EP3194783B1 - Compresseur à spirale et climatiseur le comprenant - Google Patents

Compresseur à spirale et climatiseur le comprenant Download PDF

Info

Publication number
EP3194783B1
EP3194783B1 EP15875538.9A EP15875538A EP3194783B1 EP 3194783 B1 EP3194783 B1 EP 3194783B1 EP 15875538 A EP15875538 A EP 15875538A EP 3194783 B1 EP3194783 B1 EP 3194783B1
Authority
EP
European Patent Office
Prior art keywords
oil
scroll
orbiting scroll
casing
back pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15875538.9A
Other languages
German (de)
English (en)
Other versions
EP3194783A4 (fr
EP3194783A1 (fr
Inventor
Yang-Hee Cho
Sung-Kwang Oh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of EP3194783A4 publication Critical patent/EP3194783A4/fr
Publication of EP3194783A1 publication Critical patent/EP3194783A1/fr
Application granted granted Critical
Publication of EP3194783B1 publication Critical patent/EP3194783B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/021Control systems for the circulation of the lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft

Definitions

  • the present invention relates to a scroll compressor used in an air conditioner. More particularly, the present invention relates to a scroll compressor configured so that a predetermined back pressure is applied to the scroll compressor even when the scroll compressor is operated at a low load during variable operation, and to an air conditioner having the same.
  • a scroll compressor has high efficiency, low vibration, and low noise in comparison with other types of compressors, such as rotary compressors, etc., so scroll compressors have been used in various types of air conditioners. Recently, since the scroll compressor is required to operate in accordance with an actual load in order to save energy, the scroll compressor needs to operate at a high efficiency even when the load is small.
  • a back pressure in a back pressure chamber of the scroll compressor greatly influences the efficiency of the scroll compressor.
  • the back pressure of the back pressure chamber is changed depending on operating conditions of the air conditioner. Accordingly, in the case in which the scroll compressor is designed so that back pressure capable of axial sealing is generated at a maximum load condition, then at a low load condition, the back pressure is lowered so that the axial sealing of the scroll compressor is not properly performed.
  • EP2703649A1 discloses a scroll compressor according to the preambles of claims 1 to 4.
  • JPS61237893A discloses a scroll compressor comprising an oil feed passage configured to connect an oil separator and the back pressure chamber so that oil collected in the oil separator is supplied to the back pressure chamber.
  • An aspect of the present invention relates to a scroll compressor which can maintain constant back pressure in a back pressure chamber so as to maximize efficiency of the scroll compressor even when an operating condition of an air conditioner in which the scroll compressor is disposed is changed, and to an air conditioner having the same.
  • Another aspect of the present invention relates to a scroll compressor which can keep an amount of oil supplied to a compression chamber constant even when an operating condition of an air conditioner, in which the scroll compressor is disposed, is changed, and to an air conditioner having the same.
  • a scroll compressor includes a casing, a drive motor accommodated in the casing, an orbiting scroll to be rotated by the drive motor, a fixed scroll engaged with the orbiting scroll, a back pressure chamber provided below the orbiting scroll, an inlet pipe that is disposed in the casing and supplies refrigerant to a compression chamber formed by the orbiting scroll and the fixed scroll, and a discharge pipe that is disposed in the casing and discharges the refrigerant discharged from the compression chamber outside the casing.
  • the scroll compressor includes an oil feed passage configured to connect the back pressure chamber and an oil storage tank provided in a lower portion of the casing so that oil of the oil storage tank is supplied to the back pressure chamber; and a flow control valve disposed in the oil feed passage, the flow control valve configured to control an amount of oil to be supplied to the back pressure chamber via the oil feed passage, wherein the flow control valve controls the amount of oil to be supplied via the oil feed passage in accordance with a suction pressure of the refrigerant to be sucked through the inlet pipe, a discharge pressure of the refrigerant to be discharged through the discharge pipe, and a rotational frequency or velocity of the drive motor
  • the orbiting scroll has a disc portion with a boss portion extending from a first side surface and orbiting scroll wraps extending from a second side surface; the disc portion has a first oil path having an inlet and an outlet; a drive shaft extending from the motor has an eccentric portion inserted in the boss portion, the drive shaft has an oil-passage for supplying oil from an oil storage
  • the flow control valve may be configured to control an opening area of the oil feed passage.
  • the scroll compressor may be disposed in an outdoor unit of an air conditioner, and the flow control valve may be controlled by a controller of the air conditioner.
  • the scroll compressor may include a main frame configured to support the orbiting scroll and provided with the back pressure chamber, wherein the main frame is provided with an oil feed hole connected to a discharge end of the oil feed passage.
  • the oil feed hole may include a vertical hole which is connected to the back pressure chamber and is parallel to a drive shaft of the drive motor; and a horizontal hole which is formed perpendicular to the vertical hole and is connected to the discharge end of the oil feed passage.
  • the flow control valve may increase an amount of oil passing through the oil feed passage so that a back pressure of the back pressure chamber is a value between the suction pressure and the discharge pressure.
  • the flow control valve may cut off the oil feed passage.
  • a scroll compressor includes a casing, a drive motor accommodated in the casing, an orbiting scroll to be rotated by the drive motor, a fixed scroll engaged with the orbiting scroll, a back pressure chamber provided below the orbiting scroll, an inlet pipe that is disposed in the casing and supplies refrigerant to a compression chamber formed by the orbiting scroll and the fixed scroll, a discharge pipe that is disposed in the casing and discharges the refrigerant discharged from the compression chamber outside the casing, and an oil separator that is connected to the discharge pipe, and separates and collects oil from the discharged refrigerant.
  • the scroll compressor includes an oil feed passage configured to connect the oil separator and the back pressure chamber so that oil collected in the oil separator is supplied to the back pressure chamber; and a flow control valve disposed in the oil feed passage, the flow control valve configured to control an amount of oil to be supplied to the back pressure chamber via the oil feed passage, wherein the flow control valve controls the amount of oil to be supplied via the oil feed passage in accordance with a suction pressure of the refrigerant to be sucked through the inlet pipe, a discharge pressure of the refrigerant to be discharged through the discharge pipe, and a rotational frequency or velocity of the drive motor
  • the orbiting scroll has a disc portion with a boss portion extending from a first side surface and orbiting scroll wraps extending from a second side surface; the disc portion has a first oil path having an inlet and an outlet; a drive shaft extending from the motor has an eccentric portion inserted in the boss portion, the drive shaft has an oil-passage for supplying oil from an oil storage tank provided in the casing to the boss
  • the flow control valve may be configured to control an opening area of the oil feed passage.
  • the scroll compressor may be disposed in an outdoor unit of an air conditioner, and the flow control valve may be controlled by a controller of the air conditioner.
  • the scroll compressor may include a main frame configured to support the orbiting scroll and provided with the back pressure chamber, wherein the main frame is provided with an oil feed hole connected to a discharge end of the oil feed passage.
  • the oil feed hole may include a vertical hole which is connected to the back pressure chamber and is parallel to a drive shaft of the drive motor; and a horizontal hole which is formed perpendicular to the vertical hole and is connected to the discharge end of the oil feed passage.
  • the flow control valve may increase an amount of oil passing through the oil feed passage so that a back pressure of the back pressure chamber is a value between the suction pressure and the discharge pressure.
  • the flow control valve may cut off the oil feed passage.
  • a scroll compressor includes a casing, a drive motor accommodated in the casing, an orbiting scroll to be rotated by the drive motor, a fixed scroll engaged with the orbiting scroll, a back pressure chamber provided below the orbiting scroll, an inlet pipe that is disposed in the casing and supplies refrigerant to a compression chamber formed by the orbiting scroll and the fixed scroll, and a discharge pipe that is disposed in the casing and discharges the refrigerant discharged from the compression chamber outside the casing.
  • the scroll compressor includes an oil feed passage configured to connect the compression chamber and an oil storage tank provided in a lower portion of the casing so that oil of the oil storage tank is supplied to the compression chamber; and a flow control valve disposed in the oil feed passage, the flow control valve configured to control an amount of oil to be supplied to the compression chamber via the oil feed passage, wherein the flow control valve controls the amount of oil to be supplied via the oil feed passage in accordance with a suction pressure of the refrigerant to be sucked through the inlet pipe, a discharge pressure of the refrigerant to be discharged through the discharge pipe, and a rotational frequency or velocity of the drive motor
  • the orbiting scroll has a disc portion with a boss portion extending from a first side surface and orbiting scroll wraps extending from a second side surface; the disc portion has a first oil path having an inlet and an outlet; a drive shaft extending from the motor has an eccentric portion inserted in the boss portion, the drive shaft has an oil-passage for supplying oil from an oil storage tank provided in
  • the fixed scroll may include an auxiliary oil feed hole connecting the compression chamber and a discharge end of the oil feed passage.
  • the scroll compressor may be disposed in an outdoor unit of an air conditioner, and the flow control valve may be controlled by a controller of the air conditioner.
  • the flow control valve may increase an amount of oil passing through the oil feed passage.
  • a scroll compressor includes a casing, a drive motor accommodated in the casing, an orbiting scroll to be rotated by the drive motor, a fixed scroll engaged with the orbiting scroll, a back pressure chamber provided below the orbiting scroll, an inlet pipe that is disposed in the casing and supplies refrigerant to a compression chamber formed by the orbiting scroll and the fixed scroll, a discharge pipe that is disposed in the casing and discharges the refrigerant discharged from the compression chamber outside the casing, and a vapor refrigerant injection pipe.
  • the scroll compressor includes an oil feed passage configured to connect an oil storage tank provided in a lower portion of the casing and the vapor refrigerant injection pipe so that oil in the oil storage tank is supplied to the compression chamber through the vapor refrigerant injection pipe; and a flow control valve disposed in the oil feed passage, the flow control valve configured to control an amount of oil to be supplied to the vapor refrigerant injection pipe via the oil feed passage, wherein the flow control valve controls the amount of oil to be supplied via the oil feed passage in accordance with a suction pressure of the refrigerant to be sucked through the inlet pipe, a discharge pressure of the refrigerant to be discharged through the discharge pipe, and a rotational frequency or velocity of the drive motor
  • the orbiting scroll has a disc portion with a boss portion extending from a first side surface and orbiting scroll wraps extending from a second side surface; the disc portion has a first oil path having an inlet and an outlet; a drive shaft extending from the motor has an eccentric portion inserted in the boss
  • an air conditioner may include an outdoor unit in which a scroll compressor having at least one of the above-described features is disposed; and a controller configured to control the scroll compressor in accordance with set conditions.
  • a "module” or a “unit” performs at least one function or operation, and may be implemented with hardware, software, or a combination of hardware and software.
  • a plurality of “modules” or a plurality of “units” may be integrated into at least one module except for a "module” or a “unit” which has to be implemented with specific hardware, and may be implemented with at least one processor (not shown).
  • FIG. 1 is a refrigerant circuit diagram illustrating a schematic configuration of an air conditioner having a scroll compressor according to an embodiment of the present invention.
  • an air conditioner 100 includes one outdoor unit 110, two indoor units 120, and a controller 130.
  • the air conditioner 100 according to an embodiment of the present invention is not limited thereto.
  • the number of the indoor units 120 that configures the air conditioner 100 as illustrated in FIG. 1 is only one example; therefore, the number of the indoor units 120 may be one or may be three or more.
  • the outdoor unit 110 and the indoor units 120 are connected to each other by pipes 121 and 122 through which refrigerant flows, thereby forming a refrigerant circuit.
  • the two indoor units 120 are disposed in parallel in one example shown in Fig. 1 .
  • the outdoor unit 110 is provided with a scroll compressor 1, a condenser 113, and an outdoor fan 115 to supply the condenser 113 with outdoor air. Accordingly, when operating the outdoor fan 115, the outdoor air is sucked into the outdoor unit 110, and then passes through the condenser 113.
  • the indoor unit 120 is provided with an expansion valve 124, an evaporator 123, and an indoor fan 125 for supplying the evaporator 123 with indoor air. Accordingly, when the indoor fan 125 is operated, the indoor air is sucked into the indoor unit 120, and then passes through the evaporator 123.
  • the controller 130 is electrically connected to the scroll compressor 1, the outdoor fan 115, and the indoor fan 125 so as to control the scroll compressor 1, the outdoor fan 115, and the indoor fan 125.
  • the controller 130 operates the two indoor units 120 according to a user's operation. When both of the two indoor units 120 are operated, a maximum load is applied to the scroll compressor 1 of the outdoor unit 110. When one of the two indoor units 120 is operated, a minimum load is applied to the scroll compressor 1. If the air conditioner 100 includes three or more indoor units 120 such as system air conditioners, variation in the load being applied to the scroll compressor 1 is very large.
  • the sealing of a compression chamber may be effectively performed. Accordingly, since leakage of the refrigerant from the scroll compressor 1 is prevented, operating efficiency of the scroll compressor 1 may be improved.
  • FIG. 2 is a cross-sectional view illustrating a scroll compressor according to an embodiment of the present disclosure
  • FIG. 3 is a partially enlarged cross-sectional view illustrating the scroll compressor of FIG. 2 .
  • the scroll compressor 1 is configured to intake and compress refrigerant gas, and may include a casing 10, a main frame 20, a sub frame 30, a compression mechanism 40, a drive motor 70, an oil feed passage 80, and a flow control valve 90.
  • the casing 10 is formed in a cylindrical shape, and is a hermetically sealed container in an embodiment.
  • the casing 10 accommodates the compression mechanism 40, the main frame 20, the sub frame 30, and the drive motor 70 in an inner space thereof.
  • the main frame 20 and the sub frame 30 are fixed to an inside of the casing 10, and are spaced apart at a predetermined interval from each other in a vertical direction.
  • the drive motor 70 is rotatably disposed between the main frame 20 and the sub frame 30.
  • the casing 10 is provided with an inlet pipe 3 and a discharge pipe 5.
  • the inlet pipe 3 passes through the casing 10, and one end of the inlet pipe 3 is connected to the compression mechanism 40.
  • the discharge pipe 5 passes through the casing 10, and one end of the discharge pipe 5 is disposed in a space between the main frame 20 and the drive motor 70 in an inner space of the casing 10.
  • the compression mechanism 40 is disposed in an upper side of the main frame 20.
  • An oil storage tank 35 in which oil or lubricant is stored, is provided below the sub frame 30.
  • the main frame 20 is formed in a substantially circular plate shape, and a projecting portion 21 is formed on a bottom surface of the main frame 20.
  • the projecting portion 21 of the main frame 20 is provided with a shaft support hole 22.
  • a bearing metal 23 is press-fitted in the shaft support hole 22.
  • a main shaft portion 76 of a drive shaft 75 is inserted through the bearing metal 23, and the bearing metal 23 supports rotation of the drive shaft 75.
  • a boss inserting groove 25 having an inner diameter that is larger than an inner diameter of the shaft support hole 22 is provided in the upper side of the shaft support hole 22.
  • An annular projection portion 26 forming a top end of the boss inserting groove 25 is provided on a top surface of the main frame 20.
  • the upper surface of the annular projection portion 26 forms a mirror surface 26-1 that is in contact with and supports an orbiting scroll 60.
  • an oil ring 27 is disposed to surround the boss inserting groove 25 on the upper surface of the annular projection portion 26.
  • An annular groove 28 is provided around the annular projection portion 26.
  • the annular groove 28 forms a back pressure chamber. Oil supplied from the oil storage tank 35 fills the back pressure chamber 28.
  • an Oldham ring 69 for preventing rotation of the orbiting scroll 60 is disposed in the back pressure chamber 28 between the orbiting scroll 60 and the main frame 20.
  • the oil ring 27 prevents the back pressure chamber 28 from being in fluid communication with the boss inserting groove 25.
  • An oil feed hole 24 in fluid communication with the back pressure chamber 28 which is provided to support the bottom surface of the orbiting scroll 60 in the top surface of the main frame 20 is formed in a side surface of the main frame 20.
  • the oil feed hole 24 is connected to the oil feed passage 80 connected to the oil storage tank 35 provided in the lower portion of the casing 10.
  • the oil feed hole 24 includes a vertical hole 24-1, which is connected to the back pressure chamber 28 and is parallel to a drive shaft 75 of the drive motor 70, and a horizontal hole 24-2, which is formed substantially perpendicular to the vertical hole 24-1 and is connected to a discharge end 81 of the oil feed passage 80.
  • the compression mechanism 40 includes a fixed scroll 50 and the orbiting scroll 60.
  • the fixed scroll 50 is disposed above the main frame 20, and the orbiting scroll 60 is disposed in a space formed by the fixed scroll 50 and the main frame 20.
  • the orbiting scroll 60 is engaged with the fixed scroll 50, is disposed between the fixed scroll 50 and the main frame 20, and orbits with respect to the fixed scroll 50.
  • the fixed scroll 50 includes a body portion 51 and a plurality of fixed scroll wraps 53.
  • the body portion 51 is formed in a certain shape corresponding to the inner surface of the casing 10.
  • Each of the plurality of fixed scroll wraps 53 is formed in an involute curved shape having predetermined thickness and height on one surface of the body portion 51.
  • a discharge hole 55 is formed to pass through a center of the body portion 51.
  • An inlet port 56 is formed at a side surface of the body portion 51. The inlet port 56 is connected to the inlet pipe 3 through which the refrigerant is introduced.
  • the orbiting scroll 60 includes a disc portion 61, a plurality of orbiting scroll wraps 63, and a boss portion 65.
  • the disc portion 61 has certain thickness and area.
  • Each of the plurality of orbiting scroll wraps 63 is formed in an involute curved shape having predetermined thickness and height on one surface of the disc portion 61.
  • the plurality of orbiting scroll wraps 63 are formed to be engaged with the plurality of fixed scroll wraps 53.
  • the boss portion 65 is formed at a center of the other side surface of the disc portion 61.
  • the disc portion 61 is provided with first oil path 66 and second oil path 67 through which oil passes.
  • the first oil path 66 is configured to connect the boss portion 65 and the top surface of the disc portion 61.
  • the second oil path 67 is configured to connect the top surface of the disc portion 61 and the side surface of the disc portion 61.
  • the plurality of orbiting scroll wraps 63 of the orbiting scroll 60 are engaged with the plurality of fixed scroll wraps 53 of the fixed scroll 50, and the boss portion 65 is inserted in the boss inserting groove 25 of the main frame 20.
  • the one surface of the disc portion 61 on which the boss portion 65 is formed is supported by the mirror surface 26-1 of the main frame 20. Accordingly, the one surface of the disc portion 61 being supported by the mirror surface 26-1 of the main frame 20 also is formed as a mirror surface 61-1.
  • Compression pockets P formed by the plurality of fixed scroll wraps 53 of the fixed scroll 50 and the plurality of orbiting scroll wraps 63 of the orbiting scroll 60 configure a compression chamber.
  • the drive motor 70 includes a stator 71 and a rotor 72.
  • the stator 71 is fixed to the inner surface of the casing 10.
  • the rotor 72 is rotatably inserted inside the stator 71.
  • the drive shaft 75 is inserted through the rotor 72.
  • the drive shaft 75 includes a shaft portion 76 having a predetermined length and an eccentric portion 77 extending from one end of the shaft portion 76.
  • the shaft portion 76 of the drive shaft 75 is press-fitted in the rotor 72 of the drive motor 70.
  • the one end of the shaft portion 76 is inserted in the projecting portion 21 of the main frame 20 and is supported by the bearing metal 23.
  • the eccentric portion 77 of the drive shaft 75 is inserted in the boss portion 65 of the orbiting scroll 60.
  • a bearing metal 64 is disposed between the eccentric portion 77 of the drive shaft 75 and the boss portion 65 of the orbiting scroll 60.
  • a balance weight 74 is disposed in the shaft portion 76 of the drive shaft 75 above the rotor 72.
  • the lower portion of the shaft portion 76 is supported by a bearing metal 31 disposed in the sub frame 30.
  • the drive shaft 75 is provided with an oil-passage 78 formed to penetrate the shaft portion 76 and the eccentric portion 77.
  • a bottom end 37 of the drive shaft 75 is submerged in the oil storage tank 35 of the casing 10.
  • the oil feed passage 80 is configured to connect the oil storage tank 35 provided in the lower portion of the casing 10 and the back pressure chamber 28 provided in the main frame 20. Accordingly, a discharge end 81 of the oil feed passage 80 is connected to the oil feed hole 24 formed in the main frame 20. The oil being received in the oil storage tank 35 is supplied to the back pressure chamber 28 via the oil feed passage 80 by the pressure being applied to the oil storage tank 35.
  • the oil feed passage 80 may be formed of a pipe or a tube.
  • the flow control valve 90 is disposed in the oil feed passage 80, and adjusts an amount of the oil that passes through the oil feed passage 80 and moves to the back pressure chamber 28.
  • the flow control valve 90 may be configured to adjust the amount of the oil passing through the oil feed passage 80 by controlling an opening area of the oil feed passage 80.
  • the flow control valve 90 may use an electronic proportional solenoid valve that can adjust the opening area in accordance with electric signals.
  • the flow control valve 90 may be configured to control the amount of the oil supplied via the oil feed passage 80 in accordance with a suction pressure of the refrigerant being sucked through the inlet pipe 3 of the casing 10, a discharge pressure of the refrigerant being discharged through the discharge pipe 5 of the casing 10, and a rotational frequency or velocity of the drive motor 70.
  • the flow control valve 90 is electrically connected to a controller 130 of the air conditioner 100 so that the flow control valve 90 is controlled by the controller 130.
  • the controller 130 of the air conditioner 100 measures in real-time the suction pressure of the refrigerant being sucked through the inlet pipe 3 of the scroll compressor 1, the discharge pressure of the refrigerant being discharged through the discharge pipe 5 of the scroll compressor 1, and the rotational frequency or velocity of the drive motor 70, and controls the flow control valve 90 to supply an amount of oil that can apply a suitable pressure to the back pressure chamber 28 of the main frame 20 depending on the measured suction pressure, discharge pressure, and rotational frequency or velocity. Opening degrees of the flow control valve 90 depending on the suction pressure and discharge pressure of the refrigerant and the rotational frequency or velocity of the drive motor 70 may be stored in a memory of the controller 130 as a look-up table.
  • the power of the scroll compressor 1 when the power of the scroll compressor 1 is turned on, the power is applied to the drive motor 70 so that the rotor 72 of the drive motor 70 is rotated.
  • the drive shaft 75 integrally connected to the rotor 72 is rotated and supported by the bearing metal 23 of the main frame 20 and the bearing metal 31 of the sub frame 30.
  • the orbiting scroll 60 connected to the eccentric portion 77 of the drive shaft 75 orbits based on a shaft center of the drive shaft 75. At this time, the orbiting scroll 60 is prevented from rotating by an Oldham ring, and performs an orbiting motion.
  • the plurality of orbiting scroll wraps 63 of the orbiting scroll 60 are orbited while being engaged with the plurality of fixed scroll wraps 53 of the fixed scroll 50.
  • the plurality of compression pockets P are formed by the plurality of orbiting scroll wraps 63 and the plurality of fixed scroll wraps 53.
  • the compression pockets P change in volume while moving toward the center of the fixed scroll 50 and the orbiting scroll 60, the compression pockets P suck refrigerant, compress the sucked refrigerant, and then discharge the compressed refrigerant through a discharge hole 55 of the fixed scroll 50.
  • the refrigerant discharged through the discharge hole 55 enters the discharge pipe 5 disposed in a side wall of the casing 10 via the inner space of the casing 10, and is discharged outside the casing 10 through the discharge pipe 5.
  • the refrigerant being introduced into the compression pockets P formed by the plurality of fixed scroll wraps 53 and orbiting scroll wraps 63 is sucked through the inlet port 56 that is formed in the side surface of the main frame 20 and is connected to the inlet pipe 3.
  • the oil stored in the oil storage tank 35 of the lower portion of the casing 10 is supplied toward a top end of the drive shaft 75 through the oil passage 78 formed inside the drive shaft 75 the bottom end of which is submerged in the oil storage tank 35 by the pressure acting on the inside of the casing 10.
  • the oil being supplied through the oil passage 78 formed in the drive shaft 75 fills the boss portion 65 of the orbiting scroll 60, and then fills the boss inserting groove 25 of the main frame 20 via the bearing metal 64 of the boss portion 65.
  • Some of the oil filling the boss portion 65 is supplied to the top surface of the orbiting scroll 60 via the first oil path 66 provided in the disc portion 61 of the orbiting scroll 60.
  • the oil supplied to the top surface of the orbiting scroll 60 via the first oil path 66 is introduced between the plurality of fixed scroll wraps 53 of the fixed scroll 50 and the plurality of orbiting scroll wraps 63 of the orbiting scroll 60 so that the oil performs a sealing function to prevent leakage of the refrigerant as well as a lubrication function to prevent friction between the contact surfaces between the top end surfaces of the plurality of orbiting scroll wraps 63 and a contacting surface of the fixed scroll 50 in contact with the top end surfaces of the orbiting scroll wraps 63 and between the bottom end surfaces of the plurality of fixed scroll wraps 53 of the fixed scroll 50 and a contacting surface of the orbiting scroll 60 in contact with the bottom end surfaces of the plurality of fixed scroll 50.
  • some of the oil supplied between the fixed scroll 50 and the orbiting scroll 60 is discharged through the side surface of the disc portion 61 of the orbiting scroll 60 via the second oil path 67, and then is supplied to the back pressure chamber 28.
  • the oil supplied to the back pressure chamber 28 may press the orbiting scroll 60 upwardly so that the orbiting scroll 60 is orbited with respect to the fixed scroll 50 in a sealed state.
  • the capacity of the scroll compressor 1 is varied in accordance with the load acting on the air conditioner 100. In other words, if the load becomes larger, the scroll compressor 1 increases the capacity for compressing the refrigerant by increasing the operation speed of the scroll compressor 1. When the load becomes smaller, the scroll compressor 1 decreases the capacity for compressing the refrigerant by reducing the operation speed of the scroll compressor 1.
  • the flow control valve 90 blocks the oil, which is stored in the oil storage tank 35 of the casing 10, from being supplied to the back pressure chamber 28 via the oil feed passage 80 by cutting off the oil feed passage 80.
  • the flow control valve 90 may cut off the oil feed passage 80 so that the oil stored in the oil storage tank 35 of the casing 10 is not supplied to the back pressure chamber 28 via the oil feed passage 80.
  • the scroll compressor 1 when the amount of oil being supplied via the oil passage 78 of the drive shaft 75 is small due to the low operation speed of the scroll compressor 1, in the scroll compressor 1 according to an embodiment of the present disclosure, the oil accommodated in the oil storage tank 35 of the casing 10 is supplied to the back pressure chamber 28 of the main frame 20 via the oil feed passage 80. At this time, the flow control valve 90 controls properly the amount of oil passing through the oil feed passage 80 in accordance with the suction pressure of the refrigerant being sucked into the scroll compressor 1, the discharge pressure of the refrigerant being discharged from the scroll compressor 1, and the rotational frequency or velocity of the drive motor 70.
  • the oil stored in the oil storage tank 35 of the casing 10 is supplied to the back pressure chamber 28 via the oil feed passage 80 disposed in the outside of the casing 10 as well as via the oil passage 78 of the drive shaft 75 so that a proper back pressure is generated in the back pressure chamber 28.
  • the oil of the oil storage tank 35 may be supplied to the back pressure chamber 28 via the oil feed passage 80 so that the back pressure in the back pressure chamber 28 becomes a value between the suction pressure and the discharge pressure of the refrigerant.
  • the controller 130 may be set to open the flow control valve 90 so that the oil in the oil storage tank 35 is supplied to the back pressure chamber 28 through the oil feed passage 80.
  • the scroll compressor 1 when the scroll compressor 1 is rotated at a high speed due to the high load of the scroll compressor 1 so that a high pressure is applied to the inside of the casing 10, the oil is sufficiently supplied to the back pressure chamber 28 via the oil passage 78 of the drive shaft 75 so that the compression chamber P formed by the fixed scroll 50 and the orbiting scroll 60 is effectively sealed.
  • the scroll compressor 1 when the scroll compressor 1 is rotated at a low speed due to the low load of the scroll compressor 1 so that a low pressure is applied to the inside of the casing 10, the oil of the oil storage tank 35 is directly supplied to the back pressure chamber 28 via the oil feed passage 80 disposed outside the casing 10 in addition to the oil passage 78 of the drive shaft 75 so that a proper back pressure is applied to the back pressure chamber 28.
  • the compression chamber P formed by the fixed scroll 50 and the orbiting scroll 60 is effectively sealed. Accordingly, even if the size of the load acting on the air conditioner 100 varies, the scroll compressor 1 according to an embodiment of the present disclosure may be operated at a high efficiency.
  • FIG. 4 is a cross-sectional view illustrating a scroll compressor according to another embodiment of the present disclosure.
  • a scroll compressor 1' may include a casing 10, a main frame 20, a sub frame 30, a compression mechanism 40, a drive motor 70, an oil feed passage 80', and a flow control valve 90.
  • the casing 10, the main frame 20, the sub frame 30, the compression mechanism 40, and the drive motor 70 are the same as those of the scroll compressor 1 according to the above-described embodiment; therefore, detailed descriptions thereof will be omitted.
  • the scroll compressor 1' according to the present embodiment is different from the scroll compressor 1 according to the above-described embodiment in that oil separated by an oil separator 200 is supplied to the back pressure chamber 28 instead of oil of the oil storage tank 35 of the casing 10.
  • the oil separator 200 for separating oil from the refrigerant discharged from the scroll compressor 1' is disposed in one side of the scroll compressor 1' according to an embodiment of the present disclosure.
  • An inlet 201 to which the discharge pipe 5 of the scroll compressor 1' is connected is provided in a side surface of the oil separator 200.
  • a refrigerant discharge pipe 203 is connected to a top end of the oil separator 200, and an oil return pipe 205 is provided at a bottom end of the oil separator 200.
  • the refrigerant containing oil is introduced into the oil separator 200 through the inlet 201, and the oil is separated from the refrigerant by the oil separator 200.
  • the refrigerant from which the oil has been removed is supplied to the condenser 113 (see FIG. 1 ) through the refrigerant discharge pipe 203, and the separated oil is discharged through the oil return pipe 205.
  • the oil feed passage 80' is configured to connect the oil return pipe 205 of the oil separator 200 and the back pressure chamber 28 of the casing 10. Accordingly, the main frame 20 of the scroll compressor 1' is provided with an oil feed hole 24 which is connected to a discharge end 81 of the oil feed passage 80'.
  • the oil feed hole 24 includes a vertical hole 24-1, which is connected to the back pressure chamber 28 and is parallel to the drive shaft 75 of the drive motor 70, and a horizontal hole 24-2, which is formed substantially perpendicular to the vertical hole 24-1 and is connected to the discharge end 81 of the oil feed passage 80'. Accordingly, the oil separated in the oil separator 200 may be supplied to the back pressure chamber 28 through the oil feed passage 80' connecting the oil separator 200 and the back pressure chamber 28 of the scroll compressor 1'. At this time, the oil separated in the oil separator 200 is supplied to the back pressure chamber 28 by the difference in pressure acting on the oil separator 200 and the back pressure chamber 28.
  • the oil feed passage 80' is provided with a flow control valve 90 to control the amount of oil that passes through the oil feed passage 80' and moves to the back pressure chamber 28.
  • the flow control valve 90 may be configured to adjust the amount of the oil passing through the oil feed passage 80' by controlling an opening area of the oil feed passage 80'.
  • the flow control valve 90 may use an electronic proportional solenoid valve that can adjust the opening area in accordance with electric signals.
  • the flow control valve 90 may be configured to control the amount of the oil supplied via the oil feed passage 80' in accordance with the suction pressure of the refrigerant being sucked through the inlet pipe 3 of the casing 10, the discharge pressure of the refrigerant being discharged through the discharge pipe 5 of the casing 10, and the rotational frequency or velocity of the drive motor 70.
  • the flow control valve 90 is the same as the flow control valve 90 of the scroll compressor 1 according to the above-described embodiment; therefore, a detailed description thereof will be omitted.
  • the scroll compressor 1' when the scroll compressor 1' is rotated at a high speed because a high load is applied to the air conditioner 100, the oil is sufficiently supplied to the compression chamber P formed by the fixed scroll 50 and the orbiting scroll 60 and the back pressure chamber 28 formed by the orbiting scroll 60 and the main frame 20 via the oil passage 78 of the drive shaft 75 in the same as the scroll compressor 1 according to the above-described embodiment. Accordingly, the scroll compressor 1' may efficiently compress and discharge the refrigerant being sucked. At this time, the flow control valve 90 blocks the oil collected by the oil separator 200 from being supplied to the back pressure chamber 28 by cutting off the oil feed passage 80'.
  • the flow control valve 90 properly controls the amount of oil being supplied to the back pressure chamber 28 in accordance with the load being applied to the scroll compressor 1'.
  • the flow control valve 90 properly controls the amount of the oil that passes through the oil feed passage 80' and is supplied to the back pressure chamber 28 in accordance with the suction pressure of the refrigerant being sucked into the scroll compressor 1', the discharge pressure of the refrigerant being discharged from the scroll compressor 1', and the rotational frequency or velocity of the drive motor 70.
  • the flow control valve 90 may be controlled by the controller 130 of the air conditioner 100.
  • the oil collected by the oil separator 200 is supplied to the back pressure chamber 28 via the oil feed passage 80' connected to the oil separator 200 that is disposed in the outside of the casing 10 as well as the oil passage 78 of the drive shaft 75 so that a proper pressure is generated in the back pressure chamber 28.
  • the scroll compressor 1' when the scroll compressor 1' is rotated at a high speed due to the high load of the scroll compressor 1, the oil is sufficiently supplied to the back pressure chamber 28 via the oil passage 78 of the drive shaft 75 so that the compression chamber P formed by the fixed scroll 50 and the orbiting scroll 60 is effectively sealed. Also, when the scroll compressor 1' is rotated at a low speed since a low load acts on the scroll compressor 1', the oil separated in the oil separator 200 is directly supplied to the back pressure chamber 28 via the oil feed passage 80' disposed outside the casing 10 in addition to the oil passage 78 of the drive shaft 75 so that the compression chambers P formed by the fixed scroll 50 and the orbiting scroll 60 are effectively sealed. Accordingly, even if the size of the load acting on the air conditioner 100 varies, the scroll compressor 1' according to an embodiment of the present invention may be operated at a high efficiency.
  • FIG. 5 is a cross-sectional view illustrating a scroll compressor according to another embodiment of the present invention.
  • a scroll compressor 2 may include a casing 10, a main frame 20', a sub frame 30, a compression mechanism 40, a drive motor 70, an oil feed passage 80", and a flow control valve 90.
  • the casing 10, the sub frame 30, the compression mechanism 40, and the drive motor 70 are the same as those of the scroll compressor 1 according to the above-described embodiment; therefore, detailed descriptions thereof will be omitted.
  • the main frame 20' has a structure similar to that of the scroll compressor 1 as described above, but is different from the main frame 20 of the scroll compressor 1 according to the above described embodiment in that the main frame 20' is not provided with the oil feed hole 24.
  • the scroll compressor 2 according to the present embodiment is different from the scroll compressor 1 according to the above-described embodiment in the structure in which the oil of the oil storage tank 35 of the casing 10 is supplied to not the back pressure chamber 28 but the compression chamber P.
  • the scroll compressor 2 includes an oil feed passage 80" that is provided in the outside of the casing 10 and connects the oil storage tank 35 of the casing 10 and the compression chamber P formed by the fixed scroll 50' and the orbiting scroll 60.
  • An auxiliary oil feed hole 54 is formed in a side surface of the fixed scroll 50' in order to connect the oil feed passage 80" and the compression chamber P.
  • the auxiliary oil feed hole 54 is formed so that the side surface of the body portion 51 of the fixed scroll 50' is in fluid communication with the bottom surface of the body portion 51 on which the plurality of fixed scroll wraps 53 are not formed.
  • the auxiliary oil feed hole 54 includes a horizontal hole 54-1 which is formed at the side surface of the body portion 51 and parallel to body portion 51 and a vertical hole 54-2 which is formed substantially perpendicular to the horizontal hole 54-1 and is formed to meet the horizontal hole 54-1 in a surface of the body portion 51 between the plurality of fixed scroll wraps 53.
  • the vertical hole 54-2 may be disposed adjacent to the fixed scroll wrap 53 which is located outermost.
  • a discharge end 81 of the oil feed passage 80" is connected to the horizontal hole 54-1 of the auxiliary oil feed hole 54. Accordingly, the oil stored in the oil storage tank 35 of the casing 10 may be supplied to the compression chamber P formed by the fixed scroll wraps 53 and the orbiting scroll wraps 63 through the oil feed passage 80" and the auxiliary oil feed hole 54.
  • a flow control valve 90 is provided in the oil feed passage 80" to control the amount of oil that passes through the oil feed passage 80" and is supplied to the compression chamber P.
  • the flow control valve 90 may be configured to adjust the amount of the oil passing through the oil feed passage 80" by controlling an opening area of the oil feed passage 80".
  • the flow control valve 90 may use an electronic proportional solenoid valve that can adjust the opening area in accordance with electric signals.
  • the flow control valve 90 may be configured to control the amount of the oil supplied via the oil feed passage 80" in accordance with the suction pressure of the refrigerant being sucked through the inlet pipe 3 of the casing 10, the discharge pressure of the refrigerant being discharged through the discharge pipe 5 of the casing 10, and the rotational frequency or velocity of the drive motor 70.
  • the flow control valve 90 is the same as the flow control valve 90 of the scroll compressor 1 according to the above-described embodiment; therefore, a detailed description thereof will be omitted.
  • the scroll compressor 2 when the scroll compressor 2 is rotated at a high speed because a high load is applied to the air conditioner 100, the oil is sufficiently supplied to the compression chamber P formed by the fixed scroll 50' and the orbiting scroll 60 via the oil passage 78 of the drive shaft 75 and the first oil path 66 of the orbiting scroll 60 in the same as the scroll compressor 1 according to the above-described embodiment. Also, some of the oil supplied to the compression chamber P may be supplied to the back pressure chamber 28 via the second oil path 67 provided in the orbiting scroll 60. Accordingly, the scroll compressor 2 may efficiently compress and discharge the refrigerant being sucked. At this time, the flow control valve 90 blocks the oil stored in the oil storage tank 35 of the casing 10 from being supplied to the compression chamber P by cutting off the oil feed passage 80".
  • the flow control valve 90 properly controls the amount of oil being supplied to the compression chamber P via the oil feed passage 80" in accordance with the load being applied to the scroll compressor 2.
  • the flow control valve 90 properly controls the amount of the oil that passes through the oil feed passage 80" and is supplied to the compression chamber P in accordance with the suction pressure of the refrigerant being sucked into the scroll compressor 2, the discharge pressure of the refrigerant being discharged from the scroll compressor 2, and the rotational frequency or velocity of the drive motor 70.
  • the flow control valve 90 may be controlled by the controller 130 of the air conditioner 100.
  • the oil of the oil storage tank 35 is supplied to the compression chamber P via the oil feed passage 80" that is disposed in the outside of the casing 10 and is connected to the oil storage tank 35 as well as the oil passage 78 of the drive shaft 75 so that the compression chamber P is sufficiently sealed. Also, the oil is supplied to the back pressure chamber 28 through the second oil path 67 of the orbiting scroll 60 so that a proper back pressure is generated in the back pressure chamber 28.
  • the scroll compressor 2 when the scroll compressor 2 is rotated at a high speed since the high load is applied to the scroll compressor 2, the oil is sufficiently supplied to the compression chamber P and the back pressure chamber 28 via the oil passage 78 of the drive shaft 75 so that the compression chamber P formed by the fixed scroll 50' and the orbiting scroll 60 is effectively sealed.
  • the scroll compressor 2 when the scroll compressor 2 is rotated at a low speed since a low load is applied to the scroll compressor 2, the oil of the oil storage tank 35 of the casing 10 is directly supplied to the compression chamber P via the oil feed passage 80" disposed outside the casing 10 in addition to the oil passage 78 of the drive shaft 75 so that the compression chamber P formed by the fixed scroll 50' and the orbiting scroll 60 is effectively sealed. Accordingly, even if the size of the load acting on the air conditioner 100 varies, the scroll compressor 2 according to an embodiment of the present invention may be operated at a high efficiency.
  • FIG. 6 is a cross-sectional view illustrating a scroll compressor according to another embodiment of the present invention.
  • a scroll compressor 2' may include a casing 10, a main frame 20', a sub frame 30, a compression mechanism 40, a drive motor 70, an oil feed passage 80"', and a flow control valve 90.
  • the casing 10, the main frame 20', the sub frame 30, the compression mechanism 40, and the drive motor 70 are the same as those of the scroll compressor 2 according to the above-described embodiment; therefore, detailed descriptions thereof will be omitted.
  • the scroll compressor 2' according to the present embodiment is different from the scroll compressor 2 according to the above-described embodiment in that it further includes a vapor refrigerant injection pipe 300 for supplying refrigerant to the compression chamber P formed by the fixed scroll 50' and the orbiting scroll 60.
  • a refrigerant injection hole 57 is provided in the one side surface of the fixed scroll 50'.
  • the refrigerant injection hole 57 is formed so that the one side surface of the body portion 51 of the fixed scroll 50' is in fluid communication with a portion of the bottom surface of the body portion 51 on which the plurality of fixed scroll wraps 53 are not formed.
  • the refrigerant injection hole 57 includes a horizontal hole 57-1 which is formed at the one side surface of the body portion 51 and parallel to body portion 51 and a vertical hole 57-2 which is formed substantially perpendicular to the horizontal hole 57-1 and is formed to meet the horizontal hole 57-1 in a portion of the bottom surface of the body portion 51 between the plurality of fixed scroll wraps 53.
  • the vertical hole 57-2 may be disposed at a portion of the bottom surface of the body portion 51 adjacent to the fixed scroll wrap 53 which is located outermost.
  • the vapor refrigerant injection pipe 300 is connected to the horizontal hole 57-1 of the refrigerant injection hole 57.
  • the oil feed passage 80'" of the scroll compressor 2' is disposed to connect the vapor refrigerant injection pipe 300 and the oil storage tank 35 of the casing 10 in the outside of the casing 10.
  • a discharge end 81 of the oil feed passage 80'" is connected to the vapor refrigerant injection pipe 300. Accordingly, the oil stored in the oil storage tank 35 of the casing 10 is supplied to the vapor refrigerant injection pipe 300 through the oil feed passage 80"', and then is supplied to the compression chamber P formed by the fixed scroll 50 and the orbiting scroll 60 along with the refrigerant being introduced into the vapor refrigerant injection pipe 300.
  • a flow control valve 90 is provided in the oil feed passage 80'" to control the amount of oil that passes through the oil feed passage 80'" and is supplied to the vapor refrigerant injection pipe 300.
  • the flow control valve 90 may be configured to adjust the amount of the oil passing through the oil feed passage 80'" by controlling an opening area of the oil feed passage 80"'.
  • the flow control valve 90 may use an electronic proportional solenoid valve that can adjust the opening area in accordance with electric signals.
  • the flow control valve 90 may be configured to control the amount of the oil supplied via the oil feed passage 80'" in accordance with the suction pressure of the refrigerant being sucked through the inlet pipe 3 of the casing 10, the discharge pressure of the refrigerant being discharged through the discharge pipe 5 of the casing 10, and the rotational frequency or velocity of the drive motor 70.
  • the flow control valve 90 is the same as the flow control valve 90 of the scroll compressor 1 according to the above-described embodiment; therefore, a detailed description thereof will be omitted.
  • the scroll compressor 2' when the scroll compressor 2' is rotated at a high speed because a high load is applied to the air conditioner 100, the oil is sufficiently supplied to the compression chamber P formed by the fixed scroll 50' and the orbiting scroll 60 via the oil passage 78 of the drive shaft 75 and the first oil path 66 of the orbiting scroll 60 in the same as the scroll compressor 1 according to the above-described embodiment. Also, some of the oil supplied to the compression chamber P may be supplied to the back pressure chamber 28 via the second oil path 67 provided in the orbiting scroll 60. Accordingly, the scroll compressor 2' may efficiently compress and discharge the refrigerant being sucked.
  • the flow control valve 90 blocks the oil stored in the oil storage tank 35 of the casing 10 from being supplied to the compression chamber P via the vapor refrigerant injection pipe 300 by cutting off the oil feed passage 80"'. Accordingly, only vapor refrigerant is supplied to the compression chamber P through the vapor refrigerant injection pipe 300.
  • the flow control valve 90 properly controls the amount of oil being supplied to the vapor refrigerant injection pipe 300 via the oil feed passage 80'" in accordance with the load being applied to the scroll compressor 2'.
  • the flow control valve 90 properly controls the amount of the oil that passes through the oil feed passage 80'" and is supplied to the vapor refrigerant injection pipe 300 in accordance with the suction pressure of the refrigerant being sucked into the scroll compressor 2', the discharge pressure of the refrigerant being discharged from the scroll compressor 2, and the rotational frequency or velocity of the drive motor 70.
  • the flow control valve 90 may be controlled by the controller 130 of the air conditioner 100.
  • the oil of the oil storage tank 35 is supplied to the vapor refrigerant injection pipe 300 via the oil feed passage 80"', which is disposed in the outside of the casing 10 and is connected to the oil storage tank 35, and then is supplied to the compression chamber P together with the refrigerant through the vapor refrigerant injection pipe 300 as well as the oil passage 78 of the drive shaft 75 so that the compression chamber P is sufficiently sealed. Also, some of the oil in the compression chamber P is supplied to the back pressure chamber 28 through the second oil path 67 of the orbiting scroll 60 so that a proper back pressure is generated in the back pressure chamber 28.
  • the scroll compressor 2' when the scroll compressor 2' is rotated at a high speed since a high load is applied to the scroll compressor 2', the oil is sufficiently supplied to the compression chamber P and the back pressure chamber 28 via the oil passage 78 of the drive shaft 75 so that the compression chamber P formed by the fixed scroll 50' and the orbiting scroll 60 is effectively sealed.
  • the scroll compressor 2' when the scroll compressor 2' is rotated at a low speed since a low load is applied to the scroll compressor 2', the oil of the oil storage tank 35 of the casing 10 is directly supplied to the compression chamber P with the refrigerant via the oil feed passage 80'" and the vapor refrigerant injection pipe 300 disposed outside the casing 10 in addition to the oil passage 78 of the drive shaft 75 so that the compression chamber P formed by the fixed scroll 50' and the orbiting scroll 60 is effectively sealed. Accordingly, even if the size of the load acting on the air conditioner 100 varies, the scroll compressor 2' according to an embodiment of the present disclosure may be operated at a high efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Claims (12)

  1. Compresseur à spirale qui comporte un carter (10), un moteur d'entraînement (70) logé dans le carter (10), une spirale à mouvement orbital (60) ayant une partie formant disque (61) avec une partie formant bossage (65) s'étendant depuis une première surface latérale et des enveloppes de spirale à mouvement orbital (63) s'étendant depuis une deuxième surface latérale, la partie formant disque (61) ayant un premier trajet d'huile (66) ayant une entrée et une sortie, un arbre d'entraînement (75) s'étendant depuis le moteur (70) ayant une partie à excentrique (77) insérée dans la partie formant bossage (65) à des fins de rotation de la spirale à mouvement orbital (60) par le moteur d'entraînement (70), l'arbre d'entraînement (75) ayant un passage d'huile (78) à des fins de fourniture en huile en provenance d'un réservoir de stockage d'huile (35) mis en œuvre dans le carter (10) jusqu'à la partie formant bossage (65) sous pression, une spirale fixe (50) mise en prise avec la spirale à mouvement orbital (60), la spirale fixe (50) comportant des enveloppes de spirale fixe (53) mises en prise avec les enveloppes de spirale à mouvement orbital (63), la sortie du premier trajet d'huile (66) étant formée dans la deuxième surface latérale de la partie formant disque (61) de telle sorte que l'huile s'écoule en provenance de la sortie et entre les surfaces de contact des enveloppes de spirale fixe et à mouvement orbital (53, 63), une chambre de contre-pression (28) se trouvant à proximité de la spirale à mouvement orbital (60), un tuyau d'entrée (3) qui est disposé dans le carter (10) et qui fournit du fluide frigorigène à une chambre de compression formée par la spirale à mouvement orbital (60) et la spirale fixe (50), et un tuyau de décharge (5) qui est disposé dans le carter (10) et qui décharge le fluide frigorigène déchargé en provenance de la chambre de compression à l'extérieur du carter (10),
    un passage d'alimentation en huile (80) est configuré pour raccorder la chambre de contre-pression (28) et le réservoir de stockage d'huile (35) de telle sorte que l'huile du réservoir de stockage d'huile (35) est fournie à la chambre de contre-pression (28) ; et
    une soupape de régulation de débit (90) est disposée dans le passage d'alimentation en huile (80), la soupape de régulation de débit (90) étant configurée pour réguler une quantité d'huile à fournir à la chambre de contre-pression (28) par le biais du passage d'alimentation en huile (80),
    dans lequel la soupape de régulation de débit (90) régule la quantité d'huile à fournir par le biais du passage d'alimentation en huile (80) en fonction d'une pression d'aspiration du fluide frigorigène à aspirer au travers du tuyau d'entrée (3), une pression de décharge du fluide frigorigène à décharger au travers du tuyau de décharge (5), et une vitesse de rotation du moteur d'entraînement (70), caractérisé en ce que la partie formant bossage (65) communique avec l'entrée du premier trajet d'huile (66) de telle sorte que l'huile s'écoule directement en provenance de la partie formant bossage (65) jusque dans le premier trajet d'huile (66) au travers de l'entrée, et en ce que la partie formant disque (61) de la spirale à mouvement orbital (60) comporte un deuxième trajet d'huile (67) raccordant la deuxième surface latérale de la partie formant disque (61) avec la chambre de contre-pression (28) de telle sorte que l'huile est déchargée d'entre les première et deuxième enveloppes de spirale (53, 63) jusque dans la chambre de contre-pression (28) au travers dudit deuxième trajet d'huile (67).
  2. Compresseur à spirale qui comporte un carter (10), un moteur d'entraînement (70) logé dans le carter (10), une spirale à mouvement orbital (60) ayant une partie formant disque (61) avec une partie formant bossage (65) s'étendant depuis une première surface latérale et des enveloppes de spirale à mouvement orbital (63) s'étendant depuis une deuxième surface latérale, la partie formant disque (61) ayant un premier trajet d'huile (66) ayant une entrée et une sortie, un arbre d'entraînement (75) s'étendant depuis le moteur (70) ayant une partie à excentrique (75) insérée dans la partie formant bossage (65) à des fins de rotation de la spirale à mouvement orbital (60) par le moteur d'entraînement (70), l'arbre d'entraînement (75) ayant un passage d'huile (78) à des fins de fourniture en huile en provenance d'un réservoir de stockage d'huile (35) mis en œuvre dans le carter (10) jusqu'à la partie formant bossage (65) sous pression, une spirale fixe (50) mise en prise avec la spirale à mouvement orbital (60), la spirale fixe (50) comportant des enveloppes de spirale fixe (53) mises en prise avec les enveloppes de spirale à mouvement orbital (63), la sortie du premier trajet d'huile (66) étant formée dans la deuxième surface latérale de la partie formant disque (61) de telle sorte que l'huile s'écoule en provenance de la sortie et entre les surfaces de contact des enveloppes de spirale fixe et à mouvement orbital (53, 63), une chambre de contre-pression (28) se trouvant à proximité de la spirale à mouvement orbital (60), un tuyau d'entrée (3) qui est disposé dans le carter (10) et qui fournit du fluide frigorigène à une chambre de compression formée par la spirale à mouvement orbital (60) et la spirale fixe (50), et un tuyau de décharge (203) qui est disposé dans le carter (10) et qui décharge le fluide frigorigène déchargé en provenance de la chambre de compression à l'extérieur du carter (10), et un séparateur d'huile (200) qui est raccordé au tuyau de décharge (203), et qui sépare et collecte l'huile en provenance du fluide frigorigène déchargé, caractérisé en ce que
    un passage d'alimentation en huile (80') est configuré pour raccorder le séparateur d'huile (200) et la chambre de contre-pression (28) de telle sorte que l'huile collectée dans le séparateur d'huile (200) est fournie à la chambre de contre-pression (28), et
    une soupape de régulation de débit (90) est disposée dans le passage d'alimentation en huile (80'), la soupape de régulation de débit (90) étant configurée pour réguler une quantité d'huile à fournir à la chambre de contre-pression (28) par le biais du passage d'alimentation en huile (80'),
    dans lequel la soupape de régulation de débit (90) régule la quantité d'huile à fournir par le biais du passage d'alimentation en huile (80') en fonction d'une pression d'aspiration du fluide frigorigène à aspirer au travers du tuyau d'entrée (3), une pression de décharge du fluide frigorigène à décharger au travers du tuyau de décharge (203), et une vitesse de rotation du moteur d'entraînement (70), dans lequel la partie formant bossage (65) communique avec l'entrée du premier trajet d'huile (66) de telle sorte que l'huile s'écoule directement en provenance de la partie formant bossage (65) jusque dans le premier trajet d'huile (66) au travers de l'entrée, et en ce que la partie formant disque (61) de la spirale à mouvement orbital (60) comporte un deuxième trajet d'huile (67) raccordant la deuxième surface latérale de la partie formant disque (61) avec la chambre de contre-pression (28) de telle sorte que l'huile est déchargée d'entre les première et deuxième enveloppes de spirale (53, 63) jusque dans la chambre de contre-pression (28) au travers dudit deuxième trajet d'huile (67).
  3. Compresseur à spirale qui comporte un carter (10), un moteur d'entraînement (70) logé dans le carter, une spirale à mouvement orbital (60) ayant une partie formant disque (61) avec une partie formant bossage (65) s'étendant depuis une première surface latérale et des enveloppes de spirale à mouvement orbital (63) s'étendant depuis une deuxième surface latérale, la partie formant disque (61) ayant un premier trajet d'huile (66) ayant une entrée et une sortie, un arbre d'entraînement (75) s'étendant depuis le moteur (70) ayant une partie à excentrique (75) insérée dans la partie formant bossage (65) à des fins de rotation de la spirale à mouvement orbital (60) par le moteur d'entraînement (70), l'arbre d'entraînement (75) ayant un passage d'huile (78) à des fins de fourniture en huile en provenance d'un réservoir de stockage d'huile (35) mis en œuvre dans le carter (10) jusqu'à la partie formant bossage (65) sous pression, une spirale fixe (50) mise en prise avec la spirale à mouvement orbital (60), la spirale fixe (50) comportant des enveloppes de spirale fixe (53) mises en prise avec les enveloppes de spirale à mouvement orbital (63), la sortie du premier trajet d'huile (66) étant formée dans la deuxième surface latérale de la partie formant disque (61) de telle sorte que l'huile s'écoule en provenance de la sortie et entre les surfaces de contact des enveloppes de spirale fixe et à mouvement orbital (53, 63), une chambre de contre-pression (28) se trouvant à proximité de la spirale à mouvement orbital (60), un tuyau d'entrée (3) qui est disposé dans le carter (10) et qui fournit du fluide frigorigène à une chambre de compression formée par la spirale à mouvement orbital (60) et la spirale fixe (50), et un tuyau de décharge (5) qui est disposé dans le carter (10) et qui décharge le fluide frigorigène déchargé en provenance de la chambre de compression à l'extérieur du carter (10),
    un passage d'alimentation en huile (80") est configuré pour raccorder la chambre de compression et le réservoir de stockage d'huile (35) de telle sorte que l'huile du réservoir de stockage d'huile (35) est fournie à la chambre de compression ; et
    une soupape de régulation de débit (90) est disposée dans le passage d'alimentation en huile (80"), la soupape de régulation de débit (90) étant configurée pour réguler une quantité d'huile à fournir à la chambre de compression par le biais du passage d'alimentation en huile (80"),
    dans lequel la soupape de régulation de débit (90) régule la quantité d'huile à fournir par le biais du passage d'alimentation en huile (80") en fonction d'une pression d'aspiration du fluide frigorigène à aspirer au travers du tuyau d'entrée (3), une pression de décharge du fluide frigorigène à décharger au travers du tuyau de décharge, et une vitesse de rotation du moteur d'entraînement (70), caractérisé en ce que la partie formant bossage (65) communique avec l'entrée du premier trajet d'huile (66) de telle sorte que l'huile s'écoule directement en provenance de la partie formant bossage (65) jusque dans le premier trajet d'huile (66) au travers de l'entrée, et en ce que la partie formant disque (61) de la spirale à mouvement orbital (60) comporte un deuxième trajet d'huile (67) raccordant la deuxième surface latérale de la partie formant disque (61) avec la chambre de contre-pression (28) de telle sorte que l'huile est déchargée d'entre les première et deuxième enveloppes de spirale (53, 63) jusque dans la chambre de contre-pression (28) au travers dudit deuxième trajet d'huile (67).
  4. Compresseur à spirale qui comporte un carter (10), un moteur d'entraînement (70) logé dans le carter (10), une spirale à mouvement orbital (60) ayant une partie formant disque (61) avec une partie formant bossage (65) s'étendant depuis une première surface latérale et des enveloppes de spirale à mouvement orbital (63) s'étendant depuis une deuxième surface latérale, la partie formant disque (61) ayant un premier trajet d'huile (67) ayant une entrée et une sortie, un arbre d'entraînement (75) s'étendant depuis le moteur (70) ayant une partie à excentrique (75) insérée dans la partie formant bossage (65) à des fins de rotation de la spirale à mouvement orbital (60) par le moteur d'entraînement (70), l'arbre d'entraînement (75) ayant un passage d'huile (78) à des fins de fourniture en huile en provenance d'un réservoir de stockage d'huile (35) mis en œuvre dans le carter (10) jusqu'à la partie formant bossage (65) sous pression, une spirale fixe (50) mise en prise avec la spirale à mouvement orbital (60), la spirale fixe (50) comportant des enveloppes de spirale fixe (53) mises en prise avec les enveloppes de spirale à mouvement orbital (63), la sortie du premier trajet d'huile (66) étant formée dans la deuxième surface latérale de la partie formant disque (61) de telle sorte que l'huile s'écoule en provenance de la sortie et entre les surfaces de contact des enveloppes de spirale fixe et à mouvement orbital (53, 63), une chambre de contre-pression (28) se trouvant à proximité de la spirale à mouvement orbital (60), un tuyau d'entrée (3) qui est disposé dans le carter (10) et qui fournit du fluide frigorigène à une chambre de compression formée par la spirale à mouvement orbital (60) et la spirale fixe (50), et un tuyau de décharge (5) qui est disposé dans le carter (10) et qui décharge le fluide frigorigène déchargé en provenance de la chambre de compression à l'extérieur du carter (10), et un tuyau d'injection de fluide frigorigène en phase vapeur (300),
    un passage d'alimentation en huile (80''') est configuré pour raccorder le réservoir de stockage d'huile (35) et le tuyau d'injection de fluide frigorigène en phase vapeur (300) de telle sorte que l'huile du réservoir de stockage d'huile (35) est fournie à la chambre de compression au travers du tuyau d'injection de fluide frigorigène en phase vapeur (300) ; et
    une soupape de régulation de débit (90) est disposée dans le passage d'alimentation en huile (80'''), la soupape de régulation de débit (90) étant configurée pour réguler une quantité d'huile à fournir au tuyau d'injection de fluide frigorigène en phase vapeur (300) par le biais du passage d'alimentation en huile (80'''),
    dans lequel la soupape de régulation de débit (90) régule la quantité d'huile à fournir par le biais du passage d'alimentation en huile (80''') en fonction d'une pression d'aspiration du fluide frigorigène à aspirer au travers du tuyau d'entrée (3), une pression de décharge du fluide frigorigène à décharger au travers du tuyau de décharge (5), et une vitesse de rotation du moteur d'entraînement (70), caractérisé en ce que la partie formant bossage (65) communique avec l'entrée du premier trajet d'huile (66) de telle sorte que l'huile s'écoule directement en provenance de la partie formant bossage (65) jusque dans le premier trajet d'huile (66) au travers de l'entrée, et en ce que la partie formant disque (61) de la spirale à mouvement orbital (60) comporte un deuxième trajet d'huile (67) raccordant la deuxième surface latérale de la partie formant disque (61) avec la chambre de contre-pression (28) de telle sorte que l'huile est déchargée d'entre les première et deuxième enveloppes de spirale (53, 63) jusque dans la chambre de contre-pression (28) au travers dudit deuxième trajet d'huile (67).
  5. Compresseur à spirale selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la soupape de régulation de débit (90) est configurée pour réguler une superficie d'ouverture du passage d'alimentation en huile (80, 80', 80", 80''').
  6. Compresseur à spirale selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le compresseur à spirale est disposé dans une unité extérieure (110) d'un climatiseur, et la soupape de régulation de débit (90) est commandée par un dispositif de commande (130) du climatiseur.
  7. Compresseur à spirale selon la revendication 1 ou la revendication 2, comportant par ailleurs :
    un cadre principal (20) configuré pour supporter la spirale à mouvement orbital (60) et comportant la chambre de contre-pression (28),
    dans lequel le cadre principal (20) comporte un trou d'alimentation en huile (24) raccordé à une extrémité de décharge du passage d'alimentation en huile (80).
  8. Compresseur à spirale selon la revendication 7, dans lequel le trou d'alimentation en huile (24) comporte :
    un trou vertical (24-1) qui est raccordé à la chambre de contre-pression (28) et qui est parallèle par rapport à un arbre d'entraînement (75) du moteur d'entraînement (70) ; et
    un trou horizontal (24-2) qui est formé de manière perpendiculaire par rapport au trou vertical (24-1) et qui est raccordé à l'extrémité de décharge du passage d'alimentation en huile (80).
  9. Compresseur à spirale selon l'une quelconque des revendications 1 à 4, caractérisé en ce que, quand le moteur d'entraînement (70) est mis en rotation à une faible vitesse, la soupape de régulation de débit (90) augmente une quantité d'huile traversant le passage d'alimentation en huile (80) de telle sorte qu'une contre-pression de la chambre de contre-pression (28) est une valeur entre la pression d'aspiration et la pression de décharge.
  10. Compresseur à spirale selon l'une quelconque des revendications 1 à 4, caractérisé en ce que, quand la pression de décharge du compresseur à spirale est au maximum, la soupape de régulation de débit (90) coupe le passage d'alimentation en huile (80).
  11. Compresseur à spirale selon la revendication 3, caractérisé en ce que
    la spirale fixe (50) comporte un trou d'alimentation en huile auxiliaire (54) raccordant la chambre de compression et une extrémité de décharge du passage d'alimentation en huile (80).
  12. Climatiseur comportant :
    une unité extérieure (110) dans laquelle est disposé un compresseur à spirale selon l'une quelconque des revendications 1 à 11 ; et
    un dispositif de commande (130) configuré pour commander le compresseur à spirale en fonction de conditions définies.
EP15875538.9A 2014-12-31 2015-12-03 Compresseur à spirale et climatiseur le comprenant Active EP3194783B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140195251A KR20160081431A (ko) 2014-12-31 2014-12-31 스크롤 압축기 및 이를 구비한 공기조화장치
PCT/KR2015/013112 WO2016108444A1 (fr) 2014-12-31 2015-12-03 Compresseur à spirale et climatiseur le comprenant

Publications (3)

Publication Number Publication Date
EP3194783A4 EP3194783A4 (fr) 2017-07-26
EP3194783A1 EP3194783A1 (fr) 2017-07-26
EP3194783B1 true EP3194783B1 (fr) 2021-06-16

Family

ID=56163641

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15875538.9A Active EP3194783B1 (fr) 2014-12-31 2015-12-03 Compresseur à spirale et climatiseur le comprenant

Country Status (7)

Country Link
US (1) US20160186754A1 (fr)
EP (1) EP3194783B1 (fr)
KR (1) KR20160081431A (fr)
CN (1) CN105736368A (fr)
BR (1) BR112017009788A2 (fr)
RU (1) RU2017122967A (fr)
WO (1) WO2016108444A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6582130B2 (ja) * 2016-05-10 2019-09-25 株式会社日立産機システム スクロール式流体機械
JP6783579B2 (ja) 2016-08-04 2020-11-11 サンデンホールディングス株式会社 スクロール圧縮機
JP2018100641A (ja) * 2016-12-21 2018-06-28 三菱重工サーマルシステムズ株式会社 圧縮機ユニット及びこれを備えた室外機
KR20200040802A (ko) * 2017-08-16 2020-04-20 에머슨 클라이미트 테크놀로지스 (쑤저우) 코., 엘티디. 회전 메커니즘
CN107893758B (zh) * 2017-11-06 2024-04-16 珠海格力电器股份有限公司 涡旋压缩机及具有其的空调器
JP7143128B2 (ja) * 2018-06-29 2022-09-28 三菱重工サーマルシステムズ株式会社 圧縮機
JP6737308B2 (ja) * 2018-07-05 2020-08-05 ダイキン工業株式会社 スクロール圧縮機
JP7165550B2 (ja) * 2018-09-28 2022-11-04 三菱重工サーマルシステムズ株式会社 スクロール圧縮機
JP7389319B2 (ja) * 2019-07-29 2023-11-30 ダイキン工業株式会社 圧縮機
KR20210042690A (ko) 2019-10-10 2021-04-20 엘지전자 주식회사 전동식 압축기
KR102340237B1 (ko) * 2020-04-21 2021-12-16 엘지전자 주식회사 압축기
CN112032046A (zh) * 2020-08-14 2020-12-04 广州万宝集团压缩机有限公司 一种涡旋盘组件、压缩机和调温设备
FR3114623B1 (fr) * 2020-09-29 2022-09-09 Danfoss Commercial Compressors Compresseur à spirales ayant un système d’injection d’huile
CN113550907B (zh) * 2021-08-23 2023-09-01 广东美芝制冷设备有限公司 压缩机及制冷设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617676B2 (ja) * 1985-02-15 1994-03-09 株式会社日立製作所 ヘリウム用スクロ−ル圧縮機
JPS61237893A (ja) * 1985-04-12 1986-10-23 Hitachi Ltd スクロ−ル圧縮機
JP2865776B2 (ja) * 1990-03-07 1999-03-08 株式会社日立製作所 スクロール圧縮機
JP2005036661A (ja) * 2003-07-16 2005-02-10 Matsushita Electric Ind Co Ltd スクロール圧縮機
US8522568B2 (en) * 2008-02-28 2013-09-03 Daikin Industries, Ltd. Refrigeration system
JP2012225226A (ja) * 2011-04-18 2012-11-15 Nippon Soken Inc スクロール圧縮機
US9470230B2 (en) * 2011-04-25 2016-10-18 Johnson Controls-Hitachi Air Conditioning Technology (Hong Kong) Limited Refrigerant compressor and refrigeration cycle apparatus using the same
CN103423156B (zh) * 2012-05-16 2016-04-13 珠海格力节能环保制冷技术研究中心有限公司 涡旋式压缩机及使用该涡旋式压缩机的空调器

Also Published As

Publication number Publication date
RU2017122967A (ru) 2019-01-31
US20160186754A1 (en) 2016-06-30
CN105736368A (zh) 2016-07-06
WO2016108444A1 (fr) 2016-07-07
EP3194783A4 (fr) 2017-07-26
BR112017009788A2 (pt) 2018-01-30
RU2017122967A3 (fr) 2019-01-31
KR20160081431A (ko) 2016-07-08
EP3194783A1 (fr) 2017-07-26

Similar Documents

Publication Publication Date Title
EP3194783B1 (fr) Compresseur à spirale et climatiseur le comprenant
KR102243681B1 (ko) 스크롤 압축기
EP2115302B1 (fr) Compresseur et dispositif de blocage d'huile pour celui-ci
EP1681467B1 (fr) Compresseur rotatif multi-étages
EP3048304B1 (fr) Compresseur à spirale
US20100122549A1 (en) Hermetic compressor and refrigeration cycle device having the same
JP2009030612A (ja) 密閉型圧縮機及びそれを適用した冷凍サイクル装置
JP4519489B2 (ja) スクロール圧縮機
EP2020577B1 (fr) Compresseur
JP2009097418A (ja) 密閉形スクロール圧縮機
US20220025884A1 (en) High pressure scroll compressor
JP5348596B2 (ja) 密閉形スクロール圧縮機
JP4604968B2 (ja) スクロール圧縮機
JP2020153339A (ja) スクロール圧縮機
EP2108842B1 (fr) Compresseur à spirales
JP4720649B2 (ja) 電動圧縮機
JP2012241680A (ja) スクロール圧縮機
JP7486149B2 (ja) スクロール圧縮機
JP4301122B2 (ja) スクロール圧縮機
KR102180614B1 (ko) 스크롤 압축기
US20230101084A1 (en) Scroll compressor
JP4301120B2 (ja) スクロール圧縮機
JP2009062858A (ja) 横形圧縮機
JP6471525B2 (ja) 冷媒圧縮機
JP2012002226A (ja) スクロール圧縮機

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170418

A4 Supplementary search report drawn up and despatched

Effective date: 20170627

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210112

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015070544

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1402559

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210916

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1402559

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210616

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210917

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210916

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211018

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211122

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015070544

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

26N No opposition filed

Effective date: 20220317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211203

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211203

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211203

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015070544

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616