EP3192090B1 - Magnetkern, induktives bauteil und verfahren zum herstellen eines magnetkerns - Google Patents

Magnetkern, induktives bauteil und verfahren zum herstellen eines magnetkerns Download PDF

Info

Publication number
EP3192090B1
EP3192090B1 EP15749777.7A EP15749777A EP3192090B1 EP 3192090 B1 EP3192090 B1 EP 3192090B1 EP 15749777 A EP15749777 A EP 15749777A EP 3192090 B1 EP3192090 B1 EP 3192090B1
Authority
EP
European Patent Office
Prior art keywords
magnetic core
magnetic
magnetic material
materials
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15749777.7A
Other languages
English (en)
French (fr)
Other versions
EP3192090A1 (de
Inventor
Alexander Gerfer
Dragan Dinulovic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuerth Elektronik Eisos GmbH and Co KG
Original Assignee
Wuerth Elektronik Eisos GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuerth Elektronik Eisos GmbH and Co KG filed Critical Wuerth Elektronik Eisos GmbH and Co KG
Publication of EP3192090A1 publication Critical patent/EP3192090A1/de
Application granted granted Critical
Publication of EP3192090B1 publication Critical patent/EP3192090B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/131Amorphous metallic alloys, e.g. glassy metals containing iron or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/132Amorphous metallic alloys, e.g. glassy metals containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/263Fastening parts of the core together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0033Printed inductances with the coil helically wound around a magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F2003/106Magnetic circuits using combinations of different magnetic materials

Definitions

  • the invention relates to a magnetic core for an inductive component, manufactured using thin-film technology.
  • the invention also relates to a method for producing a magnetic core using thin-film technology.
  • an inductive component manufactured using thin-film technology, which contains a magnetic core in the form of a ring and two coil devices.
  • the magnetic core is made from a single magnetic material using thin-film technology.
  • a magnetic core in the form of a slotted circular ring which has an inner core and an outer core.
  • the outer core has multiple layers of an amorphous magnetic material, an insulating film, and an insulating layer between the amorphous magnetic material and the insulating film.
  • the inner magnetic core is made up of multiple layers of the amorphous magnetic material and insulating film. The individual layers of the amorphous magnetic material are always separated from one another both in the inner core and in the outer core by a layer of the insulating film.
  • a magnetic core which consists of two different magnetic materials and forms a closed ring. Between two soft magnetic layers (eg made of NiFe alloy) there is a hard magnetic layer (eg made of Nd-Fe-B or Al-Ni-Co) to set the permeability of the core.
  • the layers are produced using thin-film technology.
  • an inductive component in which the magnetic core is designed in a ring shape from alternating areas of at least two different materials.
  • the core contains ferrite material, oxide ceramic and superparamagnetic material.
  • the invention aims to improve a magnetic core for an inductive component and a method for producing a magnetic core using thin-film technology.
  • a magnetic core for an inductive component produced using thin-film technology, in which the magnetic core consists of at least two different magnetic materials, the magnetic core forming a closed ring and the ring having a circular, oval, elliptical, square or rectangular shape .
  • the various magnetic materials are selected from the materials Ni, NiFe, CoFe, CoP and CoZrTi.
  • the different magnetic materials of the magnetic core alternate over the length, the different magnetic materials each occupying the complete cross section of the magnetic core.
  • the different magnetic materials each extend over the entire length of the magnetic core and the magnetic core is formed by means of at least one inner ring made of a first magnetic material and an outer ring made of a second magnetic material and a cross section of the magnetic core is made of different magnetic materials Materials formed.
  • the saturation behavior of the magnetic core can be improved by using at least two different magnetic materials in the manufacture of a magnetic core using thin-film technology. Above all, it is possible to specifically influence the saturation behavior of the magnetic core so that it can be optimally adjusted to the intended application.
  • the different magnetic materials alternate over the length of the magnetic core.
  • the magnetic core thus consists of several sections which consist of different magnetic materials.
  • the various magnetic materials in the first embodiment each occupy the complete cross section of the magnetic core.
  • the various sections of the magnetic core thus consist entirely of a single magnetic material and, figuratively speaking, are placed one behind the other in order to then form the complete magnetic core.
  • the various magnetic materials each extend over the entire length of the magnetic core.
  • a plurality of sections made of different magnetic material are not provided in the longitudinal direction of the magnetic core, but rather in the transverse direction. For example, several layers of different magnetic materials are placed on top of one another in order to form the complete magnetic core.
  • a cross section of the magnetic core is formed from different magnetic materials.
  • the magnetic core forms a closed ring, the ring having a circular, oval, elliptical, square or rectangular shape.
  • a square or rectangular shape can have pointed or rounded corners.
  • the shape of the magnetic core influences the inductance of the finished inductive component and can therefore be selected according to the intended application.
  • the magnetic core is formed by means of at least one outer ring made of a first magnetic material and an inner ring made of a second magnetic material.
  • the desired saturation behavior of the magnetic core can be set, for example through the thickness of the outer and inner rings and also the selection of the first magnetic material and the second magnetic material.
  • the various magnetic materials are selected from the materials Ni, NiFe, CoFe, CoP and CoZrTi.
  • a coil surrounding the magnetic core in sections is produced using thin-film technology.
  • the complete inductive component can be manufactured using thin-film technology.
  • the problem on which the invention is based is also solved by a method for producing a magnetic core, in which the application of a first magnetic material by means of thin-film technology to a substrate and the application of a second magnetic material by means of thin-film technology to the substrate are provided, the first magnetic material at least sections directly adjacent to the second magnetic material.
  • a magnetic core can be manufactured using thin-film technology and at the same time the desired properties of the magnetic core, especially its saturation behavior, can be set by selecting different magnetic materials and also the dimensions of the sections of the magnetic core made from the different materials.
  • the first magnetic material is applied to the substrate in the form of a first closed ring and the second material is applied to the substrate in the form of a second closed ring, with one side of the second closed ring directly adjoining the first closed ring .
  • the first and the second material alternate.
  • a complete ring is formed from each of the two different magnetic materials, with at least one side of the rings resting directly against one another.
  • the application of a section of a coil winding using thin-film technology is provided on the substrate, followed by the application of the first and of the second material is provided for forming the magnetic core and, further below, the application of further sections of the coil winding is provided so that the finished coil winding surrounds the magnetic core in sections.
  • the complete inductive component including magnetic core and coils can be manufactured using thin-film technology.
  • the representation of the Fig. 1 shows a magnetic core 10 according to the invention, which was produced using thin-film technology on a substrate (not shown).
  • the magnetic core 10 has a ring shape.
  • the magnetic core 10 has the shape of a rectangular ring with rounded corners.
  • the magnetic core 10 consists of a total of four sections 12, 14, 16 and 18.
  • the sections 12, 14, 16, 18 thus form a continuous, uninterrupted ring.
  • the two sections 12, 16 consist of a first magnetic material, for example nickel-iron (NiFe).
  • Nickel-iron can be used in different alloys, for example NiFe 81/19, NiFe 45/55 etc.
  • Cobalt iron (CoFe) or other materials can be used here, for example.
  • the different magnetic materials for the sections 12, 14, 16, 18 can, for example, from the group with the materials nickel (Ni), nickel-iron (NiFe), cobalt-iron (CoFe), cobalt-phosphorus (CoP), cobalt-zirconium-titanium (CoZrTi).
  • the combination of two different magnetic materials in the magnetic core 10 allows the saturation of the magnetic core 10 to be set to a desired profile.
  • Fig. 2 shows an example of a diagram in which the inductance L is plotted as a function of the current I.
  • the inductance L is plotted on a standardized basis in order to show a typical curve independent of the coil surrounding the magnetic core.
  • dashed lines is in Fig. 1 for comparison, the inductance L of a magnetic core with the dimensions of Fig. 1 shown, whereby this magnetic core then consists exclusively of the material NiFe.
  • the inductance L of the magnetic core 10 is then the Fig. 1 applied, wherein the sections 12, 16 then consist of NiFe and the sections 14, 18 of CoFe.
  • the magnetic core has the Fig. 1 consistently higher saturation. This is achieved by combining the sections 12, 14, 16, 18 made of different magnetic materials, which then together form the segmented magnetic core 10.
  • the magnetic core 10 By dividing the magnetic core 10 into sections 12, 14, 16, 18 made of different materials, an improved saturation behavior can be achieved.
  • the desired properties can be set through the geometric dimensions of the sections 12, 14, 16, 18 and also through the selection of the magnetic materials.
  • the representation of the Fig. 3 shows a magnetic core 20 according to a further embodiment of the invention.
  • the magnetic core 20 like the magnetic core 10 of the Fig. 1 that has the shape of a rectangular ring with rounded corners.
  • the magnetic core 20 consists of an inner ring 22 made of a first magnetic material and an outer ring 24 made of a second magnetic material.
  • the outer side of the inner ring 22 adjoins the inner side of the outer ring 24.
  • sections made of different magnetic materials are combined with one another, the sections, namely the two rings 22, 24, each over the entire length Extend the length of the magnetic core 20.
  • the inner ring 22 is made of nickel-iron (NiFe)
  • the outer ring 24 is made of cobalt-iron (CoFe).
  • the representation of the Fig. 4 shows a diagram in which the normalized inductance L of the magnetic core 20 of Fig. 3 was plotted against the current consumption.
  • the dashed line represents the inductance of a magnetic core that consists exclusively of nickel-iron.
  • the inductance of the magnetic core 20 is the Fig. 3 applied.
  • the magnetic core 20 of the Fig. 3 has a significantly improved saturation behavior. This is achieved by combining the different magnetic materials in the inner ring 22 and in the outer ring 24.
  • the saturation behavior of the magnetic core 20 can be matched to the intended application by the geometric dimensions of the inner ring 22 and the outer ring 24 as well as the selection of the magnetic materials for the inner ring 22 and the outer ring 24.
  • the representation of the Fig. 5 shows schematically method steps for producing an inductive component with the magnetic core 10 of FIG Fig. 1 in thin-film technology or thin-film technology.
  • the manufacturing process for the magnetic core begins with a substrate 30.
  • the substrate 30 already contains sections 32 of a coil winding, which is also produced using thin-film technology.
  • the substrate 30 thus already contains the lower coil layer 32 and the magnetic core still to be produced is then located between the lower coil layer 32 and an upper coil layer (not shown).
  • a metallic starting layer 32 is applied to the substrate 30.
  • the lower coil layer 23 is no longer shown for the sake of clarity.
  • the metallic starting layer 32 is applied, for example, by cathode sputtering processes. Nickel (Ni), titanium (Ti), tantalum (Ta), nickel-iron (NiFe) or copper (Cu) can be used as the starting layer.
  • step B a photoresist masking 34 is carried out, the photoresist masking 34 then forming the shape for the subsequent electrodeposition of a first magnetic material.
  • step C the electrodeposition of the first magnetic material 36 is carried out and the associated illustration shows the state after the deposition has ended.
  • the first magnetic material 36 now fills the spaces between the photoresist masking 34.
  • the sections 12, 16 of the magnetic core 10 are now formed by the first magnetic material 36.
  • the first magnetic material is nickel-iron (NiFe).
  • step D the photoresist masking 34 is removed so that only the first magnetic material 36 in the form of the sections 12, 16, see FIG Fig. 1 , is arranged.
  • a second photoresist mask 38 is applied, which then forms a mold for the application of the second magnetic material. Based on the Fig. 1 leaves the second photoresist masking 38 exposed only the sections 14, 18, which are then to be filled with the second magnetic material.
  • the second magnetic material 40 is then deposited, which then directly adjoins the first magnetic material 36. Based on the Fig. 1 the two sections 12, 14 made of the first magnetic material 36 are now connected to one another by the two sections 14, 18 made of the second magnetic material 40.
  • the second magnetic material is cobalt-iron in the illustrated embodiment.
  • a production step G the second photoresist marking 38 is removed.
  • the magnetic core 10 is now arranged on the metallic starting layer 32, the sections 12, 16 being formed from the first magnetic material 36 and the sections 14, 18 being formed from the second magnetic material 40, as stated.
  • the starting layer 32 is removed in the areas in which it is not covered by the magnetic core 10.
  • the starting layer 32 is removed either by plasma etching, ion beam etching or also by a wet chemical process with acid.
  • the finished magnetic core 10 is thus located on substrate 30.
  • the inductive component can now be completely manufactured by combining the lower coil layer 32 with an upper coil layer and side coil sections.
  • the representation of the Fig. 6 shows schematically several manufacturing steps of the magnetic core 20 of FIG Fig. 3 .
  • the substrate 30 again contains a lower coil layer 32, which, after the magnetic core 20 has been produced, is completed with lateral coil sections and an upper coil layer to form a complete coil surrounding the magnetic core 20 in sections.
  • the metallic starter layer 32 is applied.
  • a first photoresist masking 34 is applied, the first photoresist masking 34 in this case being the shape for the inner ring 22 of the magnetic core 20 of FIG Fig. 3 forms.
  • the lower coil layer 32 is no longer shown in the illustration belonging to production step B and also in the subsequent illustrations.
  • the first magnetic material 36 is then electrodeposited, which then, see FIG Fig. 3 , the inner ring 22 forms.
  • step D the first photoresist masking 34 is removed.
  • step E the second photoresist masking 38 is applied, which then forms the shape for the outer ring 24 of the magnetic core 20 of the Fig. 3 forms.
  • the second magnetic material 40 is deposited, which then directly adjoins the first magnetic material 36 and then the outer ring 24 of the magnetic core 20 of the Fig. 3 forms. It should be noted that the representations of Fig. 6 are schematic and only a section through the magnetic core 20 is shown in order to illustrate the successive method steps.
  • step G the second photoresist masking 38 is removed.
  • the metallic starting layer 33 is then removed in the regions in which it is not covered by the first magnetic material 36 or the second magnetic material 40. Only the magnetic core 20 remains on the substrate 30, see FIG Fig. 3 , arranged.
  • the lower coil layer 32 can now be completed in the following process steps to form a coil that partially surrounds the magnetic core 20.
  • the invention is used for microtechnical inductive components, for example storage chokes and transformers for high switching frequencies, such as those used in particular in DC-DC converters.
  • storage chokes and transformers for high switching frequencies such as those used in particular in DC-DC converters.
  • the possibility of being able to adjust the saturation behavior of the magnetic cores 10, 20 used to a desired saturation behavior offers considerable advantages.

Description

  • Die Erfindung betrifft einen Magnetkern für ein induktives Bauteil, hergestellt in Dünnschichttechnik. Die Erfindung betrifft auch ein Verfahren zum Herstellen eines Magnetkerns in Dünnschichttechnik.
  • Aus der internationalen Patentveröffentlichung WO 2013/072135 A1 ist ein induktives Bauteil, hergestellt in Dünnschichttechnik, bekannt, das einen Magnetkern in Ringform und zwei Spuleneinrichtungen enthält. Der Magnetkern wird mittels Dünnschichttechnik aus einem einzigen, magnetischen Material hergestellt.
  • Aus der japanischen Patentzusammenfassung JP 2010-278322 A ist ein Magnetkern in Form eines geschlitzten Kreisrings bekannt, der einen inneren Kern und einen äußeren Kern aufweist. Der äußere Kern weist mehrere Schichten aus einem amorphen magnetischen Material, einem Isolierfilm und einer Isolationsschicht zwischen dem amorphen magnetischen Material und dem Isolierfilm auf. Der innere magnetische Kern ist aus mehreren Schichten des amorphen magnetischen Materials und Isolierfilm aufgebaut. Die einzelnen Schichten des amorphen magnetischen Materials sind sowohl im inneren Kern als auch im äußeren Kern stets durch eine Schicht des Isolierfilms voneinander getrennt.
  • Aus der US Offenlegungsschrift US 2009/197062 A1 ist ein magnetischer Film für ein Substrat bekannt, der in Dünnschichttechnik aus wenigstens zwei verschiedenen Materialien hergestellt ist. Die verschiedenen Materialien erstrecken sich jeweils über die gesamte Länge des magnetischen Films und ein Querschnitt des magnetischen Films ist aus verschiedenen Materialien gebildet.
  • Aus der US Offenlegungsschrift 2008/003699 A1 ist ein induktives Bauteil für integrierte Schaltungen bekannt, bei welchem dünne Schichten magnetischen Materials auf Leiterbahnen angeordnet sind, die sich über eine Länge des induktiven Bauteils erstrecken.
  • Aus der US Offenlegungsschrift US 2007/030108 A1 ist ein mit einer Wicklung versehener Magnetkern bekannt, bei welchem sich verschiedene magnetische Materialien jeweils über eine gesamte Länge des Magnetkerns erstrecken und Querschnitt des Magnetkerns aus verschiedenen magnetischen Materialien gebildet ist.
  • Aus der Offenlegungsschrift DE 100111460A1 ist ein Magnetkern bekannt, der aus zwei verschiedenen magnetischen Materialien besteht und einen geschlossenen Ring bildet. Zwischen zwei weichmagnetischen Schichten (z.B. aus NiFe-Legierung) befindet sich zur Einstellung der Permeabilität des Kerns eine hartmagnetische Schicht (z.B. aus Nd-Fe-B oder Al-Ni-Co). Die Schichten werden mittels Dünnschichttechnik hergestellt.
  • Aus der Offenlegungsschrift DE102012222224A1 ist ein induktives Bauteil bekannt, bei dem der Magnetkern in Ringform aus abwechselnden Bereichen von mindestens zwei verschiedenen Materialien ausgeführt ist. Der Kern enthält Ferritmaterial, Oxidkeramik und superparamagnetisches Material.
  • Mit der Erfindung soll ein Magnetkern für ein induktives Bauteil und ein Verfahren zum Herstellen eines Magnetkerns mittels Dünnschichttechnik verbessert werden.
  • Erfindungsgemäß ist hierzu ein Magnetkern für ein induktives Bauteil, hergestellt in Dünnschichttechnik, vorgesehen, bei dem der Magnetkern aus wenigstens zwei verschiedenen magnetischen Materialien besteht, wobei der Magnetkern einen geschlossen Ring bildet und der Ring eine kreisrunde, ovale, elliptische, quadratische oder rechteckige Form hat. Die verschiedenen magnetischen Materialien sind aus den Materialen Ni, NiFe, CoFe, CoP und CoZrTi ausgewählt. Bei einer ersten Ausführungsform wechseln sich über die Länge gesehen die verschiedenen magnetischen Materialien des Magnetkerns ab, wobei die verschiedenen magnetischen Materialien jeweils den vollständigen Querschnitt des Magnetkerns einnehmen. Bei einer zweiten Ausführungsform erstrecken sich die verschiedenen magnetischen Materialien jeweils über die gesamte Länge des Magnetkerns und der Magnetkern ist mittels wenigstens eines inneren Rings aus einem ersten magnetischen Material und eines äußeren Rings aus einem zweiten magnetischen Material gebildet und ein Querschnitt des Magnetkerns ist aus verschiedenen magnetischen Materialien gebildet.
  • Überraschenderweise hat sich gezeigt, dass durch die Verwendung wenigstens zweier unterschiedlicher magnetischer Materialien bei der Herstellung eines Magnetkerns in Dünnschichttechnik sich das Sättigungsverhalten des Magnetkerns verbessern lässt. Vor allem ist es möglich, das Sättigungsverhalten des Magnetkerns gezielt zu beeinflussen, so dass es optimal auf die vorgesehene Anwendung eingestellt werden kann.
  • Erfindungsgemäß wechseln sich bei einer ersten Ausführungsform über die Länge des Magnetkerns gesehen die verschiedenen magnetischen Materialien ab.
  • Der Magnetkern besteht über seinen Umfang gesehen somit aus mehreren Abschnitten, die aus unterschiedlichen magnetischen Materialien bestehen.
  • Erfindungsgemäß nehmen die verschiedenen magnetischen Materialien bei der ersten Ausführungsform jeweils den vollständigen Querschnitt des Magnetkerns ein.
  • Die verschiedenen Abschnitte des Magnetkerns bestehen somit vollständig aus einem einzigen magnetischen Material und sind, bildlich gesprochen, hintereinandergesetzt, um dann den vollständigen Magnetkern zu bilden.
  • Erfindungsgemäß erstrecken sich bei einer zweiten Ausführungsform die verschiedenen magnetischen Materialien jeweils über die gesamte Länge des Magnetkerns.
  • Gemäß einer Ausführungsform der Erfindung sind nicht in Längsrichtung des Magnetkerns, sondern in Querrichtung gesehen mehrere Abschnitte aus unterschiedlichem magnetischen Material vorgesehen. Beispielsweise sind mehrere Schichten aus unterschiedlichen magnetischen Materialien aufeinandergelegt, um den vollständigen Magnetkern zu bilden.
  • Erfindungsgemäß ist bei der zweiten Ausführungsform ein Querschnitt des Magnetkerns aus verschiedenen magnetischen Materialien gebildet.
  • Erfindungsgemäß bildet der Magnetkern einen geschlossenen Ring, wobei der Ring eine kreisrunde, ovale, elliptische, quadratische oder rechteckige Form hat.
  • Eine quadratische oder rechteckige Form kann dabei spitze oder auch abgerundete Ecken aufweisen. Die Form des Magnetkerns beeinflusst die Induktivität des fertiggestellten induktiven Bauteils und kann somit entsprechend dem vorgesehenen Anwendungszweck gewählt werden.
  • Erfindungsgemäß ist bei der zweiten Ausführungsform der Magnetkern mittels wenigstens eines äußeren Rings aus einem ersten magnetischen Material und eines inneren Rings aus einem zweiten magnetischen Material gebildet.
  • Auf diese Weise kann das gewünschte Sättigungsverhalten des Magnetkerns eingestellt werden, beispielsweise durch die Dicke des äußeren und des inneren Rings sowie auch die Auswahl des ersten magnetischen Materials und des zweiten magnetischen Materials.
  • Erfindungsgemäß sind die verschiedenen magnetischen Materialien aus den Materialien Ni, NiFe, CoFe, CoP und CoZrTi ausgewählt.
  • Diese Materialien haben sich bei der Herstellung von Magnetkernen in Dünnschichttechnik bewährt und weisen unterschiedliche magnetische Eigenschaften auf, so dass gemäß der Erfindung ein gewünschtes Sättigungsverhalten des Magnetkerns eingestellt werden kann.
  • In Weiterbildung der Erfindung ist eine den Magnetkern abschnittsweise umgebende Spule mittels Dünnschichttechnik hergestellt.
  • Auf diese Weise kann nicht nur der Magnetkern, sondern das vollständige induktive Bauteil mittels Dünnschichttechnik hergestellt werden.
  • Das der Erfindung zugrundeliegende Problem wird auch durch ein Verfahren zum Herstellen eines Magnetkerns gelöst, bei dem das Auftragen eines ersten magnetischen Materials mittels Dünnschichttechnik auf ein Substrat und das Auftragen eines zweiten magnetischen Materials mittels Dünnschichttechnik auf das Substrat vorgesehen sind, wobei das erste magnetische Material wenigstens abschnittsweise unmittelbar an das zweite magnetische Material angrenzt. Durch das erfindungsgemäße Verfahren kann ein Magnetkern in Dünnschichttechnik hergestellt werden und gleichzeitig können die gewünschten Eigenschaften des Magnetkerns, speziell dessen Sättigungsverhalten, durch Auswahl unterschiedlicher magnetischer Materialien sowie auch der Abmessungen der Abschnitte des Magnetkerns aus den unterschiedlichen Materialien eingestellt werden.
  • In Weiterbildung der Erfindung wird das erste magnetische Material in Form eines ersten geschlossenen Rings auf das Substrat aufgetragen und das zweite Material wird in Form eines zweiten geschlossenen Rings auf das Substrat aufgetragen, wobei der zweite geschlossene Ring mit einer Seite unmittelbar an den ersten geschlossenen Ring angrenzt.
  • Über den Querschnitt des Magnetkerns gesehen wechseln sich damit das erste und das zweite Material ab. Aus jedem der beiden unterschiedlichen magnetischen Materialien ist aber ein vollständiger Ring gebildet, wobei die Ringe wenigstens mit einer Seite unmittelbar aneinander anliegen.
  • In Weiterbildung der Erfindung ist das Auftragen eines Abschnitts einer Spulenwicklung in Dünnschichttechnik auf das Substrat vorgesehen, nachfolgend ist das Auftragen des ersten und des zweiten Materials zum Bilden des Magnetkerns vorgesehen und weiter nachfolgend ist dann das Auftragen weiterer Abschnitte der Spulenwicklung vorgesehen, so dass die fertiggestellte Spulenwicklung den Magnetkern abschnittsweise umgibt.
  • Auf diese Weise kann das vollständige induktive Bauteil einschließlich Magnetkern und Spulen mittels Dünnschichttechnik hergestellt werden.
  • Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den Ansprüchen und der folgenden Beschreibung bevorzugter Ausführungsformen der Erfindung im Zusammenhang mit den Zeichnungen. Einzelmerkmale der unterschiedlichen, dargestellten Ausführungsformen lassen sich dabei in beliebiger Weise miteinander kombinieren, ohne den Rahmen der Erfindung zu überschreiten. In den Zeichnungen zeigen:
  • Fig. 1
    eine schematische Ansicht eines Magnetkerns gemäß einer ersten Ausführungsform der Erfindung,
    Fig. 2
    ein Diagramm einer normierten Induktivität einer Spule mit dem Magnetkern der Fig. 1 über der Stromaufnahme,
    Fig. 3
    eine schematische Darstellung eines Magnetkerns gemäß einer weiteren Ausführungsform der Erfindung,
    Fig. 4
    ein Diagramm der normierten Induktivität einer Spule mit dem Magnetkern der Fig. 3 über der Stromaufnahme,
    Fig. 5
    eine schematische Darstellung der Verfahrensschritte bei der Herstellung des Magnetkerns der Fig. 1 und
    Fig. 6
    eine schematische Darstellung der Verfahrensschritte zur Herstellung des Magnetkerns der Fig. 3.
  • Die Darstellung der Fig. 1 zeigt einen erfindungsgemäßen Magnetkern 10, der in Dünnschichttechnik auf einem nicht dargestellten Substrat hergestellt wurde. Der Magnetkern 10 weist eine Ringform auf. Speziell weist der Magnetkern 10 die Form eines rechteckigen Rings mit abgerundeten Ecken auf. Der Magnetkern 10 besteht aus insgesamt vier Abschnitten 12, 14, 16 und 18. Die Abschnitte 12, 14, 16, 18 bilden, in Umfangsrichtung oder Längsrichtung des Magnetkerns 10 gesehen, jeweils einen Abschnitt der Länge des Magnetkerns. Mit ihren Enden liegen die Abschnitte 12, 14, 16, 18 unmittelbar aneinander an. Die Abschnitte 12, 14, 16, 18 bilden somit einen durchgehenden, nicht unterbrochenen Ring.
  • Die beiden Abschnitte 12, 16 bestehen dabei aus einem ersten magnetischen Material, beispielsweise Nickel-Eisen (NiFe). Dabei kann Nickel-Eisen in verschiedenen Legierungen eingesetzt werden, beispielsweise NiFe 81/19, NiFe 45/55 usw. Die Abschnitte 14, 18 bestehen dahingegen aus einem zweiten magnetischen Material mit anderen magnetischen Eigenschaften. Hier kann beispielsweise Kobalt-Eisen (CoFe) oder auch andere Materialien verwendet werden. Beispielsweise ist auch die Verwendung von Nickel-Eisen sowohl in den Abschnitten 12, 16 als auch in den Abschnitten 14, 18 möglich, wobei dann unterschiedliche Legierungen verwendet werden, beispielsweise NiFe 81/19 in den Abschnitten 12, 16 und NiFe 45/55 in den Abschnitten 14, 18. Die unterschiedlichen magnetischen Materialien für die Abschnitte 12, 14, 16, 18 können beispielsweise aus der Gruppe mit den Materialien Nickel (Ni), Nickel-Eisen (NiFe), Kobalt-Eisen (CoFe), Kobalt-Phosphor (CoP), Kobalt-Zirkonium-Titan (CoZrTi) ausgewählt werden.
  • Die Kombination zweier unterschiedlicher magnetischer Materialien in dem Magnetkern 10 erlaubt es, die Sättigung des Magnetkerns 10 auf einen gewünschten Verlauf einzustellen.
  • Fig. 2 zeigt beispielhaft ein Diagramm, in dem die Induktivität L als Funktion des Stroms I aufgetragen ist. Die Induktivität L ist dabei normiert aufgetragen, um unabhängig von der den Magnetkern umgebenden Spule einen typischen Verlauf aufzuzeigen. In gestrichelten Linien ist in Fig. 1 dabei zum Vergleich die Induktivität L eines Magnetkerns mit den Abmessungen der Fig. 1 dargestellt, wobei dieser Magnetkern dann ausschließlich aus dem Material NiFe besteht. In gepunkteten Linien ist dann die Induktivität L des Magnetkerns 10 der Fig. 1 aufgetragen, wobei dann die Abschnitte 12, 16 aus NiFe und die Abschnitte 14, 18 aus CoFe bestehen. Wie ohne weiteres zu erkennen ist, weist der Magnetkern der Fig. 1 durchgängig eine höhere Sättigung auf. Dies wird durch die Kombination der aus unterschiedlichen magnetischen Materialien bestehenden Abschnitte 12, 14, 16, 18 erzielt, die dann gemeinsam den segmentierten Magnetkern 10 bilden.
  • Durch Aufteilen des Magnetkerns 10 in Abschnitte 12, 14, 16, 18 aus unterschiedlichen Materialien lässt sich dadurch ein verbessertes Sättigungsverhalten erzielen. Die gewünschten Eigenschaften können dabei durch die geometrischen Abmessungen der Abschnitte 12, 14, 16, 18 sowie auch durch die Auswahl der magnetischen Materialien eingestellt werden.
  • Die Darstellung der Fig. 3 zeigt einen Magnetkern 20 gemäß einer weiteren Ausführungsform der Erfindung. Der Magnetkern 20 weist, wie der Magnetkern 10 der Fig. 1, die Form eines rechteckförmigen Rings mit abgerundeten Ecken auf. Im Unterschied zum Magnetkern 10 der Fig. 1 besteht der Magnetkern 20 aus einem inneren Ring 22 aus einem ersten magnetischen Material und einem äußeren Ring 24 aus einem zweiten magnetischen Material. Der innere Ring 22 grenzt dabei mit seiner Außenseite unmittelbar an die Innenseite des äußeren Rings 24. Auch bei dem Magnetkern 20 sind somit Abschnitte aus unterschiedlichen magnetischen Materialien miteinander kombiniert, wobei sich die Abschnitte, nämlich die beiden Ringe 22, 24, jeweils über die vollständige Länge des Magnetkerns 20 erstrecken. Beispielsweise ist der innere Ring 22 aus Nickel-Eisen (NiFe) hergestellt, der äußere Ring 24 dahingegen aus Kobalt-Eisen (CoFe).
  • Die Darstellung der Fig. 4 zeigt ein Diagramm, in dem die normierte Induktivität L des Magnetkerns 20 der Fig. 3 über der Stromaufnahme aufgetragen wurde. Die gestrichelte Linie stellt die Induktivität eines Magnetkerns dar, der ausschließlich aus Nickel-Eisen besteht. Im Vergleich hierzu ist mit einer gepunkteten Linie die Induktivität des Magnetkerns 20 der Fig. 3 aufgetragen. Es ist zu erkennen, dass der Magnetkern 20 der Fig. 3 ein erheblich verbessertes Sättigungsverhalten aufweist. Dies wird durch die Kombination der unterschiedlichen magnetischen Materialien im inneren Ring 22 und im äußeren Ring 24 erreicht. Das Sättigungsverhalten des Magnetkerns 20 lässt sich durch die geometrischen Abmessungen des inneren Rings 22 bzw. des äußeren Rings 24 sowie auch die Auswahl der magnetischen Materialien für den inneren Ring 22 und den äußeren Ring 24 auf den vorgesehenen Anwendungsfall abstimmen.
  • Die Darstellung der Fig. 5 zeigt schematisch Verfahrensschritte zur Herstellung eines induktiven Bauteils mit dem Magnetkern 10 der Fig. 1 in Dünnschichttechnik oder Dünnfilmtechnik.
  • Ausgehend von einem Substrat 30 beginnt der Herstellungsprozess des Magnetkerns. Das Substrat 30 enthält dabei bereits Abschnitte 32 einer Spulenwicklung, die ebenfalls in Dünnschichttechnik hergestellt wird. Das Substrat 30 enthält damit bereits die untere Spulenlage 32 und der noch herzustellende magnetische Kern befindet sich dann zwischen der unteren Spulenlage 32 und einer oberen, nicht dargestellten Spulenlage.
  • Im Schritt A wird auf das Substrat 30 eine metallische Startschicht 32 aufgetragen. Im Substrat 30 ist, wie auch bei den nachfolgenden Verfahrensschritten, der Übersichtlichkeit halber die untere Spulenlage 23 nicht mehr eingezeichnet. Die metallische Startschicht 32 wird beispielsweise durch Kathodenzerstäubungsverfahren aufgebracht. Als Startschicht können Nickel (Ni), Titan (Ti), Tantal (Ta), Nickel-Eisen (NiFe) oder Kupfer (Cu) verwendet werden.
  • Im Schritt B wird eine Photoresist-Maskierung 34 durchgeführt, wobei die Photoresist-Maskierung 34 dann die Form für die nachfolgende galvanische Abscheidung eines ersten magnetischen Materials bildet.
  • Im Schritt C wird die galvanische Abscheidung des ersten magnetischen Materials 36 vorgenommen und die zugehörige Abbildung zeigt den Zustand nach beendeter Abscheidung. Das erste magnetische Material 36 füllt nun die Zwischenräume zwischen der Photoresist-Maskierung 34 auf. Bezogen auf die Fig. 1 werden durch das erste magnetische Material 36 nun die Abschnitte 12, 16 des Magnetkerns 10 gebildet. Das erste magnetische Material ist bei der dargestellten Ausführungsform Nickel-Eisen (NiFe).
  • Im Schritt D wird die Photoresist-Maskierung 34 entfernt, so dass auf der metallischen Startschicht 32 nun nur noch das erste magnetische Material 36 in Form der Abschnitte 12, 16, siehe Fig. 1, angeordnet ist.
  • Im Herstellungsschritt E wird eine zweite Photoresist-Maskierung 38 aufgetragen, die dann eine Form für das Auftragen des zweiten magnetischen Materials bildet. Bezogen auf die Fig. 1 lässt die zweite Photoresist-Maskierung 38 lediglich die Abschnitte 14, 18 frei, die dann mit dem zweiten magnetischen Material gefüllt werden sollen.
  • Im Herstellungsschritt F wird dann das zweite magnetische Material 40 abgeschieden, das dann unmittelbar an das erste magnetische Material 36 angrenzt. Bezogen auf die Fig. 1 sind nun die beiden Abschnitte 12, 14 aus dem ersten magnetischen Material 36 durch die beiden Abschnitten 14, 18 aus dem zweiten magnetischen Material 40 miteinander verbunden. Das zweite magnetische Material ist bei der dargestellten Ausführungsform Kobalt-Eisen.
  • In einem Herstellungsschritt G wird die zweite Photoresist-Markierung 38 entfernt. Auf der metallischen Startschicht 32 ist nun der Magnetkern 10 angeordnet, wobei, wie ausgeführt wurde, die Abschnitte 12, 16 aus dem ersten magnetischen Material 36 und die Abschnitte 14, 18 aus dem zweiten magnetischen Material 40 gebildet sind.
  • Im Verfahrensschritt H wird die Startschicht 32 in den Bereichen entfernt, in denen sie nicht durch den Magnetkern 10 bedeckt ist. Die Startschicht 32 wird dabei entweder durch Plasmaätzen, lonenstrahlätzen oder auch durch ein nasschemisches Verfahren mit Säure entfernt.
  • Nach dem Verfahrensschritt H befindet sich auf dem Substrat 30 somit der fertiggestellte Magnetkern 10. In weiteren Verfahrensschritten kann nun das induktive Bauteil vollständig hergestellt werden, indem die untere Spulenlage 32 mit einer oberen Spulenlage und seitlichen Spulenabschnitten kombiniert wird.
  • Die Darstellung der Fig. 6 zeigt schematisch mehrere Herstellungsschritte des Magnetkerns 20 der Fig. 3.
  • Das Substrat 30 enthält wieder eine untere Spulenlage 32, die dann nach Herstellung des Magnetkerns 20 mit seitlichen Spulenabschnitten und einer oberen Spulenlage zu einer vollständigen, den Magnetkern 20 abschnittsweise umgebenden Spule vervollständigt wird.
  • Im Herstellungsschritt A erfolgt das Aufbringen der metallischen Startschicht 32.
  • Im Herstellungsschritt B wird eine erste Photoresist-Maskierung 34 aufgetragen, wobei die erste Photoresist-Maskierung 34 in diesem Fall die Form für den inneren Ring 22 des Magnetkerns 20 der Fig. 3 bildet. In der zum Herstellungsschritt B gehörenden Darstellung sowie auch in den nachfolgenden Darstellungen ist die untere Spulenlage 32 der Übersichtlichkeit halber nicht mehr dargestellt.
  • Im Herstellungsschritt C wird dann das erste magnetische Material 36 galvanisch abgeschieden, das dann, siehe Fig. 3, den inneren Ring 22 bildet.
  • Im Herstellungsschritt D wird die erste Photoresist-Maskierung 34 entfernt.
  • Im Herstellungsschritt E wird die zweite Photoresist-Maskierung 38 aufgetragen, die dann die Form für den äußeren Ring 24 des Magnetkerns 20 der Fig. 3 bildet.
  • Im Herstellungsschritt F wird das zweite magnetische Material 40 abgeschieden, das dann unmittelbar an das erste magnetische Material 36 angrenzt und dann den äußeren Ring 24 des Magnetkerns 20 der Fig. 3 bildet. Es ist dabei festzustellen, dass die Darstellungen der Fig. 6 schematisch sind und lediglich ein Schnitt durch den Magnetkern 20 dargestellt ist, um die aufeinanderfolgenden Verfahrensschritte zu verdeutlichen.
  • Im Verfahrensschritt G wird die zweite Photoresist-Maskierung 38 entfernt.
  • Im Verfahrensschritt H wird dann die metallische Startschicht 33 in den Bereichen entfernt, in denen sie nicht durch das erste magnetische Material 36 oder das zweite magnetische Material 40 abgedeckt ist. Auf dem Substrat 30 ist somit nur noch der magnetische Kern 20, siehe Fig. 3, angeordnet. Die untere Spulenlage 32 kann nun in den nachfolgenden Verfahrensschritten zu einer, den Magnetkern 20 abschnittsweise umgebenden Spule vervollständigt werden.
  • Die Erfindung findet für mikrotechnische induktive Bauteile Anwendung, beispielsweise Speicherdrosseln und Transformatoren für hohe Schaltfrequenzen, wie sie insbesondere bei DC-DC-Wandlern eingesetzt werden. Die Möglichkeit, das Sättigungsverhalten der verwendeten magnetischen Kerne 10, 20 auf ein gewünschtes Sättigungsverhalten einstellen zu können, bietet dabei erhebliche Vorteile.

Claims (6)

  1. Magnetkern für ein induktives Bauteil, hergestellt in Dünnschichttechnik, wobei der Magnetkern (10, 20) aus wenigstens zwei verschiedenen magnetischen Materialien (36, 40) besteht,
    wobei der Magnetkern (10, 20) einen geschlossen Ring bildet,
    wobei der Ring eine kreisrunde, ovale, elliptische, quadratische oder rechteckige Form hat, wobei
    die verschiedenen magnetischen Materialien aus den Materialen Ni, NiFe, CoFe , CoP und CoZrTi ausgewählt sind, wobei
    sich bei einer ersten Ausführungsform über die Länge gesehen die verschiedenen magnetischen Materialien (36, 40) abwechseln und jeweils den vollständigen Querschnitt des Magnetkerns (10) einnehmen oder
    wobei bei einer zweiten Ausführungsform der Magnetkern (20) mittels wenigstens eines inneren Rings (22) aus einem ersten magnetischen Material (36) und eines äußeren Rings (24) aus einem zweiten magnetischen Material (40) gebildet ist und die verschiedenen magnetischen Materialien (36, 40) sich jeweils über die gesamte Länge des Magnetkerns (20) erstrecken und ein Querschnitt des Magnetkerns (20) aus verschiedenen magnetischen Materialien (36, 40) gebildet ist.
  2. Induktives Bauteil mit einem Magnetkern nach Anspruch 1, wobei eine den Magnetkern (10, 20) abschnittsweise umgebende Spule mittels Dünnschichttechnik hergestellt ist.
  3. Verfahren zum Herstellen eine Magnetkerns (10, 20) nach einem der vorstehenden Ansprüche, gekennzeichnet durch Auftragen eines ersten magnetischen Materials (36) mittels Dünnschichttechnik auf ein Substrat (30) und Auftragen eines zweiten magnetischen Materials (40) mittels Dünnschichttechnik auf das Substrat (30), wobei das erste magnetische Material (36) wenigstens abschnittsweise unmittelbar an das zweite magnetische Material (40) angrenzt.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass durch das Auftragen des zweiten magnetischen Materials (40) ein geschlossener Ring aus dem ersten magnetischen Material (36) und dem zweiten magnetischen Material (40) gebildet wird.
  5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das erste magnetische Material in Form eines ersten geschlossenen Rings (22) auf das Substrat (30) aufgetragen wird und das zweite magnetische Material (40) in Form eines zweiten geschlossenen Rings (24) auf das Substrat (30) aufgetragen wird, wobei der zweite geschlossenen Ring (24) mit einer Seite unmittelbar an den ersten geschlossenen Ring (22) angrenzt.
  6. Verfahren nach wenigstens einem der Ansprüche 3 bis 5, gekennzeichnet durch Auftragen eines Abschnitts (32) einer Spulenwicklung in Dünnschichttechnik auf das Substrat (30), nachfolgend Auftragen des ersten und des zweiten magnetischen Materials (36, 40) zum Bilden des Magnetkerns (10, 20) und dann Auftragen weiterer Abschnitte der Spulenwicklung, so dass die fertiggestellte Spulenwicklung den Magnetkern (10, 20) abschnittsweise umgibt.
EP15749777.7A 2014-09-10 2015-08-06 Magnetkern, induktives bauteil und verfahren zum herstellen eines magnetkerns Active EP3192090B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014218043.0A DE102014218043A1 (de) 2014-09-10 2014-09-10 Magnetkern, induktives Bauteil und Verfahren zum Herstellen eines Magnetkerns
PCT/EP2015/068180 WO2016037776A1 (de) 2014-09-10 2015-08-06 Magnetkern, induktives bauteil und verfahren zum herstellen eines magnetkerns

Publications (2)

Publication Number Publication Date
EP3192090A1 EP3192090A1 (de) 2017-07-19
EP3192090B1 true EP3192090B1 (de) 2021-01-20

Family

ID=53835424

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15749777.7A Active EP3192090B1 (de) 2014-09-10 2015-08-06 Magnetkern, induktives bauteil und verfahren zum herstellen eines magnetkerns

Country Status (5)

Country Link
US (1) US20170278614A1 (de)
EP (1) EP3192090B1 (de)
CN (1) CN106605280B (de)
DE (1) DE102014218043A1 (de)
WO (1) WO2016037776A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3961660A1 (de) * 2020-08-28 2022-03-02 Siemens Aktiengesellschaft Induktives bauelement für einen wechselrichter und wechselrichter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10111460A1 (de) * 2001-03-09 2002-09-19 Siemens Ag Magnetische Hochfrequenz-Einrichtung mit einem weichmagnetischen Schichtensystem
DE102012222224A1 (de) * 2012-12-04 2014-06-05 SUMIDA Components & Modules GmbH Magnetische Kerne und Verfahren zu deren Herstellung

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE549660C (de) * 1929-11-09 1932-04-29 Aeg Aus zwei oder mehreren in der Achsrichtung aufeinandergelegten Einzelkernen zusammengesetzter ringfoermiger Magnetkern
US3668589A (en) * 1970-12-08 1972-06-06 Pioneer Magnetics Inc Low frequency magnetic core inductor structure
US4205288A (en) * 1978-10-27 1980-05-27 Westinghouse Electric Corp. Transformer with parallel magnetic circuits of unequal mean lengths and loss characteristics
DE4018149A1 (de) * 1990-06-06 1991-12-12 Siemens Ag Einrichtung zur beruehrungslosen ermittlung des drehmomentes eines rotierenden, tordierten zylinderfoermigen koerpers
DE19816485C2 (de) * 1998-04-14 2000-05-25 Aloys Wobben Spule für Hochsetzsteller
US6885273B2 (en) * 2000-03-30 2005-04-26 Abb Ab Induction devices with distributed air gaps
US6660412B2 (en) * 2001-03-15 2003-12-09 Waseem A. Roshen Low loss, high frequency composite magnetic material and methods of making the same
US6768409B2 (en) * 2001-08-29 2004-07-27 Matsushita Electric Industrial Co., Ltd. Magnetic device, method for manufacturing the same, and power supply module equipped with the same
DE10302646B4 (de) * 2003-01-23 2010-05-20 Vacuumschmelze Gmbh & Co. Kg Antennenkern und Verfahren zum Herstellen eines Antennenkerns
JP2006032587A (ja) * 2004-07-15 2006-02-02 Matsushita Electric Ind Co Ltd インダクタンス部品およびその製造方法
JP2007128951A (ja) * 2005-11-01 2007-05-24 Hitachi Ferrite Electronics Ltd リアクトル
US7719084B2 (en) * 2006-06-30 2010-05-18 Intel Corporation Laminated magnetic material for inductors in integrated circuits
JP5120690B2 (ja) * 2007-07-30 2013-01-16 住友電気工業株式会社 リアクトル用コア
JP4998292B2 (ja) * 2008-01-31 2012-08-15 Tdk株式会社 磁性薄膜および薄膜磁気デバイス
JP2010278322A (ja) 2009-05-29 2010-12-09 Fujitsu General Ltd チョークコイル
EP2453450A1 (de) * 2010-11-12 2012-05-16 Falco Electronics Ltd. Hybridkern für einen Leistungsinduktor
DE102011079633A1 (de) * 2011-07-22 2013-01-24 Robert Bosch Gmbh Magnetsensor zum Messen eines Magnetfelds eines magnetischen Multipols und zugehörige Vorrichtung zur Ermittlung von Bewegungsparametern
JP5375922B2 (ja) * 2011-10-18 2013-12-25 株式会社豊田自動織機 磁性コア、及び誘導機器
DE102011086403A1 (de) 2011-11-15 2013-05-16 Würth Elektronik eiSos Gmbh & Co. KG Induktionsbauteil
KR101911457B1 (ko) * 2012-04-30 2018-10-24 엘지이노텍 주식회사 무선충전 라디에이터 기능을 갖는 자성 필름, 그 제조방법 및 이를 이용한 무선충전 디바이스
US20140152410A1 (en) * 2012-12-03 2014-06-05 Arizona Board of Regents, a body corporate of the State of Arizona Acting for and on behalf of Arizo Integrated tunable inductors
US9337251B2 (en) * 2013-01-22 2016-05-10 Ferric, Inc. Integrated magnetic core inductors with interleaved windings
DE102013208058B4 (de) * 2013-05-02 2015-09-10 Sts Spezial-Transformatoren-Stockach Gmbh & Co. Kg Magnetisch vorgespannte Drossel
KR101462806B1 (ko) * 2013-10-11 2014-11-20 삼성전기주식회사 인덕터 및 그 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10111460A1 (de) * 2001-03-09 2002-09-19 Siemens Ag Magnetische Hochfrequenz-Einrichtung mit einem weichmagnetischen Schichtensystem
DE102012222224A1 (de) * 2012-12-04 2014-06-05 SUMIDA Components & Modules GmbH Magnetische Kerne und Verfahren zu deren Herstellung

Also Published As

Publication number Publication date
DE102014218043A1 (de) 2016-03-10
EP3192090A1 (de) 2017-07-19
CN106605280B (zh) 2018-09-18
US20170278614A1 (en) 2017-09-28
WO2016037776A1 (de) 2016-03-17
CN106605280A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
EP2463869B2 (de) Induktives Bauelement mit verbesserten Kerneigenschaften
DE102006017762B4 (de) Verfahren zum Laminieren eines Elektrobandes für Transformatorenkerne
EP2946462B1 (de) Elektrotechnische spule und/oder spulenwicklung, verfahren zu ihrer herstellung sowie elektrisches gerät
DE102016119650A1 (de) Verfahren zur Herstellung eines weichmagnetischen Kernmaterials
EP2924697B1 (de) Magnetkern mit plattenförmigem Streukörper und induktives Bauelement
DE102016119654A1 (de) Verfahren zur Herstellung eines weichmagnetischen Kernmaterials
DE2366048C2 (de) Aufgrund einer Wärmebehandlung einen festen Schichtenverband bildender Schichtwerkstoff für mit hoher Frequenz betriebene elektrotechnische Bauteile und Verfahren zu seiner Herstellung
EP3192090B1 (de) Magnetkern, induktives bauteil und verfahren zum herstellen eines magnetkerns
DE102010001394A1 (de) Antennenkern, Antenne sowie Verfahren zur Herstellung eines Antennenkerns und einer Antenne
DE102006026466B3 (de) Induktives elektrisches Element, insbesondere Transformator, Übertrager, Drossel, Filter und Wickelgut
WO2002007172A1 (de) I-induktor als hochfrequenz-mikroinduktor
DE102013112325A1 (de) Ringspule und Herstellungsverfahren für eine Ringspule
EP2005493A1 (de) Piezoaktor und verfahren zur herstellung
EP3365902B1 (de) Wicklungsanordnung
DE112017004276T5 (de) Verfahren zur herstellung einer induktiven komponente und eine induktive komponente
EP2780918B1 (de) Induktionsbauteil
EP2251877B1 (de) Verfahren zur Herstellung einer Scheibenwicklung
EP2975618B1 (de) Kern für eine elektrische Induktionseinrichtung
WO2021239403A1 (de) Spulenelement
DE2343539A1 (de) Duennfilmdrossel
DE202014005370U1 (de) Induktives Bauteil
DE102005003002A1 (de) Magnetischer Ringkern und Verfahren zur Herstellung von magnetischen Ringkernen
DE102017208655B4 (de) Induktives Bauteil und Verfahren zum Herstellen eines induktiven Bauteils
DE102011055880B4 (de) Induktives Bauelement mit verbesserten Kerneigenschaften
DE10104648A1 (de) I-Induktor als Hochfrequenz-Mikroinduktor

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170407

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1233765

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200918

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. LUSUARDI AG, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015014180

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1357097

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210120

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210520

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210420

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210420

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210520

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015014180

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

26N No opposition filed

Effective date: 20211021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210520

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210806

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230824

Year of fee payment: 9

Ref country code: CH

Payment date: 20230902

Year of fee payment: 9

Ref country code: AT

Payment date: 20230818

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 9

Ref country code: DE

Payment date: 20230824

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210120