gaz protecteur.
  27. Procédé selon l'une des revendications 25 ou 26, caractérisé en ce qu'au moins une autre couche d'isolation en matière thermoplastique est appliquée par extrusion sur le revêtement isolant (2) au moyen d'une extrusion en tandem, l'extrusion de l'au moins une autre couche d'isolation n'ayant pas lieu sous atmosphère de gaz protecteur.
  28. Procédé selon la revendication 27, caractérisé en ce que la matière thermoplastique de l'au moins une autre couche d'isolation est choisie dans le groupe comprenant la polyaryléthercétone [PAEK], de préférence la polyétheréthercétone [PEEK], le polyimide [PI], le polyamide-imide [PAI], le polyéther-imide [PEI], le sulfure de polyphénylène [PPS] et des combinaisons de ceux-ci.
  29. Procédé selon l'une des revendications 21 à 24, caractérisé en ce que le revêtement isolant (2) comprend au moins une couche de fluoropolymère (5)
    et en ce que la couche de fluoropolymère (5) est appliquée directement sur la surface du conducteur électrique (1) sous atmosphère de gaz protecteur sous la forme d'une couche intermédiaire du revêtement isolant (2) contenant une matière plastique.
  30. Procédé selon la revendication 29, caractérisé en ce qu'au moins une couche de fluoropolymère (5) et l'au moins une couche d'isolation (3) sont produites au moyen d'une coextrusion ou d'une extrusion en tandem.
EP17711216.6A 2016-04-01 2017-03-20 Conducteur electrique isole Active EP3394861B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18191902.8A EP3441986B8 (fr) 2016-04-01 2017-03-20 Conducteur électrique isolé
PL17711216T PL3394861T3 (pl) 2016-04-01 2017-03-20 Izolowany przewód elektryczny
PL18191902T PL3441986T3 (pl) 2016-04-01 2017-03-20 Izolowany przewód elektryczny
RS20190780A RS58877B1 (sr) 2016-04-01 2017-03-20 Izolovani električni provodnik

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16163536.2A EP3226258B1 (fr) 2016-04-01 2016-04-01 Conducteur electrique isole
PCT/EP2017/056489 WO2017167595A1 (fr) 2016-04-01 2017-03-20 Conducteur électrique isolé

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP18191902.8A Division-Into EP3441986B8 (fr) 2016-04-01 2017-03-20 Conducteur électrique isolé
EP18191902.8A Division EP3441986B8 (fr) 2016-04-01 2017-03-20 Conducteur électrique isolé

Publications (2)

Publication Number Publication Date
EP3394861A1 EP3394861A1 (fr) 2018-10-31
EP3394861B1 true EP3394861B1 (fr) 2019-05-01

Family

ID=55697019

Family Applications (3)

Application Number Title Priority Date Filing Date
EP16163536.2A Active EP3226258B1 (fr) 2016-04-01 2016-04-01 Conducteur electrique isole
EP17711216.6A Active EP3394861B1 (fr) 2016-04-01 2017-03-20 Conducteur electrique isole
EP18191902.8A Active EP3441986B8 (fr) 2016-04-01 2017-03-20 Conducteur électrique isolé

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP16163536.2A Active EP3226258B1 (fr) 2016-04-01 2016-04-01 Conducteur electrique isole

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP18191902.8A Active EP3441986B8 (fr) 2016-04-01 2017-03-20 Conducteur électrique isolé

Country Status (18)

Country Link
US (2) US20190131037A1 (fr)
EP (3) EP3226258B1 (fr)
JP (2) JP6877773B2 (fr)
KR (2) KR102587257B1 (fr)
CN (2) CN114520071A (fr)
BR (2) BR112018069576A2 (fr)
CA (1) CA3019024C (fr)
ES (3) ES2704893T3 (fr)
HU (1) HUE056737T2 (fr)
MA (2) MA44174A (fr)
MD (1) MD3441986T2 (fr)
MX (1) MX2018011979A (fr)
MY (1) MY188833A (fr)
PL (3) PL3226258T3 (fr)
PT (3) PT3226258T (fr)
RS (3) RS58038B1 (fr)
TR (1) TR201910192T4 (fr)
WO (1) WO2017167595A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023202935A1 (de) 2023-03-30 2024-10-02 Zf Friedrichshafen Ag Verfahren zur Herstellung eines isolierten elektrischen Leiters sowie isolierter elektrischer Leiter

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3226258T3 (pl) 2016-04-01 2019-04-30 Gebauer & Griller Metallwerk Gmbh Izolowany przewód elektryczny
JP7084128B2 (ja) 2017-11-29 2022-06-14 花王株式会社 尿比重評価機能付き採尿容器
AT523257A1 (de) * 2018-05-29 2021-06-15 Miba Emobility Gmbh Stator mit Isolationsschicht
AT521301B1 (de) * 2018-05-29 2020-04-15 Miba Ag Stator mit Isolationsschicht
CN108831607B (zh) * 2018-07-26 2024-01-09 江苏中容电气有限公司 一种单根小截面换位导线
CN109545456A (zh) * 2018-12-27 2019-03-29 河南通达电缆股份有限公司 一种耐水耐高温绕组线
DE102019111438B4 (de) * 2019-05-03 2020-11-26 Schaeffler Technologies AG & Co. KG Verfahren zum Ablösen einer Isolationsschicht von einem Leiterdrahtende
KR20240096871A (ko) 2019-08-23 2024-06-26 제우스 컴퍼니 엘엘씨 중합체-코팅된 와이어
DE202020005038U1 (de) 2019-12-11 2021-03-12 Hew-Kabel Gmbh Isoliertes elektrisch leitfähiges Element
FR3109848B1 (fr) 2020-04-30 2022-12-16 Arkema France Conducteur isolé apte à être utilisé dans un bobinage, bobinage en dérivant et procédés de fabrication correspondants.
JP7488725B2 (ja) * 2020-08-26 2024-05-22 Ntn株式会社 絶縁転がり軸受
CN114334289B (zh) * 2021-02-24 2023-03-10 佳腾电业(赣州)有限公司 一种绝缘电线制备方法、绝缘电线和电子/电气设备
AT525296A1 (de) * 2021-07-23 2023-02-15 Miba Emobility Gmbh Verfahren zur Herstellung eines isolierten elektrischen Leiters
GB202113671D0 (en) 2021-09-24 2021-11-10 Victrex Mfg Ltd Insulated conductor and method of manufacture
JP2024025963A (ja) * 2022-08-15 2024-02-28 エセックス古河マグネットワイヤジャパン株式会社 絶縁電線及びその製造方法、並びに該絶縁電線を用いたコイル、回転電機及び電気・電子機器
WO2024043329A1 (fr) * 2022-08-25 2024-02-29 ダイキン工業株式会社 Fil isolé et son procédé de production
JP7460940B2 (ja) 2022-08-30 2024-04-03 ダイキン工業株式会社 絶縁電線
KR102498266B1 (ko) * 2022-10-18 2023-02-09 주식회사 케이디일렉트릭 멀티탭용 케이블 제조장치
WO2024120990A1 (fr) 2022-12-05 2024-06-13 Nv Bekaert Sa Procédé de production d'un élément métallique isolé et élément métallique isolé
CN116705399B (zh) * 2023-07-19 2023-12-08 江苏君华特种工程塑料制品有限公司 一种抗剥离聚醚醚酮车用线缆及其制备方法
CN118352132A (zh) * 2024-05-08 2024-07-16 索尔集团股份有限公司 一种电线电缆表面绝缘的方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1295889C (fr) * 1985-01-14 1992-02-18 Richard J. Penneck Article revetu d'une couche de produit refractaire
JPS63192867A (ja) * 1987-02-06 1988-08-10 Mitsubishi Heavy Ind Ltd 金属皮膜方法
JPS63274470A (ja) * 1987-05-07 1988-11-11 Hitachi Cable Ltd 薄膜被覆金属線の製造法
US5396104A (en) * 1989-03-28 1995-03-07 Nippon Steel Corporation Resin coated bonding wire, method of manufacturing the same, and semiconductor device
JPH03222210A (ja) * 1990-01-29 1991-10-01 Furukawa Electric Co Ltd:The 絶縁電線
JP3453033B2 (ja) * 1996-10-23 2003-10-06 株式会社豊田中央研究所 被覆部材およびその製造方法
JP2003031061A (ja) * 2001-07-13 2003-01-31 Mitsubishi Cable Ind Ltd 水密絶縁電線の製造方法
JP2003346578A (ja) * 2002-05-27 2003-12-05 Yazaki Corp 高圧cvケーブルの製造方法、及び高圧cvケーブルの製造装置
JP2004127649A (ja) * 2002-10-01 2004-04-22 Sumitomo Wiring Syst Ltd 水密型絶縁電線製造装置及び水密型絶縁電線製造方法
DE10331608A1 (de) * 2003-07-12 2005-01-27 Hew-Kabel/Cdt Gmbh & Co. Kg Verfahren zum Beschichten und/oder partiellen Umspritzen von flexiblem langgestrecktem Gut
WO2005055305A1 (fr) * 2003-12-04 2005-06-16 Tokyo Electron Limited Procede pour nettoyer une surface de couche conductrice a substrat semi-conducteur
KR20040088448A (ko) * 2004-09-21 2004-10-16 정세영 단결정 와이어 제조방법
US20070251602A1 (en) * 2005-11-10 2007-11-01 Gagnon Paul J Jr Brazing material with continuous length layer of elastomer containing a flux
US20080060832A1 (en) 2006-08-28 2008-03-13 Ali Razavi Multi-layer cable design and method of manufacture
KR20070038039A (ko) * 2006-11-27 2007-04-09 프리즈미안 카비 에 시스테미 에너지아 에스 알 엘 외부의 화학 약품류에 내성인 케이블을 제조하는 방법
US9018833B2 (en) 2007-05-31 2015-04-28 Nthdegree Technologies Worldwide Inc Apparatus with light emitting or absorbing diodes
DE102009006069A1 (de) * 2009-01-25 2010-07-29 Hew-Kabel/Cdt Gmbh & Co. Kg Elektrisches Kabel
CN101640082B (zh) * 2009-09-02 2011-04-06 北京福斯汽车电线有限公司 一种裸铜导体硅橡胶绝缘汽车用电线电缆制造方法及制品
DE102010002721A1 (de) * 2010-03-10 2011-11-17 Siemens Aktiengesellschaft Draht und Verfahren zur Herstellung eines Drahts
JP2014103045A (ja) * 2012-11-21 2014-06-05 Hitachi Metals Ltd 絶縁電線及びその製造方法
JP2015095363A (ja) * 2013-11-12 2015-05-18 旭硝子株式会社 ワイヤまたはケーブル、それらの製造方法および絶縁テープ
WO2015130681A1 (fr) * 2014-02-25 2015-09-03 Essex Group, Inc. Fil de bobinage isolé
CA2955812C (fr) * 2014-08-05 2021-09-07 General Cable Technologies Corporation Revetements en fluoro copolymere pour conducteurs aeriens
JP2016039103A (ja) * 2014-08-11 2016-03-22 住友電装株式会社 被覆電線の製造方法及び被覆電線の製造装置
EP3193339B1 (fr) * 2014-09-09 2021-05-19 Essex Furukawa Magnet Wire Japan Co., Ltd. Fil électrique isolé, bobine, dispositif électrique/électronique et procédé de fabrication de fil électrique isolé
CN104778997B (zh) * 2015-04-28 2017-04-12 河南九发高导铜材股份有限公司 一种高温高导电工线材及其制备方法
PL3226258T3 (pl) 2016-04-01 2019-04-30 Gebauer & Griller Metallwerk Gmbh Izolowany przewód elektryczny

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023202935A1 (de) 2023-03-30 2024-10-02 Zf Friedrichshafen Ag Verfahren zur Herstellung eines isolierten elektrischen Leiters sowie isolierter elektrischer Leiter

Also Published As

Publication number Publication date
EP3394861A1 (fr) 2018-10-31
PT3441986T (pt) 2021-12-02
KR102587257B1 (ko) 2023-10-10
MD3441986T2 (ro) 2022-05-31
KR20220137813A (ko) 2022-10-12
EP3226258A1 (fr) 2017-10-04
WO2017167595A1 (fr) 2017-10-05
JP6877773B2 (ja) 2021-05-26
EP3226258B1 (fr) 2018-10-24
PT3394861T (pt) 2019-07-08
US20190131037A1 (en) 2019-05-02
PL3441986T3 (pl) 2022-03-07
ES2737298T3 (es) 2020-01-13
CN109074918A (zh) 2018-12-21
JP7055496B2 (ja) 2022-04-18
BR122020003443B1 (pt) 2023-04-11
EP3441986B8 (fr) 2021-11-03
RS62697B1 (sr) 2022-01-31
BR112018069576A2 (pt) 2019-01-22
HUE056737T2 (hu) 2022-03-28
JP2019519062A (ja) 2019-07-04
RS58038B1 (sr) 2019-02-28
CA3019024C (fr) 2022-05-31
CA3019024A1 (fr) 2017-10-05
EP3441986B1 (fr) 2021-09-29
EP3441986A1 (fr) 2019-02-13
KR20180128920A (ko) 2018-12-04
PL3226258T3 (pl) 2019-04-30
PL3394861T3 (pl) 2019-10-31
MA44633A (fr) 2019-02-13
PT3226258T (pt) 2019-01-09
KR102455180B1 (ko) 2022-10-14
MY188833A (en) 2022-01-07
ES2903093T3 (es) 2022-03-31
US12087468B2 (en) 2024-09-10
ES2704893T3 (es) 2019-03-20
US20230040706A1 (en) 2023-02-09
CN114520071A (zh) 2022-05-20
MA44174A (fr) 2018-10-31
TR201910192T4 (tr) 2019-08-21
RS58877B1 (sr) 2019-08-30
JP2021122007A (ja) 2021-08-26
MX2018011979A (es) 2019-01-15

Similar Documents

Publication Publication Date Title
EP3394861B1 (fr) Conducteur electrique isole
EP0951132B1 (fr) Barre d'enroulement pour machine électrique de haute tension et procédé pour la fabrication d'une telle barre
US11615914B2 (en) Magnet wire with thermoplastic insulation
WO2019227115A1 (fr) Stator muni d'une couche isolante
EP3134906B1 (fr) Conducteur continuellement transposé
DE102018201790B4 (de) Verdrillter Aluminiumverbunddrahtleiter, verdrillter Aluminiumverbunddraht und Kabelbaum
EP1273015B1 (fr) PROCEDE POUR ISOLER UN SUPRACONDUCTEUR A HAUTE Tc, ET APPLICATION DE CE PROCEDE
EP2224458A2 (fr) Câble électrique
DE3205870A1 (de) Elektrisches kabel
EP1952407B1 (fr) Isolation renforcée en mica
EP2483895B1 (fr) Procédé pour recouvrir un conducteur d'une matiere plastique et un assemblage hts produit de ces pieces
CN116323839A (zh) 具有热塑性绝缘体的电磁线
DE102005058040A1 (de) Verfahren zum Herstellen eines Wickelleiters für elektrische Geräte und nach diesem Verfahren hergestellter Wickelleiter
EP0920702B1 (fr) Protection d'enroulement pour tores enroules
EP3836165A1 (fr) Élément électriquement conducteur isolé et son procédé de fabrication
DE102021001740A1 (de) Beschichtungsverfahren für Mikroflachdrähte
EP4307321A1 (fr) Fil rond isolé par un vernis, procédé de fabrication et utilisation correspondante
DE102008032854A1 (de) Herstellung eines Energieleiters
EP0380929A1 (fr) Câble électrique de puissance
DE2122633A1 (de) Verfahren zur Herstellung von druckempfindlichen Klebmaterialien
EP0492186A2 (fr) Procédé et dispositif de fabrication d'une ligne électrique isolée d'un fluorocarbone

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180726

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1128024

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017001225

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL AND PARTN, CH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3394861

Country of ref document: PT

Date of ref document: 20190708

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20190625

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 31371

Country of ref document: SK

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190501

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190801

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190802

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190801

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2737298

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

VS25 Lapsed in a validation state [announced via postgrant information from nat. office to epo]

Ref country code: MD

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017001225

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200320

VS25 Lapsed in a validation state [announced via postgrant information from nat. office to epo]

Ref country code: MA

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240319

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240319

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240328

Year of fee payment: 8

Ref country code: GB

Payment date: 20240319

Year of fee payment: 8

Ref country code: PT

Payment date: 20240229

Year of fee payment: 8

Ref country code: SK

Payment date: 20240304

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240229

Year of fee payment: 8

Ref country code: RS

Payment date: 20240229

Year of fee payment: 8

Ref country code: PL

Payment date: 20240220

Year of fee payment: 8

Ref country code: IT

Payment date: 20240321

Year of fee payment: 8

Ref country code: FR

Payment date: 20240327

Year of fee payment: 8

Ref country code: BE

Payment date: 20240326

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240401

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240412

Year of fee payment: 8