EP3192090B1 - Magnetic core, inductive component, and method for producing a magnetic core - Google Patents
Magnetic core, inductive component, and method for producing a magnetic core Download PDFInfo
- Publication number
- EP3192090B1 EP3192090B1 EP15749777.7A EP15749777A EP3192090B1 EP 3192090 B1 EP3192090 B1 EP 3192090B1 EP 15749777 A EP15749777 A EP 15749777A EP 3192090 B1 EP3192090 B1 EP 3192090B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetic core
- magnetic
- magnetic material
- materials
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 230000001939 inductive effect Effects 0.000 title claims description 16
- 239000000696 magnetic material Substances 0.000 claims description 86
- 239000010409 thin film Substances 0.000 claims description 26
- 238000005516 engineering process Methods 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 17
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims description 15
- 238000004804 winding Methods 0.000 claims description 8
- 229910003321 CoFe Inorganic materials 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims 1
- 229920002120 photoresistant polymer Polymers 0.000 description 12
- 230000000873 masking effect Effects 0.000 description 10
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000010408 film Substances 0.000 description 7
- FQMNUIZEFUVPNU-UHFFFAOYSA-N cobalt iron Chemical compound [Fe].[Co].[Co] FQMNUIZEFUVPNU-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910017709 Ni Co Inorganic materials 0.000 description 1
- 229910003267 Ni-Co Inorganic materials 0.000 description 1
- 229910003262 Ni‐Co Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- RGINPZWYSLFPRX-UHFFFAOYSA-N [Ti].[Zr].[Co] Chemical compound [Ti].[Zr].[Co] RGINPZWYSLFPRX-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- SIBIBHIFKSKVRR-UHFFFAOYSA-N phosphanylidynecobalt Chemical compound [Co]#P SIBIBHIFKSKVRR-UHFFFAOYSA-N 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000007704 wet chemistry method Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/12—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/12—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
- H01F10/13—Amorphous metallic alloys, e.g. glassy metals
- H01F10/131—Amorphous metallic alloys, e.g. glassy metals containing iron or nickel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/12—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
- H01F10/13—Amorphous metallic alloys, e.g. glassy metals
- H01F10/132—Amorphous metallic alloys, e.g. glassy metals containing cobalt
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/12—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
- H01F10/14—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/04—Fixed inductances of the signal type with magnetic core
- H01F17/06—Fixed inductances of the signal type with magnetic core with core substantially closed in itself, e.g. toroid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/26—Fastening parts of the core together; Fastening or mounting the core on casing or support
- H01F27/263—Fastening parts of the core together
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/10—Composite arrangements of magnetic circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/04—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
- H01F41/041—Printed circuit coils
- H01F41/046—Printed circuit coils structurally combined with ferromagnetic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F17/0033—Printed inductances with the coil helically wound around a magnetic core
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/10—Composite arrangements of magnetic circuits
- H01F2003/106—Magnetic circuits using combinations of different magnetic materials
Definitions
- the invention relates to a magnetic core for an inductive component, manufactured using thin-film technology.
- the invention also relates to a method for producing a magnetic core using thin-film technology.
- an inductive component manufactured using thin-film technology, which contains a magnetic core in the form of a ring and two coil devices.
- the magnetic core is made from a single magnetic material using thin-film technology.
- a magnetic core in the form of a slotted circular ring which has an inner core and an outer core.
- the outer core has multiple layers of an amorphous magnetic material, an insulating film, and an insulating layer between the amorphous magnetic material and the insulating film.
- the inner magnetic core is made up of multiple layers of the amorphous magnetic material and insulating film. The individual layers of the amorphous magnetic material are always separated from one another both in the inner core and in the outer core by a layer of the insulating film.
- a magnetic core which consists of two different magnetic materials and forms a closed ring. Between two soft magnetic layers (eg made of NiFe alloy) there is a hard magnetic layer (eg made of Nd-Fe-B or Al-Ni-Co) to set the permeability of the core.
- the layers are produced using thin-film technology.
- an inductive component in which the magnetic core is designed in a ring shape from alternating areas of at least two different materials.
- the core contains ferrite material, oxide ceramic and superparamagnetic material.
- the invention aims to improve a magnetic core for an inductive component and a method for producing a magnetic core using thin-film technology.
- a magnetic core for an inductive component produced using thin-film technology, in which the magnetic core consists of at least two different magnetic materials, the magnetic core forming a closed ring and the ring having a circular, oval, elliptical, square or rectangular shape .
- the various magnetic materials are selected from the materials Ni, NiFe, CoFe, CoP and CoZrTi.
- the different magnetic materials of the magnetic core alternate over the length, the different magnetic materials each occupying the complete cross section of the magnetic core.
- the different magnetic materials each extend over the entire length of the magnetic core and the magnetic core is formed by means of at least one inner ring made of a first magnetic material and an outer ring made of a second magnetic material and a cross section of the magnetic core is made of different magnetic materials Materials formed.
- the saturation behavior of the magnetic core can be improved by using at least two different magnetic materials in the manufacture of a magnetic core using thin-film technology. Above all, it is possible to specifically influence the saturation behavior of the magnetic core so that it can be optimally adjusted to the intended application.
- the different magnetic materials alternate over the length of the magnetic core.
- the magnetic core thus consists of several sections which consist of different magnetic materials.
- the various magnetic materials in the first embodiment each occupy the complete cross section of the magnetic core.
- the various sections of the magnetic core thus consist entirely of a single magnetic material and, figuratively speaking, are placed one behind the other in order to then form the complete magnetic core.
- the various magnetic materials each extend over the entire length of the magnetic core.
- a plurality of sections made of different magnetic material are not provided in the longitudinal direction of the magnetic core, but rather in the transverse direction. For example, several layers of different magnetic materials are placed on top of one another in order to form the complete magnetic core.
- a cross section of the magnetic core is formed from different magnetic materials.
- the magnetic core forms a closed ring, the ring having a circular, oval, elliptical, square or rectangular shape.
- a square or rectangular shape can have pointed or rounded corners.
- the shape of the magnetic core influences the inductance of the finished inductive component and can therefore be selected according to the intended application.
- the magnetic core is formed by means of at least one outer ring made of a first magnetic material and an inner ring made of a second magnetic material.
- the desired saturation behavior of the magnetic core can be set, for example through the thickness of the outer and inner rings and also the selection of the first magnetic material and the second magnetic material.
- the various magnetic materials are selected from the materials Ni, NiFe, CoFe, CoP and CoZrTi.
- a coil surrounding the magnetic core in sections is produced using thin-film technology.
- the complete inductive component can be manufactured using thin-film technology.
- the problem on which the invention is based is also solved by a method for producing a magnetic core, in which the application of a first magnetic material by means of thin-film technology to a substrate and the application of a second magnetic material by means of thin-film technology to the substrate are provided, the first magnetic material at least sections directly adjacent to the second magnetic material.
- a magnetic core can be manufactured using thin-film technology and at the same time the desired properties of the magnetic core, especially its saturation behavior, can be set by selecting different magnetic materials and also the dimensions of the sections of the magnetic core made from the different materials.
- the first magnetic material is applied to the substrate in the form of a first closed ring and the second material is applied to the substrate in the form of a second closed ring, with one side of the second closed ring directly adjoining the first closed ring .
- the first and the second material alternate.
- a complete ring is formed from each of the two different magnetic materials, with at least one side of the rings resting directly against one another.
- the application of a section of a coil winding using thin-film technology is provided on the substrate, followed by the application of the first and of the second material is provided for forming the magnetic core and, further below, the application of further sections of the coil winding is provided so that the finished coil winding surrounds the magnetic core in sections.
- the complete inductive component including magnetic core and coils can be manufactured using thin-film technology.
- the representation of the Fig. 1 shows a magnetic core 10 according to the invention, which was produced using thin-film technology on a substrate (not shown).
- the magnetic core 10 has a ring shape.
- the magnetic core 10 has the shape of a rectangular ring with rounded corners.
- the magnetic core 10 consists of a total of four sections 12, 14, 16 and 18.
- the sections 12, 14, 16, 18 thus form a continuous, uninterrupted ring.
- the two sections 12, 16 consist of a first magnetic material, for example nickel-iron (NiFe).
- Nickel-iron can be used in different alloys, for example NiFe 81/19, NiFe 45/55 etc.
- Cobalt iron (CoFe) or other materials can be used here, for example.
- the different magnetic materials for the sections 12, 14, 16, 18 can, for example, from the group with the materials nickel (Ni), nickel-iron (NiFe), cobalt-iron (CoFe), cobalt-phosphorus (CoP), cobalt-zirconium-titanium (CoZrTi).
- the combination of two different magnetic materials in the magnetic core 10 allows the saturation of the magnetic core 10 to be set to a desired profile.
- Fig. 2 shows an example of a diagram in which the inductance L is plotted as a function of the current I.
- the inductance L is plotted on a standardized basis in order to show a typical curve independent of the coil surrounding the magnetic core.
- dashed lines is in Fig. 1 for comparison, the inductance L of a magnetic core with the dimensions of Fig. 1 shown, whereby this magnetic core then consists exclusively of the material NiFe.
- the inductance L of the magnetic core 10 is then the Fig. 1 applied, wherein the sections 12, 16 then consist of NiFe and the sections 14, 18 of CoFe.
- the magnetic core has the Fig. 1 consistently higher saturation. This is achieved by combining the sections 12, 14, 16, 18 made of different magnetic materials, which then together form the segmented magnetic core 10.
- the magnetic core 10 By dividing the magnetic core 10 into sections 12, 14, 16, 18 made of different materials, an improved saturation behavior can be achieved.
- the desired properties can be set through the geometric dimensions of the sections 12, 14, 16, 18 and also through the selection of the magnetic materials.
- the representation of the Fig. 3 shows a magnetic core 20 according to a further embodiment of the invention.
- the magnetic core 20 like the magnetic core 10 of the Fig. 1 that has the shape of a rectangular ring with rounded corners.
- the magnetic core 20 consists of an inner ring 22 made of a first magnetic material and an outer ring 24 made of a second magnetic material.
- the outer side of the inner ring 22 adjoins the inner side of the outer ring 24.
- sections made of different magnetic materials are combined with one another, the sections, namely the two rings 22, 24, each over the entire length Extend the length of the magnetic core 20.
- the inner ring 22 is made of nickel-iron (NiFe)
- the outer ring 24 is made of cobalt-iron (CoFe).
- the representation of the Fig. 4 shows a diagram in which the normalized inductance L of the magnetic core 20 of Fig. 3 was plotted against the current consumption.
- the dashed line represents the inductance of a magnetic core that consists exclusively of nickel-iron.
- the inductance of the magnetic core 20 is the Fig. 3 applied.
- the magnetic core 20 of the Fig. 3 has a significantly improved saturation behavior. This is achieved by combining the different magnetic materials in the inner ring 22 and in the outer ring 24.
- the saturation behavior of the magnetic core 20 can be matched to the intended application by the geometric dimensions of the inner ring 22 and the outer ring 24 as well as the selection of the magnetic materials for the inner ring 22 and the outer ring 24.
- the representation of the Fig. 5 shows schematically method steps for producing an inductive component with the magnetic core 10 of FIG Fig. 1 in thin-film technology or thin-film technology.
- the manufacturing process for the magnetic core begins with a substrate 30.
- the substrate 30 already contains sections 32 of a coil winding, which is also produced using thin-film technology.
- the substrate 30 thus already contains the lower coil layer 32 and the magnetic core still to be produced is then located between the lower coil layer 32 and an upper coil layer (not shown).
- a metallic starting layer 32 is applied to the substrate 30.
- the lower coil layer 23 is no longer shown for the sake of clarity.
- the metallic starting layer 32 is applied, for example, by cathode sputtering processes. Nickel (Ni), titanium (Ti), tantalum (Ta), nickel-iron (NiFe) or copper (Cu) can be used as the starting layer.
- step B a photoresist masking 34 is carried out, the photoresist masking 34 then forming the shape for the subsequent electrodeposition of a first magnetic material.
- step C the electrodeposition of the first magnetic material 36 is carried out and the associated illustration shows the state after the deposition has ended.
- the first magnetic material 36 now fills the spaces between the photoresist masking 34.
- the sections 12, 16 of the magnetic core 10 are now formed by the first magnetic material 36.
- the first magnetic material is nickel-iron (NiFe).
- step D the photoresist masking 34 is removed so that only the first magnetic material 36 in the form of the sections 12, 16, see FIG Fig. 1 , is arranged.
- a second photoresist mask 38 is applied, which then forms a mold for the application of the second magnetic material. Based on the Fig. 1 leaves the second photoresist masking 38 exposed only the sections 14, 18, which are then to be filled with the second magnetic material.
- the second magnetic material 40 is then deposited, which then directly adjoins the first magnetic material 36. Based on the Fig. 1 the two sections 12, 14 made of the first magnetic material 36 are now connected to one another by the two sections 14, 18 made of the second magnetic material 40.
- the second magnetic material is cobalt-iron in the illustrated embodiment.
- a production step G the second photoresist marking 38 is removed.
- the magnetic core 10 is now arranged on the metallic starting layer 32, the sections 12, 16 being formed from the first magnetic material 36 and the sections 14, 18 being formed from the second magnetic material 40, as stated.
- the starting layer 32 is removed in the areas in which it is not covered by the magnetic core 10.
- the starting layer 32 is removed either by plasma etching, ion beam etching or also by a wet chemical process with acid.
- the finished magnetic core 10 is thus located on substrate 30.
- the inductive component can now be completely manufactured by combining the lower coil layer 32 with an upper coil layer and side coil sections.
- the representation of the Fig. 6 shows schematically several manufacturing steps of the magnetic core 20 of FIG Fig. 3 .
- the substrate 30 again contains a lower coil layer 32, which, after the magnetic core 20 has been produced, is completed with lateral coil sections and an upper coil layer to form a complete coil surrounding the magnetic core 20 in sections.
- the metallic starter layer 32 is applied.
- a first photoresist masking 34 is applied, the first photoresist masking 34 in this case being the shape for the inner ring 22 of the magnetic core 20 of FIG Fig. 3 forms.
- the lower coil layer 32 is no longer shown in the illustration belonging to production step B and also in the subsequent illustrations.
- the first magnetic material 36 is then electrodeposited, which then, see FIG Fig. 3 , the inner ring 22 forms.
- step D the first photoresist masking 34 is removed.
- step E the second photoresist masking 38 is applied, which then forms the shape for the outer ring 24 of the magnetic core 20 of the Fig. 3 forms.
- the second magnetic material 40 is deposited, which then directly adjoins the first magnetic material 36 and then the outer ring 24 of the magnetic core 20 of the Fig. 3 forms. It should be noted that the representations of Fig. 6 are schematic and only a section through the magnetic core 20 is shown in order to illustrate the successive method steps.
- step G the second photoresist masking 38 is removed.
- the metallic starting layer 33 is then removed in the regions in which it is not covered by the first magnetic material 36 or the second magnetic material 40. Only the magnetic core 20 remains on the substrate 30, see FIG Fig. 3 , arranged.
- the lower coil layer 32 can now be completed in the following process steps to form a coil that partially surrounds the magnetic core 20.
- the invention is used for microtechnical inductive components, for example storage chokes and transformers for high switching frequencies, such as those used in particular in DC-DC converters.
- storage chokes and transformers for high switching frequencies such as those used in particular in DC-DC converters.
- the possibility of being able to adjust the saturation behavior of the magnetic cores 10, 20 used to a desired saturation behavior offers considerable advantages.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Coils Or Transformers For Communication (AREA)
Description
Die Erfindung betrifft einen Magnetkern für ein induktives Bauteil, hergestellt in Dünnschichttechnik. Die Erfindung betrifft auch ein Verfahren zum Herstellen eines Magnetkerns in Dünnschichttechnik.The invention relates to a magnetic core for an inductive component, manufactured using thin-film technology. The invention also relates to a method for producing a magnetic core using thin-film technology.
Aus der internationalen Patentveröffentlichung
Aus der japanischen Patentzusammenfassung
Aus der US Offenlegungsschrift
Aus der US Offenlegungsschrift
Aus der US Offenlegungsschrift
Aus der Offenlegungsschrift
Aus der Offenlegungsschrift
Mit der Erfindung soll ein Magnetkern für ein induktives Bauteil und ein Verfahren zum Herstellen eines Magnetkerns mittels Dünnschichttechnik verbessert werden.The invention aims to improve a magnetic core for an inductive component and a method for producing a magnetic core using thin-film technology.
Erfindungsgemäß ist hierzu ein Magnetkern für ein induktives Bauteil, hergestellt in Dünnschichttechnik, vorgesehen, bei dem der Magnetkern aus wenigstens zwei verschiedenen magnetischen Materialien besteht, wobei der Magnetkern einen geschlossen Ring bildet und der Ring eine kreisrunde, ovale, elliptische, quadratische oder rechteckige Form hat. Die verschiedenen magnetischen Materialien sind aus den Materialen Ni, NiFe, CoFe, CoP und CoZrTi ausgewählt. Bei einer ersten Ausführungsform wechseln sich über die Länge gesehen die verschiedenen magnetischen Materialien des Magnetkerns ab, wobei die verschiedenen magnetischen Materialien jeweils den vollständigen Querschnitt des Magnetkerns einnehmen. Bei einer zweiten Ausführungsform erstrecken sich die verschiedenen magnetischen Materialien jeweils über die gesamte Länge des Magnetkerns und der Magnetkern ist mittels wenigstens eines inneren Rings aus einem ersten magnetischen Material und eines äußeren Rings aus einem zweiten magnetischen Material gebildet und ein Querschnitt des Magnetkerns ist aus verschiedenen magnetischen Materialien gebildet.According to the invention, a magnetic core for an inductive component, produced using thin-film technology, is provided, in which the magnetic core consists of at least two different magnetic materials, the magnetic core forming a closed ring and the ring having a circular, oval, elliptical, square or rectangular shape . The various magnetic materials are selected from the materials Ni, NiFe, CoFe, CoP and CoZrTi. In a first embodiment, the different magnetic materials of the magnetic core alternate over the length, the different magnetic materials each occupying the complete cross section of the magnetic core. In a second embodiment, the different magnetic materials each extend over the entire length of the magnetic core and the magnetic core is formed by means of at least one inner ring made of a first magnetic material and an outer ring made of a second magnetic material and a cross section of the magnetic core is made of different magnetic materials Materials formed.
Überraschenderweise hat sich gezeigt, dass durch die Verwendung wenigstens zweier unterschiedlicher magnetischer Materialien bei der Herstellung eines Magnetkerns in Dünnschichttechnik sich das Sättigungsverhalten des Magnetkerns verbessern lässt. Vor allem ist es möglich, das Sättigungsverhalten des Magnetkerns gezielt zu beeinflussen, so dass es optimal auf die vorgesehene Anwendung eingestellt werden kann.It has surprisingly been shown that the saturation behavior of the magnetic core can be improved by using at least two different magnetic materials in the manufacture of a magnetic core using thin-film technology. Above all, it is possible to specifically influence the saturation behavior of the magnetic core so that it can be optimally adjusted to the intended application.
Erfindungsgemäß wechseln sich bei einer ersten Ausführungsform über die Länge des Magnetkerns gesehen die verschiedenen magnetischen Materialien ab.According to the invention, in a first embodiment, the different magnetic materials alternate over the length of the magnetic core.
Der Magnetkern besteht über seinen Umfang gesehen somit aus mehreren Abschnitten, die aus unterschiedlichen magnetischen Materialien bestehen.Seen over its circumference, the magnetic core thus consists of several sections which consist of different magnetic materials.
Erfindungsgemäß nehmen die verschiedenen magnetischen Materialien bei der ersten Ausführungsform jeweils den vollständigen Querschnitt des Magnetkerns ein.According to the invention, the various magnetic materials in the first embodiment each occupy the complete cross section of the magnetic core.
Die verschiedenen Abschnitte des Magnetkerns bestehen somit vollständig aus einem einzigen magnetischen Material und sind, bildlich gesprochen, hintereinandergesetzt, um dann den vollständigen Magnetkern zu bilden.The various sections of the magnetic core thus consist entirely of a single magnetic material and, figuratively speaking, are placed one behind the other in order to then form the complete magnetic core.
Erfindungsgemäß erstrecken sich bei einer zweiten Ausführungsform die verschiedenen magnetischen Materialien jeweils über die gesamte Länge des Magnetkerns.According to the invention, in a second embodiment, the various magnetic materials each extend over the entire length of the magnetic core.
Gemäß einer Ausführungsform der Erfindung sind nicht in Längsrichtung des Magnetkerns, sondern in Querrichtung gesehen mehrere Abschnitte aus unterschiedlichem magnetischen Material vorgesehen. Beispielsweise sind mehrere Schichten aus unterschiedlichen magnetischen Materialien aufeinandergelegt, um den vollständigen Magnetkern zu bilden.According to one embodiment of the invention, a plurality of sections made of different magnetic material are not provided in the longitudinal direction of the magnetic core, but rather in the transverse direction. For example, several layers of different magnetic materials are placed on top of one another in order to form the complete magnetic core.
Erfindungsgemäß ist bei der zweiten Ausführungsform ein Querschnitt des Magnetkerns aus verschiedenen magnetischen Materialien gebildet.According to the invention, in the second embodiment, a cross section of the magnetic core is formed from different magnetic materials.
Erfindungsgemäß bildet der Magnetkern einen geschlossenen Ring, wobei der Ring eine kreisrunde, ovale, elliptische, quadratische oder rechteckige Form hat.According to the invention, the magnetic core forms a closed ring, the ring having a circular, oval, elliptical, square or rectangular shape.
Eine quadratische oder rechteckige Form kann dabei spitze oder auch abgerundete Ecken aufweisen. Die Form des Magnetkerns beeinflusst die Induktivität des fertiggestellten induktiven Bauteils und kann somit entsprechend dem vorgesehenen Anwendungszweck gewählt werden.A square or rectangular shape can have pointed or rounded corners. The shape of the magnetic core influences the inductance of the finished inductive component and can therefore be selected according to the intended application.
Erfindungsgemäß ist bei der zweiten Ausführungsform der Magnetkern mittels wenigstens eines äußeren Rings aus einem ersten magnetischen Material und eines inneren Rings aus einem zweiten magnetischen Material gebildet.According to the invention, in the second embodiment, the magnetic core is formed by means of at least one outer ring made of a first magnetic material and an inner ring made of a second magnetic material.
Auf diese Weise kann das gewünschte Sättigungsverhalten des Magnetkerns eingestellt werden, beispielsweise durch die Dicke des äußeren und des inneren Rings sowie auch die Auswahl des ersten magnetischen Materials und des zweiten magnetischen Materials.In this way, the desired saturation behavior of the magnetic core can be set, for example through the thickness of the outer and inner rings and also the selection of the first magnetic material and the second magnetic material.
Erfindungsgemäß sind die verschiedenen magnetischen Materialien aus den Materialien Ni, NiFe, CoFe, CoP und CoZrTi ausgewählt.According to the invention, the various magnetic materials are selected from the materials Ni, NiFe, CoFe, CoP and CoZrTi.
Diese Materialien haben sich bei der Herstellung von Magnetkernen in Dünnschichttechnik bewährt und weisen unterschiedliche magnetische Eigenschaften auf, so dass gemäß der Erfindung ein gewünschtes Sättigungsverhalten des Magnetkerns eingestellt werden kann.These materials have proven themselves in the production of magnetic cores using thin-film technology and have different magnetic properties, so that a desired saturation behavior of the magnetic core can be set according to the invention.
In Weiterbildung der Erfindung ist eine den Magnetkern abschnittsweise umgebende Spule mittels Dünnschichttechnik hergestellt.In a further development of the invention, a coil surrounding the magnetic core in sections is produced using thin-film technology.
Auf diese Weise kann nicht nur der Magnetkern, sondern das vollständige induktive Bauteil mittels Dünnschichttechnik hergestellt werden.In this way, not only the magnetic core, but the complete inductive component can be manufactured using thin-film technology.
Das der Erfindung zugrundeliegende Problem wird auch durch ein Verfahren zum Herstellen eines Magnetkerns gelöst, bei dem das Auftragen eines ersten magnetischen Materials mittels Dünnschichttechnik auf ein Substrat und das Auftragen eines zweiten magnetischen Materials mittels Dünnschichttechnik auf das Substrat vorgesehen sind, wobei das erste magnetische Material wenigstens abschnittsweise unmittelbar an das zweite magnetische Material angrenzt. Durch das erfindungsgemäße Verfahren kann ein Magnetkern in Dünnschichttechnik hergestellt werden und gleichzeitig können die gewünschten Eigenschaften des Magnetkerns, speziell dessen Sättigungsverhalten, durch Auswahl unterschiedlicher magnetischer Materialien sowie auch der Abmessungen der Abschnitte des Magnetkerns aus den unterschiedlichen Materialien eingestellt werden.The problem on which the invention is based is also solved by a method for producing a magnetic core, in which the application of a first magnetic material by means of thin-film technology to a substrate and the application of a second magnetic material by means of thin-film technology to the substrate are provided, the first magnetic material at least sections directly adjacent to the second magnetic material. With the method according to the invention, a magnetic core can be manufactured using thin-film technology and at the same time the desired properties of the magnetic core, especially its saturation behavior, can be set by selecting different magnetic materials and also the dimensions of the sections of the magnetic core made from the different materials.
In Weiterbildung der Erfindung wird das erste magnetische Material in Form eines ersten geschlossenen Rings auf das Substrat aufgetragen und das zweite Material wird in Form eines zweiten geschlossenen Rings auf das Substrat aufgetragen, wobei der zweite geschlossene Ring mit einer Seite unmittelbar an den ersten geschlossenen Ring angrenzt.In a further development of the invention, the first magnetic material is applied to the substrate in the form of a first closed ring and the second material is applied to the substrate in the form of a second closed ring, with one side of the second closed ring directly adjoining the first closed ring .
Über den Querschnitt des Magnetkerns gesehen wechseln sich damit das erste und das zweite Material ab. Aus jedem der beiden unterschiedlichen magnetischen Materialien ist aber ein vollständiger Ring gebildet, wobei die Ringe wenigstens mit einer Seite unmittelbar aneinander anliegen.Seen over the cross section of the magnetic core, the first and the second material alternate. However, a complete ring is formed from each of the two different magnetic materials, with at least one side of the rings resting directly against one another.
In Weiterbildung der Erfindung ist das Auftragen eines Abschnitts einer Spulenwicklung in Dünnschichttechnik auf das Substrat vorgesehen, nachfolgend ist das Auftragen des ersten und des zweiten Materials zum Bilden des Magnetkerns vorgesehen und weiter nachfolgend ist dann das Auftragen weiterer Abschnitte der Spulenwicklung vorgesehen, so dass die fertiggestellte Spulenwicklung den Magnetkern abschnittsweise umgibt.In a further development of the invention, the application of a section of a coil winding using thin-film technology is provided on the substrate, followed by the application of the first and of the second material is provided for forming the magnetic core and, further below, the application of further sections of the coil winding is provided so that the finished coil winding surrounds the magnetic core in sections.
Auf diese Weise kann das vollständige induktive Bauteil einschließlich Magnetkern und Spulen mittels Dünnschichttechnik hergestellt werden.In this way, the complete inductive component including magnetic core and coils can be manufactured using thin-film technology.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den Ansprüchen und der folgenden Beschreibung bevorzugter Ausführungsformen der Erfindung im Zusammenhang mit den Zeichnungen. Einzelmerkmale der unterschiedlichen, dargestellten Ausführungsformen lassen sich dabei in beliebiger Weise miteinander kombinieren, ohne den Rahmen der Erfindung zu überschreiten. In den Zeichnungen zeigen:
- Fig. 1
- eine schematische Ansicht eines Magnetkerns gemäß einer ersten Ausführungsform der Erfindung,
- Fig. 2
- ein Diagramm einer normierten Induktivität einer Spule mit dem Magnetkern der
Fig. 1 über der Stromaufnahme, - Fig. 3
- eine schematische Darstellung eines Magnetkerns gemäß einer weiteren Ausführungsform der Erfindung,
- Fig. 4
- ein Diagramm der normierten Induktivität einer Spule mit dem Magnetkern der
Fig. 3 über der Stromaufnahme, - Fig. 5
- eine schematische Darstellung der Verfahrensschritte bei der Herstellung des Magnetkerns der
Fig. 1 und - Fig. 6
- eine schematische Darstellung der Verfahrensschritte zur Herstellung des Magnetkerns der
Fig. 3 .
- Fig. 1
- a schematic view of a magnetic core according to a first embodiment of the invention,
- Fig. 2
- a diagram of a normalized inductance of a coil with the magnetic core of
Fig. 1 above the current consumption, - Fig. 3
- a schematic representation of a magnetic core according to a further embodiment of the invention,
- Fig. 4
- a diagram of the normalized inductance of a coil with the magnetic core of
Fig. 3 above the current consumption, - Fig. 5
- a schematic representation of the process steps in the manufacture of the magnetic core of FIG
Fig. 1 and - Fig. 6
- a schematic representation of the process steps for producing the magnetic core of FIG
Fig. 3 .
Die Darstellung der
Die beiden Abschnitte 12, 16 bestehen dabei aus einem ersten magnetischen Material, beispielsweise Nickel-Eisen (NiFe). Dabei kann Nickel-Eisen in verschiedenen Legierungen eingesetzt werden, beispielsweise NiFe 81/19, NiFe 45/55 usw. Die Abschnitte 14, 18 bestehen dahingegen aus einem zweiten magnetischen Material mit anderen magnetischen Eigenschaften. Hier kann beispielsweise Kobalt-Eisen (CoFe) oder auch andere Materialien verwendet werden. Beispielsweise ist auch die Verwendung von Nickel-Eisen sowohl in den Abschnitten 12, 16 als auch in den Abschnitten 14, 18 möglich, wobei dann unterschiedliche Legierungen verwendet werden, beispielsweise NiFe 81/19 in den Abschnitten 12, 16 und NiFe 45/55 in den Abschnitten 14, 18. Die unterschiedlichen magnetischen Materialien für die Abschnitte 12, 14, 16, 18 können beispielsweise aus der Gruppe mit den Materialien Nickel (Ni), Nickel-Eisen (NiFe), Kobalt-Eisen (CoFe), Kobalt-Phosphor (CoP), Kobalt-Zirkonium-Titan (CoZrTi) ausgewählt werden.The two
Die Kombination zweier unterschiedlicher magnetischer Materialien in dem Magnetkern 10 erlaubt es, die Sättigung des Magnetkerns 10 auf einen gewünschten Verlauf einzustellen.The combination of two different magnetic materials in the
Durch Aufteilen des Magnetkerns 10 in Abschnitte 12, 14, 16, 18 aus unterschiedlichen Materialien lässt sich dadurch ein verbessertes Sättigungsverhalten erzielen. Die gewünschten Eigenschaften können dabei durch die geometrischen Abmessungen der Abschnitte 12, 14, 16, 18 sowie auch durch die Auswahl der magnetischen Materialien eingestellt werden.By dividing the
Die Darstellung der
Die Darstellung der
Die Darstellung der
Ausgehend von einem Substrat 30 beginnt der Herstellungsprozess des Magnetkerns. Das Substrat 30 enthält dabei bereits Abschnitte 32 einer Spulenwicklung, die ebenfalls in Dünnschichttechnik hergestellt wird. Das Substrat 30 enthält damit bereits die untere Spulenlage 32 und der noch herzustellende magnetische Kern befindet sich dann zwischen der unteren Spulenlage 32 und einer oberen, nicht dargestellten Spulenlage.The manufacturing process for the magnetic core begins with a
Im Schritt A wird auf das Substrat 30 eine metallische Startschicht 32 aufgetragen. Im Substrat 30 ist, wie auch bei den nachfolgenden Verfahrensschritten, der Übersichtlichkeit halber die untere Spulenlage 23 nicht mehr eingezeichnet. Die metallische Startschicht 32 wird beispielsweise durch Kathodenzerstäubungsverfahren aufgebracht. Als Startschicht können Nickel (Ni), Titan (Ti), Tantal (Ta), Nickel-Eisen (NiFe) oder Kupfer (Cu) verwendet werden.In step A, a
Im Schritt B wird eine Photoresist-Maskierung 34 durchgeführt, wobei die Photoresist-Maskierung 34 dann die Form für die nachfolgende galvanische Abscheidung eines ersten magnetischen Materials bildet.In step B, a photoresist masking 34 is carried out, the photoresist masking 34 then forming the shape for the subsequent electrodeposition of a first magnetic material.
Im Schritt C wird die galvanische Abscheidung des ersten magnetischen Materials 36 vorgenommen und die zugehörige Abbildung zeigt den Zustand nach beendeter Abscheidung. Das erste magnetische Material 36 füllt nun die Zwischenräume zwischen der Photoresist-Maskierung 34 auf. Bezogen auf die
Im Schritt D wird die Photoresist-Maskierung 34 entfernt, so dass auf der metallischen Startschicht 32 nun nur noch das erste magnetische Material 36 in Form der Abschnitte 12, 16, siehe
Im Herstellungsschritt E wird eine zweite Photoresist-Maskierung 38 aufgetragen, die dann eine Form für das Auftragen des zweiten magnetischen Materials bildet. Bezogen auf die
Im Herstellungsschritt F wird dann das zweite magnetische Material 40 abgeschieden, das dann unmittelbar an das erste magnetische Material 36 angrenzt. Bezogen auf die
In einem Herstellungsschritt G wird die zweite Photoresist-Markierung 38 entfernt. Auf der metallischen Startschicht 32 ist nun der Magnetkern 10 angeordnet, wobei, wie ausgeführt wurde, die Abschnitte 12, 16 aus dem ersten magnetischen Material 36 und die Abschnitte 14, 18 aus dem zweiten magnetischen Material 40 gebildet sind.In a production step G, the second photoresist marking 38 is removed. The
Im Verfahrensschritt H wird die Startschicht 32 in den Bereichen entfernt, in denen sie nicht durch den Magnetkern 10 bedeckt ist. Die Startschicht 32 wird dabei entweder durch Plasmaätzen, lonenstrahlätzen oder auch durch ein nasschemisches Verfahren mit Säure entfernt.In method step H, the starting
Nach dem Verfahrensschritt H befindet sich auf dem Substrat 30 somit der fertiggestellte Magnetkern 10. In weiteren Verfahrensschritten kann nun das induktive Bauteil vollständig hergestellt werden, indem die untere Spulenlage 32 mit einer oberen Spulenlage und seitlichen Spulenabschnitten kombiniert wird.After method step H, the finished
Die Darstellung der
Das Substrat 30 enthält wieder eine untere Spulenlage 32, die dann nach Herstellung des Magnetkerns 20 mit seitlichen Spulenabschnitten und einer oberen Spulenlage zu einer vollständigen, den Magnetkern 20 abschnittsweise umgebenden Spule vervollständigt wird.The
Im Herstellungsschritt A erfolgt das Aufbringen der metallischen Startschicht 32.In production step A, the
Im Herstellungsschritt B wird eine erste Photoresist-Maskierung 34 aufgetragen, wobei die erste Photoresist-Maskierung 34 in diesem Fall die Form für den inneren Ring 22 des Magnetkerns 20 der
Im Herstellungsschritt C wird dann das erste magnetische Material 36 galvanisch abgeschieden, das dann, siehe
Im Herstellungsschritt D wird die erste Photoresist-Maskierung 34 entfernt.In manufacturing step D, the first photoresist masking 34 is removed.
Im Herstellungsschritt E wird die zweite Photoresist-Maskierung 38 aufgetragen, die dann die Form für den äußeren Ring 24 des Magnetkerns 20 der
Im Herstellungsschritt F wird das zweite magnetische Material 40 abgeschieden, das dann unmittelbar an das erste magnetische Material 36 angrenzt und dann den äußeren Ring 24 des Magnetkerns 20 der
Im Verfahrensschritt G wird die zweite Photoresist-Maskierung 38 entfernt.In method step G, the second photoresist masking 38 is removed.
Im Verfahrensschritt H wird dann die metallische Startschicht 33 in den Bereichen entfernt, in denen sie nicht durch das erste magnetische Material 36 oder das zweite magnetische Material 40 abgedeckt ist. Auf dem Substrat 30 ist somit nur noch der magnetische Kern 20, siehe
Die Erfindung findet für mikrotechnische induktive Bauteile Anwendung, beispielsweise Speicherdrosseln und Transformatoren für hohe Schaltfrequenzen, wie sie insbesondere bei DC-DC-Wandlern eingesetzt werden. Die Möglichkeit, das Sättigungsverhalten der verwendeten magnetischen Kerne 10, 20 auf ein gewünschtes Sättigungsverhalten einstellen zu können, bietet dabei erhebliche Vorteile.The invention is used for microtechnical inductive components, for example storage chokes and transformers for high switching frequencies, such as those used in particular in DC-DC converters. The possibility of being able to adjust the saturation behavior of the
Claims (6)
- Magnetic core for an inductive component, produced by thin-film technology, wherein the magnetic core (10, 20) consists of at least two different magnetic materials (36, 40),
wherein the magnetic core (10, 20) forms a closed ring,
wherein the ring has a circular, oval, elliptical, square or rectangular shape,
wherein the different magnetic materials are selected from the materials Ni, NiFe, CoFe, CoP and CoZrTi,
wherein, in a first embodiment, seen over the length the different magnetic materials (36, 40) alternate and respectively take up the complete cross section of the magnetic core (10), or
wherein, in a second embodiment, the magnetic core (20) is formed by means of at least an inner ring (22) of a first magnetic material (36) and an outer ring (24) of a second magnetic material (40), and the different magnetic materials (36, 40) respectively extend over the entire length of the magnetic core (20) and a cross section of the magnetic core (20) is formed from different magnetic materials (36, 40). - Inductive component with a magnetic core according to claim 1, wherein a coil surrounding the magnetic core (10, 20) in certain portions is produced by means of thin film technology.
- Method for producing a magnetic core (10, 20) according to any of the preceding claims, characterized by application of a first magnetic material (36) to a substrate (30) by means of thin-film technology and application of a second magnetic material (40) to the substrate (30) by means of thin-film technology, wherein the first magnetic material (36) is directly adjacent to the second magnetic material (40) at least in certain portions.
- Method according to claim 3, characterized in that the application of the second magnetic material (40) has the effect of forming a closed ring comprising the first magnetic material (36) and the second magnetic material (40).
- Method according to claim 3, characterized in that the first magnetic material is applied to the substrate (30) in the form of a first closed ring (22) and the second magnetic material (40) is applied to the substrate (30) in the form of a second closed ring (24), wherein the second closed ring (24) is directly adjacent to the first closed ring (22) with one side.
- Method according to at least one of claims 3 to 5, characterized by application of a portion (32) of a coil winding to the substrate (30) by thin-film technology, followed by application of the first and the second magnetic materials (36, 40) to form the magnetic core (10, 20) and then application of further portions of the coil winding, so that the finished coil winding surrounds the magnetic core (10, 20) in certain portions.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014218043.0A DE102014218043A1 (en) | 2014-09-10 | 2014-09-10 | Magnetic core, inductive component and method for manufacturing a magnetic core |
PCT/EP2015/068180 WO2016037776A1 (en) | 2014-09-10 | 2015-08-06 | Magnetic core, inductive component, and method for producing a magnetic core |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3192090A1 EP3192090A1 (en) | 2017-07-19 |
EP3192090B1 true EP3192090B1 (en) | 2021-01-20 |
Family
ID=53835424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15749777.7A Active EP3192090B1 (en) | 2014-09-10 | 2015-08-06 | Magnetic core, inductive component, and method for producing a magnetic core |
Country Status (5)
Country | Link |
---|---|
US (1) | US20170278614A1 (en) |
EP (1) | EP3192090B1 (en) |
CN (1) | CN106605280B (en) |
DE (1) | DE102014218043A1 (en) |
WO (1) | WO2016037776A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3961660A1 (en) * | 2020-08-28 | 2022-03-02 | Siemens Aktiengesellschaft | Inductive component for an inverter and inverter |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10111460A1 (en) * | 2001-03-09 | 2002-09-19 | Siemens Ag | Magnetic HF device with magnetically soft layer system e.g. for telecommunications systems, has adjustment of permeability of layer system by at least one other layer |
DE102012222224A1 (en) * | 2012-12-04 | 2014-06-05 | SUMIDA Components & Modules GmbH | Magnetic cores and process for their preparation |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE549660C (en) * | 1929-11-09 | 1932-04-29 | Aeg | An annular magnetic core composed of two or more individual cores placed one on top of the other in the axial direction |
US3668589A (en) * | 1970-12-08 | 1972-06-06 | Pioneer Magnetics Inc | Low frequency magnetic core inductor structure |
US4205288A (en) * | 1978-10-27 | 1980-05-27 | Westinghouse Electric Corp. | Transformer with parallel magnetic circuits of unequal mean lengths and loss characteristics |
DE4018149A1 (en) * | 1990-06-06 | 1991-12-12 | Siemens Ag | DEVICE FOR CONTACTLESS DETERMINATION OF THE TORQUE OF A ROTATING, TORED CYLINDER-SHAPED BODY |
DE19816485C2 (en) * | 1998-04-14 | 2000-05-25 | Aloys Wobben | Coil for step-up converter |
US6885273B2 (en) * | 2000-03-30 | 2005-04-26 | Abb Ab | Induction devices with distributed air gaps |
US6660412B2 (en) * | 2001-03-15 | 2003-12-09 | Waseem A. Roshen | Low loss, high frequency composite magnetic material and methods of making the same |
US6768409B2 (en) * | 2001-08-29 | 2004-07-27 | Matsushita Electric Industrial Co., Ltd. | Magnetic device, method for manufacturing the same, and power supply module equipped with the same |
DE10302646B4 (en) * | 2003-01-23 | 2010-05-20 | Vacuumschmelze Gmbh & Co. Kg | Antenna core and method of manufacturing an antenna core |
JP2006032587A (en) * | 2004-07-15 | 2006-02-02 | Matsushita Electric Ind Co Ltd | Inductance component and its manufacturing method |
JP2007128951A (en) * | 2005-11-01 | 2007-05-24 | Hitachi Ferrite Electronics Ltd | Reactor |
US7719084B2 (en) * | 2006-06-30 | 2010-05-18 | Intel Corporation | Laminated magnetic material for inductors in integrated circuits |
JP5120690B2 (en) * | 2007-07-30 | 2013-01-16 | 住友電気工業株式会社 | Reactor core |
JP4998292B2 (en) * | 2008-01-31 | 2012-08-15 | Tdk株式会社 | Magnetic thin film and thin film magnetic device |
JP2010278322A (en) | 2009-05-29 | 2010-12-09 | Fujitsu General Ltd | Choke coil |
EP2453450A1 (en) * | 2010-11-12 | 2012-05-16 | Falco Electronics Ltd. | Hybrid core for power inductor |
DE102011079633A1 (en) * | 2011-07-22 | 2013-01-24 | Robert Bosch Gmbh | Magnetic sensor for measuring a magnetic field of a magnetic multipole and associated device for determining motion parameters |
JP5375922B2 (en) * | 2011-10-18 | 2013-12-25 | 株式会社豊田自動織機 | Magnetic core and induction device |
DE102011086403A1 (en) | 2011-11-15 | 2013-05-16 | Würth Elektronik eiSos Gmbh & Co. KG | inductance component |
KR101911457B1 (en) * | 2012-04-30 | 2018-10-24 | 엘지이노텍 주식회사 | Magnetic sheet and Fabricating method of the same, Electric device for wireless charging using the same |
US20140152410A1 (en) * | 2012-12-03 | 2014-06-05 | Arizona Board of Regents, a body corporate of the State of Arizona Acting for and on behalf of Arizo | Integrated tunable inductors |
US9337251B2 (en) * | 2013-01-22 | 2016-05-10 | Ferric, Inc. | Integrated magnetic core inductors with interleaved windings |
DE102013208058B4 (en) * | 2013-05-02 | 2015-09-10 | Sts Spezial-Transformatoren-Stockach Gmbh & Co. Kg | Magnetically preloaded throttle |
KR101462806B1 (en) * | 2013-10-11 | 2014-11-20 | 삼성전기주식회사 | Inductor and Manufacturing Method for the Same |
-
2014
- 2014-09-10 DE DE102014218043.0A patent/DE102014218043A1/en not_active Withdrawn
-
2015
- 2015-08-06 WO PCT/EP2015/068180 patent/WO2016037776A1/en active Application Filing
- 2015-08-06 EP EP15749777.7A patent/EP3192090B1/en active Active
- 2015-08-06 CN CN201580048746.2A patent/CN106605280B/en active Active
- 2015-08-06 US US15/506,985 patent/US20170278614A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10111460A1 (en) * | 2001-03-09 | 2002-09-19 | Siemens Ag | Magnetic HF device with magnetically soft layer system e.g. for telecommunications systems, has adjustment of permeability of layer system by at least one other layer |
DE102012222224A1 (en) * | 2012-12-04 | 2014-06-05 | SUMIDA Components & Modules GmbH | Magnetic cores and process for their preparation |
Also Published As
Publication number | Publication date |
---|---|
WO2016037776A1 (en) | 2016-03-17 |
DE102014218043A1 (en) | 2016-03-10 |
CN106605280B (en) | 2018-09-18 |
EP3192090A1 (en) | 2017-07-19 |
US20170278614A1 (en) | 2017-09-28 |
CN106605280A (en) | 2017-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2463869B1 (en) | Inductive component with improved core properties | |
DE102006017762B4 (en) | Process for laminating an electrical steel strip for transformer cores | |
DE102013201353A1 (en) | Rotor and reluctance motor | |
DE102016119650A1 (en) | Process for producing a soft magnetic core material | |
EP2924697B1 (en) | Magnetic core with plate-shaped stray body and inductive component | |
DE102009038730A1 (en) | Sheet metal stack of soft magnetic single sheet metal, useful e.g. in an injector, comprises first longitudinal side, second longitudinal side opposing first longitudinal side, first broadside, and second broadside opposing first broadside | |
DE102016119654A1 (en) | Process for producing a soft magnetic core material | |
DE102010050828A1 (en) | Current-compensated choke with increased stray inductance | |
DE2366048C2 (en) | Due to a heat treatment, a layer material that forms a solid layer bond for electrotechnical components operated at high frequency and processes for their production | |
EP3192090B1 (en) | Magnetic core, inductive component, and method for producing a magnetic core | |
DE102010001394A1 (en) | Antenna core, antenna and method for producing an antenna core and an antenna | |
DE102006026466B3 (en) | Inductive electrical element particularly transformer, has winding conductor, particularly formed as filament, which is wounded partly around ferromagnetic core for formation of winding | |
WO2002007172A1 (en) | I-inductor as a high-frequency microinductor | |
DE102013112325A1 (en) | Ring coil and manufacturing process for a toroidal coil | |
WO2007115566A1 (en) | Piezo actuator and method of manufacture | |
EP3365902B1 (en) | Winding arrangement | |
DE112017004276T5 (en) | METHOD FOR PRODUCING AN INDUCTIVE COMPONENT AND AN INDUCTIVE COMPONENT | |
EP2780918B1 (en) | Induction component | |
EP2975618B1 (en) | Core for an electrical induction device | |
WO2021239403A1 (en) | Coil element | |
WO2010130337A2 (en) | Method for producing a disk winding | |
DE2343539A1 (en) | THIN FILM THROTTLE | |
DE202014005370U1 (en) | Inductive component | |
DE102005003002A1 (en) | Magnetic annular core e.g. for manufacture of reactance coils and chokes, has two coaxially arranged rings made of magnetizable material, separated from one another by insulating disc of non-magnetizable material | |
DE202019102273U1 (en) | Inductive component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170407 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1233765 Country of ref document: HK |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200918 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: DR. LUSUARDI AG, CH Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015014180 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1357097 Country of ref document: AT Kind code of ref document: T Effective date: 20210215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210120 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210520 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210120 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210420 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210120 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210420 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210120 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210120 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210120 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210120 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210120 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210520 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015014180 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210120 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210120 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210120 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210120 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210120 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210120 |
|
26N | No opposition filed |
Effective date: 20211021 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210120 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210120 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210520 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210806 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210120 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230525 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20230902 Year of fee payment: 9 Ref country code: AT Payment date: 20230818 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210120 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240821 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240822 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240814 Year of fee payment: 10 |