EP3277633A1 - Uv-absorbierender nanokristallhaltiger verbundstoff - Google Patents

Uv-absorbierender nanokristallhaltiger verbundstoff

Info

Publication number
EP3277633A1
EP3277633A1 EP16716361.7A EP16716361A EP3277633A1 EP 3277633 A1 EP3277633 A1 EP 3277633A1 EP 16716361 A EP16716361 A EP 16716361A EP 3277633 A1 EP3277633 A1 EP 3277633A1
Authority
EP
European Patent Office
Prior art keywords
composite
nanocrystalline
nanocrystalline material
amorphous
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16716361.7A
Other languages
English (en)
French (fr)
Inventor
Christopher Wade BEIER
William Michael YUHASZ
Mary Elizabeth HILLEGASS
Michael David MUSICK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shepherd Color Co
Original Assignee
Shepherd Color Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shepherd Color Co filed Critical Shepherd Color Co
Publication of EP3277633A1 publication Critical patent/EP3277633A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • C01F17/34Aluminates, e.g. YAlO3 or Y3-xGdxAl5O12
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0532Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing sulfate-containing salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0081Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3045Treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/62L* (lightness axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/63Optical properties, e.g. expressed in CIELAB-values a* (red-green axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/64Optical properties, e.g. expressed in CIELAB-values b* (yellow-blue axis)

Definitions

  • UV light is a form of electromagnetic radiation at wavelengths between 10 and 400 nm. UV light is of higher energy than visible light, and accounts for approximately 10% of all light energy emitted from the Sun. Due to its energetic nature, UV light has the ability to induce chemical reactions and catalyze polymerizations.
  • UV rays are also able to elicit significant damage to biological and inanimate objects alike.
  • the absorption of ultraviolet radiation causes degradation through photo oxidation, whereby energetic UV photons destabilize chemical bonds and create a pathway that can lower the integrity of the material under irradiation.
  • UV portion ranges from wavelengths greater than 100 nm and less than 400 nm. This range is further subdivided into portions denoted as UV-A between wavelengths of 315 nm and 400 nm, UV-B between wavelengths of 280 nm and 315 nm, and UV-C between wavelengths 100 nm and 280 nm. UV-C light incident from the sun does not
  • UV-B light is mostly absorbed by the upper atmosphere but not completely absorbed.
  • the intensity reaching the surface varies seasonally and is a higher magnitude towards the equator than the poles.
  • UV-A although less intense then UV-B light is a more predominant region of the UV spectrum. It penetrates clouds and is present any time there is sunlight, regardless of season or location.
  • UV absorbers function to enhance the lifetime of articles, coatings, plastics, or matrices in which they are contained. Functionally, they can be deployed in materials to provide protection of packaging, ingredients, contents, by decreasing spoilage rates, and maintaining structural integrity and clarity of packaging. UV absorbers added to cosmetics, creams, lotions, protect skin against harmful effects of exposure to sunlight.
  • UV absorbers help maintain coating adhesion to the substrate, minimize delamination of coatings, aid in corrosion protection for metals, For example, in automotive applications. UV absorbers increase lightfastness of organic colorants, slow the degradation of organic matrices such as wood fibers and polymers, and increase the lifetime of durable vinyl, plastic, and polymeric articles such as furniture, decking, floorings, siding, exterior goods, furniture, tarps, agriculture fabrics, automotive interiors, fibers, and films, among many other examples.
  • Inorganic oxides offer a solution to increased system stability, but, due to their inherently high refractive indices, have seen more use in opaque systems.
  • inorganic oxide UV absorbers can be reduced in size to become non-opaque. As the size of the inorganic oxide reduces beyond the wavelength of incident light, its opacity will reduce.
  • Ti0 2 provides sufficient protection at wavelengths less than 350 nm, it fails to provides adequate absorption between 350 nm and 400 nm.
  • ZnO provides greater protection between 350 nm and 400 nm but can be less stable in acidic environments. Both oxides can be photo catalytically active and may require additional treatments to protect the matrices in which they are deployed from degradation.
  • Ce0 2 is noted as the most permanent UV absorber, offering reducing photocatalytic activity, high acid resistance, and high thermal stability.
  • a UV absorber composite comprises a nanocrystalline material and a porous material.
  • the nanocrystalline material is in the pores of the porous material and is isolated.
  • the nanocrystalline material comprises a cerium oxide material.
  • additional nanocrystalline materials may be present in the porous material; the composite may be encapsulated by an inorganic oxide; or both.
  • a UV absorber composite comprises a nanocrystalline material and a porous material.
  • the nanocrystalline material is in the pores of the porous material.
  • the nanocrystallite ranges in size from 2 to about 100 nm on its longest axis, with an aspect ratio from about 1 to about 1.5.
  • FIGURE la is a transmission electron microscope image of the composite of Example 1.
  • FIGURE lb is a transmission electron microscope image of the composite of Example 4.
  • FIGURE 2a is a transmission electron microscope image of a composite of Example 1.
  • FIGURE 2b is a transmission electron microscope image of a composite of Example 9.
  • FIGURE 3 is a UV-Vis transmission spectrum of Example 15.
  • FIGURE 4 is a UV-Vis diffuse reflectance spectrum of Examples 1, 2, and 3.
  • FIGURE 5 is a UV-Vis diffuse reflectance spectrum of Examples 1, 4, 5, 6, 7, and 8.
  • FIGURE 6 is a UV-Vis diffuse reflectance spectrum of Examples 1, 9, 10, 11, 12, and 13.
  • FIGURE 7 is a UV-Vis transmission spectrum of Examples 1 and 3 dispersed in polystyrene resin as described in Example 16
  • FIGURE 8 is a UV-Vis transmission spectrum of Examples 1, 4, 5, 6, 7, and 8 dispersed in polystyrene resin as described in Example 16
  • FIGURE 9 is a UV-Vis transmission spectrum of Examples 1, 9, 10, 11, 12, and 13 dispersed in polystyrene resin as described in Example 16
  • FIGURE 10 is a photo of Examples 1, 4, 5, 6, 7, and 8 dispersed in a
  • PC polycarbonate
  • FIGURE 11 is a photo of Examples 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13 dispersed in a polystyrene (PS) resin and molded into a plastic chip as described in Example 16.
  • PS polystyrene
  • a composite material comprising an amorphous, porous material with
  • nanocrystalline material in its pores has been found to be a UV absorber.
  • the random distribution of pores within the porous material act as a scaffold for the nanocrystalline material.
  • the pores are isolated which means that they do not connect.
  • the pores host the particles in the nanocrystalline material and keep them isolated, i.e., prevent them from contacting each other.
  • the pores are open to the surface of the porous material.
  • the nanocrystalline material is completely inside the pores of the porous material.
  • the nanocrystalline material may stick out of some or all of the pores of the porous material. In some embodiments, a majority of the nanocrystalline material in within the pores of the porous material. In some
  • a majority of the nanocrystalline material is completely inside the pores of the porous material.
  • the nanocrystalline material is a cerium oxide material.
  • the nanocrystaline material has nanocrystallite ranges in size from 2 nm to about 100 nm on its longest axis, with an aspect ratio from about 1 to about 1.5.
  • a nanocrystallite is a single crystal. Particles of the nanocrystalline material may be made up of multiple nanocrystallites.
  • the porous material is an inorganic amorphous material.
  • the pores in the porous material are about 0.5 nm to about 150 nm in diameter, such as from about 0.5 nm to about 100 nm, from about 0.5 nm to about 80 nm, from about 1 nm to about 80 nm, from about 1 nm to about 50 nm, from about 2 nm to about 50 nm, from about 3 nm to about 40 nm, from about 5 nm to about 150 nm, from about 5 nm to about 100 nm, from about 5 nm to about 75 nm, from about 5 nm to about 50 nm, from about 10 nm to about 150 nm, from about 10 nm to about 100 nm, from about 10 nm to about 75 nm, from about 10 nm to about 50 nm.
  • the diameter of the pores is the diameter at the surface of the porous material.
  • the interior diameter may be larger or smaller.
  • the porous material has a cumulative pore volume of about 0.1 to about 4 cm 3 /g, such as about 0.1 to about 2 cm 3 /g, about 0.1 to about 1 cm 3 /g, about 0.1 to about 0.8 cm 3 /g, about 0.25 to about 0.8 cm 3 /g, or about 0.25 to about 0.7 cm 3 /g.
  • the porous material has a particle size of about 0.5 ⁇ to about 15 ⁇ , such as from about 0.5 ⁇ to about 10 ⁇ , from about 0.5 ⁇ to about 7 ⁇ , about 0.5 ⁇ to about 5 ⁇ , or about 0.5 ⁇ to about 3.5 ⁇ .
  • the diameter of the pores, the cumulative pore volume, and the particle size of the porous material may be of any combination described.
  • the porous material may contain a distribution of pores depending on the manufacturer and grade of material. Most commonly, the materials contain a distribution of pore diameters, for example 16-24 nm diameter, still others grades may contain a population of pores described as ⁇ 100 nm in diameter with still numerous pore distributions from 0.5 nm to about 150 nm. Furthermore, amorphous silica are characterized by the specific surface area from 25-750 m 27g, such as 100-390 m 27g and 80-190 m7g.
  • the porous material has a particle size of about 0.5 ⁇ to about 350 ⁇ , such as about 0.3 ⁇ to about 150 ⁇ , such as about 0.3 ⁇ to about 100 ⁇ , such as about 0.3 ⁇ to about 50 ⁇ , such as about 0.3 ⁇ to about 20 ⁇ , such as about 5 ⁇ to about 150 ⁇ , such as about 10 ⁇ to about 150 ⁇ , such as about 0.3 ⁇ to about 0.5 ⁇ , about 0.8 ⁇ to about 1.4 ⁇ , about 2 ⁇ to about 5 ⁇ .
  • Any number of attrition, milling, or classification steps may be useful to reduce or modify the particle size distribution of the porous material.
  • the diameter of the pores, the specific surface area, and the particle size of the porous material may be of any combination described.
  • the porous material is a ceramic.
  • the porous material is silica, such as, but not limited to: amorphous fumed silica (e.g., Cab-o-Sil, Syloid, Tixosil, or Aerosil), amorphous precipitated silica (e.g., Zeolex, Zeosyl, or Ultrasil), or naturally occurring silica (e.g., diatomaceous earth).
  • amorphous fumed silica e.g., Cab-o-Sil, Syloid, Tixosil, or Aerosil
  • amorphous precipitated silica e.g., Zeolex, Zeosyl, or Ultrasil
  • naturally occurring silica e.g., diatomaceous earth.
  • the nanocrystalline material is in the pores of the porous material, so they are on or near the surface of the porous material, not fully encapsulated by the porous material. In some embodiments, the nanocrystalline material is
  • the nanocrystalline material is a cerium oxide material.
  • cerium oxide material include, but are not limited to materials with the empirical formula of CeJVIyOz, wherein 0.5 ⁇ x ⁇ 1, and 0 ⁇ y ⁇ 1, and 2.0 ⁇ z ⁇ 7; such as 0.5 ⁇ x ⁇ 1, and 0 ⁇ y ⁇ 0.5, and 2.0 ⁇ z ⁇ 7.
  • the metal M is selected from Hf 4 *, Ta 5+ , W 4+ , Pr 3+ , Pr 4+ , Nd 3+ , Pm 3+ , Sm 2+ , Sm 3+ , Eu 2+ , Eu 3+ , Gd 3+ , Tb 3+ , Tb 4+ , Dy 3+ , Ho 3+ , Er 3+ , Tm 2+ , Tm 3+ , Yb 2+ , Yb 3+ , Lu 3+ , V 3+ , V 4+ , V 5+ , Bi 3+ , Bi 5+ , Mo 4+ , Mo 6+ , Mg 2+ , Ti 3+ , Ti 4+ , Si 4+ , Zn 2+ , Al 3+ , Zr 4+ , La 3+ , Sb 5+ , Nb 5+ , Co 2+ , Co 3+ , Mn 2+ , Mn 3+ , Ca 2+ , Sr 2+ , Ba 2
  • the nanocrystalline material is CeA10 3 .
  • the nanocrystalline material crystalline domain ranges in size from about 2 to about 100 nm on its longest axis, and the crystalline aspect ratio is from about 1 to about 1.5
  • the nanocrystalline material crystalline domain ranges in size from about 2 to about 100 nm on its longest axis, such as: from about 2 nm to about 100 nm, from about 2 nm to about 80 nm, from about 2 nm to about 50 nm, from about 2 nm to about 40 nm, from about 5 nm to about 100 nm, from about 5 nm to about 80 nm, from about 5 nm to about 75 nm, from about 5 nm to about 50 nm, from about 5 nm to about 40 nm, from about 5 nm to about 30 nm, from about 10 nm to about 100 nm, from about 10 nm to about 800 nm, from about 10 nm to about 75 nm, from about 10 nm to about 50 nm.
  • the crystalline aspect ratio is from about 1 to about 1.5.
  • the nanocrystalline material will be about 2 nm to about 10 nm in diameter, such as about 2 nm to about 5 nm or about 5 nm to about 10 nm.
  • the aspect ratio is from about 1 to about 1.2.
  • the size of the crystalline domain, the crystalline aspect ratio, and the diameter of the nanocrystalline material may be of any combination described. A plurality of crystalline domain ranges may be present. In some embodiments, there is more than one nanocrystalline material and they may have the same or different crystalline domain ranges.
  • the structure of the nanocrystalline material is cubic fluorite structure. In some embodiments, the structure of the nanocrystalline material is tetragonal. In some embodiments, the structure of the nanocrystalline material is hexagonal. In some embodiments, the structure of the nanocrystalline material is pevorskite.
  • the composite material additionally comprises a second nanocrystalline material.
  • the second nanocrystalline material is in the pores of the porous material and is isolated.
  • the second nanocrystalline material is selected from Ti0 2 , ZnO, M0O 3 , (Co,Zn) 2 Si0 4 , SrTi0 3 , and mixtures thereof.
  • the second nanocrystaline material can be another composition of cerium oxide nanocrystalline material.
  • the second nanocrystaline material has nanocrystallite ranges in size from 2 nm to about 50 nm on its longest axis, such as: from about 2 nm to about 100 nm, from about 2 nm to about 80 nm, from about 2 nm to about 50 nm, from about 2 nm to about 40 nm, from about 5 nm to about 100 nm, from about 5 nm to about 80 nm, from about 5 nm to about 75 nm, from about 5 nm to about 50 nm, from about 5 nm to about 40 nm, from about 5 nm to about 30 nm, from about 10 nm to about 100 nm, from about 10 nm to about 800 nm, from about 10 nm to about 75 nm, from about 10 nm to about 50 nm.
  • the crystalline aspect ratio is from about 1 to about 1.5.
  • a nanocrystallite is a single crystal.
  • Particles of the second nanocrystalline material may be made up of multiple nanocrystallites.
  • the second nanocrystalline material occupies pores in the porous material that also contain the cerium oxide nanocrystalline material.
  • the second nanocrystalline material crystalline domain ranges in size from about 2 to about 50 nm on its longest axis, such as: from about 2 nm to about 100 nm, from about 2 nm to about 80 nm, from about 2 nm to about 50 nm, from about 2 nm to about 40 nm, from about 5 nm to about 100 nm, from about 5 nm to about 80 nm, from about 5 nm to about 75 nm, from about 5 nm to about 50 nm, from about 5 nm to about 40 nm, from about 5 nm to about 30 nm, from about 10 nm to about 100 nm, from about 10 nm to about 800 nm, from about 10 nm to about 75 nm, from about 10 nm to about 50 nm.
  • the crystalline aspect ratio is from about 1 to about 1.5.
  • the second nanocrystalline material will be about 2 nm to about 10 nm in diameter, such as about 2 nm to about 5 nm or about 5 nm to about 10 nm.
  • the aspect ratio is from about 1 to about 1.2. The size of the crystalline domain, the crystalline aspect ratio, and the diameter of the second
  • nanocrystalline material may be of any combination described.
  • the second nanocrystalline material may exist with different structures that the nanocrystalline material.
  • the Ti0 2 structure is anatase, rutile, or a combination thereof.
  • the average Ti0 2 nanocrystallites are smaller than 100 nm in diameter.
  • the ZnO structure is wurtzite, zinc blend, Rochelle salt, or a combination thereof.
  • the average ZnO nanocrystallites are smaller than 100 nm in diameter.
  • the M0O 3 structure is orthorhombic, hexagonal, or combinations thereof.
  • the SrTi0 3 is a perovskite structure. In some
  • the (Co,Zn) 2 Si0 4 structure is a phenacite structure, or a willemite with hexagonal, rhomberhedral, or tetragonal forms.
  • the amount of the total nanocrystalline material does not exceed 62.5 wt% of the mass of the composite, such as, but not limited to between about 2 and about 62 wt%, between about 5 and about 60 wt%, between about 5 and about 50 wt%, between about 5 and about 43 wt%, between about 5 and about 40 wt%, and between about 5 and about 35 wt%.
  • the composite absorbs from about 50% to about 100% of the light with wavelengths between 200 and 375 nm, such as from about 50% to about 75%, from about 50% to about 70%, from about 70% to about 80%, and from about 75% to about 100%.
  • the mean bulk aggregate size of the composite is from about 0.5 ⁇ to about 300 ⁇ , such as from about 0.5 ⁇ to about 200 ⁇ , from about 0.5 ⁇ to about 150 ⁇ , about 0.5 ⁇ to about 50 ⁇ , or about 0.5 ⁇ to about 20 ⁇ .
  • the mean bulk aggregate size of the composite is from about 0.2 ⁇ to about 2 ⁇ , such as from about 0.2 ⁇ to about 1 ⁇ , from about 0.2 ⁇ to about 0.8 ⁇ , or about 0.2 ⁇ to about 0.5 ⁇ .
  • the composite can be formed by incipient wetness methods. For example, a nanocrystalline precursor material is dissolved in a solvent, such as water. The porous material is added to the solution to form a viscous gel. The total volume of the liquid mixture added is less than or equal to the total pore volume of the porous material. The viscous gel is thoroughly mixed. The solvent is evaporated from the viscous gel to produce a dried cake. Then the dried cake is calcined above the nanocrystalline precursors decomposition temperature to produce the composite. The composite may be further processed by milling, such as jet milling to reduce the particle size or break up agglomerates.
  • a solvent such as water
  • the nanocrystalline precursor material is soluble in a solvent and contains the metal(s) needed in the empirical formula described above (i.e., CeJVI y O z ), often with a complementary anion.
  • NO 3 " , CI “ , SO 4 " , CH 3 COO “ , C 5 H 7 O 2 , C 2 O 4 " , PO 4 " , Br “ , ⁇ , C0 3 , and HC0 3 " are anions which can form soluble species with one or more of the aforementioned metals in polar or non-polar solvents.
  • more than one nanocrystalline precursor material is used to form the nanocrystalline material.
  • only one nanocrystalline precursor material is used. During the calcination the precursor materials thermally decompose into the component oxide.
  • Solvents that may be used in the incipient wetness method for making the composite are ones that can at least partially dissolve the nanocrystalline precursor material and do not destroy the porous material.
  • the composite material comprising a second nanocrystalline material may be made by the same methods for making the composite material comprising the cerium oxide nanocrystalline material.
  • Precursors for making the T1O2 second nanocrystalline material include, but are not limited to: titanium boride, titanium chloride, titanium bromide, titanium butoxide, titanium ethoxide, titanium ethylhexanoate, titanium hydride, titanium isopropoxide, titanium nitride, titanium propoxide, titanium lactate, titanium sulfate, titanium oxysulfate, and mixtures thereof.
  • Precursors for making the ZnO second nanocrystalline material include, but are not limited to: zinc acetate, zinc bromide, zinc chloride, zinc nitrate, zinc butoxide, zinc carbonate, zinc citrate, zinc oxalate, zinc sulfate, and mixtures thereof.
  • Precursors for making the M0O 3 second nanocrystalline material include, but are not limited to: molybdenum acetate, molybdenum borohydride, molybdenum chloride, molybdenum isopropoxide, molybdenum sulfide, molybdic acid, molybdenyl acetylacetonate, molybdophosphoric acid, and mixtures thereof.
  • Precursors for making the (Co,Zn) 2 Si0 4 second nanocrystalline material include, but are not limited to: cobalt bromide, cobalt chloride, cobalt gluconate, cobalt hydroxide, cobalt
  • Precursors for making the SrTi0 3 second nanocrystalline material include, but are not limited to: strontium acetate, strontium bromide, strontium chloride, strontium isopropoxide, strontium nitrate, strontium sulfate, strontium oxalate, and mixtures thereof; and titanium boride, titanium chloride, titanium bromide, titanium butoxide, titanium ethoxide, titanium ethylhexanoate, titanium hydride, titanium isopropoxide, titanium nitride, titanium propoxide, titanium lactate, titanium sulfate, titanium oxysulfate, and mixtures thereof. These precursor materials may be used in combination to make mixtures of the second nanocrystalline material.
  • the composite is encapsulated partially or fully with a coating.
  • a coating When the composite is partially encapsulated, at least half of the composite is encapsulated, but the coating need not be contiguous.
  • Example coatings include oxides and silicates of Al, Zr, Si, Bi, and W (or mixtures thereof), such as: Si0 2 , A1 2 0 3 , Bi 2 0 3 , Bi 2 Si05, W0 3 , Zr0 2 .
  • the coating is selected from Si0 2 and A1 2 0 3 .
  • the coating may be formed from tungsten boride, tungsten chloride, tungsten ethoxide, tungsten isopropoxide, tungstic acid; zirconium acetate, zirconium butoxide, zirconium carbonate, zirconium boride, zirconium bromide, zirconium carbonate hydroxide, zirconium chloride, zirconium oxychloride, zirconium oxynitrate, zirconium hydride, zirconium isopropoxide, zirconium lactate, zirconium sulfate, zirconium propoxide, zirconyl perchlorate; bismuth acetate, bismuth bromide, bismuth citrate, bismuth carbonate, bismuth, ethylhexanoate, bismuth hydroxide, bismuth isopropoxide, bismuth phosphate, bismuth sulfate, bismuth oxychloride, bis
  • the composite may be coated by mixing the porous material containing the nanocrystalline material with an aqueous or solvent based metal salt or complex solution of one or more of the solubilized starting materials.
  • the pH of the solution may be adjusted, for example, with 3M NaOH, 3M H 2 SO 4 , phosphoric acid, ammonia, ammonium hydroxide, or acetic acid to the appropriate pH or stoichiometric ratio.
  • the pH is selected to induce destabilization of the metal salt solution.
  • the coating may be formed on the UV absorber composite by mixing the composite in the presence of aqueous or solvent based metal salt or complex solution containing one or more of the solubilized raw materials.
  • the pH of the solution may be adjusted, for example, with 3M NaOH, 3M H 2 SO 4 , phosphoric acid, ammonia, ammonium hydroxide, or acetic acid to the appropriate pH or stoichiometric ratio. The pH is selected to induce destabilization of the metal salt solution upon addition to the UV absorber composite.
  • the coating may be formed by adding a solution containing the dissolved metal salt under agitation to a 0.5 to 50 weight percent solution of the UV absorber composite.
  • the solution is allowed to equilibrate before the precipitation of the metal salt(s).
  • Reactions that utilize colloidal silica are started identically.
  • metal alkoxide raw materials are deposited from alcohol solution in which an agent drives hydrolysis of the metal alkoxide and the formation of metal hydroxide or oxide. All reactions may or may not contain additional complexation aids and may be performed at elevated temperature to further induce precipitation and condensation of the shell onto the UV absorber composite.
  • the precipitation reaction may be controlled by a careful adjustment to the isoelectric point of the particle for deposition of colloidal particles or below the pH where instant precipitation of the metal oxide species occurs.
  • Slow addition of the acid or base is accomplished by tittering in a small amount of acid or base at a known rate. Reaction rates vary significantly depending upon the concentration of the acid or base, the buffering power of the solution, the temperature of the reaction, and the rate of addition.
  • the precipitated material deposits onto the porous particles resulting in a homogenous shell of measurable thickness.
  • the roughness and density of the shell material varies with composition.
  • the inorganic oxide encapsulating material may occupy a portion of or completely fill the remaining pore structure of the amorphous material.
  • the encapsulation is a composite of more than one material.
  • the encapsulation can be deposited through simultaneous solvation of the metal complexes into water or solvent and exposure to the UV absorber composite as described above.
  • solutions of zirconium oxychloride and sodium silicate can be deposited simultaneously by slowly adjusting the pH from 12 with 3M H 2 SO 4 through pH 8.
  • cross-reaction and complex formation is permitted with the precursor materials provided the by-products deposit onto or into the porous substrate.
  • the encapsulated material it is not necessary that the encapsulated material completely encase the UV absorber composite.
  • the metal oxide covers the pores containing the nanocrystalline material.
  • new hybrid compounds may be added that yield an encapsulation containing entrained organic or inorganic materials.
  • deposition of the encapsulation material may be onto the porous material or exposed nanocrystalline material.
  • calcinations of the coated core material may be required to promote crystallization, densification, dehydration, or solidification of the shell materials or condensation of any surface pendant hydroxyl groups to oxide to form the
  • the temperature and time is dependent upon the material of composition but example ranges are from about 150 to about 1000 degrees Celsius, with dwell times from about 30 to about 600 minutes.
  • Formation of crystalline material may be adjusted by correcting the calcination temperatures to promote only condensation for the formation of glass-like shells or amorphous metal oxides. Additionally, this step may be completed concurrently with the formation of the UV absorbing nanocrystallite material or separately; singularly or in multiple steps to increasing temperatures.
  • the composite may be used in coatings, such as paints, lacquers, and varnish; plastic; fibers; rubbers; elastomers; films; inks; cosmetics; ceramics, such as porcelain enamels, glass enamels; fabrics; concretes; decks; metal coatings; furniture; cements; asphalts; wood coatings; and similar articles.
  • the composite may be used in polymeric matrixes, such as, but not limited to thermosetting matrix and thermoplastic matrices and for plastic and paper-board packaging, food contact applications, automotive interior parts, and automotive exterior parts.
  • Laser-marking is the function of generating an irreversible contrasting color change on an item by exposure of an item to a laser beam. It is particularly useful when the color change is patterned or scribed into characters, pictures, or patterns. The technology is exercised by several fields for the purpose of identification or decoration.
  • Laser-marking additives function by converting laser light at a selective wavelength into a chemical change that yields an observable contrast.
  • Articles containing an effective amount of laser marking additives are impinged by a laser beam and the additive within the area experiences a chemical transformation that when inspected under illumination produces an identifiable contrast between the irradiated and non-irradiated areas of the article.
  • inspection of the article under illumination by visible light is the most common, the definition of a laser marker does not require visible light be used only that the there is a contrast detectable by some spectra of light between the irradiated and non-irradiated regions of the article.
  • Laser marking of many materials such as plastics and packaging is accomplished by the addition of an additive material sensitive to exposure to laser irradiation.
  • the UV absorber composite may be used as a laser-marking additive.
  • UV absorber composite is particularly useful when processed with a UV lasers.
  • other laser wavelengths may be useful in laser-marking the UV absorber composite.
  • Example 1 is cerium oxide embedded with an amorphous silica matrix.
  • amorphous silica approximately equal sized nanocrystallites.
  • Ce0 2 separate regions of amorphous silica and Ce0 2 are present.
  • the fine structure and porosity of the amorphous silica can be described again as randomly agglomerated domains.
  • Example 1 Encapsulation of Example 1 with amorphous silica, which occupies the pores of the amorphous silica and unifies the discrete domains, as show in Figure lb, yields a modified material with lower surface area, Example 4. Similar structured materials results from coatings of Example 1 material; with amorphous silica, Examples 4, 5, and 6; with zirconium oxide, Example 7; and with amorphous aluminum oxide, Example 8. These materials when dispersed within plastic matrices such as polycarbonate or polystyrene show decreased photocatalytic activity of the plastic matrix compared to Example 1.
  • plastic matrices such as polycarbonate or polystyrene show decreased photocatalytic activity of the plastic matrix compared to Example 1.
  • the composite materials containing Ce0 2 and a second nanocrystalline material, such as, ZnO, Example 9, and Ti0 2 , Example 10, have application as UV absorbers. Entraining the second nanocrystalline material in amorphous silica with Ce0 2 leads to hybrid attributes that are different from the individual metal oxides. Additionally, the amorphous silica offers a measure of protection of the metal oxides from acid leaching and minimizes photocatalytic activity by separating the UV absorbing metals oxides with amorphous silica from the organic matrix.
  • Composite materials of M0O 3 , Example 11, (Co, Zn) 2 Si0 4 , Example 12, and SrTi0 3 , Example 13, provide additional benefit as UV absorbers obtaining additional color space, see Table 1.
  • Example 9 thru 13 The microstructure of composite UV absorbers constructed from combinations of UV absorbing metal oxides and modified metal oxides, Example 9 thru 13, differ from the material of Example 1 and the encapsulated Examples 4 thru 8. It is believed that the concentration of nanocrystallites increases; see Example 9, Figure 2b compared to Example 1, Figure 2a. The increase in nanocrystal density impacts the color and UV absorption. The additional absorber concentration can lead to higher UV absorbance and lower reflectance compared to Example 1. The UV reflectance was measured from a neat powdered sample Example 14. This is demonstrated in Example 13.
  • Example 1 The UV absorber composite of Example 1 is dispersed in acrylic resin in Example 15.
  • the UV spectrum see Figure 3, shows a strong absorption (less than 16%
  • a narrow transition region occurs between 370 nm and 450 nm where transmission sharply increases, exceeding 75% transmission.
  • the sharpness of the transition from most absorbing to mostly transparent is indicative of both the materials visual appearance and color, and clarity of articles containing the UV absorbers.
  • Example 3 shows no change to the optical properties at wavelengths greater than 420 nm compared to Example 1, but does show increased UV absorbance compared to Examples 1 and 2 at wavelengths less than 365 nm. This improvement demonstrates the usefulness of small dopants into the Ce0 2 structure to fine-tune the optical properties. A great number of additional refinements to the UV absorber composites are possible by employing other metal dopants that can tailor the optical properties of the materials.
  • Example 7 zirconium, Example 7; or aluminum, Example 8, alters the optical properties as shown in Figure 5.
  • Composites containing multiple nanocrystalline materials allow fine-tuning the optical properties, such as the UV absorbing and visible properties.
  • Examples of a second nanocrystalline material added to the UV absorber composite containing Ce0 2 nanocrystalline material are: ZnO, Example 9; Ti0 2 , Example 10; M0O 3 , Example 11; (Co, Zn)Si0 4 , Example 12; and SrTi0 2 , Example 13.
  • Figure 6 shows changes to the transition region between absorbance and transmission or reflectance. For Examples 9 and 10, the transition from absorbing to reflecting is red shifted compared to Example 1, resulting in increased UV absorbance but the transitions do not completely transition to transmissions greater than 80% until 450 nm, well into the visible spectrum.
  • Example 11 displays a desirable sharp transition between 360 nm and 400 nm, compared to Example 1.
  • Examples 11, 12, and 13 introduce a blue shift in the UV spectrum compared to the Example 1 material.
  • Examples 11 and 13 improve the UV absorbing performance and decrease the visible absorbance at wavelength greater the 400 nm compared to Example 1, both desirable attributes.
  • Example 12 is a blue colored material, see the spectra in Figure 6, and the color coordinates in Table 1. This demonstrates the ability to impart UV absorbance to colored materials and subsequently gives the same benefits gained from the amorphous silica to these color inorganic compositions.
  • the UV absorber composites may be used in articles; plastics like polystyrene are one such example of an article that benefits from inclusion of UV absorbers.
  • Examples 1 thru 13 were included in polystyrene chips, as shown in Example 16, and the optical transmission properties measured, as shown in Figures 8 and 9.
  • the Ca and Al modified Ce0 2 UV absorber composites the decrease the transmission of UV light, ⁇ 375 nm compared to the clear polystyrene. Transmission percentages approaching -50% are reduced to ⁇ 1% by inclusion of the UV absorbers.
  • the analogous decrease in transmission is measured for the encapsulated Ce0 2 amorphous silica materials show in Figure 8.
  • the materials with multiple nanocrystalline materials show similar trends but due to the differences in UV absorbing materials each Example 9 thru 13 had a slightly modified optical response.
  • the differences measured in optical properties correspond well with the observations of the bulk powder spectrum shown in Example 14.
  • Figure 11 shows the visual appearance of some examples in polystyrene, which closely reflects the color values of the examples in Table 1.
  • Amorphous fumed silica (50 grams, 0.2 mL/g pore volume) was homogenized in the presence of a solution containing 50 grams of cerium (III) nitrate hexahydrate dissolved in 10 mL of deionized water. After complete homogenization, the mixture was then dried at 100°C until all moisture is removed. At this time, the dried, coarse solid was pulverized into a fine powder. The off-white powder was then calcined at 500°C for a minimum of 30 minutes or until complete precursor decomposition. The finished product was then micronized to a final particle size of approximately 2 ⁇ . The color of the composite is shown in Table 1. The color was measured by mounting a sample of neat composite into a UV-Vis spectrophotometer equipped with a diffuse reflectance sphere.
  • Amorphous fumed silica (30 grams, 0.2 mL/g pore volume) was homogenized in the presence of a solution containing 29.17 grams of cerium (III) nitrate hexahydrate and 0.83 grams of calcium nitrate tetrahydrate dissolved in 6 mL of deionized water. After complete homogenization, the mixture was then dried at 100°C until all moisture was removed. At this time the dried, coarse solid was pulverized into a fine powder. The off- white powder was then calcined at 500°C for a minimum of 30 minutes or until complete precursor decomposition. The finished product was then micronized to a final particle size of approximately 2 ⁇ . The color of the composite is shown in Table 1.
  • Amorphous fumed silica (15.7g) was homogenized in the presence of 19.9g of an aqueous solution of Ce(N0 3 ) 3 and A1(N0 ) (13% CeA10 w/w). After complete homogenization, the mixture was then dried at 100°C until all moisture was removed. At this time, the dried, coarse solid was ground into a powder with a mortar and pestle. The off-white powder was then calcined at 1000°C for a minimum of 240 minutes or until complete precursor decomposition. The calcined powder was then blended in a warring blender. The color of the composite is shown in Table 1.
  • a sample of undiluted composite material (Example 1, 10.78g) was homogenized in the presence of 32.2 lg of an aqueous solution of sodium silicate (29% Si0 2 w/w). After complete homogenization, the mixture was then dried at 100°C until all moisture was removed. At this time, the dried, coarse solid was ground into a powder with a mortar and pestle. The off-white powder was then calcined at 500°C for a minimum of 60 minutes or until complete precursor decomposition. The calcined powder was then ground with a mortar and pestle. The color of the composite is shown in Table 1.
  • a sample of undiluted composite material (Example 1, 9.98g) was homogenized in the presence of 15.8g of tetraethyl orthosilicate (29% Si0 2 w/w). After complete homogenization, the mixture was then dried at 100°C until all moisture was removed. At this time, the dried, coarse solid was ground into a powder with a mortar and pestle. The off-white powder was then calcined at 500°C for a minimum of 60 minutes or until complete precursor decomposition. The calcined powder was then ground with a mortar and pestle. The color of the composite is shown in Table 1.
  • a sample of undiluted composite material (Example 1, 58.61g) was suspended in 1 liter of water, and the pH of the suspension was raised to 9.5 with the addition of sodium hydroxide.
  • the slurry was heated to 90° C and 172.5g of an aqueous solution of sodium silicate (6.5g Si0 2 ) was added at a rate of 0.7g/min while dilute sulfuric acid was added at varying rates to keep the pH of the slurry at approximately 9.5.
  • the slurry was cooled to room temperature and the pH was adjusted to approximately seven. It was then washed by centrifugation and then dried in air. The dry sample was then blended using a warring blender. The color of the composite is shown in Table 1.
  • a sample of undiluted composite material (Example 1, 15.89g) was homogenized in the presence of 22.75g of Zirconium Butoxide (80% w/w 1-butanol). After complete homogenization, the mixture was then dried at 100°C until all moisture was removed. At this time, the dried, coarse solid was ground into a powder with a mortar and pestle. The off-white powder was then calcined at 500°C for a minimum of 60 minutes or until complete precursor decomposition. The calcined powder was ground with a mortar and pestle. The color of the composite is shown in Table 1.
  • Example 8 Alumina Coated Composite of Amorphous Fumed Silica and CeOj
  • a sample of undiluted composite material (Example 1, 15.89g) was homogenized in the presence of 25.26g of Aluminum Isopropoxide (11% w/w Isopropanol). After complete homogenization, the mixture was then dried at 100°C until all moisture was removed. At this time, the dried, coarse solid was ground into a powder with a mortar and pestle. The off-white powder was then calcined at 500°C for a minimum of 60 minutes or until complete precursor decomposition. The calcined powder was then ground with a mortar and pestle. The color of the composite is shown in Table 1.
  • a sample of undiluted composite material (Example 1, lO.OOg) was homogenized in the presence of 22.89g of an aqueous solution of ⁇ ( ⁇ 0 3 ) 2 (7% ZnO w/w). After complete homogenization, the mixture was then dried at 100°C until all moisture was removed. At this time, the dried, coarse solid was ground into a powder with a mortar and pestle. The off-white powder was then calcined at 500°C for a minimum of 60 minutes or until complete precursor decomposition. The calcined powder was then ground with a mortar and pestle. The color of the composite is shown in Table 1.
  • a sample of undiluted composite material (Example 1, 9.98g) was homogenized in the presence of 16.18g of an aqueous solution of T1OSO 4 (7% Ti0 2 w/w). After complete homogenization, the mixture was then dried at 100°C until all moisture was removed. At this time, the dried, coarse solid was ground into a powder with a mortar and pestle. The off-white powder was then calcined at 500°C for a minimum of 60 minutes or until complete precursor decomposition. The calcined powder was then ground with a mortar and pestle. The color of the composite is shown in Table 1.
  • a sample of undiluted composite material (Example 1, 13.9g) was homogenized in the presence of 18.5g of an aqueous solution of NaMo0 4 (20% M0O 3 w/w). After complete homogenization, the mixture was then dried at 100°C until all moisture was removed. At this time, the dried, coarse solid was ground into a powder with a mortar and pestle. The off-white powder was then calcined at 1000°C for a minimum of 240 minutes or until complete precursor decomposition. The calcined powder was then ground with a mortar and pestle. The color of the composite is shown in Table 1.
  • Example 12 Composite of Amorphous Fumed Silica, (Co,Zn)7Si04, and CeOj
  • a sample of undiluted composite material (Example 1, 16.7g) was homogenized in the presence of 20.7g of an aqueous solution of Co(N0 3 ) 2 and Zn(N0 3 ) 2 (0.001 CoZn mol/g). After complete homogenization, the mixture was then dried at 100°C until all moisture was removed. At this time, the dried, coarse solid was ground into a powder with a mortar and pestle. The off-white powder was then calcined at 1000°C for a minimum of 240 minutes or until complete precursor decomposition. The calcined powder was then ground with a mortar and pestle. The color of the composite is shown in Table 1.
  • Example 13 Composite of Amorphous Fumed Silica, SrTiOi, and CeOj
  • a sample of undiluted composite material (Example 1, 10. Og) was homogenized in the presence of 12.08g of an aqueous solution of TiOS0 4 (7% Ti0 2 w/w). After complete homogenization, the mixture was then dried at 100°C until all moisture was removed. At this time, the dried, coarse solid was ground into a powder with a mortar and pestle. The off-white powder was then homogenized in the presence of 15.8g of an aqueous solution of Sr(N0 3 ) 2 (22% SrC0 3 w/w). After complete homogenization, the mixture was then dried at 100°C until all moisture was removed. At this time, the dried, coarse solid was ground into a powder with a mortar and pestle.
  • UV reflectance of a sample of powdered, undiluted composite material in a cuvette was measured using a UV-Vis spectrophotometer with a diffuse reflectance sphere (specular reflectance included). The spectra are shown in Figures 4, 5, and 6.
  • Example 15 Visual Opacity of Example 1
  • Example 1 (24% w/w) was dispersed in a transparent acrylic resin system (Delstar DMR499) and applied over an inert transparent substrate, such as glass or quartz.
  • the dry film had a minimum thickness of 35 ⁇ .
  • the composite was considered visually nonopaque when it is greater than 70% transparent between 475-750 nm.
  • the spectrum is shown in Figure 3.
  • Example 1 2.9 24 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  • Example 3 246.9 20 33 2.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  • Example 4 57.3 20 33 0 0 0 0 0 3.8 0 0 0 0 0 0 0
  • Example 7 58.3 20 20 0 0 0.6 0 0 0 0 0.1 0 23
  • Example 8 18.5 26 28 4.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  • Example 9 201.5 17 19 0 0 0 0 0 0 0 0 0 0 31 0
  • Example 10 80.3 21 25 0 0 0 0 0 0 3.9 0 5.9 0 0
  • Example 11 34.9 19 23 0 0 0 16 2.3 0 0 0 0 0 0 0
  • Example 12 25.3 20 27 0 3.5 0 0 0 0 0 0 0 0 9.9 0
  • Example 13 65.2 18 19 0 0 0 0 0 2.6 20 4.5 0 0
  • Table 3 XRD Composition of Examples 1, 3-5, and 6-13

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Composite Materials (AREA)
  • Cosmetics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Catalysts (AREA)
EP16716361.7A 2015-03-30 2016-03-29 Uv-absorbierender nanokristallhaltiger verbundstoff Withdrawn EP3277633A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562139979P 2015-03-30 2015-03-30
PCT/US2016/024688 WO2016160790A1 (en) 2015-03-30 2016-03-29 Uv-absorbing nanocrystal containing composite

Publications (1)

Publication Number Publication Date
EP3277633A1 true EP3277633A1 (de) 2018-02-07

Family

ID=55752736

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16716361.7A Withdrawn EP3277633A1 (de) 2015-03-30 2016-03-29 Uv-absorbierender nanokristallhaltiger verbundstoff

Country Status (6)

Country Link
EP (1) EP3277633A1 (de)
JP (1) JP2018517792A (de)
KR (1) KR20180015618A (de)
CN (1) CN107683257A (de)
CA (1) CA2981073A1 (de)
WO (1) WO2016160790A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7085730B2 (ja) * 2017-07-10 2022-06-17 東ソー株式会社 金属酸化物被覆多孔質材料、その製造方法及び紫外線散乱剤
CN114081843B (zh) * 2021-12-10 2024-02-06 江苏纳欧新材料有限公司 一种含锌铈的微米级广谱紫外屏蔽材料及其制备方法
CN114732750B (zh) * 2022-04-21 2023-03-24 北京化工大学 一种氢化钛用于消除羟基自由基的用途及防晒抗老产品

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252125A (ja) * 1994-01-27 1995-10-03 Ajinomoto Co Inc 紫外線遮蔽性粉体および化粧料
JPH0867867A (ja) * 1994-06-23 1996-03-12 Suzuki Yushi Kogyo Kk 紫外線遮蔽材及びそれを用いた紫外線遮蔽合成樹脂、紫外線遮蔽化粧品、紫外線遮蔽塗膜
US5750090A (en) * 1996-05-27 1998-05-12 Nippon Inorganic Colour & Chemical Co., Ltd. Silica-cerium oxide composite particles, method for the preparation thereof and resin composition and a cosmetic composition compounded therewith
JP2001139926A (ja) * 1999-08-30 2001-05-22 Kinya Adachi 紫外線遮蔽剤とその製造法、およびこれを配合した化粧料、フィルム、プラスチックおよび塗料
CN1095487C (zh) * 1999-12-17 2002-12-04 中国科学院感光化学研究所 活性氧化物包覆的多孔粉体材料及其制备方法和用途
JP2003253249A (ja) * 2002-02-27 2003-09-10 Katsuhiko Wakabayashi 紫外線遮蔽材料
DE102005059405A1 (de) * 2005-12-13 2007-06-14 Degussa Gmbh Zinkoxid-Ceroxid-Kompositpartikel
IL172552A0 (en) * 2005-12-13 2006-04-10 Univ Ben Gurion Manganese oxide-cerium oxide composite
KR100726279B1 (ko) * 2006-04-20 2007-06-11 (주)아모레퍼시픽 골격 구조내에 금속원소가 치환된 중형기공성 분자체물질의 제조방법 및 그 분자체 물질
CN101629033B (zh) * 2009-08-14 2011-09-07 广东工业大学 一种用于丙烯酸涂料的抗紫外线剂及其制备方法和应用
EP3521246B1 (de) * 2011-01-11 2020-03-04 Nippon Sheet Glass Company, Limited Plättchenförmige mesoporöse partikel und herstellungsverfahren dafür
JP5750662B2 (ja) * 2011-02-01 2015-07-22 栃木県 酸化セリウムナノ粒子−ゼオライト複合体、その製造方法および紫外線遮蔽材としての利用
CN104355290B (zh) * 2014-11-27 2016-06-01 中国科学院重庆绿色智能技术研究院 一种三维内连通多孔微纳结构及其增材制造方法

Also Published As

Publication number Publication date
CN107683257A (zh) 2018-02-09
JP2018517792A (ja) 2018-07-05
KR20180015618A (ko) 2018-02-13
WO2016160790A1 (en) 2016-10-06
CA2981073A1 (en) 2016-10-06

Similar Documents

Publication Publication Date Title
JP5557662B2 (ja) コアシェル型無機酸化物微粒子の分散液、その製造方法および該分散液を含む塗料組成物
US20080031806A1 (en) Continuous process for making nanocrystalline metal dioxide
JP2010006629A (ja) 二酸化チタン微粒子及びその製造方法
JP6418159B2 (ja) 赤外線反射性黒色顔料、該赤外線反射性黒色顔料を用いた塗料及び樹脂組成物
JP2013518946A (ja) 効果顔料
Grzmil et al. Preparation and characterization of single-modified TiO2 for pigmentary applications
US5094693A (en) Doped zinc oxide-based pigment
KR20170043017A (ko) 바나듐계 중공 파티클
EP3277633A1 (de) Uv-absorbierender nanokristallhaltiger verbundstoff
JP5455148B2 (ja) 赤外線反射性複合黒色系顔料、該赤外線反射性複合黒色系顔料の製造方法、該赤外線反射性複合黒色系顔料を用いた塗料及び樹脂組成物
Ali et al. Structural and optical properties of heat treated Zn2SiO4 composite prepared by impregnation of ZnO on SiO2 amorphous nanoparticles
JP5258447B2 (ja) 酸化チタン系複合粒子の分散液および該分散液の製造方法
He et al. Synthesis and coloration of highly dispersive SiO2/BiVO4 hybrid pigments with low cost and high NIR reflectance
US20180194641A1 (en) Uv-absorbing nanocrystal containing composite
EP2917286B1 (de) Pigment mit photokatalytischer aktivität, verfahren zu dessen herstellung und beschichtungsmittel
KR100364188B1 (ko) 세스퀴황화사마륨기재의조성물,그의제조방법및착색안료로서의용도
TW201805370A (zh) 處理二氧化鈦顆粒之方法、二氧化鈦顆粒及其用途
KR102396690B1 (ko) 티타늄 디옥사이드 제조물
JPWO2003083008A1 (ja) 紫外線遮蔽粉体、その粉体を含有する分散物、紫外線遮蔽フィルム及び紫外線遮蔽容器
JP5695087B2 (ja) 高い耐光性および耐候性を備えたアナターゼ白色顔料
KR20090040066A (ko) 스코리아를 함유하는 광활성 조성물 및 이의 제조방법
EA039844B1 (ru) Композитные пигменты
Gleń et al. Photostability and optical properties of modified titanium dioxide
JP2010150353A (ja) 赤外線反射性黒色顔料、該赤外線反射性黒色顔料の製造方法、該赤外線反射性黒色顔料を用いた塗料及び樹脂組成物
JP6303624B2 (ja) 二酸化チタン粒子の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20171026

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20190813

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200103