EP3279359B1 - Exhaust system part having stainless steel sheet having excellent intermittent oxidation characteristics - Google Patents

Exhaust system part having stainless steel sheet having excellent intermittent oxidation characteristics Download PDF

Info

Publication number
EP3279359B1
EP3279359B1 EP16772892.2A EP16772892A EP3279359B1 EP 3279359 B1 EP3279359 B1 EP 3279359B1 EP 16772892 A EP16772892 A EP 16772892A EP 3279359 B1 EP3279359 B1 EP 3279359B1
Authority
EP
European Patent Office
Prior art keywords
stainless steel
oxidation
sheet
weld
exhaust system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16772892.2A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3279359A1 (en
EP3279359A4 (en
Inventor
Shinichi Teraoka
Yoshiharu Inoue
Junichi Hamada
Atsuhisa Yakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to PL16772892T priority Critical patent/PL3279359T3/pl
Publication of EP3279359A1 publication Critical patent/EP3279359A1/en
Publication of EP3279359A4 publication Critical patent/EP3279359A4/en
Application granted granted Critical
Publication of EP3279359B1 publication Critical patent/EP3279359B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/40Honeycomb supports characterised by their structural details made of a single sheet, foil or plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors

Definitions

  • the present invention relates to a heat resistant stainless steel sheet excellent in intermittent oxidation characteristic and to an exhaust system part.
  • the exhaust system part of the present invention is particularly preferable as a part used in an environment where it is repeatedly heated to a high temperature of 1000°C or more such as an exhaust manifold or turbocharger part of an automobile engine.
  • exhaust manifolds are also made using austenitic stainless steel SUS310S (25Cr-20Ni-0.5Si), or SUS302B (18Cr-8Ni-2Si), XM15J1 (20Cr-12Ni-3Si), DIN1.4828 (19Cr-11Ni-2Si), etc. These are more expensive compared with ferritic stainless steel.
  • the types of steels are selected according to their availability in each region, shaping technology, and other environmental factors.
  • PLT 2 discloses a material comprised of the ferritic stainless steel SUS444 to which Mo or Nb, Cu, W, etc. is further added to raise the high temperature strength and secure heat resistance at 950°C.
  • Mo or Nb, Cu, W, etc. is further added to raise the high temperature strength and secure heat resistance at 950°C.
  • the practice has been to make the exhaust manifold or turbocharger part a double pipe structure.
  • austenitic stainless steel is used at the inside and ferritic stainless steel is used at the outside to ease the constraints on the inside austenitic stainless steel member and reduce the thermal strain.
  • ferritic stainless steel is used at the outside to ease the constraints on the inside austenitic stainless steel member and reduce the thermal strain.
  • Such a double structure part is expensive but is frequently used in an exhaust manifold where the exhaust gas temperature is 1000°C or less. Further, it is sometimes used even at a 900°C or less exhaust gas temperature for suppressing oxidation at the outer surface of the exhaust manifold and enhancing the aesthetic appearance.
  • WO 2014/157655 A1 and JP 2002 361480 A further disclose heat resistant steel sheets for exhaust parts having a welded structure.
  • the present invention has as its object to provide a stainless steel sheet free of surface flaws, having an enhanced high temperature strength and corrosion resistance, not becoming brittle at a high temperature, and further exhibiting a high oxidation resistance enabling it to be suitably used as an inside pipe of a double pipe of an exhaust manifold, a turbocharger part (including case of double pipe structure), and other automobile exhaust system parts. Further, the present invention has as its object to provide an automobile exhaust system part excellent in both the oxidation resistances of the base material and weld zone using the above stainless steel sheet.
  • the inventors first reevaluated the chemical composition to solve the above problems.
  • austenitic stainless steel with an excellent oxidation resistance stainless steel raised in Si content or stainless steel having an REM added, such as the above-mentioned SUS302B, XM15J1, and DIN1.4828, is generally used.
  • the inventors engaged in intermittent oxidation tests in an atmospheric gas simulating an automobile exhaust gas environment so as to confirm if the above-mentioned austenitic stainless steels can withstand a 1050°C environment, but with each steel type, there was a remarkable reduction in weight due to the oxidation. It was judged there was no oxidation resistance at 1050°C.
  • an oxide scale is formed mainly comprised of Cr 2 O 3 resistant to diffusion of oxygen ions and diffusion of metal ions in the scale.
  • the "inside oxide layer” indicates the Si oxides formed at the austenite grain boundary. If scale mainly comprised of Cr 2 O 3 with a high protective ability cannot be formed at the surface, this grain boundary oxidation becomes shallower and prevention of scale peeling is difficult. Further, if austenite grains grow, grain boundary oxidation is inhibited due to movement of the grain boundaries, so the oxidation resistance is impaired. Therefore, the precipitates are made to disperse so as to inhibit grain growth.
  • FIG. 1 shows the results of investigation of the effects which Cr and Mo and Si, C, and N have on the oxidation resistance in intermittent oxidation.
  • the test method is as follows:
  • Each of the various compositions of austenitic stainless steel was melted in a laboratory, heated at 1250°C for 1 hour, and hot rolled to a sheet thickness of 3 mm, then the hot rolled sheet was annealed at 1100°C for 20 seconds, immediately water cooled, shot blasted, then descaled by sulfuric acid and nitric hydrofluoric acid.
  • the sheet was cold rolled to a thickness of 1.2 mm. Further, it was annealed at 1100°C for 20 seconds, then water cooled. The scale was modified by salt, then was pickled.
  • FIG. 2 shows the cross-sectional shape of a lap fillet welded sample and the reduction in thickness after an oxidation test. This sample was used for an intermittent oxidation test, whereupon the oxidation became remarkable at the weld heat affected zone. As a result of the larger reduction of the sheet thickness, cases were seen in which the sample ended up separating (top left part of bottom photo of FIG. 2 ). For this reason, it is learned that the weld heat affected zone governs the lifetime of the exhaust system part. The state by which the weld heat affected zone selectively oxidizes was investigated, whereupon it was learned that at this part, scale mainly comprised of Cr 2 O 3 is not uniformly formed at the surface and grain boundary oxidation does not occur much either.
  • the compositions of the weld heat affected zone and base material were investigated, whereupon no difference could be recognized, so the difference in oxidation behavior of the base material and weld heat affected zone is believed to be the effect of strain due to thermal expansion and contraction. That is, due to the sheet thickness of the weld metal and base material, a temperature difference occurs between the weld metal and base material at the time of heating and cooling. Due to the thermal expansion and contraction stress resulting from the temperature difference, it is believed that scale easily peels off at the weld heat affected zone at the boundary.
  • the gradient (toe angle) of the change of sheet thickness at the weld zone of the sample was measured, whereupon it was learned that in a sample with a small oxidation, the toe angle was a small one of about 10 degrees, while in a sample with inferior oxidation resistance, the toe angle was a large 20 degrees.
  • the "gradient of change of sheet thickness (toe angle)" indicates what is shown by the angle of (180-X) when, in observation of one surface of the weld zone, defining the angle by which the surface of the base material and the surface tangent of the weld bead (weld metal) intersect as X degrees.
  • the toe angle is usually shown in a range of 0 to 90 degrees.
  • a weld bead has a plurality of toes, so there are a plurality of angles of toes, but the toe angle in the present invention is defined as the largest angle in a cross-sectional field of view.
  • the toe angle being large means the gradient of change of the sheet thickness due to the bulging of the weld bead surface (buildup) being sharp.
  • 24Cr-12Ni-0.1C-0.02N-2.0Si-1Mn-0.5Mo-0.05Al-0.05Vsteel was melted in a laboratory, heated at 1250°C for 1 hour, and hot rolled to a sheet thickness of 3 mm, then the hot rolled sheet was annealed at 1100°C for 20 seconds, immediately water cooled, shot blasted, then descaled by sulfuric acid and nitric hydrofluoric acid. After that, the steel was cold rolled to a sheet thickness of 1.2 mm.
  • the sheet was annealed at 1100°C for 20 seconds, then was water cooled.
  • the scale was modified by salt, then immersed in a mixed acid of nitric acid and hydrofluoric acid to pickle it.
  • the sheet was lap fillet welded by Tig welding. The welding was performed under conditions giving a back bead.
  • SUS310S was used for the weld wire.
  • the weld wire was placed at the center of the test piece to prepare an oxidation test piece, then this was heated and cooled between 200°C and 1050°C under an automobile exhaust gas environment in an intermittent oxidation test for 2000 cycles.
  • the reduction in sheet thickness of the weld heat affected zone was measured.
  • a reduction in sheet thickness of 0.4 mm or less was deemed the "passing" level.
  • the present invention was made based on the above findings and is to provide an exhaust system part having a welded structure according to the appended claims.
  • the present invention it is possible to raise the oxidation resistance of a stainless steel sheet for exhaust system part use and of an exhaust system part. Further, the steel sheet seldom exhibits surface flaws, so it is possible to eliminate or streamline the surface grinding process (CG) at the time of sheet production. Due to the raising of the oxidation resistance, it becomes possible to make the exhaust system part thinner in sheet thickness. Due to the lightening of weight of the part, the effect of improvement of the fuel economy of the automobile is also obtained.
  • CG surface grinding process
  • C 0.05 to 0.15% C is effective for raising the stability of the austenite structure and high temperature strength. Further, it forms carbides with Cr to inhibit the growth of austenite grains and suitably cause the growth of grain boundary oxides and improve the resistance to scale peeling. This effect is manifested with 0.05% or more of C, so the lower limit is made 0.05%.
  • the content is preferably made 0.10% or more. If over 0.15%, the amount of Cr carbides increases, the chrome-poor layer at the grain boundaries increases, and even in high Cr austenitic stainless steel like in the present steel, the corrosion resistance required for an exhaust manifold member or turbocharger part of an automobile can no longer be maintained, so the upper limit is made 0.15% or less. From the viewpoint of the corrosion resistance, the content is preferably made 0.12% or less.
  • Si 1.0% to 4.0%
  • Si is effective for oxidation resistance. In particular, it is effective for prevention of peeling of scale in intermittent oxidation. To form grain boundary oxides in an environment over 1000°C and inhibit peeling of scale at the surface, 1.0% or more of Si is necessary. To raise the oxidation resistance, the content is preferably made 2.0% or more.
  • Si is a ferrite stabilizing element. It increases the ⁇ -ferrite amount at the solidified structure and causes the drop in hot workability in hot rolling, so the content is made 4.0% or less.
  • Si promotes the formation of a sigma phase and leads to the concern over embrittlement at the time of high temperature, long term use, so the content is preferably made 3.5% or less.
  • Mn 0.5 to 3.5%
  • Mn is an element added as a deoxidizer, enlarges the austenite single phase region, and contributes to stabilization of the structure. This effect clearly appears at 0.5% or more, so the content is made 0.5% or more. Further, by forming sulfides and reducing the amount of solute S in the steel, there is also the effect of improving the hot workability, so the content is preferably made 1.0% or more. On the other hand, excessive addition causes the corrosion resistance to fall, so the content is made 3.5% or less. Further, from the viewpoint of oxidation resistance, oxides of mainly Cr 2 O 3 are preferable. Oxides of Mn are not preferable, so the content is preferably made 2.0% or less.
  • P 0.010 to 0.040%
  • P is an element included as an impurity in the starting material of the molten pig iron or ferrochrome or other main starting materials. This is an element harmful to hot workability, so the content is made 0.040% or less. Note that the content is preferably 0.030% or less. Excessive reduction makes use of high purity starting materials essential and otherwise leads to an increase in costs, so the content is made 0.010% or more. Economically preferably it is desirably made 0.020% or more.
  • S 0.0001 to 0.010%
  • S forms sulfide-based inclusions and causes deterioration of the general corrosion resistance (full surface corrosion or pitting) of steel materials, so the upper limit of the content is preferably lower and is made 0.010%.
  • the lower limit is preferably made 0.0001%.
  • the content is preferably 0.001 to 0.008%.
  • Cr 20 to 30% Cr is an essential element in the present invention for securing the oxidation resistance and corrosion resistance. If less than 20%, these effects are not exhibited. On the other hand, if over 30%, the austenite single phase region is reduced and the hot workability at the time of manufacture is impaired, so the content is made 20 to 30%. Note that from the viewpoint of the oxidation resistance, the content is preferably made 24% or more. Further, if making the amount of Cr higher, the formation of a sigma phase causes embrittlement, so the content is preferably made 27% or less.
  • Ni 8 to 25%
  • Ni is an element for stabilizing the austenite phase and, unlike Mn, an element effective for oxidation resistance. These effects are obtained with 8% or more, so the lower limit is made 8% or more. This also has an effect of inhibiting the formation of a sigma phase, so the content is preferably made 10% or more. On the other hand, excessive addition raises the solidification cracking sensitivity and lowers the hot workability as well, so the content is made 25% or less. Furthermore, to inhibit peeling of scale in intermittent oxidation, the content is preferably made 15% or less.
  • Mo 0.01 to 1.5% Mo, together with Si or Cr, is effective for forming a protective scale on the surface. This effect is obtained with 0.01%, so the lower limit is made 0.01% or more. Further, this is also an element effective for improvement of the corrosion resistance, so this is preferably added in 0.3% or more. On the other hand, this is also a ferrite-stabilizing element. If the amount of addition of Mo increases, it is necessary to increase the addition of Ni, so excessive addition is not preferable. Further, it sometimes promotes the formation of a sigma phase and causes embrittlement, so the content is made 1.5% or less. The effect of improvement of the corrosion resistance and oxidation resistance becomes substantially saturated at 0.8% or more, so the content is preferably made 0.8% or less.
  • Al 0.001 to 0.10%
  • Al is an element added as a deoxidation element and improving the oxidation resistance. This effect is obtained at 0.001% or more, so the lower limit is made 0.001% or more.
  • the content is preferably made 0.003% or more.
  • excessive addition forms nitrides and causes a drop in the solute N amount whereby the high temperature strength falls, so the upper limit is made 0.10% or less. If considering the weldability as well, the content is preferably made 0.05% or less.
  • N 0.13 to 0.50% N is one of the elements extremely important in the present invention. Like C, it raises the high temperature strength. Also, it raises the austenite stability making reduction of Ni also possible. Further, the effect of reduction of the corrosion resistance due to sensitization is smaller than C, so a larger amount of addition than C is possible. To obtain high temperature strength able to withstand a high temperature environment, the content is made 0.13% or more. If considering the effect of reduction of Ni, the content is preferably made 0.25% or more. On the other hand, if added in a large amount, gas bubble-type flaws form at the time of solidification in the steelmaking process, so the upper limit is made 0.50% or less. In addition, the strength at ordinary temperature becomes too high, the load at the time of cold rolling becomes higher, and the productivity is impaired, so the content is preferably made 0.30% or less.
  • the gradient of change of sheet thickness between the base material and weld metal the more the thermal strain is eased, so if the gradient of the change of sheet thickness becomes 15 degrees or less, the effect of improvement of the oxidation resistance becomes greater, so the gradient is made 15 degrees or less.
  • the gradient of change of sheet thickness is preferably reduced to 10 degrees or less.
  • the stainless steel sheet of the present invention further has V: 0.03-0.5% and may further have added to it, in addition to the above elements, any one or more of Cu: 0.1 to 3.0%, Ti: 0.001 to 0.3%, Nb: 0.001 to 0.3%, B: 0.0001 to 0.0050%, and Ca: 0.001 to 0.010%.
  • Cu 0.1 to 3.0%
  • Cu is a relative inexpensive element taking the place of Ni as an austenite-stabilizing element. Furthermore, it is effective for inhibiting the progression of crevice corrosion and pitting. For this reason, addition of 0.1% or more is preferable.
  • Cu often enters from the scrap and other starting materials. About 0.2% is often included as an unavoidable impurity. However, if over 3.0%, the hot workability is lowered, so the content is made 3.0% or less.
  • V 0.03 to 0.5%
  • V is present in the alloy starting materials of stainless steel as an unavoidable impurity and is difficult to remove in the refining process, so in general is included in 0.01 to 0.10% in range. Further, it forms fine carbonitrides and has a grain growth inhibiting effect, so is also an element which is deliberately added in accordance with need. This effect stably appears with 0.03% or more addition, so the lower limit is made 0.03%. Due to fluctuation of V, the crystal grain size changes, so this is not preferable, so to build in a certain range of crystal grain size, the content is preferably made 0.08% or more. On the other hand, if excessively added, it is liable to invite coarsening of the precipitate. As a result, the toughness after hardening ends up falling, so the upper limit is made 0.5%. Note that if considering the manufacturing cost or manufacturability, making the content 0.2% or less is preferable.
  • Ti 0.001 to 0.3%
  • Nb is an element forming a carbonitride and inhibits sensitization or a drop in corrosion resistance due to precipitation of chrome carbonitrides in the stainless steel.
  • the upper limit is made 0.3% or less. If considering the improvement in the high temperature strength due to securing the solute C and N amounts, the content is preferably made 0.01% or less. Ti also need not be contained.
  • Nb 0.001 to 0.3%
  • Nb is an element which forms carbonitrides and inhibits sensitization or a drop in corrosion resistance due to precipitation of chrome carbonitrides in the stainless steel.
  • the upper limit is made 0.3%. If considering the improvement in the high temperature strength due to securing the solute C and N amounts, the content is preferably made 0.01% or less. Nb also need not be contained.
  • B 0.0001 to 0.0050% B is an element effective for improvement of the hot workability. This effect appears at 0.0001% or more, so 0.0001% or more may be added. To improve the hot workability in a broader temperature region, 0.0005% or more is preferable. On the other hand, excessive addition becomes a cause of surface defects due to the drop in hot workability, so 0.0050% is made the upper limit. If considering the corrosion resistance, 0.0025% or less is preferable.
  • Ca 0.001 to 0.010%
  • Ca is added as a desulfurizing element and has the effect of reduction of the S in the steel to improve the hot workability. In general, this is added as CaO into the slag at the time of melting and refining. Part of this dissolves in the steel as Ca. Further, it is also contained in steel as CaO-SiO 2 -Al 2 O 3 -MgO or other complex oxides. The effect of improvement of the hot workability is obtained from 0.001%, so the content is preferably made 0.001% or more. On the other hand, if contained in a large amount, relatively coarse aqueous inclusions CaS precipitate and the corrosion resistance is lowered, so the content is preferably made 0.010% or less.
  • W 0.01 to 3.00%
  • Zr 0.05 to 0.30%
  • Sn 0.01 to 0.10%
  • Co 0.01 to 0.30%
  • Mg 0.0002 to 0.010%
  • W 0.01 to 3.0% W, like Cr and Mo, is an element for improving the corrosion resistance. Further, it also has the effect of raising the high temperature strength by solution strengthening. To obtain these effects, 0.01% or more is preferably added. On the other hand, it is an element promoting precipitation of a sigma phase. Age embrittlement causes a drop in the strength of the material, so 3.0% or less is preferable. Further, like Mo and Nb, this is an expensive element, so making it 1.5% or less is more preferable.
  • Zr 0.05 to 0.30% Zr, like Ti and Nb, is an element which forms carbonitrides and inhibits sensitization and a drop in corrosion resistance due to precipitation of chrome carbonitrides in stainless steel. However, surface flaws are easily caused by forming large sized steelmaking inclusions, so the upper limit is made 0.30% or less. If considering the improvement of high temperature strength due to securing solute C and N amounts, the content is preferably made 0.1% or less. Zr may also not be included.
  • Sn 0.01 to 0.10%
  • Sn is an element effective for improvement of the corrosion resistance after hardening and is preferably added as needed in 0.02% or more. However, excessive addition promotes edge cracking at the time of hot rolling, so the content is preferably made 0.10% or less.
  • Co 0.01 to 0.30%
  • Co is an element which easily is contained in austenitic stainless steel as an unavoidable impurity from the alloy starting materials. Further, it is an element effective for improving the high temperature strength, so addition of 0.01% or more is preferable. However, excessive addition becomes a cause of a drop in the hot workability and consequent formation of surface flaws, so the content is preferably made 0.30% or less.
  • Mg 0.0002 to 0.010% Mg, like Ca, is added as a desulfurizing element.
  • MgO is contained in complex oxides in addition to an equivalent amount dissolving from the slag to inside the molten steel. Further, sometimes the MgO in the refractories leaches out into the molten steel.
  • the desulfurization effect appears at 0.0002% or more, so preferably the lower limit is made 0.0002%.
  • excessive addition causes aqueous inclusions MgS to coarsely precipitate and corrosion resistance to be reduced, so the content is preferably made 0.010% or less.
  • the remainder of the chemical composition consists of Fe and unavoidable impurities.
  • the "unavoidable impurities” mean elements which are not deliberately included, but unavoidably enter from the starting materials or manufacturing environment etc. when industrially manufacturing stainless steel sheet having the chemical composition prescribed in the present invention.
  • the steel was cold rolled to a sheet thickness of 1.2 mm, then the cold rolled sheet was annealed at 1100°C for 20 seconds.
  • the oxide film of the surface was modified by salt and pickled by nitric hydrofluoric acid to obtain a pickled skin.
  • the cold rolled sheet was measured for high temperature strength at 1000°C. One having a 0.2% yield strength of 30 MPa or more was evaluated as "passing". Further, the sheet was oxidized at 700°C for 300 hours, then the surface was polished to prepare a sheet. One which cracked was judged as failing in high temperature embrittlement.
  • the sheet was subjected to a JIS salt spray test. Samples which rusted were judged as failing in corrosion resistance.
  • the oxidation resistance was evaluated by a test piece obtained by lap fillet welding one flat sheet and another as pickled. The oxidation test was performed in an atmosphere of H 2 O of 5 to 10%, O 2 of 0.2 to 1.0%, and a balance of nitrogen. The atmospheric gas was made a composition simulating automobile exhaust gas with periodic changes. The test piece was heated to and held at 1050°C and then cooled to 200°C as one cycle. The test was performed for 2500 cycles. The appearance was recorded and the change in weight measured. The location most advanced in oxidation was recorded and the sheet thickness of that part was evaluated. 0.8 mm or more was evaluated as meaning a good oxidation resistance.
  • Test No. 31 was low in C
  • No. 33 was low in Si
  • No. 36 was high in Mn
  • No. 43 was low in Mo
  • No. 2 and Nos. 23-30 were low in V
  • No. 45 was high in V
  • Nos. 49 and 53 were low in Cr+20Mo or low in Si+20C+15N, so both the base materials and the weld zones were poor in oxidation resistance.
  • No. 32 was high in C, so the corrosion resistance was poor.
  • No. 34 was high in Si, No. 35 was low in Mn, No. 37 was high in P, No. 42 was high in Ni, and No. 48 was high in N, so surface flaws formed and the results were poor.
  • No. 38 was high in S and low in Al, so the result was poor in surface flaws and the corrosion resistance was poor.
  • No. 39 was low in Cr and low in Cr+20Mo, so the result was poor in surface flaws and the base materials and weld zones were poor in oxidation resistance.
  • No. 40 was high in Cr, No. 41 was low in Ni, and No. 44 was high in Mo, so the results were poor in high temperature embrittlements.
  • No. 46 was high in Al and No. 47 was low in N, so the high temperature strengths were poor.
  • No. 49 did not contain Mo and, due to this as well, was low in Cr+20Mo, so the base material and weld zone were both poor in oxidation resistance.
  • Nos. 50 to 52, 54, and 55 were large in gradients of change of sheet thickness at the weld zones, so the weld zones were poor in oxidation resistances.
  • Nos. 50 to 52 used A23 satisfying the requirements of the present invention as the test steels. For this reason, Nos. 50 to 52 were poor in only the oxidation resistances of the weld zones, but were satisfactory in the oxidation resistances of the base materials and other properties and performance, so can be applied to parts not requiring welding.
  • No. 55 used B20 as the test steel and had a value of Cr+20C+15N of 5.60 or not satisfying the lower limit prescribed in the present invention, so was poor in oxidation resistances of the base material and weld zone.
  • Nos. 54 and 55 had large gradients of change of sheet thickness at the weld zones. Further, the test steel B3 was low in Si. Therefore, the oxidation resistances of not only the weld zones, but also the base materials were poor.
  • the stainless steel sheet for exhaust system part use excellent in intermittent oxidation characteristic and the exhaust system part of the present invention can be designed in components to raise the oxidation resistance and enable improvement of the oxidation resistance of the weld heat affected zone by control of the shape of the weld zone. Further, since there are few surface flaws, it is possible to eliminate or streamline the surface grinding process (CG) at the time of sheet production. Furthermore, by raising the oxidation resistance, it becomes possible to make the sheet thickness of the exhaust system part thinner. By lightening the weight of the part, the effect of improvement of the fuel economy of an automobile is also obtained, so there is large social significance and the present invention is large in industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Exhaust Silencers (AREA)
EP16772892.2A 2015-03-31 2016-03-29 Exhaust system part having stainless steel sheet having excellent intermittent oxidation characteristics Active EP3279359B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16772892T PL3279359T3 (pl) 2015-03-31 2016-03-29 Element układu wydechowego zawierający blachę cienką ze stali nierdzewnej o doskonałych właściwościach w przypadku okresowego utleniania

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015073417 2015-03-31
PCT/JP2016/060249 WO2016159011A1 (ja) 2015-03-31 2016-03-29 断続酸化特性に優れた排気系部品用ステンレス鋼板及び排気系部品

Publications (3)

Publication Number Publication Date
EP3279359A1 EP3279359A1 (en) 2018-02-07
EP3279359A4 EP3279359A4 (en) 2018-08-22
EP3279359B1 true EP3279359B1 (en) 2021-07-21

Family

ID=57005974

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16772892.2A Active EP3279359B1 (en) 2015-03-31 2016-03-29 Exhaust system part having stainless steel sheet having excellent intermittent oxidation characteristics

Country Status (8)

Country Link
US (1) US20180080106A1 (ko)
EP (1) EP3279359B1 (ko)
JP (1) JP6239192B2 (ko)
KR (1) KR101988150B1 (ko)
CN (1) CN107429358B (ko)
ES (1) ES2890333T3 (ko)
PL (1) PL3279359T3 (ko)
WO (1) WO2016159011A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11255004B2 (en) * 2016-12-27 2022-02-22 Honda Motor Co., Ltd. Stainless steel
JP6778621B2 (ja) * 2017-01-20 2020-11-04 日鉄ステンレス株式会社 排気部品用オーステナイト系ステンレス鋼板およびその製造方法、ならびに排気部品およびその製造方法
JP6429957B1 (ja) * 2017-08-08 2018-11-28 新日鐵住金ステンレス株式会社 オーステナイト系ステンレス鋼およびその製造方法、ならびに燃料改質器および燃焼器の部材
JP6897532B2 (ja) * 2017-12-08 2021-06-30 日本製鉄株式会社 金属化合物粒子の抽出用電解液、およびそれを用いた電解抽出方法
ES2717692A1 (es) * 2017-12-22 2019-06-24 Univ Madrid Politecnica Acero refractario resistente al desgaste endurecible por formacion termica y/o mecanica de fase sigma
JP7166082B2 (ja) * 2018-06-18 2022-11-07 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼板およびその製造方法
KR102503592B1 (ko) * 2018-10-30 2023-02-23 닛테츠 스테인레스 가부시키가이샤 오스테나이트계 스테인리스 강판
JP7270419B2 (ja) * 2019-03-11 2023-05-10 日鉄ステンレス株式会社 高温高サイクル疲労特性に優れたオーステナイト系ステンレス鋼板およびその製造方法ならびに排気部品
JP7270445B2 (ja) * 2019-03-29 2023-05-10 日鉄ステンレス株式会社 高温高サイクル疲労特性に優れたオーステナイト系ステンレス鋼板およびその製造方法ならびに排気部品
KR102326043B1 (ko) * 2019-12-19 2021-11-15 주식회사 포스코 내식성이 우수한 고분자 연료전지 분리판용 스테인리스강

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361480A (ja) * 2001-03-29 2002-12-18 Kobe Steel Ltd 溶接継手部の疲労強度に優れた鉄系消耗溶接材料および溶接継手

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987809A (ja) 1995-09-27 1997-03-31 Kawasaki Steel Corp 自動車排気系材料用Cr含有オーステナイト系熱延鋼板
JPH10225792A (ja) * 1997-02-13 1998-08-25 Nippon Steel Corp 高温強度に優れたオーステナイト系耐熱鋼用tig溶接材料
JP3465639B2 (ja) * 1999-07-19 2003-11-10 住友金属工業株式会社 耐破壊特性に優れたパイプライン用高強度溶接鋼管
JP4078881B2 (ja) * 2001-09-25 2008-04-23 住友金属工業株式会社 熱交換器用オーステナイト系ステンレス鋼板
JP4327629B2 (ja) * 2004-03-22 2009-09-09 日本金属工業株式会社 オーステナイト系ステンレス鋼
JP5208354B2 (ja) * 2005-04-11 2013-06-12 新日鐵住金株式会社 オーステナイト系ステンレス鋼
JP4353169B2 (ja) 2005-10-31 2009-10-28 大同特殊鋼株式会社 耐熱疲労特性にすぐれたエンジン用排気系部品
EP2199419B1 (en) * 2007-10-03 2018-03-07 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel
JP5310350B2 (ja) * 2008-07-23 2013-10-09 新日鐵住金株式会社 疲労特性に優れる重ねすみ肉アーク溶接継手およびその製造方法
JP5605996B2 (ja) * 2009-03-04 2014-10-15 日新製鋼株式会社 耐熱部材用オーステナイト系ステンレス鋼
WO2011081077A1 (ja) * 2009-12-28 2011-07-07 新日本製鐵株式会社 耐酸化性に優れた排気系部品用耐熱チタン合金材、耐酸化性に優れた排気系部品用耐熱チタン合金板の製造方法、及び排気装置
KR20120099152A (ko) * 2010-03-11 2012-09-06 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 내산화성이 우수한 페라이트계 스테인리스 강판 및 내열성이 우수한 페라이트계 스테인리스 강판 및 그 제조 방법
JP6016331B2 (ja) * 2011-03-29 2016-10-26 新日鐵住金ステンレス株式会社 耐食性及びろう付け性に優れたオーステナイト系ステンレス鋼
JP5659061B2 (ja) 2011-03-29 2015-01-28 新日鐵住金ステンレス株式会社 耐熱性と加工性に優れたフェライト系ステンレス鋼板及びその製造方法
JP5794945B2 (ja) * 2012-03-30 2015-10-14 新日鐵住金ステンレス株式会社 耐熱オーステナイト系ステンレス鋼板
JP5890257B2 (ja) * 2012-06-06 2016-03-22 フタバ産業株式会社 排気系部品
JP6190873B2 (ja) * 2013-03-28 2017-09-06 新日鐵住金ステンレス株式会社 耐熱オーステナイト系ステンレス鋼板
JP6343548B2 (ja) * 2014-10-31 2018-06-13 新日鐵住金ステンレス株式会社 耐熱オーステナイト系ステンレス鋼板

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361480A (ja) * 2001-03-29 2002-12-18 Kobe Steel Ltd 溶接継手部の疲労強度に優れた鉄系消耗溶接材料および溶接継手

Also Published As

Publication number Publication date
EP3279359A1 (en) 2018-02-07
CN107429358A (zh) 2017-12-01
KR101988150B1 (ko) 2019-06-11
JPWO2016159011A1 (ja) 2017-08-31
KR20170123647A (ko) 2017-11-08
EP3279359A4 (en) 2018-08-22
CN107429358B (zh) 2019-12-13
JP6239192B2 (ja) 2017-11-29
US20180080106A1 (en) 2018-03-22
PL3279359T3 (pl) 2021-12-27
WO2016159011A1 (ja) 2016-10-06
ES2890333T3 (es) 2022-01-18

Similar Documents

Publication Publication Date Title
EP3279359B1 (en) Exhaust system part having stainless steel sheet having excellent intermittent oxidation characteristics
TWI390048B (zh) 耐硫酸腐蝕性優異之肥粒鐵系不鏽鋼鋼板及其製造方法
JP6197974B2 (ja) オーステナイト系ステンレス鋼板およびその製造方法
TWI496899B (zh) 肥粒鐵系不鏽鋼
EP2617854B1 (en) Heat-resistant ferritic stainless steel sheet having excellent oxidation resistance
JP2015532681A (ja) フェライト系ステンレス鋼板、その製造方法、および特に排気管での使用
US11242578B2 (en) Ferrite-based stainless steel sheet having low specific gravity and production method therefor
TWI546389B (zh) Fat iron stainless steel plate
EP3556880A1 (en) Ferrite stainless hot-rolled steel sheet and production method therefor
JPWO2014050011A1 (ja) フェライト系ステンレス鋼
TWI548760B (zh) Fat iron stainless steel
CN111433382B (zh) 具有优异的抗高温氧化性的铁素体不锈钢及其制造方法
JP7009278B2 (ja) 耐熱性に優れたフェライト系ステンレス鋼板および排気部品とその製造方法
TWI548758B (zh) Fat iron stainless steel
JP7050520B2 (ja) 排気部品用オーステナイト系ステンレス鋼板および排気部品ならびに排気部品用オーステナイト系ステンレス鋼板の製造方法
HUE033762T2 (en) Cost-effective ferrite stainless steel
JP5556951B2 (ja) フェライト系ステンレス鋼
JP4624691B2 (ja) フェライト系ステンレス鋼鋳片の製造方法
JP2002317251A (ja) 耐高温へたり性に優れたメタルガスケット用高強度マルテンサイト系ステンレス鋼
CN112888802A (zh) 铁素体系不锈钢热轧退火钢板及其制造方法
KR20030082124A (ko) 내산화성을 향상시킨 배기 매니폴드용 페라이트계스테인리스 강

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171028

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20180719

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/06 20060101ALI20180713BHEP

Ipc: C22C 38/58 20060101ALI20180713BHEP

Ipc: C22C 38/50 20060101ALI20180713BHEP

Ipc: C21D 6/00 20060101ALI20180713BHEP

Ipc: C22C 38/44 20060101ALI20180713BHEP

Ipc: F01N 3/10 20060101ALI20180713BHEP

Ipc: C22C 38/02 20060101ALI20180713BHEP

Ipc: C22C 38/54 20060101ALI20180713BHEP

Ipc: C22C 38/48 20060101ALI20180713BHEP

Ipc: C21D 8/02 20060101ALI20180713BHEP

Ipc: F01N 13/16 20100101ALI20180713BHEP

Ipc: F01N 3/28 20060101ALI20180713BHEP

Ipc: C22C 38/42 20060101ALI20180713BHEP

Ipc: C22C 38/00 20060101AFI20180713BHEP

Ipc: C21D 9/46 20060101ALI20180713BHEP

Ipc: C22C 38/46 20060101ALI20180713BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191212

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NIPPON STEEL STAINLESS STEEL CORPORATION

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016060946

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1412682

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210721

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1412682

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210721

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2890333

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211122

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211021

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016060946

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

26N No opposition filed

Effective date: 20220422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220329

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220329

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220329

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220329

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230404

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240325

Year of fee payment: 9

Ref country code: CZ

Payment date: 20240325

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240129

Year of fee payment: 9

Ref country code: IT

Payment date: 20240308

Year of fee payment: 9

Ref country code: FR

Payment date: 20240129

Year of fee payment: 9