EP3317435A1 - Reduktionsverfahren und elektrolysesystem zur elektrochemischen kohlenstoffdioxid-verwertung - Google Patents
Reduktionsverfahren und elektrolysesystem zur elektrochemischen kohlenstoffdioxid-verwertungInfo
- Publication number
- EP3317435A1 EP3317435A1 EP16726551.1A EP16726551A EP3317435A1 EP 3317435 A1 EP3317435 A1 EP 3317435A1 EP 16726551 A EP16726551 A EP 16726551A EP 3317435 A1 EP3317435 A1 EP 3317435A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrolyte
- carbon dioxide
- cathode
- reservoirs
- electrolysis system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 85
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 47
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 44
- 238000005868 electrolysis reaction Methods 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title abstract description 7
- 230000009467 reduction Effects 0.000 title abstract description 5
- 239000003792 electrolyte Substances 0.000 claims abstract description 102
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000006722 reduction reaction Methods 0.000 claims abstract description 9
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 8
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 35
- 239000011261 inert gas Substances 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 238000005192 partition Methods 0.000 claims description 6
- 238000011946 reduction process Methods 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 238000009795 derivation Methods 0.000 claims 2
- 239000000047 product Substances 0.000 description 25
- 239000010410 layer Substances 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 4
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000003014 ion exchange membrane Substances 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241001026509 Kata Species 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 150000003842 bromide salts Chemical class 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/08—Supplying or removing reactants or electrolytes; Regeneration of electrolytes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/25—Reduction
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
Definitions
- the present invention relates to a method and an electrolysis system for electrochemical carbon dioxide utilization. Carbon dioxide is introduced into an electrolytic cell and reduced at a cathode.
- Gallium cathodes almost exclusively reduced to carbon monoxide, formed on a copper cathode, a variety of hydrocarbons as reaction products.
- Fig.l shows a structure of an electrolysis system according to the prior art.
- the structure shows an electrolytic cell 1 with an anolyte and a catholyte circuit 20, 21, sepa ⁇ riert by example, an ion exchange membrane in the electrolysis cell.
- different electrolytes are used in the anolyte and catholyte circulation. These are stored in reservoirs 201, 211 and purified there.
- a typical simplified illustration of the structure of an electric ⁇ lysesystems comprises an electrolytic cell with an anolyte and a catholyte.
- the circuits are separated by an ion exchange membrane in the electrolysis cell.
- the respective electrolyte is kept in reservoirs and purified there.
- the pH value and the ion concentration in the individual solutions change after prolonged operation of the electrolysis.
- the membrane makes the compensation even more difficult. If, for example, a 0.5M KHCO 3 solution is used as the anolyte and catholyte, the cell voltage rises sharply after a few hours since the cations from the anolyte space into the catholyte space are absorbed by the applied electrical voltage
- Electrode have moved. Although the osmotic pressure is initially balanced or even counteracts after some time, the electrical attraction of the cathode is stronger and cation migration is unidirectional. If the initial concentration is increased or the anolyte is periodically renewed, after a few hours a crystallization of
- the electrolysis system according to the invention for carbon dioxide utilization comprises
- an electrolysis cell having an anode in an anode compartment and a cathode in a cathode compartment, said cathode compartment is configured to receive carbon dioxide and to be brought into contact with the cathode, wherein a reduction ⁇ reaction of carbon dioxide to at least one hydrocar- serstoffVeritati or carbon monoxide is catalyzable,
- the electrolyte is conducted in a cross flow into and out of the electrolysis cell by
- Electrolyte is passed from a first of two electrolyte reservoirs to the anode compartment,
- Electrolyte is passed from the anode compartment to a second of the two electrolyte reservoirs,
- Electrolyte is conducted from the second electrolyte reservoir to the cathode compartment,
- the electrolysis system comprises a pressure compensation ⁇ connection, which connects the first and second electrolyte reservoir directly.
- the equalizing line For the replacement of the liquid electrolyte, it is expedient to connect the equalizing line to both electrolyte reservoirs as far down as possible, for example in the lower half of the height of the respective reservoir, in particular in the lower quarter.
- a pump is present in the pressure compensation connection. This ensures a forced electrolyte exchange.
- the input signals from level sensors are preferably used for both reservoirs.
- the two reservoirs can be reali ⁇ Siert as separate containers, wherein the pressure equalization compound is configured for example as a pipe between the containers.
- the two reservoirs can also be designed together as a single container with a partition wall for subdivision into the two reservoirs, wherein the partition wall has an opening as a pressure equalization connection.
- the opening is appropriate in the lower part of the reservoirs settled to allow replacement of the liquid electrolyte even at low liquid level.
- the electrolysis system expediently comprises pumps in the first and third connecting lines, which convey the electrolyte to the anode compartment and the cathode compartment. Furthermore, this includes
- Electrolysis system expedient a supply line for supplying the carbon dioxide.
- the electrolysis system comprises means for Druckregu ⁇ -regulation for at least one of the reservoirs.
- a pressure relief valve in the supply line for supplying the ⁇ Kohlenstoffdio ⁇ monoxide. If this opens, the carbon dioxide flowing through can then be mixed with the product gas from the first product gas line and conducted together to form an analytic and / or a product gas reservoir.
- the product gas lines are combined in a pressure relief valve. By ge ⁇ suitable choice of the pressure relief valve is thereby ensured an equal pressure in the gas phase in the reservoirs.
- the electrolysis system comprises means for Einlei ⁇ processing of inert gas, in particular nitrogen, in the Reser ⁇ voirs.
- the inlets at the reservoirs are expediently arranged in the lower region of the respective reservoir and the reservoirs comprise in the lower region a layer of glass frit which is permeable to the inert gas.
- the cathode of the electrolysis system end silver, copper, copper oxide, titanium dioxide or other metal ⁇ oxide semiconductor material comprising on.
- the cathode may for example be configured as a photocathode, bringing a fotoelekt ⁇ Roche mixer reduction process for the recovery of carbon dioxide could be operated, a so-called
- the electrolysis system includes a Platinano ⁇ de.
- KHCO 3, K 2 SO 4 and K 3 PO 4 as the electrolyte Salts used in different concentrations.
- potassium iodide KI, KBr Potassium bromide, potassium chloride, KCl, sodium hydrogencarbonate NaHCO> 3, sodium sulfate, a 2 S0 4 may be a ⁇ set.
- other sulfates, phosphates, iodides or bromides can be used to increase conductivity in Elekt ⁇ rolyten.
- the cathode (K) for example, a surface protection ⁇ layer on.
- Particularly preferred semiconductor photocathodes, but in particular also metallic cathodes, have a
- a surface protective layer ⁇ is meant that a relatively thin compared to the Elektrodenge- berichtdicke layer separates the cathode from the cathode compartment.
- the surface protection layer may for this purpose comprise a metal, a semiconductor or an organic material. Particularly preferred is a titanium dioxide protective layer.
- the protective effect is aimed predominantly at the fact that the electrode is not attacked by the electrolyte or reactants, products or catalysts dissolved in the electrolyte and their dissociated ions, and, for example, ions are released from the electrode.
- a suitable surface protection layer is of great importance to the durability and stability of the electrode radio ⁇ tion in the process.
- the overvoltages of hydrogen gas or carbon monoxide gas CO 2 H can be influenced in aqueous electrolyte or water having electrolyte systems. The consequence would be, on the one hand, a drop in the current density and, correspondingly, a very low system efficiency for the carbon dioxides. and on the other hand the mechanical destruction of the electrode.
- FIG. 1 shows an electrolysis system
- Figure 3 connected electrolyte reservoirs as a container with
- the electrolysis system 100 shown schematically in FIG. 1 initially has, as a central element, an electrolysis cell 1, which is shown here in a two-chamber structure.
- An anode 4 is arranged in an anode space 2, a cathode 5 in egg ⁇ nem cathode space 3.
- Anode space 2 and cathode space 3 are separated by a membrane 21.
- the membrane 21 may be an ion-conducting membrane 21, for example an anion-conducting membrane 21 or a cation-conducting membrane 21.
- the membrane 21 may be a porous layer or a diaphragm.
- membrane 21 may also be understood to mean a spatial ion-conducting separator which separates electrolytes into anode and cathode chambers 2, 3.
- this comprises a gas diffusion electrode ⁇ .
- Anode 4 and cathode 5 are electrically connected with a clamping ⁇ voltage supply.
- the anode compartment 2 and the cathode compartment 3 of the electrolysis cell 1 shown are each provided with a Equipped with an electrolyte inlet and electrolyte outlet, via which the electrolyte and electrolysis by-products, for example oxygen gas O 2, can flow in and out of the anode compartment 2 or cathode compartment 3.
- Anode space 2 and cathode space 3 are integrated via a first to fourth connection line (9 ... 12) in an electrolyte circuit.
- the directions of electrolyte flow are indicated by arrows in both circuits.
- the electrolyte circuit is in contrast to be ⁇ known carbon dioxide electrolysis systems designed as a cross-flow.
- a first of the connecting lines 9 electrolyte and optionally dissolved therein or thus ver mixed ⁇ educts and products from the first reservoir 6, funded by a pump 8a leads to the anode compartment 2 and the electrolyte ⁇ inlet.
- a second connecting line 10 leads the electrolyte with admixed substances to the second reservoir 7.
- the electrolyte is therefore not returned to the original reservoir 6.
- Electro ⁇ lyt from the second reservoir 7 in turn is conveyed by a third connecting line 11 by means of a pump 8b to the cathode compartment 3.
- Electrolyte from the cathode chamber 3 is guided via a fourth connecting line 12 to the first reservoir 6. In this way, an entangled cycle for the electrolyte results, in which a given amount of electrolyte reaches and passes through both reservoirs and anode and cathode compartments 2, 3 over time and at least in part.
- the reservoirs 6, 7 are connected by means of a compensation tube 13.
- the outlets to the equalization tube 13 in the reservoirs 6, 7 are expediently mounted in the lower part of the Reser ⁇ voirs to allow an exchange of liquid even at low level of the liquid.
- By the Equalizing pipe 13 ensures that none 6 may run empty of 7 Reser ⁇ voirs and is present in both the same height of the electrolyte level.
- Fig. 2 shows a more detailed view of the two reservoirs 6, 7.
- Inert gas drives the dissolved gases 02, CO and C02 out of the electrolyte.
- the electrolyte is typically not gas-free, but there is a certain amount of ⁇ be voted gas dissolved in it.
- C02 or other inert gases can be used instead of N2. Diluted with the inert gas, the products are discharged from the circulation and then analyzed and
- first product gas line 14 This connected via a first pressure relief valve with a supply line 16 for carbon dioxide, the carbon dioxide to
- Electrolytic cell 1 transported. Using this connection, Kings ⁇ NEN if necessary. Carbon dioxide, which is partly not given for excess pressure in the electrolytic cell 1, and product ⁇ gas is passed together with the inert gas from the first reservoir 6 egg ner analysis and a product storage not shown in Fig. 1. For the calculation of the yield, the amount of the introduced carbon dioxide can be used.
- a second product gas line 15 from the second reservoir 7 is guided with the common line of first product gas line 14 and carbon dioxide feed line 16 to a second pressure relief valve 18.
- a regulated pressure control monitors the differential pressure at the GDE, so that it is not subjected to excessive mechanical load.
- the two ⁇ te pressure relief valve 18 is set so that it is ensured that no product gas to the anode 4 in the analysis ge ⁇ reached.
- Fig. 2 also shows the equalizing pipe 13 between the two reservoirs 6, 7.
- the filling amount of the reservoirs 6, 7 changes in the described entangled cycle, if not both pumping currents are exactly equal. Although this is achievable via a level measurement and regulation of the pump power, it is complicated and prone to error.
- FIG. 1 A further embodiment for the two reservoirs 6, 7 is shown in FIG.
- the reservoirs 6, 7 are designed as a common container 31.
- the container 31 comprises a partition wall 32, which has an interruption or an opening 33.
- the opening 33 is expediently located in the lower part of the container 31 in order to ensure a constant Allow exchange of the electrolyte between the reservoirs 6, 7.
- the result of the joint container ⁇ largely the same functionality as in the case of the locally separated reservoirs 6, 7.
- a further alternative embodiment is provides ⁇ Darge in FIG. 4 This embodiment is based on separate reservoirs 6, 7 as the first embodiment. However, in the exemplary embodiment according to FIG. 4, no pressure compensation for the gas phase is provided. Different pressure in the two
- Reservoirs 6, 7 can therefore provide for a different electrolyte level and this is not compensated by the equalizing tube, so the simple connection of the two reservoirs 6, 7.
- the compensation is performed by a pump 42 in this example.
- the control of the pump is effected by a not-shown in Fi gur 4 ⁇ control electronics.
- ⁇ as input variables for managing sensor signals are of two
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL16726551T PL3317435T3 (pl) | 2015-07-03 | 2016-05-31 | Sposób redukcji i system elektrolizy do elektrochemicznego stosowania dwutlenku węgla |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015212503.3A DE102015212503A1 (de) | 2015-07-03 | 2015-07-03 | Reduktionsverfahren und Elektrolysesystem zur elektrochemischen Kohlenstoffdioxid-Verwertung |
PCT/EP2016/062253 WO2017005411A1 (de) | 2015-07-03 | 2016-05-31 | Reduktionsverfahren und elektrolysesystem zur elektrochemischen kohlenstoffdioxid-verwertung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3317435A1 true EP3317435A1 (de) | 2018-05-09 |
EP3317435B1 EP3317435B1 (de) | 2019-07-03 |
Family
ID=56097104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16726551.1A Active EP3317435B1 (de) | 2015-07-03 | 2016-05-31 | Reduktionsverfahren und elektrolysesystem zur elektrochemischen kohlenstoffdioxid-verwertung |
Country Status (10)
Country | Link |
---|---|
US (1) | US10760170B2 (de) |
EP (1) | EP3317435B1 (de) |
CN (1) | CN107849713B (de) |
AU (1) | AU2016290263B2 (de) |
DE (1) | DE102015212503A1 (de) |
DK (1) | DK3317435T3 (de) |
ES (1) | ES2748807T3 (de) |
PL (1) | PL3317435T3 (de) |
SA (1) | SA518390682B1 (de) |
WO (1) | WO2017005411A1 (de) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015212503A1 (de) | 2015-07-03 | 2017-01-05 | Siemens Aktiengesellschaft | Reduktionsverfahren und Elektrolysesystem zur elektrochemischen Kohlenstoffdioxid-Verwertung |
DE102017216710A1 (de) * | 2017-09-21 | 2019-03-21 | Siemens Aktiengesellschaft | Elektrolyseuranordnung |
EP3489389A1 (de) * | 2017-11-24 | 2019-05-29 | Siemens Aktiengesellschaft | Elektrolyseeinheit und elektrolyseur |
US11105006B2 (en) * | 2018-03-22 | 2021-08-31 | Sekisui Chemical Co., Ltd. | Carbon dioxide reduction apparatus and method of producing organic compound |
DE102018210303A1 (de) * | 2018-06-25 | 2020-01-02 | Siemens Aktiengesellschaft | Elektrochemische Niedertemperatur Reverse-Watergas-Shift Reaktion |
US11390955B2 (en) * | 2019-08-07 | 2022-07-19 | Sekisui Chemical Co., Ltd. | Electrochemical cell, electrochemical system, and method of producing carbonate compound |
CN110344071B (zh) * | 2019-08-14 | 2020-11-17 | 碳能科技(北京)有限公司 | 电还原co2装置和方法 |
DE102019123858A1 (de) * | 2019-09-05 | 2021-03-11 | Thyssenkrupp Uhde Chlorine Engineers Gmbh | Kreuzflusswasserelektrolyse |
CN114405438B (zh) * | 2022-03-01 | 2022-11-11 | 中山大学 | 一种光电催化反应系统 |
JP2023140042A (ja) * | 2022-03-22 | 2023-10-04 | 株式会社東芝 | 電解装置および電解装置の駆動方法 |
CN114689671B (zh) * | 2022-03-29 | 2023-05-16 | 嘉庚创新实验室 | 电化学反应设备 |
DE102023201802A1 (de) | 2023-02-28 | 2024-08-29 | Siemens Energy Global GmbH & Co. KG | Anordnung für die Gas-Flüssigkeits-Trennung und deren Verwendung |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LT2496735T (lt) * | 2009-11-04 | 2017-06-12 | Ffgf Limited | Angliavandenilių gamyba |
US8692019B2 (en) * | 2012-07-26 | 2014-04-08 | Liquid Light, Inc. | Electrochemical co-production of chemicals utilizing a halide salt |
US20130105304A1 (en) * | 2012-07-26 | 2013-05-02 | Liquid Light, Inc. | System and High Surface Area Electrodes for the Electrochemical Reduction of Carbon Dioxide |
DE102013226357A1 (de) * | 2013-12-18 | 2015-06-18 | Siemens Aktiengesellschaft | Pulsierende Elektrolytzufuhr in den Reaktionsraum einer Elektrolysezelle mit gasentwickelnden Elektroden |
WO2015143560A1 (en) * | 2014-03-25 | 2015-10-01 | Colin Oloman | Process for the conversion of carbon dioxide to formic acid |
CN104722177B (zh) | 2015-02-04 | 2017-05-31 | 中国华能集团清洁能源技术研究院有限公司 | 一种浓缩变换和电解再生的二氧化碳捕集系统 |
DE102015202117A1 (de) * | 2015-02-06 | 2016-08-11 | Siemens Aktiengesellschaft | Verfahren und Elektrolysesystem zur Kohlenstoffdioxid-Verwertung |
DE102015212503A1 (de) | 2015-07-03 | 2017-01-05 | Siemens Aktiengesellschaft | Reduktionsverfahren und Elektrolysesystem zur elektrochemischen Kohlenstoffdioxid-Verwertung |
DE102015212504A1 (de) * | 2015-07-03 | 2017-01-05 | Siemens Aktiengesellschaft | Elektrolysesystem und Reduktionsverfahren zur elektrochemischen Kohlenstoffdioxid-Verwertung, Alkalicarbonat- und Alkalihydrogencarbonaterzeugung |
DE102016203946A1 (de) * | 2016-03-10 | 2017-09-28 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zur elektrochemischen Nutzung von Kohlenstoffdioxid |
JP6744242B2 (ja) * | 2017-03-10 | 2020-08-19 | 株式会社東芝 | 化学反応システム |
JP6672210B2 (ja) * | 2017-03-21 | 2020-03-25 | 株式会社東芝 | 電気化学反応装置と電気化学反応方法 |
US11105006B2 (en) * | 2018-03-22 | 2021-08-31 | Sekisui Chemical Co., Ltd. | Carbon dioxide reduction apparatus and method of producing organic compound |
-
2015
- 2015-07-03 DE DE102015212503.3A patent/DE102015212503A1/de not_active Withdrawn
-
2016
- 2016-05-31 US US15/739,738 patent/US10760170B2/en active Active
- 2016-05-31 WO PCT/EP2016/062253 patent/WO2017005411A1/de active Application Filing
- 2016-05-31 CN CN201680039557.3A patent/CN107849713B/zh active Active
- 2016-05-31 PL PL16726551T patent/PL3317435T3/pl unknown
- 2016-05-31 AU AU2016290263A patent/AU2016290263B2/en active Active
- 2016-05-31 ES ES16726551T patent/ES2748807T3/es active Active
- 2016-05-31 DK DK16726551.1T patent/DK3317435T3/da active
- 2016-05-31 EP EP16726551.1A patent/EP3317435B1/de active Active
-
2018
- 2018-01-03 SA SA518390682A patent/SA518390682B1/ar unknown
Also Published As
Publication number | Publication date |
---|---|
WO2017005411A1 (de) | 2017-01-12 |
CN107849713B (zh) | 2019-08-30 |
DE102015212503A1 (de) | 2017-01-05 |
DK3317435T3 (da) | 2019-09-23 |
ES2748807T3 (es) | 2020-03-18 |
US10760170B2 (en) | 2020-09-01 |
EP3317435B1 (de) | 2019-07-03 |
CN107849713A (zh) | 2018-03-27 |
US20180179649A1 (en) | 2018-06-28 |
AU2016290263A1 (en) | 2018-01-04 |
SA518390682B1 (ar) | 2021-09-08 |
PL3317435T3 (pl) | 2020-03-31 |
AU2016290263B2 (en) | 2018-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3317435B1 (de) | Reduktionsverfahren und elektrolysesystem zur elektrochemischen kohlenstoffdioxid-verwertung | |
EP3292232B1 (de) | Reduktionsverfahren zur elektrochemischen kohlenstoffdioxid-verwertung, alkalicarbonat- und alkalihydrogencarbonaterzeugung | |
EP3607111B1 (de) | Zwei-membran-aufbau zur elektrochemischen reduktion von co2 | |
EP3445893B1 (de) | Anordnung für die kohlendioxid-elektrolyse | |
EP3478879A1 (de) | Anordnung und verfahren für die kohlendioxid-elektrolyse | |
EP3478878B1 (de) | Anordnung und verfahren für die kohlendioxid-elektrolyse | |
WO2016128323A1 (de) | Reduktionsverfahren und elektrolysesystem zur elektrochemischen kohlenstoffdioxid-verwertung | |
EP3622100A1 (de) | Membran gekoppelte kathode zur reduktion von kohlendioxid in säurebasierten elektrolyten ohne mobile kationen | |
WO2016134952A1 (de) | Abscheidung eines kupferhaltigen, kohlenwasserstoffe entwickelnden elektrokatalysators auf nicht-kupfer-substraten | |
WO2016188829A1 (de) | Elektrolysesystem zur elektrochemischen kohlenstoffdioxid-verwertung mit protonenspender-einheit und reduktionsverfahren | |
DE102015201132A1 (de) | Verfahren und Elektrolysesystem zur Kohlenstoffdioxid-Verwertung | |
WO2016083193A1 (de) | Elektrolyseur und verfahren zur kohlenstoffdioxid-verwertung | |
DE102016211155A1 (de) | Anordnung und Verfahren für die Kohlendioxid-Elektrolyse | |
DE102016211151A1 (de) | Anordnung und Verfahren für die Kohlendioxid-Elektrolyse | |
WO2019015919A1 (de) | Co2-elektrolyseur | |
WO2020001851A1 (de) | Elektrochemische niedertemperatur reverse-watergas-shift reaktion | |
EP3577256A1 (de) | Elektroden umfassend in festkörperelektrolyten eingebrachtes metall | |
EP3481974A1 (de) | Verfahren und vorrichtung zur elektrochemischen verwertung von kohlenstoffdioxid | |
WO2018054646A1 (de) | Vorrichtung zum kontinuierlichen betrieb einer elektrolysezelle mit gasförmigem substrat und gasdiffusionselektrode | |
EP3655564A1 (de) | Elektrolyseuranordnung | |
DE102015213947A1 (de) | Reduktionsverfahren zur elektrochemischen Kohlenstoffdioxid-Verwertung und Elektrolysesystem mit Anionentauschermembran | |
WO2020156734A1 (de) | Verfahren zur energieeffizienten herstellung von co | |
WO2021023435A1 (de) | Verfahren zur elektrochemischen umsetzung eines eduktgases an einer gasdiffusionselektrode mit differenzdruckermittlung | |
WO2020126118A1 (de) | Elektrolyseur zur kohlenstoffdioxidreduktion | |
DE102020207186A1 (de) | CO2 Elektrolyse mit Gasdiffusionselektrode und Salzbildungsvermeidung durch Elektrolytwahl |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171123 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20181109 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190307 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1151102 Country of ref document: AT Kind code of ref document: T Effective date: 20190715 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016005383 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20190919 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20190703 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191104 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191003 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191103 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191004 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2748807 Country of ref document: ES Kind code of ref document: T3 Effective date: 20200318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016005383 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
26N | No opposition filed |
Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502016005383 Country of ref document: DE Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200531 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20220901 AND 20220907 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: CREP Representative=s name: ONSAGERS AS, POSTBOKS 1813, VIKA, 0123 OSLO, NORGE Ref country code: NO Ref legal event code: CHAD Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 1151102 Country of ref document: AT Kind code of ref document: T Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE Effective date: 20221018 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: PD Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG; DE Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: SIEMENS AKTIENGESELLSCHAFT Effective date: 20221220 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20230505 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG Effective date: 20240403 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240527 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240521 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240529 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20240527 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240602 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240610 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240521 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20240521 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240524 Year of fee payment: 9 |