EP3109459A1 - Rotationskolben-verbrennungsmotor - Google Patents

Rotationskolben-verbrennungsmotor Download PDF

Info

Publication number
EP3109459A1
EP3109459A1 EP15173423.3A EP15173423A EP3109459A1 EP 3109459 A1 EP3109459 A1 EP 3109459A1 EP 15173423 A EP15173423 A EP 15173423A EP 3109459 A1 EP3109459 A1 EP 3109459A1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
rotary piston
microwave
wall
microwaves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15173423.3A
Other languages
English (en)
French (fr)
Other versions
EP3109459B1 (de
Inventor
Armin Gallatz
Volker Gallatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MWI MICRO WAVE IGNITION AG
Original Assignee
Mwi Micro Wave Ignition AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mwi Micro Wave Ignition AG filed Critical Mwi Micro Wave Ignition AG
Priority to ES15173423T priority Critical patent/ES2861475T3/es
Priority to EP15173423.3A priority patent/EP3109459B1/de
Priority to US15/148,233 priority patent/US10030578B2/en
Priority to CN201610425530.XA priority patent/CN106286075B/zh
Priority to JP2016121590A priority patent/JP6261659B2/ja
Priority to MX2016008433A priority patent/MX358500B/es
Priority to KR1020160078335A priority patent/KR101819826B1/ko
Publication of EP3109459A1 publication Critical patent/EP3109459A1/de
Application granted granted Critical
Publication of EP3109459B1 publication Critical patent/EP3109459B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/14Shapes or constructions of combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • F02P23/045Other physical ignition means, e.g. using laser rays using electromagnetic microwaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/12Ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/001Ignition installations adapted to specific engine types
    • F02P15/005Layout of ignition circuits for rotary- or oscillating piston engines

Definitions

  • the invention relates to a rotary piston internal combustion engine having a housing which has housing walls forming a working chamber and in which a rotatable rotary piston is arranged, which extends through the working chamber and moves along the edges of the rotary piston during rotation on the housing walls forming a running surface, wherein in the working chamber for the ignition of a fuel located in the working chamber, a region of the working chamber serves as a combustion chamber with an associated combustion chamber wall.
  • Such motors are well known.
  • the best known embodiment is known by the name Wankelmotor.
  • Wankelmotor From the DE 103 56 916 A1 It is known to generate in a combustion chamber by means of microwave energy of a space ignition in an internal combustion engine in order to better ignite and burn the combustion of the fuel introduced via a fuel-air mixture.
  • the following generally refers to fuel, whether it is diesel, gasoline, hydrogen or other fuel suitable for operation.
  • fuel-gas mixtures are introduced into the combustion chamber.
  • an ignitable gasoline fuel-air mixture in the working chamber is compressed in a combustion chamber and caused to react / oxidize by a spark plug.
  • the spark plug forms a depression in the surface of the working chamber, so that this surface acting as a running surface for the edges of the rotary piston has an unevenness which leads to a loss of compression.
  • the ignition causes the chemical oxidation to propagate spherically from the location of ignition in the form of a pressure and reaction front (laminar firing phase) in the elongated and shallow combustion chamber, causing laminar combustion which also results in compression loss.
  • losses of efficiency and pollutants arise in the combustion of fuels such as soot or carbon monoxide, etc.
  • the invention is therefore based on the object to achieve an improved ignition of the fuel in the combustion chamber and an improvement in the efficiency.
  • At least one microwave window is arranged in the combustion chamber wall, on the side remote from the combustion chamber there is a device for coupling microwave energy in the form of microwaves into the combustion chamber of the working chamber.
  • Microwave solid is understood in this context to be an externally closed region which is microwave permeable.
  • the combustion chamber wall as part of the housing wall thus also serves as a running surface in the region of the combustion chamber.
  • the arrangement of the microwave window in the combustion chamber wall it is basically possible to produce a completely smooth surface, which is particularly favorable for the sealing of the rotary piston during its movement along the tread. This avoids the compression loss associated with conventional engines.
  • one or more microwave windows in the Be arranged combustion chamber wall wherein it is not necessary that the material of the microwave window is different from the remaining material of the combustion chamber wall or even the housing wall.
  • the decisive factor is that the area acting as a microwave window, unlike its surroundings, is permeable to microwaves.
  • the permeability of the microwave window can be realized either by a delimited area of microwave transparent material or by a larger portion, which is microwave transparent per se, but with the exception of the microwave window area being shielded by shields for microwaves impinging on the portion.
  • the means for coupling microwave energy can either comprise at least one microwave spark plug in a bore in the combustion chamber wall which can be connected to a microwave pulse generator via a microwave waveguide or a microwave pulse generator mounted directly on the housing.
  • the local ignition is replaced by a space ignition or by an edge layer ignition, wherein the fuel is excited as homogeneous as possible over the entire volume of the combustion chamber before ignition, which is carried out by a distributed over the combustion chamber absorption of the microwave energy of the fuel particles.
  • the absorption capacity of microwaves described by a material parameter tan ⁇ (t) and the penetration depth associated therewith, play an essential role.
  • the microwave energy is concentrated in sufficient quantities in as many places as possible in the combustion chamber in order to generate a space ignition in the combustion chamber there by a multiplicity of ignition germs.
  • as little microwave energy as possible should be reflected back to a microwave source. The lower the reflection, the greater the absorption and thus the energy absorption of the fuel particles for a space ignition.
  • At least the combustion chamber wall is arranged without changing the running surface in the housing wall forming the working chamber without depression, as in conventional motors.
  • the combustion chamber wall is at least partially made of a particularly suitable microwave transparent material, such as ceramic or sapphire crystal.
  • a particularly suitable microwave transparent material such as ceramic or sapphire crystal.
  • This may, in particular, also be a ceramic material preferably having a purity of> 99% or another material that is more permeable to microwaves. This can be done in such a way that the combustion chamber wall either comprises individual regions made of this material or consists of the entire material and regions are formed by additional measures that selectively transmit the microwave energy and thus form the respective microwave window.
  • uneven local geometric metallic structures are arranged in the combustion chamber wall, which, depending on the configuration, concentrates microwaves reflected back from the combustion chamber into the combustion chamber or deflected back scattered.
  • These local structures can either have a curved uniform configuration, such as, for example, harmonic oscillation profiles, such as sinusoidal progression, or an angular configuration. It is also possible to form the structures by bodies in the form of spheres or the like. With these structures can targeted reflection or scattering of microwaves are achieved, so that in combustion chamber areas in which an ignition of the fuel would not normally be done, can be re-energized by local field increases the fuel and can be made to ignite.
  • the uneven local geometric structures in the form of introduced into the combustion chamber wall particles or as a metal powder layer are formed.
  • This is applied, for example, when using ceramic material on a pressed and pre-sintered carrier layer (green body), wherein the bumps may already be present or only be prepared by now by known suitable molding processes, such as rolling, milling, etc. at this stage.
  • the thus prepared surface can now be metallized, doped with metal powder or treated in another known suitable manner to provide it with a metallic layer.
  • holes can be made by laser, by etching, or by other common methods, which then allow the passage of microwaves and serve as microwave solid.
  • a microwave permeable further layer is applied, which may be made of a ceramic material or sapphire crystal.
  • the combustion chamber wall is provided with a side facing away from the combustion chamber or inside the combustion chamber wall with a metallic layer extending in the longitudinal direction of the combustion chamber wall and having at least one opening for the passage of microwaves.
  • the metallic layer can be vapor-deposited on the outside, wherein corresponding openings are etched out depending on the application.
  • a metallic layer extending in the longitudinal direction of the combustion chamber wall is arranged, which has at least one opening for the passage of microwaves, similar to described above in connection with the local metallic structures. In the manufacture of the housing wall, in particular of ceramic material, this wall can be inserted, scattered, vapor-deposited and sintered and fired.
  • the microwaves are reflected by the metallic rotary piston after coupling into the combustion chamber and hit by the ceramic material of the combustion chamber wall on the metallic housing of the engine and are thrown back from there back towards the combustion chamber. Since the ceramic material also causes an attenuation of the microwave, the metallic layers additionally introduced in the ceramic material can serve as a reflection surface, which shorten the path through the ceramic material for the microwaves. Of course, these metallic surfaces have openings where the microwaves are coupled.
  • a microwave pulse generator is in the EP 15170029.1 described.
  • the at least one attached microwave pulse generator is either located exactly at the respective location of the microwave window or else a distribution takes place by means of a channel acting as a microwave waveguide channel in the housing wall.
  • the at least one microwave pulse generator is preferably mounted in the axial direction, so that the microwaves are introduced into the housing wall laterally, preferably parallel to a housing longitudinal axis.
  • the microwaves after being introduced into the housing wall of the first rotary piston internal combustion engine in the housing wall of the following rotary piston internal combustion engines for coupling be forwarded to the respective combustion chamber.
  • At least one extending in the housing wall microwave channel is arranged, which is connected to at least one microwave window.
  • This microwave channel can be retrofitted into the housing wall, e.g. by milling or other suitable measures, or even before the final sintering in a ceramic layer of the combustion chamber wall are introduced.
  • the surface of the at least one microwave channel can additionally be provided with a metallic layer, wherein at the locations where microwaves emerge from the microwave channel, the metallic layer is interrupted.
  • the microwave energy can be selectively brought into the combustion chamber, since the oscillating in the microwave channel and reflected from the walls of microwaves can escape through the at least one opening.
  • the microwave channel also, where appropriate, have branches.
  • the microwave channel can also be easily formed by the microwave transparent material of the combustion chamber wall, wherein the metallic housing wall forms a reflective side of the microwave channel.
  • a metallic reflection layer may be applied in or on the microwave-transparent material.
  • at least one such microwave channels can be located one behind the other. Since the ignition takes place at different times in the individual combustion chambers in such a case, the microwaves are then passed through all the openings or microwave channels, but only in the combustion chamber an ignition in which the fuel is in the appropriate flammable state.
  • the device for coupling the microwaves of a microwave spark plug according to the patent application EP 15157298.9 on, which is arranged in at least one bore in the combustion chamber wall. This hits with its end on the microwave-permeable combustion chamber wall, which forms the microwave window for this microwave spark plug.
  • the rotary piston since the rotary piston usually consists of a metallic material, it already forms with its surface a reflection layer for the microwaves.
  • a reflection layer of a microwave energy permeable and suitable for the combustion of fuel in the combustion chamber material, in particular ceramic or sapphire crystal arranged in the uneven local geometric metallic structures are arranged
  • microwaves impinging on the rotary piston are again concentrated or scattered in the combustion chamber.
  • the geometric metallic structures can be produced without passage points for microwaves.
  • the uneven local geometric structures in the form of introduced into the reflective layer particles or as a metal powder layer are formed.
  • the concentration or scattering of the microwaves in the combustion chamber can be controlled in a targeted manner.
  • the combustion chamber wall and / or reflection layer are at least partially formed as a prefabricated sintered in the housing wall or the piston wall insertable insert. This can be done in such a way that either only the combustion chamber wall is introduced into the housing wall or the housing wall is lined with a wall layer enclosing the entire working chamber.
  • the device for coupling the microwaves to a microwave generator the microwaves with a frequency of 25 GHz to 95 GHz, preferably 30 to 75 GHz, generates and the control of the timing, the frequency, the amplitude and Type of coupling of the microwaves has.
  • the type of coupling is understood to mean whether the coupling via individual pulses or as pulse packets or other possible variants required has the control of the microwaves.
  • the means for coupling the microwaves may have a microwave generator, which initiates the microwaves in pulse packets and preferably maintains these after a successful ignition of a fuel.
  • a microwave generator which initiates the microwaves in pulse packets and preferably maintains these after a successful ignition of a fuel.
  • the combustion of the fuel is optimized and also ignited ignition of the combustion of the fuel stimulated.
  • a particular advantage of the engine is that the microwaves can be angularly controlled with respect to a crankshaft, so that accurate control of the ignition can be performed. Moreover, it is possible to design such a rotary piston internal combustion engine without a seal between rotary piston and housing wall and only provide a gap between rotary piston and housing wall, for example of 0.5 mm, without losing essential power, but the production is simplified.
  • the known disadvantages of the compression loss are avoided by the running surface having no unevenness and the space ignition of the individual fuel particles. It is possible to provide any required ignition energy at any point and to produce uniform combustion throughout the combustion chamber, by selecting the number of microwave windows and the corresponding parameters for the delivery of the microwaves. There are basically all design options for the tread possible. Also, a working chamber with a circular cross-section is possible. Further, by the selection of the material and the design of the housing of the motor can be designed according to the application, especially if a sintered material, such as a ceramic material is used.
  • the engine according to the invention also allows the precise control of the beginning of a space ignition of a fuel in a combustion chamber, so that an optimal low-emission combustion of the fuel with an over conventional rotary piston internal combustion engines increased efficiency is reached.
  • the invention enables the safe ignition of lean fuel-air / gas mixtures, which does not require additional enrichment for ignition and leads to lower fuel consumption. Pollutants and their formation can be regulated by the combustion temperature and by the mixing ratio of air and fuel.
  • the combustion according to the invention proceeds faster than in conventional ignitions. This results in a "colder" combustion, so that the efficiency increases.
  • lower pollutant emissions can in principle be achieved in colder combustion processes. The colder combustion reduces the concentration of nitrogen oxides in the fuel exhausts.
  • FIGS. 1 and 2 show two different embodiments of the engine 1, wherein the configurations differ in that microwave pulse generators 10 are mounted differently.
  • FIG. 3 shows the attachment of a Mikrowellenzündkerze 18 in place of the microwave pulse generator 10 in FIG. 1 ,
  • the description of the motor 1 with a housing 2 and the arrangements therein is incidentally for the training in the FIGS. 1 . 2 and 3 to.
  • This also concerns the details X in the figures, which only in the Figures 1c, 1d and 1e are shown.
  • the motor 1 has a housing wall 3 with a wall layer 22, which encloses a working chamber 5, in which a rotary piston 6 about an axis of rotation. 7 is rotatably mounted.
  • the edge 17 of the rotary piston 6 moves along the wall layer 22 of the housing wall 3.
  • the part of the working chamber 5, in which there is a compressed by the rotation of the rotary piston 6 fuel is used as the combustion chamber 9 and the combustion chamber 9 associated region of the wall layer 22nd is referred to as combustion chamber wall 4.
  • At least the combustion chamber wall 4 is formed of a microwave transparent material, namely ceramic. In the embodiment, however, not only the combustion chamber wall 4 but the entire, the working chamber 5 surrounding region of the housing wall 3 is made with a wall layer 22 of a ceramic material.
  • the wall layer 22 is formed of inserts.
  • the rotary piston 6 has a reflective layer 8 of ceramic material.
  • the microwave pulse generator 10 is arranged obliquely to the housing 2 and is substantially at the point where it impinges on the separation space wall 4, perpendicular to this.
  • the microwave pulse generator 10 can be screwed into the housing 2 or attached to the housing 2 with a bayonet lock.
  • the microwave pulse generator 10 is the subject of the parallel patent application EP 15170029.1 and has a suitable control device for controlling the microwaves.
  • the adjoining the microwave pulse generator 10 area 4 'in the combustion chamber wall 4 represents the microwave window through which the emerging from the microwave pulse generator 10 microwaves are coupled into the combustion chamber 9. This area may, as exemplified in FIG. 4 have shown also introduced in the separation chamber wall 4 metallic guide surfaces 15.
  • microwaves are reflected by metal, so that the microwaves coupled into the combustion chamber 9 are located in the entire combustion chamber 9 and can energize the fuel contained therein in the entire combustion chamber 9 and cause it to ignite. Since both the rotary piston 6 and the housing 2 are usually made of metal, the coupled into the combustion chamber 9 microwaves between the rotary piston 5 and the housing 2 are reflected back and forth. If the walls forming the combustion chamber 9 are made of a microwave transparent material, as in the embodiment the combustion chamber wall 4 or the reflection layer 8 are formed on the metallic housing 2 and a metallic core 14 of the rotary piston 6, the microwaves are somewhat damped, but still held in the combustion chamber 9.
  • a microwave-impermeable metallic layer 11 can be arranged either in the combustion chamber wall 4 and / or in the reflection layer 8, which was specially designed in the production of the combustion chamber wall 4 or the reflection layer 8 in order to direct the reflections of the microwaves or the path through to shorten the combustion chamber wall to the reflection.
  • a corrugated metal layer 11 can be formed according to FIG Figure 1c or a structured uneven metal layer 11 according to FIG Figure 1d be incorporated. Where no specific scattering or concentration is desired, the metal layer 11 is flat or adapted to the curvature of the wall layer 22.
  • the motor has a narrow housing 2, in which the working chamber 5 is located with the schematically indicated rotary piston 6.
  • An advantage of such rotary piston internal combustion engines 1 is that a plurality of such disc-shaped rotary piston internal combustion engines arranged side by side, act at different times on a common drive shaft, not shown.
  • the microwave pulse generator 10 as in FIG. 2 shown, to arrange. This allows by appropriately trained channels the injected microwaves on all housing 2 side by side distribute distributed engines.
  • FIG. 2b As can be seen, the microwave pulse generator 10 is arranged such that it couples the microwaves into the microwave-permeable combustion chamber edge 4.
  • the combustion chamber wall 4 forms the microwave conducting channel in which the one wall of the channel through the metallic housing wall 3 and the other opposite wall by an applied to the combustion chamber wall 4 or into the combustion chamber wall 4 introduced metallic layer with an opening for the passage of the microwaves can be formed (not shown). Without this layer, the entire surface facing the combustion chamber 4 already represents the microwave window 4 'through which the microwaves are coupled into the combustion chamber 4 (corresponding to FIG FIG. 4 shown). Laterally metallic surfaces 15 can also be introduced into the combustion chamber wall 4 ( FIG. 4 ). FIG.
  • FIG. 2a shows the metallic housing wall 3, wherein the microwave pulse generator 10 is passed through an opening 16 in the side wall 3 '' If only a disc-shaped housing 2 is used, the metallic opposite wall 3 'of the housing 2 is closed Thus, only the wall 3 'of the last housing 2 is closed, while all other housings 2 have a corresponding opening 16 (with or without ceramic filling) in both walls 3' and 3 "to pass the microwaves. It is also possible for these housings to have the side walls 3 ', 3 "made of a ceramic material with the channel-forming metallic surfaces in the walls 3', 3". In a particular embodiment, this microwave-conducting channel can also be formed within the metallic housing wall 3.
  • the ceramic layer 22 with its metallic inserts forms the microwave openings / microwave windows, or the waveguide termination.
  • the additional microwaveable metallic structures 11 are also arranged in the combustion chamber wall 4, it is necessary that openings in this microwave-impermeable metallic layer 11 (not shown) are also present in the regions assigned to the openings 16.
  • the channel 13 may also have branches and, as stated above, are in communication with the following further housings 2.
  • FIG. 2a shows an example of a slot-shaped exhaust port 21, which in a round air outlet 20 in FIG. 2b passes.
  • the air inlet 19 in FIG. 2 b communicates with an air opening (not illustrated) on the other side of the housing 2.
  • FIG. 3 1 shows the microwave spark plug 18 with a microwave window 18 'associated with this microwave spark plug 18, but need not be present because the ceramic wall layer 22 forms the microwave window 4'.
  • the microwave spark plug 18 is then connected to a suitable microwave pulse generator (not shown) via microwave waveguides.
  • FIG. 4 is the wall layer 22 in the region of the combustion chamber wall 9 with an additional metallic layer 13 on the side facing away from the combustion chamber 4 (FIG. FIG. 4a ) and with an additional metallic layer 13 'on the side of the combustion chamber 4 (FIG. FIG. 4b ) are each provided with an opening 23 for the microwave window 4 'and lateral metallic surfaces 15.
  • the other parts common to the parts explained in the preceding figures are correspondingly designated.
  • FIG. 5 and FIG. 6 show in the FIGS. 5b and 6b possible configurations of the openings 23 etched out into the metallic layer 13 'for influencing the reflections of the once coupled into the combustion chamber 4 microwaves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

Rotationskolben-Verbrennungsmotor mit einem Gehäuse, das eine Arbeitskammer bildende Wände aufweist und in dem ein drehbarer Rotationskolben, der sich durch die Arbeitskammer erstreckt und bei der Drehung an den eine Lauffläche bildenden Wände mit Kanten des Rotationskolben sich entlang bewegt, angeordnet ist. In der Arbeitskammer dient für die Zündung eines in der Arbeitskammer befindlichen Treibstoffes ein Bereich der Arbeitskammer als Brennraum mit einer zugehörigen Brennraumwand. In der Brennraumwand ist mindestens ein die Lauffläche bildendes Mikrowellenfester angeordnet, auf dessen dem Brennraum abgewandten Seite eine Einrichtung zum Einkoppeln von Mikrowellenenergie in Form von Mikrowellen in den Brennraum der Arbeitskammer befindet. Die Lauffläche für den Rotationskolben ist eben ausgebildet und weist im Brennraumbereich mindestens ein Mikrowellenfester auf, so dass im Brennraum eine Raumzündung des Treibstoffes möglich ist. Der Rotationskolben-Verbrennungsmotor ermöglicht eine genaue Steuerung des Beginns einer Raumzündung eines Treibstoffes, beispielsweise Kraftstoff-Gas-Gemisches, in einem Brennraum, so dass eine optimale schadstoffarme Verbrennung des Kraftstoffes mit einem gegenüber herkömmlichen Rotationskolben-Verbrennungsmotoren erhöhten Wirkungsgrad erreicht wird. Generell ermöglicht die Erfindung die sichere Zündung von mageren Kraftstoff-Luft-Gemischen.

Description

  • Die Erfindung betrifft einen Rotationskolben-Verbrennungsmotor mit einem Gehäuse, das eine Arbeitskammer bildende Gehäusewände aufweist, und in dem ein drehbarer Rotationskolben angeordnet ist, der sich durch die Arbeitskammer erstreckt und bei der Drehung an den eine Lauffläche bildenden Gehäusewänden mit Kanten des Rotationskolben entlang bewegt, wobei in der Arbeitskammer für die Zündung eines in der Arbeitskammer befindlichen Treibstoffes ein Bereich der Arbeitskammer als Brennraum mit einer zugehörigen Brennraumwand dient.
  • Derartige Motoren sind allgemein bekannt. Die bekannteste Ausführungsform ist unter dem Namen Wankelmotor bekannt. Aus der DE 103 56 916 A1 ist bekannt, in einem Brennraum mittels Mikrowellenenergie einer Raumzündung in einem Verbrennungsmotor zu erzeugen, um damit die Verbrennung des über ein Kraftstoff-Luft-Gemisches eingebrachten Kraftstoffs besser zu zünden und zu verbrennen. Im nachfolgenden wird allgemein von Treibstoff gesprochen, unabhängig davon, ob es sich um Diesel, Benzin, Wasserstoff oder einem anderen für den Betrieb geeigneten Treibstoff handelt. Um eine Zündung eines Treibstoffes zu erreichen, werden Treibstoff-Gas-Gemische in den Brennraum eingebracht. Diese werden im Text im Zusammenhang mit der Erfindung nicht gesondert erwähnt, gleichwohl als selbstverständlich vorausgesetzt.
  • Bei herkömmlichen Rotationskolben-Verbrennungsmotors wird ein zündfähiges Benzinkraftstoff-Luft-Gemisch in der Arbeitskammer in einem Brennraum komprimiert und durch eine Zündkerze zur Reaktion/Oxidation gebracht. Die Zündkerze bildet eine Vertiefung in Oberfläche der Arbeitskammer, sodass diese als Lauffläche für die Kanten des Rotationskolbens wirkende Oberfläche eine Unebenheit aufweist, die zu einem Kompressionsverlust führt. Des weiteren bewirkt die Zündung, dass sich die chemische Oxidation kugelförmig von dem Ort der Zündung in Form einer Druck- und Reaktionsfront (Laminare Brenngangsphase) in dem länglichen und flachen Brennraum ausbreitet und eine laminare Verbrennung bewirkt, die ebenfalls zu einem Kompressionsverlust führt. Infolge dessen entstehen Wirkungsgradverluste und Schadstoffe bei der Verbrennung von Kraftstoffen, wie beispielsweise Ruß oder Kohlenmonoxid usw..
  • Der Erfindung liegt folglich die Aufgabe zu Grunde, eine verbesserte Zündung des Treibstoffes in dem Brennraum und eine Verbesserung des Wirkungsgrades zu erreichen.
  • Diese Aufgabe wird erfindungsgemäß durch einen Motor nach Anspruch 1 gelöst. Weiter vorteilhafte Ausgestaltungen sind den rückbezogenen Unteransprüchen zu entnehmen.
  • Gemäß der Erfindung ist in der Brennraumwand mindestens ein Mikrowellenfenster angeordnet, auf dessen dem Brennraum abgewandten Seite eine Einrichtung zum Einkoppeln von Mikrowellenenergie in Form von Mikrowellen in den Brennraum der Arbeitskammer befindet. Unter Mikrowellenfester wird in diesem Zusammenhang ein nach außen abgeschlossener Bereich verstanden, der mikrowellendurchlässig ist. Die Brennraumwand als Teil der Gehäusewand dient somit auch im Bereich der Brennkammer als Lauffläche. Durch die Anordnung des Mikrowellenfensters in der Brennraumwand ist es grundsätzlich möglich, eine völlig glatte Oberfläche herzustellen, die für die Abdichtung des Rotationskolbens während seiner Bewegung entlang der Lauffläche besonders günstig ist. Es wird dadurch der bei herkömmlichen Motoren entstehende Kompressionsverlust vermieden. Je nach Erfordernis können ein oder mehrere Mikrowellenfenster in der Brennraumwand angeordnet sein, wobei es dabei nicht erforderlich ist, dass das Material des Mikrowellenfensters sich von dem übrigen Material der Brennraumwand oder gar der Gehäusewand unterscheidet. Entscheidend ist, dass der als Mikrowellenfenster wirkende Bereich im Gegensatz zu seiner Umgebung für Mikrowellen durchlässig ist. Dabei kann die Durchlässigkeit des Mikrowellenfensters entweder durch einen abgegrenzten Bereich aus mikrowellendurchlässigen Material oder durch einen größeren Abschnitt, der an sich mikrowellendurchlässig ist, aber mit Ausnahme des als Mikrowellenfenster wirkenden Bereichs durch Abschirmungen für auf den Abschnitt auftreffenden Mikrowellen undurchlässig ist, realisiert sein. Auf der dem Brennraum abgewandten Seite des Mikrowellenfensters befindet sich eine Einrichtung zum Einkoppeln von Mikrowellenenergie. Die Einrichtung zum Einkoppeln von Mikrowellenenergie kann entweder mindestens eine Mikrowellenzündkerze in einer Bohrung in der Brennraumwand, die über einen Mikrowellenhohlleiter an einen Mikrowellenimpulsgenerator anschließbar ist oder einen direkt an das Gehäuse angebrachten darauf abgestimmten Mikrowellenimpulsgenerator umfassen.
  • Durch die Einkopplung von Mikrowellenenergie ist es möglich, den in dem Brennraum befindlichen Treibstoff zu zünden. Dabei wird die lokale Zündung durch eine Raumzündung oder durch eine Randschichtzündung ersetzt, wobei der Treibstoff vor dem Zünden möglichst homogen über das gesamte Volumen des Brennraumes angeregt wird, was durch eine über den Brennraum verteilte Absorption der Mikrowellenenergie von den Treibstoffpartikeln erfolgt. Dabei spielt die Absorptionsfähigkeit von Mikrowellen, beschrieben durch einen Materialparameter tanδ(t) und die damit verbundene Eindringtiefe eine wesentliche Rolle. Die Mikrowellenenergie wird in ausreichender Menge an möglichst vielen Stellen in dem Brennraum konzentriert, um dort durch eine Vielzahl von Zündkeimen eine Raumzündung in dem Brennraum zu erzeugen. Gleichzeitig soll möglichst wenig Mikrowellenenergie wieder zu einer Mikrowellenquelle zurück reflektiert werden. Je geringer die Reflexion ist, umso größer ist die Absorption und damit die Energieaufnahme der Treibstoffpartikel für eine Raumzündung.
  • Gemäß einer bevorzugten Ausbildung ist mindestens die Brennraumwand ohne Veränderung der Lauffläche in der die Arbeitskammer bildende Gehäusewand ohne Vertiefung wie bei herkömmlichen Motoren angeordnet. Dies bedeutet, dass in die Brennraumwand nicht ein oder mehrere gesonderte Mikrowellenfenster angeordnet sind, sondern die gesamte Brennraumwand im Wesentlichen aus dem gleichen Material besteht und in dieser Brennraumwand ein oder mehrere Mikrowellenfenster, also Stellen, die für die Mikrowellen durchlässig sind, integriert sind, ohne dass sich hierzu in der Lauffläche dadurch bedingte Unebenheiten ergeben. Dies kann derart erfolgen, dass entweder nur die Brennraumwand in die Gehäusewand integriert ist, oder auf der gesamten die Arbeitskammer umschließenden Gehäusewand zusätzlich zu der Brennraumwand vollständig eine zusätzliche Wandschicht angeordnet ist, somit die Arbeitskammer mit dieser zusätzlichen Wandschicht ausgekleidet ist.
  • Zweckmäßigerweise ist die Brennraumwand zumindest teilweise aus einem dafür besonders geeigneten mikrowellendurchlässigen Material, wie Keramik oder Saphirglas ausgebildet. Das kann insbesondere auch ein keramisches Material vorzugsweise mit einer Reinheit >99% oder ein anderer fester für Mikrowellen durchlässiger Werkstoff sein. Dies kann derart erfolgen, dass die Brennraumwand entweder einzelne Bereiche aus diesem Material aufweist oder aus dem gesamten Material besteht und darin Bereiche durch zusätzliche Maßnahmen gebildet sind, die die Mikrowellenenergie gezielt durchlassen und damit das jeweilige Mikrowellenfenster bilden.
  • Gemäß einer weiteren vorteilhaften Ausbildung der Erfindung sind in der Brennraumwand unebene lokale geometrische metallische Strukturen angeordnet, die je nach Ausgestaltung aus dem Brennraum reflektierte Mikrowellen wieder in den Brennraum konzentriert oder gestreut zurücklenken. Diese lokalen Strukturen können dabei entweder eine geschwungene gleichmäßige Ausgestaltung, wie beispielsweise harmonische Schwingungsverläufe, etwa Sinusverlauf, oder eine kantige Ausgestaltungaufweisen. Es ist auch möglich, die Strukturen durch Körper in Form von Kugeln oder dergleichen auszubilden. Mit diesen Strukturen kann gezielt eine Reflexion oder Streuung von Mikrowellen erreicht werden, so dass in Brennraumbereichen in denen eine Zündung des Treibstoffes normalerweise nicht erfolgen würde, durch lokale Felderhöhungen der Treibstoff ernergetisiert und zur Zündung gebracht werden kann.
  • Zweckmäßigerweise sind die unebenen lokalen geometrischen Strukturen in Form von in die Brennraumwand eingebrachten Partikel oder als Metallpulverschicht ausgebildet. Diese wird beispielsweise bei der Verwendung von keramischen Material auf eine gepresste und vorgesinterte Trägerschicht (Grünling) aufgebracht, wobei die Unebenheiten bereits schon vorhanden sein können oder erst durch jetzt durch bekannte geeignete Formgebungsverfahren, wie Walzen, Fräsen, usw. in diesem Stadium hergestellt werden. Die derart vorbereitete Oberfläche kann nun metallisch bedampft, mit Metallpulver dotiert oder in einer anderen bekannten geeigneten Art und Weise behandelt werden, um sie mit einer metallischen Schicht zu versehen. Anschließend können Löcher mittels Laser, durch Ätzen oder mit einem anderen geläufigen Verfahren erzeugt werden, die dann den Durchtritt von Mikrowellen erlauben und als Mikrowellenfester dienen. Anschließend wird eine mikrowellendurchlässige weitere Schicht aufgebracht, die aus einem keramischen Material oder auch Saphirglas sein kann. Vorzugsweise kann durch weiteres Präzisionsschleifen auf diese Art und Weise ein fertiges in die Gehäusewand oder auch Kolbenwand einbringbares Einlegteil hergestellt werden, das durch Formschluss drehgesichert werden kann.
  • Gemäß einer weiteren vorteilhaften Ausbildung die Brennraumwand mit einer auf der dem Brennraum abgewandten Seite oder innerhalb der Brennraumwand mit einer sich in Längsrichtung der Brennraumwand erstreckenden metallischen Schicht versehen, die mindestens eine Öffnung für den Durchtritt von Mikrowellen aufweist. Die metallische Schicht kann dabei auf der Außenseite aufgedampft sein, wobei entsprechende Öffnungen je nach Anwendungsfall herausgeätzt sind. Bei der Ausgestaltung innerhalb der Brennraumwand ist eine sich in Längsrichtung der Brennraumwand erstreckende metallische Schicht angeordnet, die mindestens eine Öffnung für den Durchtritt von Mikrowellen aufweist, ähnlich wie vorstehend im Zusammenhang mit den lokalen metallischen Strukturen beschrieben. Diese Wand kann bei der Herstellung der Gehäusewand, insbesondere aus keramischem Material, eingelegt, eingestreut, aufgedampft und mitgesintert und gebrannt werden. Die Mikrowellen werden nach dem Einkoppeln in den Brennraum von dem metallischen Rotationskolben reflektiert und treffen durch das keramische Material der Brennraumwand auf das metallische Gehäuse des Motors und werden von dort wieder zurück Richtung Brennraum geworfen. Da auch das keramische Material eine Dämpfung der Mikrowelle bewirkt, kann die in dem keramischen Material zusätzlich eingebrachte metallische Schichten als Reflexionsfläche dienen, die den Weg durch das keramische Material für die Mikrowellen verkürzen. Selbstverständlich weisen diese metallischen Flächen dort Öffnungen auf, wo die Mikrowellen eingekoppelt werden.
  • In einer weiteren Ausbildung des erfindungsgemäßen Rotationskolben-Verbrennungsmotors weist die Einrichtung zur Einkopplung der Mikrowellen mindestens einen an dem Gehäuse angebrachten Mikrowellenpulsgenerator auf, über den die Mikrowellen in den Brennraum eingekoppelt werden. Ein derartiger Mikrowellenpulsgenerator ist in der EP 15170029.1 beschrieben. Der mindestens eine angebrachte Mikrowellenpulsgenerator befindet sich entweder genau an der jeweiligen Stelle des Mikrowellenfensters oder aber es erfolgt eine Verteilung mittels eines als Mikrowellenhohlleiter wirkenden Kanals in der Gehäusewand. Der mindestens eine Mikrowellenpulsgenerator ist vorzugsweise in axialer Richtung angebracht, so dass die Mikrowellen seitlich, vorzugsweise parallel zu einer Gehäuselängsachse in die Gehäusewand eingeleitet werden. Dadurch können bei geeigneter Anordnung mittels einem oder mehreren angebrachten Mikrowellenkanäle bei einer Vielzahl von hintereinander angeordneten und auf eine gemeinsame Antriebwelle wirkenden Rotationskolben-Verbrennungsmotoren die Mikrowellen nach dem Einleiten in die Gehäusewand des ersten Rotationskolben-Verbrennungsmotors auch in die Gehäusewand der folgenden Rotationskolben-Verbrennungsmotoren zum Einkoppeln in den jeweiligen Brennraum weitergeleitet werden.
  • Zweckmäßigerweise ist bei dieser Ausgestaltung mindestens ein in der Gehäusewand verlaufender Mikrowellenkanal angeordnet, der mit mindestens einem Mikrowellenfenster verbunden ist. Dieser Mikrowellenkanal kann nachträglich in die Gehäusewand, z.B. durch Fräsen oder anderen geeigneten Maßnahmen, oder schon vor der finalen Sintern in eine keramische Schicht der Brennraumwand eingebracht werden. Die Oberfläche des mindestens einen Mikrowellenkanals ist kann zusätzlich mit einer metallischen Schicht versehen, wobei an den Stellen an denen Mikrowellen aus dem Mikrowellenkanal austreten, die metallische Schicht unterbrochen ist. Damit kann die Mikrowellenenergie gezielt in den Brennraum gebracht werden, da die in dem Mikrowellenkanal schwingenden und von den Wänden reflektierten Mikrowellen durch die mindestens eine Öffnung austreten können. Grundsätzlich der Mikrowellenkanal auch, wo zweckmäßig, Verzweigungen aufweisen. Der Mikrowellenkanal kann aber auch einfach durch das mikrowellendurchlässige Material der Brennraumwand gebildet werden, wobei die metallische Gehäusewand eine reflektierende Seite des Mikrowellenkanals bildet. Je nach Bedarf kann in oder auf das mikrowellendurchlässige Material eine metallische Reflexionsschicht aufgebracht sein. Bei der Anordnung mit mehreren Rotationskolben-Verbrennungsmotoren können sich hintereinander derartige mindestens ein Mikrowellenkanäle befinden. Da in den einzelnen Brennräumen in einem derartigen Fall die Zündung zu verschiedenen Zeitpunkten erfolgt, werden dann die Mikrowellen zwar durch alle Öffnungen bzw. Mikrowellenkanäle geleitet, erzeugen aber nur in dem Brennraum eine Zündung in dem der Treibstoff in dem entsprechenden zündfähigen Zustand ist.
  • In einer anderen bevorzugten Ausbildung wird die Einrichtung zur Einkopplung der Mikrowellen einer Mikrowellenzündkerze gemäß der Patentanmeldung EP 15157298.9 auf, die in mindestens einer Bohrung in der Brennraumwand angeordnet ist. Diese trifft mit Ihrem Ende auf die mikrowellendurchlässige Brennraumwand, die das Mikrowellenfenster für diese Mikrowellenzündkerze bildet.
  • Da der Rotationskolben üblicherweise aus einem metallischen Material besteht, bildet diese mit seiner Oberfläche bereits eine Reflexionsschicht für die Mikrowellen. In einer weiteren vorteilhaften Ausbildung der Erfindung ist auf dem Rotationskolben zumindest teilweise eine Reflexionsschicht aus einem für die Mikrowellenergie durchlässigen und für die Verbrennung von Treibstoff im Brennraum geeigneten Material, insbesondere Keramik oder Saphirglas, angeordnet, in der unebene lokale geometrischen metallische Strukturen angeordnet sind, die je nach Ausgestaltung auf den Rotationskolben auftreffende Mikrowellen wieder in den Brennraum konzentriert oder gestreut reflektieren. Die geometrischen metallischen Strukturen können, wie vorstehend im Zusammenhang mit derartigen Strukturen in der Brennraumwand erläutert, ohne Durchtrittsstellen für Mikrowellen hergestellt sein. Zweckmäßigerweise sind daher die unebenen lokalen geometrischen Strukturen in Form von in die Reflexionsschicht eingebrachten Partikel oder als Metallpulverschicht ausgebildet. Damit kann die Konzentration oder Streuung der Mikrowellen in dem Brennraum gezielt gesteuert werden.
  • Gemäß einer bevorzugten Ausgestaltung sind die Brennraumwand und/oder Reflexionsschicht wenigstens teilweise als vorgefertigtes gesintertes in die Gehäusewand bzw. die Kolbenwand einlegbares Einlegeteil ausgebildet. Dies kann derart erfolgen, dass die entweder nur die Brennraumwand in die Gehäusewand eingebracht wird oder die Gehäusewand mit einer die gesamte die Arbeitskammer umschließenden Wandschicht verkleidet ist. Entsprechend verhält es sich mit dem (metallischen) Rotationskolben, der auch vollständig mit einer derartigen Wandschicht umgeben sein kann. Das vereinfacht die Herstellung derartig ausgebildeter Rotationskolben-Verbrennungsmotoren.
  • Gemäß einer weiteren Ausbildung der Erfindung weist die Einrichtung zur Einkopplung der Mikrowellen einen Mikrowellengenerator auf, der Mikrowellen mit einer Frequenz von 25 GHz bis 95 GHz, vorzugsweise 30 bis 75 GHz, erzeugt und der eine Steuerung für den Zeitpunkt, die Frequenz, die Amplitude und Art der Einkopplung der Mikrowellen aufweist. Unter Art der Einkopplung wird verstanden, ob die Einkopplung über einzelne Impulse oder als Impulspakete oder sonstige mögliche erforderliche Varianten der Steuerung der Mikrowellen aufweist.
  • Vorzugsweise kann die Einrichtung zur Einkopplung der Mikrowellen einen Mikrowellengenerator aufweisen, der die Mikrowellen in Impulspaketen einleitet und diese vorzugsweise auch nach einer bereits erfolgten Zündung eines Treibstoffes aufrecht erhält. Damit wird zusätzlich zur Zündung die Verbrennung des Treibstoffs optimiert und auch bereits erfolgter Zündung die Verbrennung des Treibstoffs angeregt.
  • Ein besonderer Vorteil des Motors liegt darin, dass die Mikrowellen bezüglich einer Kurbelwelle winkelgradgesteuert eingeleitet werden können, so dass eine genaue Steuerung der Zündung durchgeführt werden kann. Außerdem ist es möglich, einen derartigen Rotationskolben-Verbrennungsmotor ohne eine Dichtung zwischen Rotationskolben und Gehäusewand auszubilden und lediglich einen Spalt zwischen Rotationskolben und Gehäusewand, beispielsweise von 0,5 mm, vorzusehen, ohne dass dabei wesentliche Leistung eingebüßt, dafür aber die Herstellung vereinfacht wird.
  • Mit dem erfindungsgemäßen Motor werden die bekannten Nachteile des Kompressionsverlustes durch die keine Unebenheiten aufweisende Laufläche und die Raumzündung der einzelnen Treibstoffpartikeln vermieden. Es ist möglich, jede beliebige erforderliche Zündenergie an beliebigen Punkten zur Verfügung zu stellen und eine gleichmäße Verbrennung im ganzen Brennraum zu erzeugen, in dem die Anzahl der Mikrowellenfenster und die entsprechenden Parameter für die Zuführung der Mikrowellen gewählt werden. Es sind grundsätzlich alle Gestaltungsmöglichkeiten für die Lauffläche möglich. Auch eine Arbeitskammer mit einem kreisförmigen Querschnitt ist möglich. Des Weiteren kann durch die Auswahl des Materials und die Gestaltung des Gehäuses des Motors je nach Anwendungsfall gestaltet werden, insbesondere wenn ein Sinterwerkstoff, wie ein keramisches Material verwendet wird.
  • Der erfindungsgemäße Motor erlaubt außerdem die genaue Steuerung des Beginns einer Raumzündung eines Treibstoffes in einem Brennraum, so dass eine optimale schadstoffarme Verbrennung des Treibstoffes mit einem gegenüber herkömmlichen Rotationskolben-Verbrennungsmotoren erhöhten Wirkungsgrad erreicht wird. Generell ermöglicht die Erfindung die sichere Zündung von mageren Treibstoff-Luft/Gas-Gemischen, was eine zusätzliche Anreicherung zum Zünden nicht erforderlich macht und zu einem geringeren Treibstoffverbrauch führt. Schadstoffe und deren Entstehung können durch die Verbrennungstemperatur und durch das Mischungsverhältnis von Luft und Treibstoff geregelt werden. Die Verbrennung gemäß der Erfindung läuft schneller ab als bei herkömmlichen Zündungen. Dies hat eine "kältere" Verbrennung zur Folge, so dass der Wirkungsgrad steigt. Weiterhin sind prinzipiell bei kälteren Verbrennungsabläufen geringere Schadstoffemissionen erzielbar. Durch die kältere Verbrennung wird die Konzentration von Stickstoffoxiden in den Kraftstoffabgasen reduziert. Durch die Raumzündung Ist der Brennvorgang im Unterschied zur herkömmlichen Verbrennung deutlich weniger auf den Brennfortschritt in Form von Diffusionsflammen angewiesen. Damit werden weitere Wärmeverluste vermieden und eine Effizienzsteigerung erreicht. Eine Aufheizphase des Brennraums und der Luft im Oxidationsbereich ist bei der dieser Verbrennung signifikant geringer.
  • Nachfolgend wird die Erfindung anhand schematischer Übersichtsskizzen näher erläutert. Weitere Merkmale der Erfindung ergeben sich aus der folgenden Beschreibung der Erfindung in Verbindung mit den Ansprüchen und der beigefügten Zeichnung. Es zeigen:
  • Fig. 1
    eine schematische Ansicht eines Rotationskolben-Verbrennungsmotors mit einem Mikrowellenpulsgenerator, der schräg in dem Gehäuse des Rotationskolben-Verbrennungsmotor angeordnet ist, in einer Stirnansicht (Figur 1a) und in einem schematischen Querschnitt des Gehäuses (Figur 1b) entlang der Linie A-A von Figur 1a sowie diverse Ausgestaltungen (Figur 1c bis Figur 1e) der Einzelheit X der dem Arbeitsraum zugewandten Gehäusewand und der Rotationskolbenwand;
    Fig. 2
    eine schematische Ansicht eines Rotationskolben-Verbrennungsmotors mit einem Mikrowellenpulsgenerator, der in axialer Richtung in dem Gehäuse des Rotationskolben-Verbrennungsmotor angeordnet ist, in einer Stirnansicht (Figur 2a) mit einem Aufrissquerschnitt des Gehäuses im Bereich der Anbringung des Mikrowellenpulsgenerators und in einem schematischen Querschnitt des Gehäuses (Figur 2b) entlang der Linie A-A von Figur 2a;
    Fig. 3
    eine schematische Querschnittsansicht ähnlich Fig. 1b mit einer Mikrowellenzündkerze an Stelle des Mikrowellenpulsgenerators;
    Fig. 4
    eine schematische Darstellung entsprechend Figur 1b mit einem Aufrissquerschnitt mit verschiedenen metallischen Beschichtungen der Brennraumwand einmal auf der der Arbeitskammer zugewandten Seite (Figur 4a) und auf der abgewandten Seite (Figur 4b);
    Fig.5
    eine Darstellungen ähnlich Figur 1b (Figur 5a) mit einer vergrösserten Schnittdarstellung entlang der Linie A-A (Figur 5b) mit einer ersten Anordnung von metallischen Beschichtungen und damit gebildeten Reflexionsschichten; und
    Fig. 6
    eine Darstellungen ähnlich Figur 1b (Figur 6a) mit einer vergrösserten Schnittdarstellung entlang der Linie B-B (Figur 6b) mit einer zweiten Anordnung von metallischen Beschichtungen und damit gebildeten Reflexionsschichten.
  • In den Figuren 1 und 2 werden zwei verschiedene Ausbildungen des Motors 1 gezeigt, wobei sich die Ausbildungen dadurch unterscheiden, dass Mikrowellenpulsgeneratoren 10 unterschiedlich angebracht sind. Figur 3 zeigt die Anbringung einer Mikrowellenzündkerze 18 an Stelle des Mikrowellpulsgenerators 10 in Figur 1. Die Beschreibung des Motors 1 mit einem Gehäuse 2 und den darin befindlichen Anordnungen trifft im Übrigen für die Ausbildungen in den Figuren 1, 2 und 3 zu. Dies betrifft auch die Einzelheiten X in den Figuren, die nur in den Figuren 1c, 1d und 1e dargestellt sind.
  • Der Motor 1 weist eine Gehäusewand 3 mit einer Wandschicht 22 auf, die eine Arbeitskammer 5 umschliesst, in der ein Rotationskolben 6 um eine Drehachse 7 drehbar gelagert ist. Die Kante 17 des Rotationskolbens 6 bewegt sich entlang der Wandschicht 22 der Gehäusewand 3. Der Teil der Arbeitskammer 5, in dem sich ein durch die Drehung des Rotationskolbens 6 verdichteter Treibstoff befindet, wird als Brennraum 9 und der dem Brennraum 9 zugeordnete Bereich der Wandschicht 22 wird als Brennraumwand 4 bezeichnet. Zumindest die Brennraumwand 4 ist aus einem mikrowellendurchlässigen Material, nämlich Keramik ausgebildet. In dem Ausführungsbeispiel ist jedoch nicht nur die Brennraumwand 4 sondern der gesamte, die Arbeitskammer 5 umgebende Bereich der Gehäusewand 3 mit einer Wandschicht 22 aus einem keramischen Material hergestellt. Die Wandschicht 22 ist aus Einlegeteilen gebildet. Ebenso weist auch der Rotationskolben 6 eine Reflexionsschicht 8 aus keramischem Material auf. In Figur 1a und 1b ist der Mikrowellenpulsgenerator 10 schräg zu dem Gehäuse 2 angeordnet und steht im Wesentlichen an der Stelle, an der er auf die Trennraumwand 4 auftrifft, senkrecht zu dieser. Der Mikrowellenpulsgenerator 10 ist in das Gehäuse 2 einschraubbar oder mit einem Bajonettverschluss an dem Gehäuse 2 befestigbar. Der Mikrowellenpulsgenerator 10 ist Gegenstand der parallelen Patentanmeldung EP 15170029.1 und weist eine geeignete Steuereinrichtung zur Steuerung der Mikrowellen auf. Der an den Mikrowellenpulsgenerator 10 anschließende Bereich 4' in der Brennraumwand 4 stellt das Mikrowellenfenster dar, durch das die aus dem Mikrowellenpulsgenerator 10 austretenden Mikrowellen in den Brennraum 9 eingekoppelt werden. Dieser Bereich kann, wie beispielhaft in Figur 4 gezeigt auch noch in der Trennraumwand 4 eingebrachte metallische Leitflächen 15 aufweisen.
  • Grundsätzlich werden Mikrowellen von Metall reflektiert, so dass die in den Brennraum 9 eingekoppelten Mikrowellen sich in dem gesamten Brennraum 9 befinden und den darin befindlichen Treibstoff im gesamten Brennraum 9 energetisieren und zum Zünden bringen können. Da sowohl der Rotationskolben 6 auch als das Gehäuse 2 üblicherweise aus Metall bestehen, werden die in den Brennraum 9 eingekoppelten Mikrowellen zwischen dem Rotationskolben 5 und dem Gehäuse 2 hin und her reflektiert. Wenn die den Brennraum 9 bildenden Wände aus einem mikrowellendurchlässigen Material, wie in dem Ausführungsbeispiel die Brennraumwand 4 bzw. die Reflexionsschicht 8 auf dem metallischen Gehäuse 2 bzw. einen metallischen Kern 14 des Rotationskolbens 6 ausgebildet sind, werden die Mikrowellen etwas gedämpft, aber dennoch in dem Brennraum 9 gehalten.
  • Zusätzlich kann entweder in der Brennraumwand 4 und/oder in der Reflexionsschicht 8 eine mikrowellenundurchlässige metallische Schicht 11 angeordnet sein, die bei der Herstellung der Brennraumwand 4 bzw. der Reflexionsschicht 8 besonders ausgestaltet wurde, um die Reflexionen der Mikrowellen zu lenken oder auch den Weg durch die Brennraumwand bis zur Reflexion zu verkürzen. So kann beispielsweise für eine gezielte Streuung oder Konzentration bei der Reflexion beispielsweise in den Brennraumbereichen 9' oder 9" eine wellenförmig ausgebildete Metallschicht 11 gemäß Figur 1c oder eine strukturierte ungleichmäßige Metallschicht 11 gemäß Figur 1d eingearbeitet sein. Dort, wo keine gezielte Streuung oder Konzentration gewünscht ist, ist die Metallschicht 11 eben oder an die Krümmung der Wandschicht 22 angepasst. Auch ist es möglich, metallische Partikel 12, wie in Figur 1e dargestellt, in die Brennraumwand 4 bzw. die Reflexionsschicht 8 einzuarbeiten. Da durch die metallische Schicht 11 der Weg durch die mikrowellendurchlässige Schicht der Brennraumwand 4 bzw. der Reflexionsschicht 8 reduziert wird, wird auch die Dämpfung der Mikrowellen entlang dieses Weges reduziert. Insofern kann auch einfach eine ebene oder an die jeweilige Krümmung angepasste metallische Schicht 11 integriert sein.
  • Wie aus Figuren 1a und 1b ersichtlich, weist der Motor ein schmales Gehäuse 2 auf, in dem sich die Arbeitskammer 5 mit dem schematisch angedeuteten Rotationskolben 6 befindet. Ein Vorzug derartiger Rotationskolben-Verbrennungsmotoren 1 besteht darin, dass eine Vielzahl derartigen scheibenförmiger Rotationskolben-Verbrennungsmotoren nebeneinander angeordnet, zu unterschiedlichen Zeitpunkten auf eine nicht dargestellte gemeinsame Antriebswelle wirken. Insbesondere für diesen Fall ist es zweckmäßig, den Mikrowellenpulsgenerator 10 wie in Figur 2 gezeigt, anzuordnen. Dies ermöglicht durch entsprechend ausgebildete Kanäle die eingekoppelten Mikrowellen auf alle Gehäuse 2 der nebeneinander angeordneten Motoren zu verteilen. Wie aus Figur 2b ersichtlich, ist der Mikrowellenpulsgenerator 10 derart angeordnet, dass er die Mikrowellen in die mikrowellendurchlässige Brennraumrand 4 einkoppelt. In dieser einfachsten Ausführungsform bildet die Brennraumwand 4 den die Mikrowellen leitenden Kanal, in dem die eine Wand des Kanals durch die metallische Gehäusewand 3 und die andere gegenüberliegende Wand durch eine auf die Brennraumwand 4 aufgebrachte oder in die Brennraumwand 4 eingebrachte metallische Schicht mit einer Öffnung für den Durchtritt der Mikrowellen gebildet werden kann (nicht dargestellt). Ohne diese Schicht, stellt die gesamte in Richtung Brennraum 4 weisenden Fläche bereits das Mikrowellenfenster 4' dar, über das die Mikrowellen in den Brennraum 4 eingekoppelt werden (entsprechend wie in Figur 4 dargestellt). Seitlich können auch noch zusätzlich metallische Flächen 15 in die Brennraumwand 4 eingebracht sein (Figur 4). Figur 2a zeigt die metallische Gehäusewand 3, wobei der Mikrowellenpulsgenerator 10 durch eine Öffnung 16 in der seitlichen Wand 3" hindurchgeführt ist. Sofern nur ein scheibenförmiges Gehäuse 2 verwendet wird, ist die metallische gegenüberliegende Wand 3' des Gehäuses 2 geschlossen. Werden mehrere Gehäuse 2 nebeneinander angeordnet, so ist nur die Wand 3' des letzten Gehäuses 2 geschlossen, während alle anderen Gehäuse 2 eine entsprechende Öffnung 16 (mit oder ohne keramischer Füllung) in beiden Wänden 3' und 3" aufweisen, um die Mikrowellen weiterzuleiten. Es ist auch möglich, für diese Gehäuse die seitlichen Wände 3', 3" aus einem keramischen Material mit den Kanal bildenden metallischen Flächen in den Wänden 3', 3". Dieser Mikrowellen leitende Kanal kann in einer besonderen Ausführungsform auch innerhalb der metallischen Gehäusewand 3 ausgebildet sein. In diesem Fall bildet die keramische Schicht 22 mit Ihren metallischen Einlagen die Mikrowellenöffnungen / Mikrowellenfenster, bzw. den Hohlleiterabschluss. Sofern die zusätzlichen mikrowellendurchlässigen metallischen Strukturen 11 ebenfalls in der Brennraumwand 4 angeordnet sind, ist es erforderlich, dass in den den Öffnungen 16 zugeordneten Bereichen ebenfalls Öffnungen in dieser mikrowellenundurchlässigen metallischen Schicht 11 (nicht dargestellt) vorhanden sind. Selbstverständlich kann der Kanal 13 auch Verzweigungen aufweisen und wie oben ausgeführt mit folgenden weiteren Gehäusen 2 in Verbindung stehen.
  • Bei der Anordnung mehrerer Motoren 1 wie oben beschrieben bildet die Rückseite des Gehäuses 2 des einen Motors 1 die Vorderseite des Gehäuses des anderen Motors 1. Damit kann bei entsprechender Ausbildung der Vorder- und Rückseiten des scheibenförmigen Gehäuses 2 auch die Verteilung der Zuluft und der Abluft zu dem Arbeitsraum des jeweiligen Gehäuses 2 gestaltet werden. Figur 2a zeigt dazu beispielhaft eine langlochförmige Abluftöffnung 21, die in einen runden Luftauslass 20 in Figur 2b übergeht. Entsprechend steht der Lufteinlass 19 in Figur 2b mit einer nicht dargestellten Luftöffnung auf der anderen Seite des Gehäuses 2 in Verbindung. Ein derartig aus einzelnen Scheiben aufgebauter und damit mehrere Kolben aufweisender Motor ist besonders leistungsstark und schwingungsarm.
  • Anstelle des Mikrowellenpulsgenerators 10 gemäß Figur 1b kann in das Gehäuse 2 gemäß Figur 3 eine Mikrowellenzündkerze 18 eingesetzt sein, wobei die Mikrowellenzündkerze 18 mit ihrem Ende auf die Brennraumwand 4 trifft. Die übrigen vorstehend beschriebenen optionalen Maßnahmen bezüglich der Lenkung der Mikrowellen aufgrund der Reflexionen können beibehalten werden. Die Figur 3 zeigt die Mikrowellenzündkerze 18 mit einem zu diese Mikrowellenzündkerze 18 gehörenden Mikrowellenfenster 18', das aber nicht vorhanden sein muss, weil die keramische Wandschicht 22 das Mikrowellenfenster 4' bildet. Die Mikrowellenzündkerze 18 ist dann an einen geeigneten nicht dargestellten Mikrowellenpulsgenerator über Mikrowellenhohlleiter angeschlossen.
  • In Figur 4 ist zur Veranschaulichung die Wandschicht 22 im Bereich der Brennraumwand 9 mit einer zusätzlichen metallischen Schicht 13 auf der dem Brennraum 4 abgewandten Seite (Figur 4a) und mit einer zusätzlichen metallischen Schicht 13' auf der Seite des Brennraumes 4 (Figur 4b) jeweils mit einer Öffnung 23 für das Mikrowellenfenster 4' sowie seitlichen metallischen Flächen 15 versehen. Die übrigen mit den bei den vorstehenden Figuren erläuterten Teilen gemeinsamen Teile sind entsprechend bezeichnet.
  • Figur 5 und Figur 6 zeigen in den Figuren 5b und 6b mögliche Ausbildungen der in die metallische Schicht 13' herausgeätzten Öffnungen 23 zur Beeinflussung der Reflexionen der einmal in den Brennraum 4 eingekoppelten Mikrowellen. Die übrigen Teile, die mit den in Figur 4 erläuterten Teilen gemeinsam sind, sind entsprechend bezeichnet.

Claims (14)

  1. Rotationskolben-Verbrennungsmotor (1) mit einem Gehäuse (2), das eine Arbeitskammer (5) bildende Gehäusewand (3) aufweist, und in dem ein drehbarer Rotationskolben (6) angeordnet ist, der sich durch die Arbeitskammer (5) erstreckt und bei der Drehung an der eine Lauffläche bildenden Gehäusewand (3) mit Kanten (17) des Rotationskolbens (6) entlang bewegt, wobei in der Arbeitskammer (5) für die Zündung eines in der Arbeitskammer (5) befindlichen Treibstoffes ein Bereich der Arbeitskammer (5) als Brennraum (9) mit einer zugehörigen Brennraumwand (4) dient, dadurch gekennzeichnet, dass in der Brennraumwand (4) mindestens ein Mikrowellenfester (4') angeordnet ist, auf dessen dem Brennraum (9) abgewandten Seite eine Einrichtung (10; 18) zum Einkoppeln von Mikrowellenenergie in Form von Mikrowellen in den Brennraum (9) der Arbeitskammer (5) befindet.
  2. Rotationskolben-Verbrennungsmotor nach Anspruch 1, dadurch gekennzeichnet, dass zumindest die Brennraumwand (4) ohne Veränderung der Lauffläche in die Gehäusewand (3) integriert ist.
  3. Rotationskolben-Verbrennungsmotor nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass zumindest die Brennraumwand (4) zumindest teilweise aus einem für die Mikrowellenergie durchlässigen und für die Verbrennung von Treibstoff im Brennraum (9) geeigneten Material, insbesondere Keramik oder Saphirglas, ausgebildet ist.
  4. Rotationskolben-Verbrennungsmotor nach Anspruch 3, dadurch gekennzeichnet, dass in der Brennraumwand (4) unebene lokale geometrischen metallische Strukturen (11, 12) angeordnet sind, die je nach Ausgestaltung aus dem Brennraum (9) reflektierte Mikrowellen wieder in den Brennraum (9) konzentriert oder gestreut zurücklenken.
  5. Rotationskolben-Verbrennungsmotor nach Anspruch 4 dadurch gekennzeichnet, dass die unebenen lokalen geometrischen Strukturen in Form von in die Brennraumwand (4) eingebrachte Partikel (12) oder als Metallpulverschicht (11) ausgebildet sind.
  6. Rotationskolben-Verbrennungsmotor nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Brennraumwand (4) mit einer sich in Längsrichtung der Brennraumwand (4) erstreckenden metallischen für Mikrowellen undurchlässigen Schicht (11) versehen ist, die mindestens eine Öffnung für den Durchtritt von Mikrowellen aufweist.
  7. Rotationskolben-Verbrennungsmotor nach einem vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Einrichtung zur Einkopplung der Mikrowellen mindestens einen an dem Gehäuse (2), vorzugsweise in axialer Richtung des Gehäuses (2), angebrachten Mikrowellenpulsgenerator (10) umfasst.
  8. Rotationskolben-Verbrennungsmotor nach Anspruch 7, dadurch gekennzeichnet, dass in der Gehäusewand (3) mindestens ein Mikrowellenkanal angeordnet ist, der mit mindestens einem Mikrowellenfenster (4') verbunden ist.
  9. Rotationskolben-Verbrennungsmotor nach einem vorangegangenen Ansprüche, dadurch gekennzeichnet, dass auf dem Rotationskolben (6) zumindest teilweise eine Reflexionsschicht (8) aus einem für die Mikrowellenergie durchlässigen und für die Verbrennung von Treibstoff im Brennraum (9) geeigneten Material, insbesondere Keramik oder Saphirglas, angeordnet ist, in der unebene lokale geometrischen metallische Strukturen (11, 12) angeordnet sind, die je nach Ausgestaltung auf den Rotationskolben (6) auftreffende Mikrowellen wieder in den Brennraum (9) konzentriert oder gestreut reflektieren.
  10. Rotationskolben-Verbrennungsmotor nach Anspruch 9 dadurch gekennzeichnet, dass die unebenen lokalen geometrischen Strukturen in Form von in die Reflexionsschicht (8) eingebrachten Partikel (12) oder als Metallpulverschicht (11) ausgebildet sind.
  11. Rotationskolben-Verbrennungsmotor nach Anspruch 5 oder 10, dadurch gekennzeichnet, dass zumindest die Brennraumwand (9) und/oder Reflexionsschicht (8) wenigstens teilweise als vorgefertigtes gesintertes in die Gehäusewand (3) oder Gehäuse (2) bzw. die Kolbenwand (14) einlegbares Einlegeteil ausgebildet ist.
  12. Rotationskolben-Verbrennungsmotor nach einem vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Einrichtung zur Einkopplung der Mikrowellen eine Mikrowellenzündkerze (18) oder einen Mikrowellengenerator (10) aufweist, die direkt an das Mikrowellenfester (4') in der Brennraumwand (4) anschließen.
  13. Rotationskolben-Verbrennungsmotor nach einem vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Einrichtung zur Einkopplung der Mikrowellen einen Mikrowellengenerator (10) aufweist, der Mikrowellen mit einer Frequenz von 25 GHz bis 95 GHz, vorzugsweise 30 bis 75 GHz, erzeugt und eine Steuerung für den Zeitpunkt, die Frequenz, die Amplitude und die Art der Einkopplung der Mikrowellen aufweist.
  14. Rotationskolben-Verbrennungsmotor nach einem vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Einrichtung zur Einkopplung der Mikrowellen einen Mikrowellengenerator (10) aufweist, der mittels einer Steuereinrichtung die Mikrowellen in Impulspaketen einleitet und diese vorzugsweise auch nach einer bereits erfolgten Zündung eines Treibstoffes aufrecht erhält.
EP15173423.3A 2015-06-23 2015-06-23 Rotationskolben-verbrennungsmotor Active EP3109459B1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES15173423T ES2861475T3 (es) 2015-06-23 2015-06-23 Motor de combustión interna de pistón rotativo
EP15173423.3A EP3109459B1 (de) 2015-06-23 2015-06-23 Rotationskolben-verbrennungsmotor
US15/148,233 US10030578B2 (en) 2015-06-23 2016-05-06 Rotating piston internal combustion engine
CN201610425530.XA CN106286075B (zh) 2015-06-23 2016-06-15 旋转活塞式内燃机
JP2016121590A JP6261659B2 (ja) 2015-06-23 2016-06-20 回転ピストン内燃エンジン
MX2016008433A MX358500B (es) 2015-06-23 2016-06-23 Motor de combustión interna de pistón de rotación.
KR1020160078335A KR101819826B1 (ko) 2015-06-23 2016-06-23 회전식 피스톤 내연기관

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15173423.3A EP3109459B1 (de) 2015-06-23 2015-06-23 Rotationskolben-verbrennungsmotor

Publications (2)

Publication Number Publication Date
EP3109459A1 true EP3109459A1 (de) 2016-12-28
EP3109459B1 EP3109459B1 (de) 2021-01-06

Family

ID=53498801

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15173423.3A Active EP3109459B1 (de) 2015-06-23 2015-06-23 Rotationskolben-verbrennungsmotor

Country Status (7)

Country Link
US (1) US10030578B2 (de)
EP (1) EP3109459B1 (de)
JP (1) JP6261659B2 (de)
KR (1) KR101819826B1 (de)
CN (1) CN106286075B (de)
ES (1) ES2861475T3 (de)
MX (1) MX358500B (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2861475T3 (es) * 2015-06-23 2021-10-06 Mwi Micro Wave Ignition Ag Motor de combustión interna de pistón rotativo
CN112796875B (zh) * 2020-12-30 2022-07-05 北京工业大学 一种氢汽油双燃料分层燃烧转子机及其控制方法
US11585312B1 (en) * 2021-09-13 2023-02-21 Southwest Research Institute Focused microwave or radio frequency ignition and plasma generation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3400034A1 (de) * 1984-01-03 1985-07-11 Herbert 5000 Köln Kaniut Brennkraftmaschine mit lichtstrahl-zuendung
WO1998014703A1 (en) * 1996-09-30 1998-04-09 Matthew Mark Bebich Ignition by electromagnetic radiation
US5845480A (en) * 1996-03-13 1998-12-08 Unison Industries Limited Partnership Ignition methods and apparatus using microwave and laser energy
DE10356916B3 (de) 2003-12-01 2005-06-23 Volker Gallatz Verfahren zum Zünden der Verbrennung eines Kraftstoffes in einem Verbrennungsraum eines Motors, zugehörige Vorrichtung und Motor

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2617841A (en) * 1949-01-03 1952-11-11 Rca Corp Internal-combustion engine ignition
US4138980A (en) * 1974-08-12 1979-02-13 Ward Michael A V System for improving combustion in an internal combustion engine
US3934566A (en) * 1974-08-12 1976-01-27 Ward Michael A V Combustion in an internal combustion engine
US4064852A (en) * 1975-11-06 1977-12-27 Fulenwider Jr Hal Microwave energy apparatus and method for internal combustion engines
US4314530A (en) * 1980-02-25 1982-02-09 Giacchetti Anacleto D Amplified radiation igniter system and method for igniting fuel in an internal combustion engine
JPS57113968A (en) * 1981-01-07 1982-07-15 Hitachi Ltd Microwave plasma ignition type engine
US4556020A (en) * 1981-07-06 1985-12-03 General Motors Corporation Method and means for stimulating combustion especially of lean mixtures in internal combustion engines
US4726336A (en) * 1985-12-26 1988-02-23 Eaton Corporation UV irradiation apparatus and method for fuel pretreatment enabling hypergolic combustion
JPH07109959A (ja) * 1993-10-15 1995-04-25 Mitsubishi Heavy Ind Ltd 燃料加熱装置
US5423306A (en) * 1993-10-22 1995-06-13 Trigger, Deceased; Vernon A. Internal plasma-combustion engine system
US5532462A (en) * 1994-04-29 1996-07-02 Communications & Power Industries Method of and apparatus for heating a reaction vessel with microwave energy
CN2240617Y (zh) * 1995-12-27 1996-11-20 赖国斌 等容积压力旋转活塞式发动机
DE19802745C2 (de) * 1998-01-26 1999-11-25 Karlsruhe Forschzent Mikrowellentechnische Zünd- und Verbrennungsunterstützungs-Einrichtung für einen Kraftstoffmotor
US6698394B2 (en) * 1999-03-23 2004-03-02 Thomas Engine Company Homogenous charge compression ignition and barrel engines
US6782875B2 (en) * 2001-08-29 2004-08-31 Hitoshi Yoshimoto Systems and methods for conditioning or vaporizing fuel in a reciprocating internal combustion engine
US7685817B2 (en) * 2004-10-18 2010-03-30 Ceti, Inc. Method and system for providing a rotational output using a non-combustion heat source
JP2006147782A (ja) * 2004-11-18 2006-06-08 Toshiba Ceramics Co Ltd 半導体基板用マイクロ波加熱セラミックスヒータ
DE102006005792B4 (de) * 2006-02-07 2018-04-26 Fachhochschule Aachen Hochfrequenzzündanlage für Kraftfahrzeuge
KR101335974B1 (ko) * 2006-09-20 2013-12-04 이마지니어링 가부시키가이샤 점화장치, 내연기관, 점화 플러그, 플라즈마장치, 배기가스 분해장치, 오존 발생·멸균·소독장치 및 소취장치
US8424501B2 (en) * 2006-12-07 2013-04-23 Contour Hardening, Inc. Induction driven ignition system
US8783220B2 (en) * 2008-01-31 2014-07-22 West Virginia University Quarter wave coaxial cavity igniter for combustion engines
JP5374691B2 (ja) * 2008-03-14 2013-12-25 イマジニアリング株式会社 複数放電のプラズマ装置
JP5360956B2 (ja) * 2008-09-19 2013-12-04 日野自動車株式会社 内燃機関及びシリンダライナ
US8276570B2 (en) * 2009-03-17 2012-10-02 Raytheon Company Method and apparatus for improved internal combustion of fuel/oxidizer mixtures by nanostructure injection and electromagnetic pulse ignition
CN101696653A (zh) * 2009-10-26 2010-04-21 金哲根 旋转翼活塞发动机
JPWO2012124671A1 (ja) * 2011-03-14 2014-07-24 イマジニアリング株式会社 内燃機関
UA101699C2 (ru) * 2011-06-03 2013-04-25 Евгений Федорович Драчко Гибридный двигатель внутреннего сгорания
JP6014864B2 (ja) * 2011-07-04 2016-10-26 ダイハツ工業株式会社 火花点火式内燃機関
US9353680B2 (en) * 2013-03-04 2016-05-31 Pratt & Whitney Canada Corp. Rotary internal combustion engine with pilot subchamber
US9399947B2 (en) * 2013-03-12 2016-07-26 Pratt & Whitney Canada Corp. Internal combustion engine with pilot and main injection
US9200563B2 (en) * 2013-03-12 2015-12-01 Pratt & Whitney Canada Corp. Internal combustion engine with common rail pilot and main injection
ES2861475T3 (es) * 2015-06-23 2021-10-06 Mwi Micro Wave Ignition Ag Motor de combustión interna de pistón rotativo

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3400034A1 (de) * 1984-01-03 1985-07-11 Herbert 5000 Köln Kaniut Brennkraftmaschine mit lichtstrahl-zuendung
US5845480A (en) * 1996-03-13 1998-12-08 Unison Industries Limited Partnership Ignition methods and apparatus using microwave and laser energy
WO1998014703A1 (en) * 1996-09-30 1998-04-09 Matthew Mark Bebich Ignition by electromagnetic radiation
DE10356916B3 (de) 2003-12-01 2005-06-23 Volker Gallatz Verfahren zum Zünden der Verbrennung eines Kraftstoffes in einem Verbrennungsraum eines Motors, zugehörige Vorrichtung und Motor

Also Published As

Publication number Publication date
JP2017040252A (ja) 2017-02-23
KR20170000357A (ko) 2017-01-02
US10030578B2 (en) 2018-07-24
JP6261659B2 (ja) 2018-01-17
CN106286075A (zh) 2017-01-04
KR101819826B1 (ko) 2018-01-17
EP3109459B1 (de) 2021-01-06
MX358500B (es) 2018-08-23
ES2861475T3 (es) 2021-10-06
MX2016008433A (es) 2016-12-22
US20170022893A1 (en) 2017-01-26
CN106286075B (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
EP2220341B1 (de) Axialkolbenmotor und verfahren zum betrieb eines axialkolbenmotors
EP3064767A1 (de) Verfahren und zum Einbringen von Mikrowellenenergie in einen Brennraum eines Verbrennungsmotors und Verbrennungsmotor
EP0102507A2 (de) Einrichtung zum Einspritzen von Kraftstoff in Brennräume von selbstzündenden Brennkraftmaschinen
WO2005059356A1 (de) Verfahren zum zünden der verbrennung eines kraftstoffes in einem verbrennungsraum eines motors, zugehörige vorrichtung und motor
EP3109459B1 (de) Rotationskolben-verbrennungsmotor
EP1272738B1 (de) Rotationskolbenmotor
EP2292896A2 (de) Drehkolben-Brennkraftmaschine
EP3064765A1 (de) Verbrennungsmotor
EP3064766A1 (de) Verfahren und Vorrichtung zum Einbringen von Mikrowellenenergie in einen Brennraum eines Verbrennungsmotors
DE4133251A1 (de) Verfahren zum herstellen eines flammenhalters fuer einen strahlungsbrenner und nach diesem verfahren hergestellter flammenhalter
DE1916095A1 (de) Kreiskolben-Brennkraftmaschine
DE3317431A1 (de) Viertakt-drehkolbenmotor
DE102009052960B4 (de) Freikolben-Brennkraftmaschine
DE2420947C3 (de)
EP0333883A1 (de) Verbrennungsmotor mit rotierendem kolben
DE102004008312A1 (de) Kreiskolbenbrennkraftmaschine, ausgelegt für Dieselkraftstoff
DE2363863C3 (de) Gemischverdichtende Kreiskolben-Brennkraftmaschine
EP0948706A1 (de) Vorrichtung zur durchmischung von luft und treibstoff im brennraum eines verbrennungsmotors
EP0602272A1 (de) Rotationskolbenmaschine
DE2536282A1 (de) Rotationsmotor
DE1241187B (de) Drehkolbenbrennkraftmaschine
DE2420947A1 (de) Umlaufkolben-brennkraftmaschine
DE2751374A1 (de) Drehkolbenmotor mit umlaufenden arbeitsrotoren
DE102013017359B4 (de) Drehscheibenkraftmaschine
AT251972B (de) Rotationskolben-Einspritzbrennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160621

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MWI MICRO WAVE IGNITION AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F02P 23/04 20060101AFI20200818BHEP

Ipc: F02P 15/00 20060101ALN20200818BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: F02P 15/00 20060101ALN20200825BHEP

Ipc: F02P 23/04 20060101AFI20200825BHEP

INTG Intention to grant announced

Effective date: 20200908

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: F02P 23/04 20060101AFI20201102BHEP

Ipc: F02P 15/00 20060101ALN20201102BHEP

INTG Intention to grant announced

Effective date: 20201120

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1352638

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015014106

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210106

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210506

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210406

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210506

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2861475

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211006

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015014106

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

26N No opposition filed

Effective date: 20211007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015014106

Country of ref document: DE

Representative=s name: WITTE, WELLER & PARTNER PATENTANWAELTE MBB, DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210623

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210623

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210506

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230621

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230725

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106