EP3333530B1 - Parallel heat-pipes type heat sink and manufacturing method thereof - Google Patents

Parallel heat-pipes type heat sink and manufacturing method thereof Download PDF

Info

Publication number
EP3333530B1
EP3333530B1 EP17174961.7A EP17174961A EP3333530B1 EP 3333530 B1 EP3333530 B1 EP 3333530B1 EP 17174961 A EP17174961 A EP 17174961A EP 3333530 B1 EP3333530 B1 EP 3333530B1
Authority
EP
European Patent Office
Prior art keywords
heat
pipes
base
parallel
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17174961.7A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3333530A1 (en
Inventor
Yu-Te Wei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cooler Master Technology Inc
Original Assignee
Cooler Master Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cooler Master Technology Inc filed Critical Cooler Master Technology Inc
Publication of EP3333530A1 publication Critical patent/EP3333530A1/en
Application granted granted Critical
Publication of EP3333530B1 publication Critical patent/EP3333530B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/09Heat pipes

Definitions

  • This disclosure relates generally to a heat dissipation technology, and more particularly to a parallel heat-pipes type heat sink and its manufacturing method.
  • a component such as a heat pipe is added to the bottom of a heat sink to improve the thermal conduction effect.
  • a groove is concavely formed on a base of the heat sink, and then the heat pipe with an appropriate length is embedded into the groove, so that the heat pipe is contacted directly with a heat source such as a central processing unit (CPU) to achieve a better thermal conduction effect.
  • CPU central processing unit
  • the quantity of heat pipes will determine the thermal conduction effect, so that the quantity of heat pipes is increased according to size of the contact area with the heat source.
  • the bonding strength is insufficient.
  • additional structures are added between the heat pipes, and such arrangement reduces the thermal conduction effect significantly.
  • P.R.C. Pat. No. CN201750660U has disclosed a "Heat-pipe heat sink" comprising a plurality of grooves formed on a base of a heat sink, partially coupled next to one another, and provided for installing a plurality of heat pipes. Since the grooves are arranged adjacent to one another, therefore the grooves lose its function of fixing the heat comprising a plurality of grooves formed on a base of a heat sink, partially coupled next to one another, and provided for installing a plurality of heat pipes. Since the grooves are arranged adjacent to one another, therefore the grooves lose its function of fixing the heat pipes significantly, and it is necessary to solder the heat pipes into the grooves by a solder such as a solder paste. As a result, the heat pipes may fall out easily or have poor thermal conduction due to poor soldering, and the complicated manufacturing process may lower the yield rate of the product.
  • a solder such as a solder paste
  • P.R.C. Pat. No. CN202032928U has disclosed a "Thermally conducting base assembly for arranging heat pipes closely" and the assembly comprises a plurality of spaced grooves formed on a thermally conducting base, a supporting rib formed between the grooves, and each supporting rib has a protruding rib disposed at the top edge and protruding towards the inner side of the groove, and the protruding rib will be embedded into a deformation portion of the heat pipe after the heat pipe is compressed and deformed, so as to achieve the effect of fixing each heat pipe.
  • most bases are formed by aluminum extrusion, so that the uniformity of the rib at the top edge of the supporting rib cannot be controlled easily.
  • US 2007/215327 A1 discloses a further parallel heat pipes type heat sink comprising a base having a bottom surface, a plurality of parallel heated areas concavely formed on the bottom surface, two protrusions disposed between any two heated areas and protruding in a direction towards the bottom surface.
  • the base comprises an opening between the protrusions, which extends into the two heated areas.
  • US 7,520,316 discloses a further heat sink with heat pipes.
  • US 2007/0215327 A1 discloses a heat dissipation device including a heat sink and heat pipes thermally attached to the heat sink.
  • the heat sink includes a base having grooves for fittingly receiving first heat-conducting portions of the heat pipes.
  • this disclosure provides a parallel heat-pipes type heat sink, comprising : a base, having a bottom surface, a plurality of parallel heated areas concavely formed on the bottom surface, a protrusion disposed between any two heated areas and protruding in a direction towards the bottom surface, and a notch formed at any one section of each protrusion, each protrusion comprising a first top portion and a second top portion which have a height difference therebetween, side surfaces of the first top portion and an upper surface of the second top portion, which are located between and connected to two upper edges of the adjacent heated areas, together form the notch; and a plurality of heat pipes, embedded into the heated areas respectively in the lengthwise direction of each heat pipe, wherein each of the heat pipes has at least one deformation portion, the deformation portions of the heat pipes which are adjacent to each other are in contact with each other so as to fill the notches.
  • this disclosure further provides a manufacturing method of a parallel heat-pipes type heat sink according to claim 1, comprising the steps of
  • this disclosure provides a parallel heat-pipes type heat sink and its manufacturing method, and the heat sink comprises a base 1, and a plurality of heat pipes 2.
  • the base 1 is a thermally conducting base made of a good thermal conductor such as copper or aluminum, or formed by stacking a plurality of fins (as shown in FIG. 10 ), and may be attached onto a heat source (not shown in the figure) like a heat sink.
  • the base 1 has a bottom surface 10, and a top surface 11 opposite to the bottom surface 10 (in other words, the top surface 11 is disposed on the opposite side of the bottom surface 10), and the bottom surface 10 of the base 1 may be used to attach the aforementioned heat source, and the top surface 11 of the base 1 further comprises a plurality of spaced fins 3.
  • This disclosure primarily forms a plurality of long-strip heated area 100 on the bottom surface 10 of the base 1 for embedding the heat pipes 2 into the heated areas 100 respectively.
  • the heated areas 100 are arranged parallel to one another, and a protrusion 101 is disposed between any two heated areas 100 and protrudes in a direction towards the bottom surface, and the protrusion 101 is extended in the lengthwise direction along the heated areas 100, and at least one notch 102 is formed at any section of each protrusion 101, and a first top portion 103 is formed at the highest position of the protrusion 101 other than the position of the notch, and a second top portion 104 is formed at the highest position of the notch 102 of the protrusion 101, and there is a height difference H between the protrusion 101, and a first top portion 103 is formed at the highest position of the protrusion 101 other than the position of the notch, and a second top portion 104 is formed at the highest position of the notch 102 of the protrusion 101, and there is
  • the first top portion 103 has side surfaces 1031
  • the second top portion 104 has an upper surface 1041; in each protrusion 101, the side surfaces 1031 of the first top portion 103 and the upper surface 1041 of the second top portion 104 are located between and connected to upper edges 1001 of the adjacent heated areas 100 and together form the notch 102.
  • the notch 102 is situated at the middle section of each protrusion 101, but the invention is not just limited to such arrangement only. In the press process, a displacement at the position of each heat pipe 2 with respect to the position of the protrusion 101 without the notch 102 can be prevented. In the meantime, the position of each heat pipe 2 with respect to the notch 102 is attached and contacted properly due to compression and deformation, so as to provide good thermal conduction and bonding strength.
  • each heat pipe 2 at a position with respect to each heated area 100 is limited by the shape of each heated area 100, so that each heat pipe 2 is combined closely with each heated area 100 in the pressing and embedding processes.
  • each heat pipe 2 at the position with respect to the notch 102 is laterally communicated with one another since the height of the second top portion 104 of the notch 102 is lower than the first top portion 103 of the protrusion 101 and the heated area 100 can communicate with one another.
  • a deformation portion 23 is formed at the top of the second top portion 104 of the notch 102 in the process of pressing and embedding each heat pipe 2 to fill the notch 102, and any two adjacent heat pipes 2 are attached and contacted with each other (as shown in FIG. 4 ), and each heat pipe 2 can have a good bonding strength with the base 1 and a good thermal conduction.
  • each heat pipe 2 when each heat pipe 2 is pressed and embedded into the heated area 100, each heat pipe 2 has a heated surface 20 formed thereon and aligned exactly with the bottom surface 10 of the base 1 or slightly protruded.
  • each heat pipe 2 with respect to the position of the protrusion 101 without the notch 102 may be deformed along the protrusion 101 since the height of the protrusion 101 is slightly lower than each heat pipe 2, and a connecting portion 21 is extended from the heat pipe and abutted with another connecting portion 21, so that the heated surfaces 20 form a common plane.
  • FIG. 4 when each heat pipe 2 is pressed and embedded into the heated area 100, each heat pipe 2 has a heated surface 20 formed thereon and aligned exactly with the bottom surface 10 of the base 1 or slightly protruded.
  • FIG. 5 each heat pipe 2 with respect to the position of the protrusion 101 without the notch 102 may be deformed along the protrusion 101 since the height of the protrusion 101 is slightly lower than each heat pipe 2, and a connecting portion 21 is extended
  • each heat pipe 2 with respect to the position of the notch 102 has a smaller spacer since the second top portion 104 of the notch 102 is lower than the first top portion 103 of the protrusion 101, so that each heat pipe 2 pressed and deformed between the deformation portions 23 is substantially limited by an external pressing force and an irregular deformation occurs. Therefore, the area of the contact surface 22 is increased, and the heat pipes 2 have better thermal conduction and bonding strength.
  • the protrusion 101 may be aligned exactly with the bottom surface 10 of the base 1, so that the heat pipes 2 are contacted with each other at the position with respect to the notch 102 only to form the contact surface 22 but not the connecting portion 21.
  • the heated surface 20 of each heat pipe 2 is protruded out from the bottom surface 10 of the base 1.
  • the manufacturing method in accordance with this preferred embodiment is described below.
  • Components such as the base 1 and the heat pipes 2 with the aforementioned technical characteristics are prepared first, and then the limiting fixture 4 is prepared, wherein the limiting fixture 4 is positioned on the bottom surface 10 of the base 1 to define a press plane P and a deformation limiting area A, and the width D of the deformation limiting area A arranged in the side-by-side direction of each heat pipe is greater than or equal to the sum of distances d of all heat pipes 2 arranged parallel to one another in the heated area 100, and then a press process of each heat pipe 2 is carried out by a press mold 5, and the press process may be a stamping, extrusion, or rolling process conducted by a press mold 5, so that a press plane P defined by the heated surface 20 of each heat pipe 2 as well as the limiting fixture 4 is pressed and formed by the press mold 5, and
  • this disclosure allows the plurality of heat pipes to be embedded into the base of the heat sink to provide a good bonding strength and a direct contact for each heat pipe, particularly for the position corresponding to the major heated area. More specifically, this disclosure includes the notch 102 formed on each protrusion 101, so that after each heat pipe 2 is pressed, the notch 102 is provided to form the deformation portion 23, so that the irregular contact surface 22 can be formed on the top of the second top portion 104 of the notch 102 of the protrusion 101 due to the deformation portion 23 of the heat pipe 2, the soldering is no longer required.
  • This disclosure achieves the bonding effect and lowers the level of difficulty of the manufacturing process, and further prevents damages to the heat pipe 2 or difficulties of forming the base 1.
  • This disclosure also provides a larger area of the heated surface 20 to improve the thermal conduction efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Theoretical Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
EP17174961.7A 2016-12-09 2017-06-08 Parallel heat-pipes type heat sink and manufacturing method thereof Active EP3333530B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105140952A TWI604782B (zh) 2016-12-09 2016-12-09 Heat pipe side-by-side heat sink and its production method

Publications (2)

Publication Number Publication Date
EP3333530A1 EP3333530A1 (en) 2018-06-13
EP3333530B1 true EP3333530B1 (en) 2020-01-29

Family

ID=59053960

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17174961.7A Active EP3333530B1 (en) 2016-12-09 2017-06-08 Parallel heat-pipes type heat sink and manufacturing method thereof

Country Status (4)

Country Link
US (1) US10772235B2 (zh)
EP (1) EP3333530B1 (zh)
CN (1) CN108617138B (zh)
TW (1) TWI604782B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102072082B1 (ko) * 2019-05-09 2020-01-31 잘만테크 주식회사 히트 파이프 및 전열 블록을 포함한 전자부품 냉각장치의 제조방법
DE112021002263T9 (de) * 2020-05-28 2023-04-06 Shin-Etsu Polymer Co., Ltd. Wärmeabstrahlungsstruktur und batterie, die mit der gleichen wärmeableitungsstruktur bereitgestellt ist
CN114061342A (zh) * 2020-07-31 2022-02-18 昇业科技股份有限公司 多热管并排型散热模块的制法
CN112588993A (zh) * 2020-12-10 2021-04-02 昆山联德电子科技有限公司 散热器导热管无缝滚压铆合工艺及对应的装配结构
WO2022181345A1 (ja) * 2021-02-25 2022-09-01 日本電産株式会社 冷却装置
CN113784584B (zh) * 2021-08-19 2023-03-24 联想(北京)有限公司 一种散热件和电子设备

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3387653A (en) * 1967-01-26 1968-06-11 Wakefield Eng Inc Heat transfer apparatus
CH627887A5 (de) * 1978-01-25 1982-01-29 Bbc Brown Boveri & Cie Mit kuehlkanaelen versehener zu kuehlender koerper und verfahren zu dessen herstellung.
US5829516A (en) * 1993-12-15 1998-11-03 Aavid Thermal Products, Inc. Liquid cooled heat sink for cooling electronic components
US5539857A (en) * 1994-01-24 1996-07-23 Caco Pacific Corporation Heater block for injection molding with removable heat conductive member in groove in heater block
JP3010181B2 (ja) * 1996-09-02 2000-02-14 ダイヤモンド電機株式会社 放熱装置の受熱部構造
JP3268734B2 (ja) * 1996-11-15 2002-03-25 古河電気工業株式会社 ヒートパイプを用いた電子機器放熱ユニットの製造方法
US6853555B2 (en) * 2002-04-11 2005-02-08 Lytron, Inc. Tube-in-plate cooling or heating plate
US7149083B2 (en) * 2004-03-05 2006-12-12 Hul-Chun Hsu Heat dissipation structure
US20060011329A1 (en) * 2004-07-16 2006-01-19 Jack Wang Heat pipe heat sink with holeless fin module
CN2746530Y (zh) * 2004-12-02 2005-12-14 珍通科技股份有限公司 传导散热结构
US20060181848A1 (en) * 2005-02-14 2006-08-17 Kiley Richard F Heat sink and heat sink assembly
CN2842733Y (zh) * 2005-06-10 2006-11-29 富准精密工业(深圳)有限公司 散热装置
US7565925B2 (en) * 2005-06-24 2009-07-28 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat dissipation device
US7520316B2 (en) * 2005-10-05 2009-04-21 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat sink with heat pipes
US7036566B1 (en) * 2005-10-06 2006-05-02 Tsung-Hsien Huang Heat dissipating module
US7254023B2 (en) * 2005-11-01 2007-08-07 Fu Zhun Precision Industry (Shenzhen) Co., Ltd. Heat dissipation assembly
US20070215327A1 (en) * 2006-03-15 2007-09-20 Cheng-Tien Lai Heat dissipation device
US7562696B2 (en) * 2006-05-16 2009-07-21 Cpumate, Inc. Juxtaposing structure for heated ends of heat pipes
US20080035310A1 (en) * 2006-08-09 2008-02-14 Hul-Chun Hsu Isothermal Plate Module
US7600558B2 (en) * 2006-08-22 2009-10-13 Shyh-Ming Chen Cooler
US7441592B2 (en) * 2006-11-26 2008-10-28 Tsung-Hsien Huang Cooler module
CN100583470C (zh) * 2006-12-15 2010-01-20 富准精密工业(深圳)有限公司 发光二极管散热装置组合
US7753109B2 (en) * 2007-05-23 2010-07-13 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat dissipation device with heat pipes
US7806167B2 (en) * 2007-06-22 2010-10-05 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat dissipation device
US7891414B2 (en) * 2007-09-28 2011-02-22 Golden Sun News Techniques Co., Ltd. Method for manufacturing heat dissipator having heat pipes and product of the same
US8837139B2 (en) * 2007-09-29 2014-09-16 Biao Qin Flat heat pipe radiator and application thereof
US7950447B2 (en) * 2007-11-08 2011-05-31 Asia Vital Components, Co. Ltd. Heat dissipation module
TW200821811A (en) * 2008-01-11 2008-05-16 Chung-Shian Huang Heat dissipation device without a base
TW200825356A (en) * 2008-02-04 2008-06-16 chong-xian Huang Improvement on heat exchanger having a heat pipe
US20090229790A1 (en) * 2008-03-13 2009-09-17 Asia Vital Components Co., Ltd. Radiating fin assembly for thermal module
US7841388B2 (en) * 2008-03-13 2010-11-30 Asia Vital Components Co., Ltd. Radiating fin assembly for thermal module
US8132615B2 (en) * 2008-03-20 2012-03-13 Cpumate Inc. Heat sink and heat dissipation device having the same
CN101573017B (zh) * 2008-04-28 2012-07-04 富准精密工业(深圳)有限公司 散热装置
US7866043B2 (en) * 2008-04-28 2011-01-11 Golden Sun News Techniques Co., Ltd. Method of flatting evaporating section of heat pipe embedded in heat dissipation device
TWM363192U (en) * 2009-04-17 2009-08-11 chong-xian Huang Heat dissipating device
US20100270007A1 (en) * 2009-04-23 2010-10-28 Wen-Te Lin Heat sink
TWI450680B (zh) * 2009-07-10 2014-08-21 Foxconn Tech Co Ltd 散熱裝置及其散熱方法
US8322403B2 (en) * 2009-09-04 2012-12-04 Cpumate Inc. Fixing assembly for heat-absorbing surfaces of juxtaposed heat pipes and heat sink having the same
CN102056455A (zh) * 2009-10-29 2011-05-11 鸿富锦精密工业(深圳)有限公司 散热装置
CN201750660U (zh) 2010-05-12 2011-02-16 深圳市超频三科技有限公司 热管散热器
US20110290449A1 (en) * 2010-05-31 2011-12-01 Tsung-Hsien Huang Cooler device
US20120043057A1 (en) * 2010-08-19 2012-02-23 Chun-Ming Wu Heat-dissipating module
US20120103563A1 (en) * 2010-11-01 2012-05-03 Chii-Ming Leu Intermingling-preventive heat transfer element, and intermingling-prevention tool and method therefor
US20120205084A1 (en) * 2011-02-11 2012-08-16 Tsung-Hsien Huang Heat sink module
CN102121801A (zh) * 2011-03-04 2011-07-13 东莞汉旭五金塑胶科技有限公司 热管与导热座之限位组配结构
CN202032928U (zh) 2011-03-04 2011-11-09 东莞汉旭五金塑胶科技有限公司 导热座供多热管密合排列之组配结构
CN102218487B (zh) * 2011-03-04 2016-01-13 东莞汉旭五金塑胶科技有限公司 导热座供多热管密合排列之组配方法及其结构
CN102183163B (zh) * 2011-03-15 2013-01-02 东莞汉旭五金塑胶科技有限公司 无底座散热器
US8746325B2 (en) * 2011-03-22 2014-06-10 Tsung-Hsien Huang Non-base block heat sink
CN102196716B (zh) * 2011-05-23 2013-05-01 东莞汉旭五金塑胶科技有限公司 具有贴底散热鳍片的附热管散热器
CN102802377A (zh) * 2011-05-26 2012-11-28 讯凯国际股份有限公司 具有并列式热管的散热器及其制作方法
US20120312508A1 (en) * 2011-06-08 2012-12-13 Shen Chih-Yeh Gapless heat pipe combination structure and combination method thereof
US20120318480A1 (en) * 2011-06-15 2012-12-20 Cooler Master Co., Ltd Heat sink having juxtaposed heat pipes and method for manufacturing the same
CN102938995A (zh) * 2011-08-15 2013-02-20 富准精密工业(深圳)有限公司 散热装置
US9327369B2 (en) * 2014-03-11 2016-05-03 Asia Vital Components Co., Ltd. Method of manufacturing thermal module with enhanced assembling structure
US20150285482A1 (en) * 2014-04-03 2015-10-08 Pie-Jung Wang Sleeve-type heat dissipater for lamp
CN105258539B (zh) * 2015-10-09 2018-07-31 东莞汉旭五金塑胶科技有限公司 散热器
US9909815B2 (en) * 2015-12-01 2018-03-06 Asia Vital Components Co., Ltd. Assembling structure of heat dissipation device
TWM544191U (zh) * 2016-12-09 2017-06-21 Cooler Master Tech Inc 熱管併列式散熱裝置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
TWI604782B (zh) 2017-11-01
EP3333530A1 (en) 2018-06-13
TW201822621A (zh) 2018-06-16
CN108617138A (zh) 2018-10-02
CN108617138B (zh) 2020-02-07
US20180168069A1 (en) 2018-06-14
US10772235B2 (en) 2020-09-08

Similar Documents

Publication Publication Date Title
EP3333530B1 (en) Parallel heat-pipes type heat sink and manufacturing method thereof
JP3170757U (ja) 放熱装置
US20010001416A1 (en) Heat sink and method for making the same
US8251132B2 (en) Heat sink assembly and method for manufacturing the same
US7284597B2 (en) Heat sink with combined parallel fins and the method for assembling the same
US20140311712A1 (en) Corrugated radiation fin and heat sink using same
US8081477B2 (en) Heat sink assembly having a clip
US9327369B2 (en) Method of manufacturing thermal module with enhanced assembling structure
US7746651B2 (en) Heat sink assembly having a clip
US20090145580A1 (en) Heat sink and a method of manufacturing the heat sink
US8296947B2 (en) Heat sink and method of manufacturing the same
US20150184948A1 (en) Structure for holding a heat pipe to a base
US8322403B2 (en) Fixing assembly for heat-absorbing surfaces of juxtaposed heat pipes and heat sink having the same
US20100258287A1 (en) Heat sink and method of manufacturing the same
US20080202726A1 (en) Fastening structure for combining heat conducting pipe and fins
US7672131B2 (en) Heat sink assembly and method manufacturing the same
US7350561B2 (en) Heat sink with combined fins
US8966758B1 (en) System and method of producing scalable heat-sink assembly
US20130255929A1 (en) Heat dissipation device
US20130075073A1 (en) Heat-dissipating fin and heat-dissipating fin assembly
TWM544191U (zh) 熱管併列式散熱裝置
EP2299229B1 (en) Plurality of heat pipes and fixing assembly therefor, and heat sink
US20140317928A1 (en) Heat-dissipation unit and method of manufacturing same
US9138840B2 (en) Method for manufacturing a heat sink
US9897390B2 (en) Fixing structure for heat dissipation element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20180514

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 15/02 20060101AFI20191008BHEP

Ipc: H01L 23/367 20060101ALI20191008BHEP

Ipc: H01L 23/427 20060101ALI20191008BHEP

INTG Intention to grant announced

Effective date: 20191031

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1228794

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017011090

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200621

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200529

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200430

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017011090

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1228794

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200129

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200608

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200608

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240515

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240507

Year of fee payment: 8