EP3237648A1 - Verfahren zur oberflächenbehandlung von stahlwerkstücken mittels nitrierung oder nitrocarburierung, oxidierung und folgender imprägnierung - Google Patents

Verfahren zur oberflächenbehandlung von stahlwerkstücken mittels nitrierung oder nitrocarburierung, oxidierung und folgender imprägnierung

Info

Publication number
EP3237648A1
EP3237648A1 EP15821125.0A EP15821125A EP3237648A1 EP 3237648 A1 EP3237648 A1 EP 3237648A1 EP 15821125 A EP15821125 A EP 15821125A EP 3237648 A1 EP3237648 A1 EP 3237648A1
Authority
EP
European Patent Office
Prior art keywords
nitriding
minutes
process according
carried out
nitrocarburizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15821125.0A
Other languages
English (en)
French (fr)
Other versions
EP3237648B1 (de
Inventor
Pierre-Louis MAGDINIER
Marie-Noëlle DESBOUCHE-JANNY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydromecanique et Frottement SAS
Original Assignee
HEF SAS
Hydromecanique et Frottement SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEF SAS, Hydromecanique et Frottement SAS filed Critical HEF SAS
Priority to SI201531209T priority Critical patent/SI3237648T1/sl
Priority to PL15821125T priority patent/PL3237648T3/pl
Publication of EP3237648A1 publication Critical patent/EP3237648A1/de
Application granted granted Critical
Publication of EP3237648B1 publication Critical patent/EP3237648B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/58Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening

Definitions

  • the invention relates to a method for surface treatment of a ferrous metal part, in practice made of alloy steel or not, having a good resistance to corrosion due to an impregnation treatment.
  • the invention applies to any type of mechanical parts intended to ensure in service a mechanical function and having a high hardness, a long resistance to corrosion and wear. This is for example the case of many parts used in the field of automotive or aeronautics.
  • nitriding and nitrocarburizing are thermochemical treatments of nitrogen (respectively nitrogen and carbon) by combination-diffusion: it forms on the surface a combination layer formed of nitrides of iron (there exists several possible phases), under which nitrogen is present by diffusion.
  • the document EP-0 053 521 proposed, mainly for piston pins whose corrosion resistance and / or coefficient of friction was to be improved, a nitrocarburizing treatment adapted to form an Epsilon phase layer and a finishing treatment consisting in covering the Epsilon layer with a topcoat made of a resin
  • a resin the document mentions a very wide range, including acrylic resins, alkyds, maleic esters, epoxides, formaldehyde, phenolics, butyral-polyvinyl, polyvinyl chlorides, polyamides, polyimides, polyurethanes, silicones, polyvinyl ethers and urea-formaldehyde, advantageously loaded with additives chosen from phosphates and zinc chromates (to improve corrosion resistance), and / or silicone, waxes, poly-tetrafluoroethylenes, molybdenum diesulfite, graphite or zinc stearate (for reduce the coefficient of friction).
  • Document EP-0 122 762 describes a method of manufacturing corrosion-resistant steel parts, comprising nitriding steps (in the Epsilon phase, as above), then gas-phase oxidation, and then application of waxy material (Castrai V425) containing aliphatic hydrocarbons and Group 2a metal soaps, preferably calcium and / or barium soaps.
  • the resistance to salt spray corrosion was of the order of 250 hours.
  • the Applicant has itself proposed treatment processes to obtain even better outfits to corrosion.
  • EP-0 497 663 it has proposed a method of subjecting ferrous metal parts to nitriding, typically to a molten salt bath consisting of cyanates and sodium, potassium and lithium, followed by bath oxidation. of molten salts or in an oxidizing ionizing atmosphere, so as to obtain a nitrided layer comprising a deep and compact underlayer and a well-controlled surface layer of porosity and finally to deposit a polymer with a thickness of between 3 and 20 ⁇ , fluoroethylene-propylene (FEP), or even polytetrafluoroethylene (PTFE), or even polymers or copolymers of fluorinated or silicone polyurethanes, or polyamide-polyimides.
  • FEP fluoroethylene-propylene
  • PTFE polytetrafluoroethylene
  • the impregnating wax is an organic compound with a high molecular weight of between 500 and 10,000 and a surface tension in the liquid state of between 10 and 73 mN / m.
  • the contact angle between the solid phase and the surface layer and the wax in the liquid state is between 0 and 75 degrees.
  • the wax is chosen from natural waxes, synthetic waxes polyethylenes, polypropylenes, polyesters, fluorinated or modified petroleum residues.
  • EP-0 560 641 discloses a process for the phosphating of steel parts to improve the corrosion and wear resistance, making it possible to obtain specific surface characteristics resulting from a phosphating treatment preceded by a nitriding in a bath of molten salts containing sulfur species, a nitriding operation in a molten salt bath followed by a conventional sulfurization treatment, or a metal deposition followed by a conventional sulfurization operation.
  • the corrosion resistance values of the parts thus treated, after exposure to salt spray, are of the order of 900 to 1200 hours.
  • the patent EP-1,180,552 relates to a method of surface treatment of mechanical parts subjected to both wear and corrosion having a roughness conducive to good lubrication and according to which nitriding is carried out by immersion between 500 ° C and 700 ° C parts in a molten salt nitriding bath containing cyanates and alkaline carbonates in precise ranges but free of species sulfurized, then oxidation is carried out in an oxidizing aqueous solution below 200 ° C.
  • WO2012 / 146839 has aimed a nitriding treatment leading to an appropriate roughness without requiring finishing treatment; he has described a bath of molten salts for the nitriding of mechanical steel parts having specific contents of alkali metal chloride, alkali metal carbonate, alkali metal cyanate and cyanide ions.
  • the corrosion resistance measured in salt spray was between 240 and 650 hours.
  • finishing treatment deposition of a varnish or a wax, or phosphating treatment
  • oxidation of mechanical parts made of ferrous material makes it possible to often to improve the corrosion resistance, but usually involving a surcharge complicating obtaining, at the end of treatment, the desired dimensional dimensions.
  • certain finishing treatments result in the fact that the surface of the parts thus treated tends to transfer a little oil to the surfaces with which it can come into contact and tends to pick up the dust. the surrounding environment; this is hardly compatible with a complementary step such as overmolding.
  • the object of the invention is to remedy these disadvantages in a simple, safe, effective and rational manner, while achieving very high levels of resistance to corrosion and to wear, better than with baths. current impregnation.
  • a method of surface treatment of a mechanical part made of steel to give it a high resistance to wear and corrosion comprising: a nitriding or nitrocarburizing step adapted to form a combination layer at least 8 micrometers thick formed of iron nitrides of ⁇ and / or ⁇ phases,
  • an oxidation step suitable for generating a layer of oxides with a thickness of between 0.1 micrometer and 3 micrometers
  • the impregnation in a bath according to the invention leads to a substantial improvement in the corrosion resistance compared to a conventional bath, based on oils, acids and ethanol.
  • the parts are dry to the touch (this is understood to mean the absence of oil transfer on an opposing surface), hence the absence of a tendency to capture surrounding dust and the ability to undergo post-treatment such as overmolding.
  • a part according to the invention obtained by the method of the invention, namely a steel part having a high resistance to wear and corrosion, comprising a combination layer at least 8 microns, a layer of oxides with a thickness between 0.1 and 3 microns and an impregnation layer which is dry to the touch.
  • ambient temperature does not mean a precise temperature but the fact that the treatment is done without control of the temperature (it is thus neither necessary to heat the bath nor to cool it), and that it can be at the temperature induced by the environment, although it varies in proportions that can be significant during the year, for example between 15 ° C and 50 ° C.
  • the nitriding / nitrocarburizing step is conducted in such a way that the thickness of the resulting combination layer is at least 10 microns.
  • the synthetic phenolic additive is a compound of formula Ci 5 H 24 0.
  • the impregnation bath further comprises at least one additive selected from the group consisting of calcium or sodium sulfonate, phosphites, diphenylamines, zinc dithiophosphate, nitrites, phosphoramides.
  • the content of such additives is advantageously at most equal to 5%.
  • the bath is preferably formed of 90% +/- 0.5% by weight of solvent, 10% +/- 0.5% by weight of paraffin oils and between 0.01% and not more of 1% +/- 0.1% of synthetic phenolic additive of formula Ci 5 H 24 0.
  • the impregnation is carried out by soaking for a period of about 15 minutes.
  • This soaking step is advantageously followed by a natural drying operation or accelerated by steaming.
  • the nitriding / nitrocarburizing step is carried out in a bath of molten salts containing from 14% to 44% by weight of alkaline cyanates at a temperature of 550 ° C. to 650 ° C. for at least 45 minutes; preferably, this nitriding / nitrocarburizing bath contains from 14% to 18% by weight of alkaline cyanates.
  • this treatment is carried out at a temperature of 590 ° C for 90 minutes to 100 minutes; according to a variant which is also advantageous, the nitriding / nitrocarburizing treatment in salt baths melting is carried out at a temperature of 630 ° C for about 45 minutes to 50 minutes.
  • the nitriding / nitrocarburizing step is carried out in a gaseous medium between 500 ° C. and 600 ° C. containing ammonia.
  • the nitriding / nitrocarburizing step is carried out in an ionic medium (plasma) in a medium comprising at least nitrogen and hydrogen under reduced pressure.
  • the oxidation step is carried out in a bath of molten salts containing carbonates, nitrates and alkali hydroxides.
  • the bath of molten oxidation salts contains alkaline nitrates, alkaline carbonates and alkali hydroxides.
  • the oxidation step is carried out at a temperature of 430 ° C to 470 ° C for 15 to 20 minutes.
  • the oxidation is carried out in an aqueous bath containing alkali hydroxides, alkaline nitrates and alkaline nitrites.
  • the oxidation step is carried out at a temperature of 110 ° C to 130 ° C for 15 to 20 minutes.
  • the oxidation step is carried out in a gaseous medium consisting predominantly of water vapor, at a temperature of 450 ° C to 550 ° C for 30 to 120 minutes.
  • NITRU1 to NITRU3 which correspond to nitrocarburizing examples in accordance with the nitrocarburizing treatment taught by document EP-1 180 552 with:
  • NITRU 1 1 to 3 14 to 18 590> 45 ⁇ 8
  • NITRU 2 1 to 3 14 to 18 590> 90> 8
  • NITRU 3 1 to 3 14 to 18 630> 45> 8 More generally, it may be noted that the NITRU1 treatment leads to a combination layer with a thickness of less than 8 micrometers, whereas the NITRU2 and NITRU3 treatments lead to a layer whose thickness exceeds this threshold, and is preferably even at least 10 micrometers. It seems pointless, in practice, to try to exceed 25 micrometers, so that an effective range for the thickness of the layer seems to be 10 to 25 microns.
  • these three treatments correspond to a treatment in a bath of molten salts containing from 14% to 44% by weight of alkaline cyanates (preferably from 14% to 18%) at a temperature of 550 ° C. to 650 ° C. (preferably from 590 ° C to 630 ° C) for at least 45 minutes (it does not seem useful to exceed 120 minutes, or even 90 minutes).
  • NITRU4 aiming a combination layer thickness of at least 8 ⁇ and advantageously between 10 and 25 ⁇
  • NITRU5 aiming a combination layer thickness of at least 8 ⁇ and advantageously between 10 and 25 ⁇
  • the NITRU4 treatment in gaseous medium was carried out in an oven between about 500 and 600 ° C under a controlled atmosphere comprising ammonia.
  • the treatment time has been established to ensure a combination layer thickness of at least 8 microns, preferably greater than 10 microns.
  • the NITRU5 treatment it was carried out in an ionic medium (plasma) in a mixture comprising at least nitrogen and hydrogen, under reduced pressure (that is to say at a pressure below atmospheric pressure). typically less than 0.1 atmosphere).
  • the treatment time has also been established to ensure a combination layer thickness of at least 8 microns, preferably at least 10 microns.
  • the indicated treatment layer thickness does not take into account the diffusion layer (for nitrogen as well as for carbon).
  • Oxidation "type 1" (or 0x1), that is to say in ionic liquid medium containing NaNO3 (between 35 and 40% by weight), carbonates (of Li, K, Na) (between 15 and 20% by weight), NaOH (between 40 and 45% by weight) - 450 ° C. temperature - treatment time of 15 minutes.
  • the oxidations 0x1 and 0x2 substantially correspond, respectively, to the salt bath oxidation and to the aqueous oxidation of the aforementioned EP1 180552 document, whereas the parameters of nitrocarburizing treatments (NITRU5) and of oxidation oxidation treatments, in an ionized medium. , correspond substantially to example 9 of EP0497663.
  • the oxidations were carried out so as to obtain oxidation layers with a thickness of between 0.1 and 3 microns.
  • Imp1 a new impregnation known as "impregnation 1" (or Imp1) in a bath containing mainly a solvent (90% +/- 0.5% by weight) formed of a mixture of hydrocarbons composed of a section of C9 alkanes; at C17, 10% +/- 0.5% by weight of a paraffin oil composed of a C16 to C32 alkane fraction and between 0.1% and 1% +/- 0.1% of a phenolic synthesis additive; the formula 5 H 24 O.
  • This impregnation was carried out by dipping for about 1 5 minutes of immersion, followed by natural drying or accelerated by stoving.
  • Imp2 A conventional impregnation called "impregnation 2" (or Imp2), in a bath containing mainly oils (between 60 and 85% by weight), acids (between 6 and 15% by weight) and ethanol (between 1 and 5% by weight). This impregnation was carried out by dipping for about 15 minutes immersion, followed by natural drying or accelerated by steaming.
  • the oxidation-impregnation treatment is of little importance when there is no nitriding / nitrocarburization (the corrosion resistance remains at 96h, in the first column).
  • the impregnation treatment 2 (conventional) results in a lower corrosion resistance to the case without any nitriding.
  • the interest of type 1 impregnation is particularly visible in the case of NITRU5 nitrocarburizing since, with the case of oxidation 3 (in a gaseous medium - treatments 5 and 6), the improvement is of the order of a tripling of the resistance to corrosion (increase of about fifty hours) compared to the case of a conventional impregnation; it is nevertheless the case where the oxidation has a particularly negative effect.
  • NITRU5 In all other cases NITRU5, the increase in corrosion resistance is at least of the order of 200 hours. Thus, in the case of NITRU5 combined with oxidation in an aqueous medium (oxidation 2 - treatments 3 and 4) or in the absence of oxidation (treatments 7 and 8), the new impregnation results in an increase in resistance to corrosion of the order of 300 hours; in the case of NITRU5 combined with oxidation in an ionic liquid medium (oxidation 1 - treatments 1 and 2), the increase is even of the order of 500 hours.
  • the beneficial effect of the new impregnation exists but is moderate, including in percentage, compared with the conventional impregnation (treatments 3 to 8, even if the suits at the corrosion, in absolute value, are better than with NITRU5).
  • a very important increase of 600 hours, in the case of an oxidation in ionic medium (treatments 1 and 2), with a resistance to the corrosion approaching threshold of 1000 hours. It can be inferred that the condition of a combination layer of at least 8 micrometers thick can be lowered in the case of type 1 oxidation.
  • the new impregnation brings an improvement, especially significant in the case of NITRU3.
  • the improvement in corrosion resistance is, for oxidation of type 2 and 3 (treatments 3 to 6) of at least 250 hours for the treatment NITRU3 and even 450 hours for the treatment NITRU2.
  • type 2 oxidation treatments 3 and 4
  • corrosion resistance exceeding the threshold of 1000 hours is obtained.
  • the increase brought by the new impregnation is surprisingly high, since it is 456 hours for NITRU2 and even 576h for NITRU3 to reach a particularly high threshold, of the order of 1370h.
  • the new impregnation brings about an improvement in the resistance to corrosion compared to a conventional impregnation, whatever the nitriding / nitrocarburizing and oxidation treatments,
  • This improvement is particularly notable and leads to particularly high corrosion resistance values for salt bath nitrocarburizing treatments resulting in a combination layer of at least 8 microns (NITRU2 and NITRU3), preferably between 10 and 25 microns, This improvement is particularly notable and leads to particularly high corrosion resistance values for nitrocarburations in salt baths (NITRU1 to NITRU3) or in the gas phase (NITRU4) in the case of oxidation in molten salt baths ( type 1),
  • the impregnating bath 1 has a surprising synergistic effect with nitriding / nitrocarburizing treatments NITRU2 and NITRU3 provided that nitriding / nitrocarburizing is followed by oxidation of type 1 or 2 , an optimum appearing to be obtained when the oxidation treatment is of type 1.
  • composition of the impregnation bath considered in the tests is part of a more general composition, namely a bath consisting of at least 70% by weight, to within 1%, of a solvent formed of a mixture of hydrocarbons. formed from a cut of C9 to C17 alkanes, from 10% to 30% by weight, to within 1%, of at least one paraffin oil composed of a section of C16 to C32 alkanes and from minus a synthetic phenolic additive additive at a concentration of between 0.01% and 3% by weight, at room temperature.
  • the solvent content is preferably between 80% and 90% by weight; likewise, the content of paraffin oil is preferably between 10% and 20% by weight.
  • the alkane section of the solvent is preferably C9 to C14.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Chemical Treatment Of Metals (AREA)
EP15821125.0A 2014-12-23 2015-12-15 Verfahren zur oberflächenbehandlung von stahlwerkstücken mittels nitrierung oder nitrocarburierung, oxidierung und folgender imprägnierung Active EP3237648B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201531209T SI3237648T1 (sl) 2014-12-23 2015-12-15 Postopek za površinsko obdelavo kosa jekla z nitriranjem ali nitrokarboriranjem, oksidiranjem, potem impregniranjem
PL15821125T PL3237648T3 (pl) 2014-12-23 2015-12-15 Sposób obróbki powierzchniowej elementu ze stali poprzez azotowanie albo węgloazotowanie, oksydowanie, a następnie impregnację

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1463252A FR3030578B1 (fr) 2014-12-23 2014-12-23 Procede de traitement superficiel d'une piece en acier par nitruration ou nitrocarburation, oxydation puis impregnation
PCT/FR2015/053511 WO2016102813A1 (fr) 2014-12-23 2015-12-15 Procédé de traitement superficiel d'une pièce en acier par nitruration ou nitrocarburation, oxydation puis imprégnation

Publications (2)

Publication Number Publication Date
EP3237648A1 true EP3237648A1 (de) 2017-11-01
EP3237648B1 EP3237648B1 (de) 2020-03-18

Family

ID=52684489

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15821125.0A Active EP3237648B1 (de) 2014-12-23 2015-12-15 Verfahren zur oberflächenbehandlung von stahlwerkstücken mittels nitrierung oder nitrocarburierung, oxidierung und folgender imprägnierung

Country Status (24)

Country Link
US (1) US10774414B2 (de)
EP (1) EP3237648B1 (de)
JP (1) JP6608450B2 (de)
KR (1) KR102455917B1 (de)
CN (1) CN107109617B (de)
AU (1) AU2015370805B2 (de)
BR (1) BR112017011508B1 (de)
CA (1) CA2968630C (de)
DK (1) DK3237648T3 (de)
ES (1) ES2785599T3 (de)
FR (1) FR3030578B1 (de)
HU (1) HUE049293T2 (de)
MX (1) MX2017008334A (de)
MY (1) MY188711A (de)
PH (1) PH12017500936A1 (de)
PL (1) PL3237648T3 (de)
PT (1) PT3237648T (de)
RU (1) RU2696992C2 (de)
SG (1) SG11201704798RA (de)
SI (1) SI3237648T1 (de)
TN (1) TN2017000216A1 (de)
TW (1) TWI683036B (de)
WO (1) WO2016102813A1 (de)
ZA (1) ZA201704730B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021130460A1 (fr) 2019-12-24 2021-07-01 Hydromecanique Et Frottement Procédé de traitement d'une pièce en métal ferreux et pièce en métal ferreux

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108359785B (zh) * 2018-03-19 2019-12-17 盐城工学院 一种W6Mo5Cr4V2高速钢拉刀的强韧化处理方法
CN110423977B (zh) * 2019-09-05 2021-06-18 合肥工业大学 一种以化学浸镀铁为预处理的铝材料气体渗氮方法
RU2737796C1 (ru) * 2020-03-05 2020-12-03 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ростовский государственный университет путей сообщения" (ФГБОУ ВО РГУПС) Состав компаунда для азотирования деталей из легированных сталей
RU2736289C1 (ru) * 2020-03-05 2020-11-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ростовский государственный университет путей сообщения" (ФГБОУ ВО РГУПС) Способ азотирования деталей из легированных сталей
CN111423817A (zh) * 2020-05-28 2020-07-17 眉山市三泰铁路车辆配件有限公司 一种铸铁制品专用的气体qpq耦合剂及其制备方法
US11590485B2 (en) 2021-01-13 2023-02-28 Saudi Arabian Oil Company Process for modifying a hydroprocessing catalyst
CN112935737A (zh) * 2021-03-25 2021-06-11 上齿集团有限公司 一种新型螺旋锥齿轮干切齿方法
FR3141702A1 (fr) * 2022-11-07 2024-05-10 Hydromecanique Et Frottement Liquide d’imprégnation, procédé de traitement avec un tel liquide d’imprégnation, et pièce traitée obtenue

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125267A (en) * 1979-03-22 1980-09-26 Kawasaki Heavy Ind Ltd Surface treating method of improving abrasion resistance and corrosion resistance of iron and steel
BR8107846A (pt) 1980-12-03 1982-09-08 Lucas Industries Ltd Componente metalico de aco
JPS57141464A (en) * 1980-12-03 1982-09-01 Lucas Industries Ltd Metal member working method
EP0074211B1 (de) * 1981-09-05 1987-11-04 LUCAS INDUSTRIES public limited company Überzogenes metallisches Substrat und Verfahren zum Überziehen dieses Substrates
ZA827448B (en) * 1981-10-15 1983-08-31 Lucas Ind Plc Corrosion resistant steel components and method of manufacture thereof
JPS5977138A (ja) * 1982-10-26 1984-05-02 Aisin Chem Co Ltd 車輌用摩擦材
GB8310102D0 (en) 1983-04-14 1983-05-18 Lucas Ind Plc Corrosion resistant steel components
JPH0257735A (ja) * 1988-08-19 1990-02-27 Toyoda Gosei Co Ltd 防振ゴム
DE4027011A1 (de) * 1990-08-27 1992-03-05 Degussa Verfahren zur verbesserung der korrosionsbestaendigkeit nitrocarburierter bauteile aus eisenwerkstoffen
FR2672059B1 (fr) * 1991-01-30 1995-04-28 Stephanois Rech Mec Procede pour conferer a des pieces en metal ferreux, nitrurees puis oxydees, une excellente resistance a la corrosion tout en conservant les proprietes acquises de friction.
KR100215252B1 (ko) * 1991-07-16 1999-08-16 쥐. 엘 뽈띠 내식성과 마찰 특성이 동시에 개선된 철계 금속 부품
FR2679258B1 (fr) * 1991-07-16 1993-11-19 Centre Stephanois Recherc Meca Procede de traitement de pieces en metal ferreux pour ameliorer simultanement leur resistance a la corrosion et leurs proprietes de friction.
FR2688517B1 (fr) 1992-03-10 1994-06-03 Stephanois Rech Procede de phosphatation de pieces en acier, pour ameliorer leurs resistances a la corrosion et a l'usure.
JPH083721A (ja) * 1994-06-13 1996-01-09 Kayaba Ind Co Ltd ピストンロッドの表面処理方法
US5714015A (en) * 1996-04-22 1998-02-03 Frantz Manufacturing Ferritic nitrocarburization process for steel balls
JP2001323939A (ja) * 2000-05-18 2001-11-22 Nsk Ltd 転がり軸受
FR2812888B1 (fr) 2000-08-14 2003-09-05 Stephanois Rech Mec Procede de traitement superficiel de pieces mecaniques soumise a la fois a l'usure et a la corrosion
JP4998654B2 (ja) * 2001-01-31 2012-08-15 日立オートモティブシステムズ株式会社 鋼部材のガス軟窒化処理方法
RU2230824C2 (ru) * 2002-04-09 2004-06-20 Общество с ограниченной ответственностью "Борец" Способ химико-термической обработки материала на основе сплава железа, материал на основе сплава железа и деталь ступени погружного центробежного насоса
RU2230825C2 (ru) * 2002-08-30 2004-06-20 Общество с ограниченной ответственностью "Борец" Способ химико-термической обработки материала на основе порошковых сплавов железа и деталь ступени погружного центробежного насоса
FR2972459B1 (fr) 2011-03-11 2013-04-12 Hydromecanique & Frottement Bains de sels fondus pour la nitruration de pieces mecaniques en acier, et un procede de mise en oeuvre

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021130460A1 (fr) 2019-12-24 2021-07-01 Hydromecanique Et Frottement Procédé de traitement d'une pièce en métal ferreux et pièce en métal ferreux

Also Published As

Publication number Publication date
EP3237648B1 (de) 2020-03-18
CN107109617B (zh) 2020-01-14
BR112017011508B1 (pt) 2021-08-10
DK3237648T3 (da) 2020-05-11
JP2018502220A (ja) 2018-01-25
PH12017500936B1 (en) 2017-11-20
RU2017126188A3 (de) 2019-06-07
TN2017000216A1 (fr) 2018-10-19
CA2968630A1 (fr) 2016-06-30
TWI683036B (zh) 2020-01-21
SI3237648T1 (sl) 2020-09-30
AU2015370805A1 (en) 2017-08-10
BR112017011508A2 (pt) 2018-02-27
US20170349997A1 (en) 2017-12-07
PL3237648T3 (pl) 2020-08-24
KR102455917B1 (ko) 2022-10-17
MY188711A (en) 2021-12-24
ZA201704730B (en) 2018-05-30
RU2696992C2 (ru) 2019-08-08
WO2016102813A1 (fr) 2016-06-30
US10774414B2 (en) 2020-09-15
CN107109617A (zh) 2017-08-29
HUE049293T2 (hu) 2020-09-28
AU2015370805B2 (en) 2020-10-15
KR20170097736A (ko) 2017-08-28
SG11201704798RA (en) 2017-07-28
PH12017500936A1 (en) 2017-11-20
PT3237648T (pt) 2020-05-27
JP6608450B2 (ja) 2019-11-20
FR3030578B1 (fr) 2017-02-10
ES2785599T3 (es) 2020-10-07
MX2017008334A (es) 2018-04-24
TW201631183A (zh) 2016-09-01
CA2968630C (fr) 2019-08-27
FR3030578A1 (fr) 2016-06-24
RU2017126188A (ru) 2019-01-24

Similar Documents

Publication Publication Date Title
CA2968630C (fr) Procede de traitement superficiel d'une piece en acier par nitruration ou nitrocarburation, oxydation puis impregnation
JP3367630B2 (ja) 大きな摩擦歪みを受ける鉄表面の処理方法
EP2683845B1 (de) Salzbad zum nitrieren von mechanischen teilen aus stahl und anwendungsverfahren
EP0524037B1 (de) Behandlungsverfahren für Werkstoffe aus Eisen zur gleichzeitigen Verbesserung ihrer Korrosionsfestigkeit und ihrer Verschleisseigenschaften
EP0497663B2 (de) Verfahren zum Herstellen von korrosions-beständigen Eisenmetallwerkstücken mit Beibehaltung ihrer Reibungseigenschaften durch Nitrieren und anschliessendem Oxidieren
WO2013117759A1 (fr) Procédé d'anodisation de pièces en alliage d'aluminium
EP1180552B1 (de) Verfahren zur Oberflächenbehandlung von mechanischen Werkstücken , die Verschleiss und Korrosion ausgesetzt sind
WO2006111661A1 (fr) Couple d'organes de guidage dont l'un est en un acier particulier conduisant à des performances anti-grippage améliorées
EP1801262B1 (de) Behandlungsverfahren der metallischen Oberflächen durch Carboxilierung, Benutzung dieses Verfahrens für den zeitweiligen Korrosionsschutz und Verfahren zur Herstellung eines geformten carboxylierten Bleches
WO2021130460A1 (fr) Procédé de traitement d'une pièce en métal ferreux et pièce en métal ferreux
WO2024100345A1 (fr) Liquide d'imprégnation, procédé de traitement avec un tel liquide d'imprégnation, et pièce traitée obtenue
JP2005163071A (ja) 硬質炭素被膜及びその製造方法
Lee et al. Duplex Surface Treatments of Plasma Nitrocarburizing and Plasma Oxidation of SKD 11 Steel

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAV Requested validation state of the european patent: fee paid

Extension state: MA

Effective date: 20170721

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190329

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: MAGDINIER, PIERRE-LOUIS

Inventor name: DESBOUCHE-JANNY, MARIE-NOELLE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191011

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015049103

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1245991

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200506

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3237648

Country of ref document: PT

Date of ref document: 20200527

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20200519

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200318

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E019216

Country of ref document: EE

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 34260

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200619

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E049293

Country of ref document: HU

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2785599

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200718

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1245991

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200318

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015049103

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201221

REG Reference to a national code

Ref country code: HU

Ref legal event code: HC9C

Owner name: H.E.F., FR

VS25 Lapsed in a validation state [announced via postgrant information from nat. office to epo]

Ref country code: MA

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

REG Reference to a national code

Ref country code: HU

Ref legal event code: HC9C

Owner name: H.E.F., FR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231122

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231124

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231113

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231130

Year of fee payment: 9

Ref country code: SI

Payment date: 20231121

Year of fee payment: 9

Ref country code: SE

Payment date: 20231123

Year of fee payment: 9

Ref country code: RO

Payment date: 20231127

Year of fee payment: 9

Ref country code: PT

Payment date: 20231117

Year of fee payment: 9

Ref country code: NO

Payment date: 20231128

Year of fee payment: 9

Ref country code: IT

Payment date: 20231122

Year of fee payment: 9

Ref country code: IE

Payment date: 20231122

Year of fee payment: 9

Ref country code: HU

Payment date: 20231130

Year of fee payment: 9

Ref country code: FR

Payment date: 20231227

Year of fee payment: 9

Ref country code: FI

Payment date: 20231120

Year of fee payment: 9

Ref country code: EE

Payment date: 20231122

Year of fee payment: 9

Ref country code: DK

Payment date: 20231129

Year of fee payment: 9

Ref country code: DE

Payment date: 20231122

Year of fee payment: 9

Ref country code: CZ

Payment date: 20231122

Year of fee payment: 9

Ref country code: BG

Payment date: 20231130

Year of fee payment: 9

Ref country code: AT

Payment date: 20231122

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231201

Year of fee payment: 9

Ref country code: BE

Payment date: 20231121

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240111

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240102

Year of fee payment: 9