EP3237648A1 - Method for surface treatment of a steel component by nitriding or nitrocarburising, oxidising and then impregnating - Google Patents
Method for surface treatment of a steel component by nitriding or nitrocarburising, oxidising and then impregnatingInfo
- Publication number
- EP3237648A1 EP3237648A1 EP15821125.0A EP15821125A EP3237648A1 EP 3237648 A1 EP3237648 A1 EP 3237648A1 EP 15821125 A EP15821125 A EP 15821125A EP 3237648 A1 EP3237648 A1 EP 3237648A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nitriding
- minutes
- process according
- carried out
- nitrocarburizing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005121 nitriding Methods 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 30
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 11
- 239000010959 steel Substances 0.000 title claims abstract description 11
- 238000004381 surface treatment Methods 0.000 title claims abstract description 6
- 238000005470 impregnation Methods 0.000 claims abstract description 45
- 238000005260 corrosion Methods 0.000 claims abstract description 42
- 230000007797 corrosion Effects 0.000 claims abstract description 42
- 239000000654 additive Substances 0.000 claims abstract description 15
- 230000000996 additive effect Effects 0.000 claims abstract description 13
- 150000001335 aliphatic alkanes Chemical class 0.000 claims abstract description 11
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000002904 solvent Substances 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 239000005662 Paraffin oil Substances 0.000 claims abstract description 6
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 5
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 5
- 150000001875 compounds Chemical class 0.000 claims abstract description 4
- 238000002791 soaking Methods 0.000 claims abstract description 4
- 229910001337 iron nitride Inorganic materials 0.000 claims abstract description 3
- 238000011282 treatment Methods 0.000 claims description 112
- 230000003647 oxidation Effects 0.000 claims description 64
- 238000007254 oxidation reaction Methods 0.000 claims description 64
- 150000003839 salts Chemical class 0.000 claims description 33
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 14
- 150000001913 cyanates Chemical class 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- 239000003921 oil Substances 0.000 claims description 6
- 229910001854 alkali hydroxide Inorganic materials 0.000 claims description 5
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 5
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 5
- 150000002823 nitrates Chemical class 0.000 claims description 5
- 238000007654 immersion Methods 0.000 claims description 4
- 150000002826 nitrites Chemical class 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 239000011734 sodium Substances 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 238000010025 steaming Methods 0.000 claims description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- 235000019463 artificial additive Nutrition 0.000 claims description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical class C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 claims description 2
- 238000010981 drying operation Methods 0.000 claims description 2
- 239000012188 paraffin wax Substances 0.000 claims description 2
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 claims description 2
- 150000008039 phosphoramides Chemical class 0.000 claims description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 2
- 238000003786 synthesis reaction Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 239000003513 alkali Substances 0.000 claims 2
- 239000004215 Carbon black (E152) Substances 0.000 claims 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims 1
- OFLNOEMLSXBOFY-UHFFFAOYSA-K trisodium;dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([S-])=S OFLNOEMLSXBOFY-UHFFFAOYSA-K 0.000 claims 1
- 239000011701 zinc Substances 0.000 claims 1
- 229910052725 zinc Inorganic materials 0.000 claims 1
- 239000010410 layer Substances 0.000 description 32
- 239000002609 medium Substances 0.000 description 17
- 239000012071 phase Substances 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 239000001993 wax Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- -1 fluoroethylene-propylene Chemical group 0.000 description 6
- 235000013824 polyphenols Nutrition 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 101100126074 Caenorhabditis elegans imp-2 gene Proteins 0.000 description 5
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 5
- 101100452131 Rattus norvegicus Igf2bp1 gene Proteins 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 150000004767 nitrides Chemical class 0.000 description 5
- 101100455063 Caenorhabditis elegans lmp-1 gene Proteins 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 101150053856 psmb9 gene Proteins 0.000 description 4
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000012736 aqueous medium Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000002608 ionic liquid Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 235000010344 sodium nitrate Nutrition 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 238000005987 sulfurization reaction Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 229910001514 alkali metal chloride Inorganic materials 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000002894 organic compounds Chemical group 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- WMYJOZQKDZZHAC-UHFFFAOYSA-H trizinc;dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S WMYJOZQKDZZHAC-UHFFFAOYSA-H 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- NDKWCCLKSWNDBG-UHFFFAOYSA-N zinc;dioxido(dioxo)chromium Chemical class [Zn+2].[O-][Cr]([O-])(=O)=O NDKWCCLKSWNDBG-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/80—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/34—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/40—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
- C23C8/58—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions more than one element being applied in more than one step
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
Definitions
- the invention relates to a method for surface treatment of a ferrous metal part, in practice made of alloy steel or not, having a good resistance to corrosion due to an impregnation treatment.
- the invention applies to any type of mechanical parts intended to ensure in service a mechanical function and having a high hardness, a long resistance to corrosion and wear. This is for example the case of many parts used in the field of automotive or aeronautics.
- nitriding and nitrocarburizing are thermochemical treatments of nitrogen (respectively nitrogen and carbon) by combination-diffusion: it forms on the surface a combination layer formed of nitrides of iron (there exists several possible phases), under which nitrogen is present by diffusion.
- the document EP-0 053 521 proposed, mainly for piston pins whose corrosion resistance and / or coefficient of friction was to be improved, a nitrocarburizing treatment adapted to form an Epsilon phase layer and a finishing treatment consisting in covering the Epsilon layer with a topcoat made of a resin
- a resin the document mentions a very wide range, including acrylic resins, alkyds, maleic esters, epoxides, formaldehyde, phenolics, butyral-polyvinyl, polyvinyl chlorides, polyamides, polyimides, polyurethanes, silicones, polyvinyl ethers and urea-formaldehyde, advantageously loaded with additives chosen from phosphates and zinc chromates (to improve corrosion resistance), and / or silicone, waxes, poly-tetrafluoroethylenes, molybdenum diesulfite, graphite or zinc stearate (for reduce the coefficient of friction).
- Document EP-0 122 762 describes a method of manufacturing corrosion-resistant steel parts, comprising nitriding steps (in the Epsilon phase, as above), then gas-phase oxidation, and then application of waxy material (Castrai V425) containing aliphatic hydrocarbons and Group 2a metal soaps, preferably calcium and / or barium soaps.
- the resistance to salt spray corrosion was of the order of 250 hours.
- the Applicant has itself proposed treatment processes to obtain even better outfits to corrosion.
- EP-0 497 663 it has proposed a method of subjecting ferrous metal parts to nitriding, typically to a molten salt bath consisting of cyanates and sodium, potassium and lithium, followed by bath oxidation. of molten salts or in an oxidizing ionizing atmosphere, so as to obtain a nitrided layer comprising a deep and compact underlayer and a well-controlled surface layer of porosity and finally to deposit a polymer with a thickness of between 3 and 20 ⁇ , fluoroethylene-propylene (FEP), or even polytetrafluoroethylene (PTFE), or even polymers or copolymers of fluorinated or silicone polyurethanes, or polyamide-polyimides.
- FEP fluoroethylene-propylene
- PTFE polytetrafluoroethylene
- the impregnating wax is an organic compound with a high molecular weight of between 500 and 10,000 and a surface tension in the liquid state of between 10 and 73 mN / m.
- the contact angle between the solid phase and the surface layer and the wax in the liquid state is between 0 and 75 degrees.
- the wax is chosen from natural waxes, synthetic waxes polyethylenes, polypropylenes, polyesters, fluorinated or modified petroleum residues.
- EP-0 560 641 discloses a process for the phosphating of steel parts to improve the corrosion and wear resistance, making it possible to obtain specific surface characteristics resulting from a phosphating treatment preceded by a nitriding in a bath of molten salts containing sulfur species, a nitriding operation in a molten salt bath followed by a conventional sulfurization treatment, or a metal deposition followed by a conventional sulfurization operation.
- the corrosion resistance values of the parts thus treated, after exposure to salt spray, are of the order of 900 to 1200 hours.
- the patent EP-1,180,552 relates to a method of surface treatment of mechanical parts subjected to both wear and corrosion having a roughness conducive to good lubrication and according to which nitriding is carried out by immersion between 500 ° C and 700 ° C parts in a molten salt nitriding bath containing cyanates and alkaline carbonates in precise ranges but free of species sulfurized, then oxidation is carried out in an oxidizing aqueous solution below 200 ° C.
- WO2012 / 146839 has aimed a nitriding treatment leading to an appropriate roughness without requiring finishing treatment; he has described a bath of molten salts for the nitriding of mechanical steel parts having specific contents of alkali metal chloride, alkali metal carbonate, alkali metal cyanate and cyanide ions.
- the corrosion resistance measured in salt spray was between 240 and 650 hours.
- finishing treatment deposition of a varnish or a wax, or phosphating treatment
- oxidation of mechanical parts made of ferrous material makes it possible to often to improve the corrosion resistance, but usually involving a surcharge complicating obtaining, at the end of treatment, the desired dimensional dimensions.
- certain finishing treatments result in the fact that the surface of the parts thus treated tends to transfer a little oil to the surfaces with which it can come into contact and tends to pick up the dust. the surrounding environment; this is hardly compatible with a complementary step such as overmolding.
- the object of the invention is to remedy these disadvantages in a simple, safe, effective and rational manner, while achieving very high levels of resistance to corrosion and to wear, better than with baths. current impregnation.
- a method of surface treatment of a mechanical part made of steel to give it a high resistance to wear and corrosion comprising: a nitriding or nitrocarburizing step adapted to form a combination layer at least 8 micrometers thick formed of iron nitrides of ⁇ and / or ⁇ phases,
- an oxidation step suitable for generating a layer of oxides with a thickness of between 0.1 micrometer and 3 micrometers
- the impregnation in a bath according to the invention leads to a substantial improvement in the corrosion resistance compared to a conventional bath, based on oils, acids and ethanol.
- the parts are dry to the touch (this is understood to mean the absence of oil transfer on an opposing surface), hence the absence of a tendency to capture surrounding dust and the ability to undergo post-treatment such as overmolding.
- a part according to the invention obtained by the method of the invention, namely a steel part having a high resistance to wear and corrosion, comprising a combination layer at least 8 microns, a layer of oxides with a thickness between 0.1 and 3 microns and an impregnation layer which is dry to the touch.
- ambient temperature does not mean a precise temperature but the fact that the treatment is done without control of the temperature (it is thus neither necessary to heat the bath nor to cool it), and that it can be at the temperature induced by the environment, although it varies in proportions that can be significant during the year, for example between 15 ° C and 50 ° C.
- the nitriding / nitrocarburizing step is conducted in such a way that the thickness of the resulting combination layer is at least 10 microns.
- the synthetic phenolic additive is a compound of formula Ci 5 H 24 0.
- the impregnation bath further comprises at least one additive selected from the group consisting of calcium or sodium sulfonate, phosphites, diphenylamines, zinc dithiophosphate, nitrites, phosphoramides.
- the content of such additives is advantageously at most equal to 5%.
- the bath is preferably formed of 90% +/- 0.5% by weight of solvent, 10% +/- 0.5% by weight of paraffin oils and between 0.01% and not more of 1% +/- 0.1% of synthetic phenolic additive of formula Ci 5 H 24 0.
- the impregnation is carried out by soaking for a period of about 15 minutes.
- This soaking step is advantageously followed by a natural drying operation or accelerated by steaming.
- the nitriding / nitrocarburizing step is carried out in a bath of molten salts containing from 14% to 44% by weight of alkaline cyanates at a temperature of 550 ° C. to 650 ° C. for at least 45 minutes; preferably, this nitriding / nitrocarburizing bath contains from 14% to 18% by weight of alkaline cyanates.
- this treatment is carried out at a temperature of 590 ° C for 90 minutes to 100 minutes; according to a variant which is also advantageous, the nitriding / nitrocarburizing treatment in salt baths melting is carried out at a temperature of 630 ° C for about 45 minutes to 50 minutes.
- the nitriding / nitrocarburizing step is carried out in a gaseous medium between 500 ° C. and 600 ° C. containing ammonia.
- the nitriding / nitrocarburizing step is carried out in an ionic medium (plasma) in a medium comprising at least nitrogen and hydrogen under reduced pressure.
- the oxidation step is carried out in a bath of molten salts containing carbonates, nitrates and alkali hydroxides.
- the bath of molten oxidation salts contains alkaline nitrates, alkaline carbonates and alkali hydroxides.
- the oxidation step is carried out at a temperature of 430 ° C to 470 ° C for 15 to 20 minutes.
- the oxidation is carried out in an aqueous bath containing alkali hydroxides, alkaline nitrates and alkaline nitrites.
- the oxidation step is carried out at a temperature of 110 ° C to 130 ° C for 15 to 20 minutes.
- the oxidation step is carried out in a gaseous medium consisting predominantly of water vapor, at a temperature of 450 ° C to 550 ° C for 30 to 120 minutes.
- NITRU1 to NITRU3 which correspond to nitrocarburizing examples in accordance with the nitrocarburizing treatment taught by document EP-1 180 552 with:
- NITRU 1 1 to 3 14 to 18 590> 45 ⁇ 8
- NITRU 2 1 to 3 14 to 18 590> 90> 8
- NITRU 3 1 to 3 14 to 18 630> 45> 8 More generally, it may be noted that the NITRU1 treatment leads to a combination layer with a thickness of less than 8 micrometers, whereas the NITRU2 and NITRU3 treatments lead to a layer whose thickness exceeds this threshold, and is preferably even at least 10 micrometers. It seems pointless, in practice, to try to exceed 25 micrometers, so that an effective range for the thickness of the layer seems to be 10 to 25 microns.
- these three treatments correspond to a treatment in a bath of molten salts containing from 14% to 44% by weight of alkaline cyanates (preferably from 14% to 18%) at a temperature of 550 ° C. to 650 ° C. (preferably from 590 ° C to 630 ° C) for at least 45 minutes (it does not seem useful to exceed 120 minutes, or even 90 minutes).
- NITRU4 aiming a combination layer thickness of at least 8 ⁇ and advantageously between 10 and 25 ⁇
- NITRU5 aiming a combination layer thickness of at least 8 ⁇ and advantageously between 10 and 25 ⁇
- the NITRU4 treatment in gaseous medium was carried out in an oven between about 500 and 600 ° C under a controlled atmosphere comprising ammonia.
- the treatment time has been established to ensure a combination layer thickness of at least 8 microns, preferably greater than 10 microns.
- the NITRU5 treatment it was carried out in an ionic medium (plasma) in a mixture comprising at least nitrogen and hydrogen, under reduced pressure (that is to say at a pressure below atmospheric pressure). typically less than 0.1 atmosphere).
- the treatment time has also been established to ensure a combination layer thickness of at least 8 microns, preferably at least 10 microns.
- the indicated treatment layer thickness does not take into account the diffusion layer (for nitrogen as well as for carbon).
- Oxidation "type 1" (or 0x1), that is to say in ionic liquid medium containing NaNO3 (between 35 and 40% by weight), carbonates (of Li, K, Na) (between 15 and 20% by weight), NaOH (between 40 and 45% by weight) - 450 ° C. temperature - treatment time of 15 minutes.
- the oxidations 0x1 and 0x2 substantially correspond, respectively, to the salt bath oxidation and to the aqueous oxidation of the aforementioned EP1 180552 document, whereas the parameters of nitrocarburizing treatments (NITRU5) and of oxidation oxidation treatments, in an ionized medium. , correspond substantially to example 9 of EP0497663.
- the oxidations were carried out so as to obtain oxidation layers with a thickness of between 0.1 and 3 microns.
- Imp1 a new impregnation known as "impregnation 1" (or Imp1) in a bath containing mainly a solvent (90% +/- 0.5% by weight) formed of a mixture of hydrocarbons composed of a section of C9 alkanes; at C17, 10% +/- 0.5% by weight of a paraffin oil composed of a C16 to C32 alkane fraction and between 0.1% and 1% +/- 0.1% of a phenolic synthesis additive; the formula 5 H 24 O.
- This impregnation was carried out by dipping for about 1 5 minutes of immersion, followed by natural drying or accelerated by stoving.
- Imp2 A conventional impregnation called "impregnation 2" (or Imp2), in a bath containing mainly oils (between 60 and 85% by weight), acids (between 6 and 15% by weight) and ethanol (between 1 and 5% by weight). This impregnation was carried out by dipping for about 15 minutes immersion, followed by natural drying or accelerated by steaming.
- the oxidation-impregnation treatment is of little importance when there is no nitriding / nitrocarburization (the corrosion resistance remains at 96h, in the first column).
- the impregnation treatment 2 (conventional) results in a lower corrosion resistance to the case without any nitriding.
- the interest of type 1 impregnation is particularly visible in the case of NITRU5 nitrocarburizing since, with the case of oxidation 3 (in a gaseous medium - treatments 5 and 6), the improvement is of the order of a tripling of the resistance to corrosion (increase of about fifty hours) compared to the case of a conventional impregnation; it is nevertheless the case where the oxidation has a particularly negative effect.
- NITRU5 In all other cases NITRU5, the increase in corrosion resistance is at least of the order of 200 hours. Thus, in the case of NITRU5 combined with oxidation in an aqueous medium (oxidation 2 - treatments 3 and 4) or in the absence of oxidation (treatments 7 and 8), the new impregnation results in an increase in resistance to corrosion of the order of 300 hours; in the case of NITRU5 combined with oxidation in an ionic liquid medium (oxidation 1 - treatments 1 and 2), the increase is even of the order of 500 hours.
- the beneficial effect of the new impregnation exists but is moderate, including in percentage, compared with the conventional impregnation (treatments 3 to 8, even if the suits at the corrosion, in absolute value, are better than with NITRU5).
- a very important increase of 600 hours, in the case of an oxidation in ionic medium (treatments 1 and 2), with a resistance to the corrosion approaching threshold of 1000 hours. It can be inferred that the condition of a combination layer of at least 8 micrometers thick can be lowered in the case of type 1 oxidation.
- the new impregnation brings an improvement, especially significant in the case of NITRU3.
- the improvement in corrosion resistance is, for oxidation of type 2 and 3 (treatments 3 to 6) of at least 250 hours for the treatment NITRU3 and even 450 hours for the treatment NITRU2.
- type 2 oxidation treatments 3 and 4
- corrosion resistance exceeding the threshold of 1000 hours is obtained.
- the increase brought by the new impregnation is surprisingly high, since it is 456 hours for NITRU2 and even 576h for NITRU3 to reach a particularly high threshold, of the order of 1370h.
- the new impregnation brings about an improvement in the resistance to corrosion compared to a conventional impregnation, whatever the nitriding / nitrocarburizing and oxidation treatments,
- This improvement is particularly notable and leads to particularly high corrosion resistance values for salt bath nitrocarburizing treatments resulting in a combination layer of at least 8 microns (NITRU2 and NITRU3), preferably between 10 and 25 microns, This improvement is particularly notable and leads to particularly high corrosion resistance values for nitrocarburations in salt baths (NITRU1 to NITRU3) or in the gas phase (NITRU4) in the case of oxidation in molten salt baths ( type 1),
- the impregnating bath 1 has a surprising synergistic effect with nitriding / nitrocarburizing treatments NITRU2 and NITRU3 provided that nitriding / nitrocarburizing is followed by oxidation of type 1 or 2 , an optimum appearing to be obtained when the oxidation treatment is of type 1.
- composition of the impregnation bath considered in the tests is part of a more general composition, namely a bath consisting of at least 70% by weight, to within 1%, of a solvent formed of a mixture of hydrocarbons. formed from a cut of C9 to C17 alkanes, from 10% to 30% by weight, to within 1%, of at least one paraffin oil composed of a section of C16 to C32 alkanes and from minus a synthetic phenolic additive additive at a concentration of between 0.01% and 3% by weight, at room temperature.
- the solvent content is preferably between 80% and 90% by weight; likewise, the content of paraffin oil is preferably between 10% and 20% by weight.
- the alkane section of the solvent is preferably C9 to C14.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Chemical Treatment Of Metals (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL15821125T PL3237648T3 (en) | 2014-12-23 | 2015-12-15 | Method for surface treatment of a steel component by nitriding or nitrocarburising, oxidising and then impregnating |
SI201531209T SI3237648T1 (en) | 2014-12-23 | 2015-12-15 | Method for surface treatment of a steel component by nitriding or nitrocarburising, oxidising and then impregnating |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1463252A FR3030578B1 (en) | 2014-12-23 | 2014-12-23 | PROCESS FOR SUPERFICIAL TREATMENT OF A STEEL PART BY NITRURATION OR NITROCARBURING, OXIDATION THEN IMPREGNATION |
PCT/FR2015/053511 WO2016102813A1 (en) | 2014-12-23 | 2015-12-15 | Method for surface treatment of a steel component by nitriding or nitrocarburising, oxidising and then impregnating |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3237648A1 true EP3237648A1 (en) | 2017-11-01 |
EP3237648B1 EP3237648B1 (en) | 2020-03-18 |
Family
ID=52684489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15821125.0A Active EP3237648B1 (en) | 2014-12-23 | 2015-12-15 | Method for surface treatment of a steel component by nitriding or nitrocarburising, oxidising and then impregnating |
Country Status (24)
Country | Link |
---|---|
US (1) | US10774414B2 (en) |
EP (1) | EP3237648B1 (en) |
JP (1) | JP6608450B2 (en) |
KR (1) | KR102455917B1 (en) |
CN (1) | CN107109617B (en) |
AU (1) | AU2015370805B2 (en) |
BR (1) | BR112017011508B1 (en) |
CA (1) | CA2968630C (en) |
DK (1) | DK3237648T3 (en) |
ES (1) | ES2785599T3 (en) |
FR (1) | FR3030578B1 (en) |
HU (1) | HUE049293T2 (en) |
MX (1) | MX2017008334A (en) |
MY (1) | MY188711A (en) |
PH (1) | PH12017500936B1 (en) |
PL (1) | PL3237648T3 (en) |
PT (1) | PT3237648T (en) |
RU (1) | RU2696992C2 (en) |
SG (1) | SG11201704798RA (en) |
SI (1) | SI3237648T1 (en) |
TN (1) | TN2017000216A1 (en) |
TW (1) | TWI683036B (en) |
WO (1) | WO2016102813A1 (en) |
ZA (1) | ZA201704730B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021130460A1 (en) | 2019-12-24 | 2021-07-01 | Hydromecanique Et Frottement | Method for treating a part made of ferrous metal, and part made of ferrous metal |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108359785B (en) * | 2018-03-19 | 2019-12-17 | 盐城工学院 | Strengthening and toughening treatment method for W6Mo5Cr4V2 high-speed steel broach |
CN110423977B (en) * | 2019-09-05 | 2021-06-18 | 合肥工业大学 | Gas nitriding method for aluminum material by taking chemical iron-immersion plating as pretreatment |
RU2736289C1 (en) * | 2020-03-05 | 2020-11-13 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Ростовский государственный университет путей сообщения" (ФГБОУ ВО РГУПС) | Method of nitriding parts from alloyed steels |
RU2737796C1 (en) * | 2020-03-05 | 2020-12-03 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Ростовский государственный университет путей сообщения" (ФГБОУ ВО РГУПС) | Compound composition for nitriding parts from alloyed steels |
CN111423817A (en) * | 2020-05-28 | 2020-07-17 | 眉山市三泰铁路车辆配件有限公司 | Special gas QPQ coupling agent for cast iron product and preparation method thereof |
US11590485B2 (en) | 2021-01-13 | 2023-02-28 | Saudi Arabian Oil Company | Process for modifying a hydroprocessing catalyst |
CN112935737A (en) * | 2021-03-25 | 2021-06-11 | 上齿集团有限公司 | Novel spiral bevel gear dry cutting method |
FR3141702A1 (en) * | 2022-11-07 | 2024-05-10 | Hydromecanique Et Frottement | Impregnation liquid, treatment method with such an impregnation liquid, and treated part obtained |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55125267A (en) * | 1979-03-22 | 1980-09-26 | Kawasaki Heavy Ind Ltd | Surface treating method of improving abrasion resistance and corrosion resistance of iron and steel |
BR8107846A (en) | 1980-12-03 | 1982-09-08 | Lucas Industries Ltd | STEEL METAL COMPONENT |
JPS57141464A (en) * | 1980-12-03 | 1982-09-01 | Lucas Industries Ltd | Metal member working method |
DE3277585D1 (en) * | 1981-09-05 | 1987-12-10 | Lucas Ind Plc | Coated metal substrate and method of coating a metal substrate |
ZA827448B (en) * | 1981-10-15 | 1983-08-31 | Lucas Ind Plc | Corrosion resistant steel components and method of manufacture thereof |
JPS5977138A (en) * | 1982-10-26 | 1984-05-02 | Aisin Chem Co Ltd | Friction material for vehicle |
GB8310102D0 (en) | 1983-04-14 | 1983-05-18 | Lucas Ind Plc | Corrosion resistant steel components |
JPH0257735A (en) * | 1988-08-19 | 1990-02-27 | Toyoda Gosei Co Ltd | Vibration preventing rubber |
DE4027011A1 (en) * | 1990-08-27 | 1992-03-05 | Degussa | METHOD FOR IMPROVING THE CORROSION RESISTANCE OF NITROCARBURATED COMPONENTS MADE OF IRON MATERIALS |
FR2672059B1 (en) * | 1991-01-30 | 1995-04-28 | Stephanois Rech Mec | PROCESS FOR PROVIDING FERROUS METAL PARTS, NITRIDATED THEN OXIDIZED, EXCELLENT CORROSION RESISTANCE WHILE MAINTAINING THE ACQUIRED FRICTION PROPERTIES. |
KR100215252B1 (en) * | 1991-07-16 | 1999-08-16 | 쥐. 엘 뽈띠 | Ferrous metal parts with simultaneously improved corrosion resistance and friction properties |
FR2679258B1 (en) * | 1991-07-16 | 1993-11-19 | Centre Stephanois Recherc Meca | PROCESS FOR TREATING FERROUS METAL PARTS TO SIMULTANEOUSLY IMPROVE CORROSION RESISTANCE AND FRICTION PROPERTIES THEREOF. |
FR2688517B1 (en) | 1992-03-10 | 1994-06-03 | Stephanois Rech | PROCESS FOR THE PHOSPHATION OF STEEL PARTS, TO IMPROVE THEIR CORROSION AND WEAR RESISTANCES. |
JPH083721A (en) * | 1994-06-13 | 1996-01-09 | Kayaba Ind Co Ltd | Surface treatment of piston rod |
US5714015A (en) * | 1996-04-22 | 1998-02-03 | Frantz Manufacturing | Ferritic nitrocarburization process for steel balls |
JP2001323939A (en) * | 2000-05-18 | 2001-11-22 | Nsk Ltd | Rolling bearing |
FR2812888B1 (en) | 2000-08-14 | 2003-09-05 | Stephanois Rech Mec | PROCESS FOR THE SURFACE TREATMENT OF MECHANICAL PARTS SUBJECT TO BOTH WEAR AND CORROSION |
JP4998654B2 (en) * | 2001-01-31 | 2012-08-15 | 日立オートモティブシステムズ株式会社 | Method of gas soft nitriding treatment of steel members |
RU2230824C2 (en) * | 2002-04-09 | 2004-06-20 | Общество с ограниченной ответственностью "Борец" | Method of chemicothermal treatment of a material on the base of iron alloy, the material on the base of iron alloy and a component of a block of an immersion centrifugal pump |
RU2230825C2 (en) * | 2002-08-30 | 2004-06-20 | Общество с ограниченной ответственностью "Борец" | Method of chemicothermal treatment of a material on the base of powder alloys of iron and a component of a block of an immersion centrifugal pump |
FR2972459B1 (en) | 2011-03-11 | 2013-04-12 | Hydromecanique & Frottement | FOUNDED SALT BATHS FOR NITRIDING STEEL MECHANICAL PARTS, AND METHOD FOR IMPLEMENTING THE SAME |
-
2014
- 2014-12-23 FR FR1463252A patent/FR3030578B1/en not_active Expired - Fee Related
-
2015
- 2015-12-15 BR BR112017011508-5A patent/BR112017011508B1/en active IP Right Grant
- 2015-12-15 SG SG11201704798RA patent/SG11201704798RA/en unknown
- 2015-12-15 RU RU2017126188A patent/RU2696992C2/en active
- 2015-12-15 JP JP2017533624A patent/JP6608450B2/en active Active
- 2015-12-15 ES ES15821125T patent/ES2785599T3/en active Active
- 2015-12-15 MX MX2017008334A patent/MX2017008334A/en unknown
- 2015-12-15 PL PL15821125T patent/PL3237648T3/en unknown
- 2015-12-15 EP EP15821125.0A patent/EP3237648B1/en active Active
- 2015-12-15 KR KR1020177020140A patent/KR102455917B1/en active IP Right Grant
- 2015-12-15 WO PCT/FR2015/053511 patent/WO2016102813A1/en active Application Filing
- 2015-12-15 US US15/538,005 patent/US10774414B2/en active Active
- 2015-12-15 DK DK15821125.0T patent/DK3237648T3/en active
- 2015-12-15 AU AU2015370805A patent/AU2015370805B2/en active Active
- 2015-12-15 HU HUE15821125A patent/HUE049293T2/en unknown
- 2015-12-15 CN CN201580070179.0A patent/CN107109617B/en active Active
- 2015-12-15 SI SI201531209T patent/SI3237648T1/en unknown
- 2015-12-15 CA CA2968630A patent/CA2968630C/en active Active
- 2015-12-15 TN TN2017000216A patent/TN2017000216A1/en unknown
- 2015-12-15 MY MYPI2017702324A patent/MY188711A/en unknown
- 2015-12-15 PT PT158211250T patent/PT3237648T/en unknown
- 2015-12-22 TW TW104143194A patent/TWI683036B/en active
-
2017
- 2017-05-19 PH PH12017500936A patent/PH12017500936B1/en unknown
- 2017-07-13 ZA ZA2017/04730A patent/ZA201704730B/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021130460A1 (en) | 2019-12-24 | 2021-07-01 | Hydromecanique Et Frottement | Method for treating a part made of ferrous metal, and part made of ferrous metal |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2968630C (en) | Method for surface treatment of a steel component by nitriding or nitrocarburising, oxidising and then impregnating | |
JP3367630B2 (en) | Treatment method for iron surface subjected to large friction strain | |
EP2683845B1 (en) | Salt bath for nitriding of steel workpieces and its related production method | |
EP0524037B1 (en) | Treatment process for iron components to improve simultaneously their corrosion resistance and their friction properties | |
EP0497663B2 (en) | Method of manufacturing corrosion resistant steel components and keeping their friction properties by nitriding and then oxidizing them | |
WO2013117759A1 (en) | Method for anodizing parts made of an aluminum alloy | |
EP1180552B1 (en) | Method for surface treatment of mechanical pieces subjected to wear and corrosion | |
EP1875092A2 (en) | Pair of guiding element of which on is made of a specific steel leading to improved anti-seizing performances | |
EP1801262B1 (en) | Treatment by carboxylation of metal surfaces, use of this process as temporary protection against corrosion and manufacturing process of a shaped sheet coated with a carboxylated conversion coating | |
WO2021130460A1 (en) | Method for treating a part made of ferrous metal, and part made of ferrous metal | |
WO2024100345A1 (en) | Impregnation liquid, method of treatment with such an impregnation liquid, and treated part obtained | |
JP6915549B2 (en) | Sliding member and its manufacturing method | |
JP2005163071A (en) | Hard carbon film, and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170717 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RAV | Requested validation state of the european patent: fee paid |
Extension state: MA Effective date: 20170721 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190329 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
INTC | Intention to grant announced (deleted) | ||
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MAGDINIER, PIERRE-LOUIS Inventor name: DESBOUCHE-JANNY, MARIE-NOELLE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191011 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015049103 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1245991 Country of ref document: AT Kind code of ref document: T Effective date: 20200415 Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20200506 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 3237648 Country of ref document: PT Date of ref document: 20200527 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20200519 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20200318 |
|
REG | Reference to a national code |
Ref country code: EE Ref legal event code: FG4A Ref document number: E019216 Country of ref document: EE Effective date: 20200430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 34260 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200619 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E049293 Country of ref document: HU |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2785599 Country of ref document: ES Kind code of ref document: T3 Effective date: 20201007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200718 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1245991 Country of ref document: AT Kind code of ref document: T Effective date: 20200318 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015049103 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20201221 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: HC9C Owner name: H.E.F., FR |
|
VS25 | Lapsed in a validation state [announced via postgrant information from nat. office to epo] |
Ref country code: MA Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: HC9C Owner name: H.E.F., FR |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230515 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231122 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20231124 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231113 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20231130 Year of fee payment: 9 Ref country code: SI Payment date: 20231121 Year of fee payment: 9 Ref country code: SE Payment date: 20231123 Year of fee payment: 9 Ref country code: RO Payment date: 20231127 Year of fee payment: 9 Ref country code: PT Payment date: 20231117 Year of fee payment: 9 Ref country code: NO Payment date: 20231128 Year of fee payment: 9 Ref country code: IT Payment date: 20231122 Year of fee payment: 9 Ref country code: IE Payment date: 20231122 Year of fee payment: 9 Ref country code: HU Payment date: 20231130 Year of fee payment: 9 Ref country code: FR Payment date: 20231227 Year of fee payment: 9 Ref country code: FI Payment date: 20231120 Year of fee payment: 9 Ref country code: EE Payment date: 20231122 Year of fee payment: 9 Ref country code: DK Payment date: 20231129 Year of fee payment: 9 Ref country code: DE Payment date: 20231122 Year of fee payment: 9 Ref country code: CZ Payment date: 20231122 Year of fee payment: 9 Ref country code: BG Payment date: 20231130 Year of fee payment: 9 Ref country code: AT Payment date: 20231122 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20231201 Year of fee payment: 9 Ref country code: BE Payment date: 20231121 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240111 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240102 Year of fee payment: 9 |