EP3092218B1 - Verfahren zur reinigung von aminosäuren - Google Patents

Verfahren zur reinigung von aminosäuren Download PDF

Info

Publication number
EP3092218B1
EP3092218B1 EP14701813.9A EP14701813A EP3092218B1 EP 3092218 B1 EP3092218 B1 EP 3092218B1 EP 14701813 A EP14701813 A EP 14701813A EP 3092218 B1 EP3092218 B1 EP 3092218B1
Authority
EP
European Patent Office
Prior art keywords
equal
amino acid
resin
eluent
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14701813.9A
Other languages
English (en)
French (fr)
Other versions
EP3092218A1 (de
Inventor
Damien BRICHANT
Frédéric SCHAB
Stanislas Baudouin
Vincent ORIEZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novasep Process Solutions SAS
Original Assignee
Novasep Process Solutions SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novasep Process Solutions SAS filed Critical Novasep Process Solutions SAS
Publication of EP3092218A1 publication Critical patent/EP3092218A1/de
Application granted granted Critical
Publication of EP3092218B1 publication Critical patent/EP3092218B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D209/20Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals substituted additionally by nitrogen atoms, e.g. tryptophane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/20Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/38Separation; Purification; Stabilisation; Use of additives
    • C07C227/40Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/64Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine

Definitions

  • the present invention relates to a process for the purification of aromatic amino acids, that is to say amino acids comprising an aromatic ring, and in the first place tryptophan, phenylalanine, tyrosine, and histidine.
  • Aromatic amino acids can be produced by fermentation, enzymation or synthetically.
  • Tryptophan, phenylalanine and histidine are part of the family of essential amino acids: as such, they are used as nutritional supplements.
  • the amino acid must produced by fermentation, synthetic or enzymatic way contains impurities among which residual sugars and substrates, minerals, pigments. These impurities must be removed to achieve the degree of purity required for its commercial use.
  • Purification by crystallization is carried out in aqueous or solvent way. Pretreatment steps before crystallization are sometimes provided, so as to increase the purity of the crystals. This may be a purification step on activated carbon (documents CN 101245047 and CN 102146052 ); a membrane filtration step on a stainless steel filter (document CN 101376646 ); of an ultrafiltration step (document CN 101691349 ); or a combination of several successive filtrations to eliminate several families of impurities, for example a sequence of microfiltration / ultrafiltration / nanofiltration (document CN 101812009 ).
  • Solvents are sometimes added during crystallization to achieve better degrees of purity, such as acetic acid (documents JP 2097801 and EP 1756055 ), or an aliphatic alcohol (document EP 0274728 ).
  • acetic acid documents JP 2097801 and EP 1756055
  • aliphatic alcohol document EP 0274728 .
  • the use of these solvents leads to an increase in production costs, and in the costs of treatment or recycling of the mother liquors.
  • a second way of purification consists in carrying out a liquid/liquid extraction of the amino acid.
  • a purification of tryptophan using surfactants to form a reverse micellar phase (document CN 102382030 ), or even toluene (document EP 0299715 ).
  • These techniques are never sufficient as such to achieve high levels of purity.
  • Pre- and post-processing steps are necessary.
  • the implementation of large volumes of solvents is economically unattractive for treating industrial volumes of amino acids on the scale of several kilotons/year/unit.
  • purification is based on capture and fixation of the amino acid on an adsorbent resin (therefore neutral), then elution with ethanol (in the first two documents) or with a salt (in the third document).
  • the document EN 2581654 describes the adsorption of tryptophan on a weakly crosslinked polystyrene strong cationic resin.
  • the target compound is precipitated, then dissolved in an acid solution, in particular a solution of sulfuric or hydrochloric acid having a pH of 1 to 2.
  • the acid solution is then brought into contact with a cation exchange resin, which is rinsed with water. water followed by elution with a base.
  • This “batch” type process is the route currently in use today for industrial implementation.
  • the document EN 1502814 describes the adsorption of tryptophan on a strong cationic resin or on a strong anionic resin. In these two cases, the resin selected has a low rate of crosslinking.
  • the pH of the mixture containing the tryptophan is adjusted to 2 before bringing it into contact with the resin.
  • the elution is carried out in two stages: first an elution with a neutral saline solution to eliminate polluting amino acids, then an elution with a basic solution to desorb tryptophan. This is a process requiring two separate eluents and large quantities of regenerating agents.
  • the document US5300653 describes the batch single-column separation of at least one aromatic amino acid from other non-aromatic amino acids on a gel-like strong cationic resin initially converted to salt form with an alkali metal.
  • the solution containing the amino acid preferably has a pH of 2 to 12.
  • the amino acid is adsorbed during the passage of the solution on the resin, then it is desorbed with water free of acid or base or an organic solvent.
  • a disadvantage of this method is that the mode of elution does not make it possible to control the ionic form of the resin. Indeed, the cationic species present in the solution to be treated are capable of being exchanged with the alkali metal, without any eluent enabling the initial ionic form to be maintained.
  • the performance of separation between the amino acids can be affected by these untimely ion exchange mechanisms: consequently, the yields and purities of amino acids produced risk decreasing or varying in an uncontrolled manner over time.
  • the document EP 0200944 describes a method for purifying tryptophan from rindole.
  • the pH of the fluid to be purified is adjusted to 4, then after pretreatments, it is passed over a cationic resin. After rinsing with water, the tryptophan is eluted with a 10% ammonia solution.
  • the document EN 2557872 describes a method for isolating tryptophan from a reaction mixture comprising a microorganism, in which, in particular, a solution of tryptophan is passed over a strongly acidic cation exchange resin without prior adjustment of its pH, washing with water is carried out and the tryptophan is then eluted with an aqueous solution of ammonia.
  • the document EP 0027874 relates to a process for the purification of an aromatic acid by adsorption on a strongly acidic ion-exchange resin and elution with an aqueous ammonia solution. No adjustment of the pH of the solution to pass over the resin is indicated.
  • the document US 2009/0130723 relates to a method of purifying histidine from a microbial culture in which the culture is loaded onto a column packed with particles of 350 ⁇ m or more of a support which is preferably a strong acid cation exchange resin.
  • the histidine is then eluted with an eluent, which can be an aqueous solution of ammonia.
  • the majority of these resin treatments are based on an implementation of the “ batch ” type, that is to say discontinuous.
  • the resins are installed in a column, and the successive eluents (must containing the amino acid; rinsing waters; regenerating solutions - saline, basic, acidic or alcoholic) are successively percolated through the column.
  • the document EP 1106602 describes a method for purifying a basic amino acid, in particular lysine, using a cation exchange chromatographic material, the eluent being a basic aqueous eluent, preferably an aqueous ammonia solution. Histidine is mentioned as a basic amino acid.
  • the starting mixture further comprises sugars and/or salts, and wherein the amino acid-enriched feed comprises less sugars and/or salts than the starting mixture.
  • the second elution step is an isocratic elution step.
  • the amino acid has a basicity constant Kb and, during the first stage, the pH is less than or equal to pKb-6.
  • the second elution step is carried out directly following the first contacting step, without intermediate rinsing.
  • the eluent solution is a solution of a base in water, the base preferably being sodium hydroxide, potassium hydroxide, ammonia or a mixture thereof, and more particularly preferably 'ammonia.
  • the concentration of the base in the eluent solution is from 0.01 to 50 g/L, preferably from 0.2 to 20 g/L, more particularly from 0.5 to 10 g/L. L, and most particularly from 1 to 5 g/L.
  • the ratio of the number of moles of base in the eluent solution used in the second step to the number of moles of amino acid in the starting mixture brought into contact in the first step is less than or equal to 3, preferably less or equal to 2, preferably less than or equal to 1.5, preferably less than or equal to 1, preferably less than or equal to 0.9, preferably less than or equal to 0.8, preferably less than or equal to 0 .7, preferably less than or equal to 0.6, preferably less than or equal to 0.5, preferably less than or equal to 0.4.
  • the amino acid is tryptophan or phenylalanine or tyrosine or histidine.
  • the strong cationic resin is a polystyrene-divinylbenzene copolymer.
  • the strong cationic resin has a degree of crosslinking of 5 to 12%, preferably of 6 to 11%, more particularly of 7 to 10%, preferably of 8 to 9%.
  • the strong cationic resin is in the monovalent cationic form, preferably in the Na + or K + or NH 4 + form, and more particularly preferably in the NH 4 + form.
  • the method is implemented in a multi-column chromatographic installation, the installation preferably comprising 30 columns at most, more particularly preferably 20 columns at most, or 12 columns at most, or 8 columns at most, or 6 columns at most.
  • the method is implemented in a chromatographic installation with a non-static bed, and preferably in a chromatographic installation with a simulated moving bed, or with a real moving bed, or with an improved simulated moving bed, or with a sequential simulated moving bed, and preferably with a sequential simulated moving bed.
  • the starting mixture is obtained at the end of the treatment of a raw mixture, the raw mixture preferably being a fermentation must, synthetic or enzymatic, and said treatment preferably comprising one or more stages chosen from centrifugation, frontal filtration, crystallization, tangential filtration, microfiltration and ultrafiltration.
  • the method comprises one or more stages of concentration of the stream enriched in the amino acid, preferably chosen from concentration by evaporation and in particular by falling film evaporation, concentration by multi-effect evaporation, membrane concentration and in particular nanofiltration.
  • a stream of concentrated amino acid on the one hand and a stream of eluent solution on the other hand are collected, the method comprising the recycling of this eluent solution flows to the second elution step.
  • the difference between the pH of the eluent solution used in the second step and the pH of the first step is greater than or equal to 2, preferably greater than or equal to 4, more particularly greater than or equal to 6, and in particular greater than or equal to 8.
  • the present invention makes it possible to overcome the drawbacks of the state of the art. It provides more particularly an improved aromatic amino acid purification process, allowing in particular a separation between the target amino acid and impurities such as salts, sugars, colors, with minimal consumption of chemical products.
  • the invention is based on a chromatographic elution mode where the aromatic amino acid is separated from its initial solution by a retardation phenomenon due to its affinity with the resin.
  • the invention provides for bringing the amino acid in predominantly zwitterionic form into contact with the resin (pH greater than or equal to the pKa of the amino acid), then eluting it with a solution of higher pH.
  • the operating mode differs from existing methods which implement a phenomenon of capture by immobilization of the amino acid, then of desorption by a concentrated regeneration eluent.
  • the separation mechanism implemented is probably a phenomenon of adsorption by hydrophobic interaction between the Pi bonds of the aromatic group and/or of the doublet of the nitrogen atom(s) present in the amino acid cycle, and the hydrophobic functions of the resin matrix: the separation therefore does not consist of a separation by ion exchange.
  • the present invention can in particular be implemented with a dilute elution solution and with a lower eluent/amino acid ratio, which makes it possible to minimize the chemical consumption and the quantities of effluents.
  • the invention also makes it possible to implement a purification mechanism in a controlled manner, avoiding significant variations in yield and purity of amino acids produced.
  • the invention makes it possible to collect in purified form an aromatic amino acid present in a starting mixture, generally an aqueous solution (fermentation must, synthetic, or resulting from enzymation) containing impurities of various kinds: color, salts / minerals, sugars.
  • the starting mixture contains sugars, for example fermentation nutrients (glucose and/or sucrose, etc.) and/or metabolites.
  • the total content of sugars (and in particular the content of monosaccharides and disaccharides) in the starting mixture can thus be for example from 0.01 to 100 g/L, and preferably from 0.1 to 15 g/L.
  • the starting mixture contains salts, which may be inorganic salts and/or organic salts.
  • the total content of salts in the starting mixture can thus be for example from 0.01 to 80 g/L, and preferably from 0.5 to 20 g/L.
  • the conductivity of the starting mixture can be for example from 1 to 200 mS/cm, preferably from 2 to 100 mS/cm, and in particular from 5 to 50 mS/cm.
  • the aromatic amino acid is preferably phenylalanine, tryptophan, tyrosine, histidine, or a derivative thereof. It is also possible to seek to recover a mixture of aromatic amino acids.
  • the invention provides for a chromatographic separation on a strong cationic resin.
  • strong cationic resin is meant a resin having grafted acid functions which are strong acids.
  • the “ strong cationic resin” means a resin comprising sulphonic acid functions.
  • the cationic resin is a strong polystyrene-divinylbenzene (DVB) resin.
  • the resin is in the form of particles, the mean volume diameter of which (Dv50) is preferably from 20 to 600 ⁇ m, in particular from 200 to 350 ⁇ m.
  • the volume diameter distribution of the resin particles exhibits a single maximum (monodisperse distribution).
  • the uniformity coefficient of this distribution may for example be less than or equal to 1.5, or less than or equal to 1.3, or less than or equal to 1.15.
  • the size distribution of the resin particles can be determined by laser granulometry (standard NF 13320).
  • the resin is preferably a macro-crosslinked resin (and therefore is not a gel-type resin).
  • the crosslinking rate of the resin (DVB rate when the resin is the aforementioned copolymer) is 5 to 6%; or 6 to 7%; or 7 to 8%; or 8 to 9%; or 9 to 10%; or 10 to 11%; or 11 to 12%.
  • the degree of crosslinking is defined as the ratio of the quantity of crosslinking agent monomers (for example DVB monomers) to the total quantity of monomers (for example DVB monomers and other monomers of the resin) which are used in the manufacture of the resin (the amounts being expressed in moles).
  • the resin is in monovalent form.
  • it can be in Na + , K + or preferably NH 4 + form.
  • the method of the invention may comprise a preliminary step of conditioning the resin in a desired ionic form, in particular in Na + , K + or preferably NH 4 + form.
  • This preliminary step can be carried out in particular by passing an appropriate saline or basic solution over the resin.
  • Amino acids behave like weak acids and bases. They have an acidity constant Ka and a basicity constant Kb.
  • Ka acidity constant
  • Kb basicity constant
  • the pKa and the pKb represent the half-dissociation pHs, that is to say the pHs at which the acid function, respectively the basic function, of the amino acids is half ionized.
  • the invention provides for a step of bringing a starting mixture (or charge, or feed product) into contact with a chromatographic resin, then an elution step.
  • the pH is greater than or equal to the pKa of the desired aromatic amino acid (or the pKa of the desired aromatic amino acids, if there are several), in order to ensure that the amino acid is d a meaningful way in zwitterion form.
  • the pH during the first stage is greater than or equal to pKa+0.5; or greater than or equal to pKa+1; or greater than or equal to pKa+1.5; or greater than or equal to pKa+2; or greater than or equal to pKa+2.5; or greater than or equal to pKa+3.
  • the pH during the first step can also be less than or equal to pKa + 3; or less than or equal to pKa + 2.5; or less than or equal to pKa + 2; or less than or equal to pKa + 1.5; or less than or equal to pKa+1; or less than or equal to pKa + 0.5.
  • the pH during the first step is less than or equal to pKb-6.
  • the pH during the first step is between pKa and pKb-6.
  • the pH during the first stage is from 1.8 to 1.9; or 1.9 to 2.0; or 2.0 to 2.1; or from 2.1 to 2.2; or from 2.2 to 2.3; or from 2.3 to 2.4; or from 2.4 to 2.5; or from 2.5 to 2.6; or from 2.6 to 2.7; or from 2.7 to 2.8; or from 2.8 to 2.9; or 2.9 to 3.0; or 3.0 to 3.2; or from 3.2 to 3.4; or from 3.4 to 3.6; or from 3.6 to 3.8; or 3.8 to 4.0; or 4.0 to 4.5; or 4.5 to 5.0; or 5.0 to 5.5; or 5.5 to 6.0; or 6.0 to 6.5; or 6.5 to 7.0.
  • the pH of the filler (starting mixture) can be adjusted before bringing it into contact with the resin by adding acid or base.
  • the eluent is an aqueous solution having a pH higher than that of the first stage.
  • the eluent is a basic aqueous solution, such as an NH 3 or NaOH solution in particular.
  • the difference in pH between the second stage and the first stage can be from 0.5 to 1.0; or 1.0 to 1.5; or 1.5 to 2.0; or from 2.0 to 2.5; or 2.5 to 3.0; or 3.0 to 3.5; or 3.5 to 4.0; or 4.0 to 4.5; or 4.5 to 5.0; or 5.0 to 5.5; or 5.5 to 6.0; or 6.0 to 6.5; or 6.5 to 7.0; or 7.0 to 7.5; or 7.5 to 8.0; or 8.0 to 8.5; or 8.5 to 9.0; or 9.0 to 9.5; or 9.5 to 10.0; or 10.0 to 10.5; or 10.5 to 11.0; or 11.0 to 11.5; or 11.5 to 12.0.
  • the pH of the eluent (second stage) can be in particular from 7.0 to 7.5; or 7.5 to 8.0; or 8.0 to 8.5; or 8.5 to 9.0; or 9.0 to 9.5; or 9.5 to 10.0; or 10.0 to 10.5; or 10.5 to 11.0; or 11.0 to 11.5; or 11.5 to 12.0; or 12.0 to 12.5; or 12.5 to 13.0; or 13.0 to 13.5; or 13.5 to 14.0.
  • the eluent can be a solution of a base in water, for example NaOH or NH 3 , at a concentration of 0.001 to 0.01 g/L; or from 0.01 to 0.1 g/L; or from 0.1 to 0.5 g/L; or from 0.5 to 1 g/L; or from 1 to 2 g/L; or from 2 to 3 g/L; or from 3 to 4 g/L; or from 4 to 5 g/L; or from 5 to 6 g/L; or from 6 to 7 g/L; or from 7 to 8 g/L; or from 8 to 9 g/L; or from 9 to 10 g/L; or from 10 to 15 g/L; or from 15 to 20 g/L; or from 20 to 25 g/L; or from 25 to 50 g/L; or 50 to 100 g/L.
  • a base in water for example NaOH or NH 3
  • the number of moles of base used for the elution, relative to the number of moles of amino acid injected, is less than or equal to 3; or less than or equal to 2; or less than or equal to 1.5; or less than or equal to 1; or less than or equal to 0.9; or less than or equal to 0.8; or less than or equal to 0.7; or less than or equal to 0.6; or less than or equal to 0.5; or less than or equal to 0.4.
  • the elution is preferably isocratic, that is to say that the composition of the eluent does not vary over time.
  • the base cation used for elution is the resin cation.
  • the eluent can be a solution of NaOH; if the resin is in the K + form, the eluent can be a KOH solution; and if the resin is in the NH 4 + form, the eluent can be an ammonia solution.
  • the base elution maintains the ionic form of the resin, which could otherwise be modified by the mineral salts present in the loading solution. Furthermore, without wishing to be bound by a theory, the inventors hypothesize an osmotic charge effect on the resin, which also tends to release the adsorbed species.
  • the desired aromatic amino acid has a stronger affinity for the resin than most other impurities.
  • the impurities eg sugars and salts
  • the impurities are therefore recovered in the raffinate fraction, while the amino acid is recovered in the extract.
  • the total mass content of sugars (in particular of monosaccharides and disaccharides) in the extract is reduced by at least 80%, preferably by at least 90%, or by at least 95%, or at least 98%, or at least 99%, or at least 99.5%, or at least 99.9%, relative to the total mass content of sugars (in particular e, monosaccharides and disaccharides) in the starting mixture.
  • the extract fluorescence enriched in the amino acid
  • the extract is devoid or essentially devoid of sugars (in particular of monosaccharides and disaccharides).
  • the total mass content of salts in the extract is reduced by at least 80%, preferably by at least 90%, or by at least 95%, or by at least 98%, or at least 99%, or at least 99.5%, or at least 99.9%, relative to the total mass content of salts in the starting mixture.
  • the extract (flux enriched in the amino acid) is devoid or essentially devoid of salts.
  • certain highly retained impurities can be desorbed by additional elution with an aqueous, saline or polar eluent.
  • no intermediate rinsing is provided between the contacting step and the elution step.
  • the injection of the eluent thus directly follows the injection of the starting mixture.
  • the eluent (preferably an NH 3 solution) is separated from the amino acid and recovered during the steps of aforementioned post-treatment, in order to be recycled at the head of the chromatographic separation process.
  • the process according to the invention can be discontinuous (“batch”), semi-continuous or continuous. Preferably, it is semi-continuous or continuous.
  • the chromatographic separation according to the invention can be implemented in a chromatographic unit with a static bed or, preferably, in a chromatographic unit with a non-static bed.
  • the mixture of compounds to be separated percolates in an enclosure (or column), which is generally cylindrical.
  • the column contains a bed of porous material (stationary phase) permeable to fluids.
  • the percolation rate of each compound in the mixture depends on the physical properties of the compound.
  • the compounds most retained on the stationary phase percolate more slowly than the compounds less retained on the stationary phase. This principle makes it possible to carry out the desired separation.
  • HPLC high performance liquid chromatography
  • CYCLOJET TM system with steady state recycling
  • the CYCLOJET TM system is as described in the document US 6,063,284 , to which express reference is made.
  • This is a discontinuous single-column chromatographic separation system, in which the (i) most retained then (ii) the least retained species are collected separately at the outlet of the column, the non-separated portion of the chromatogram being recycled by the main pump, and the mixture to be separated being periodically injected by means of an injection loop located essentially in the middle of the recycled portion of the chromatogram. After several chromatographic cycles, the process reaches a periodic stationary state in which the quantity of products injected is equal to the quantity of separated products collected separately at the outlet of the column.
  • a non-static bed system is a multi-column system, in which the relative positions of the stationary phase bed and the flow injection or collection points move over time.
  • non-static bed chromatographic systems examples include SMB (simulated moving bed), iSMB (enhanced simulated moving bed), SSMB (sequential simulated moving bed), AMB (actual moving bed), VARICOL TM , MODICON TM , POWERFEED TM , MCSGP or GSSR (multi-column gradient chromatography).
  • An SMB system comprises a plurality of individual columns containing an adsorbent, which are connected in series. A flow of eluent passes through the columns in a first direction. The injection points of the feed stream and the eluent, as well as the collection points of the separated compounds, are staggered periodically and simultaneously by means of a set of valves. The overall effect is to simulate the operation of a single column containing a moving bed of solid adsorbent, with the solid adsorbent moving in a direction countercurrent to the flow of eluent.
  • an SMB system is composed of columns that contain stationary beds of solid adsorbent through which the eluent passes, but the operation is such that a continuous countercurrent moving bed is simulated.
  • SMB single-zone SMB
  • Other possible forms are three-zone SMB systems and two-zone SMB systems (as described in the article “Two Section Simulated Moving Bed Process” by Kwangnam Lee, in Separation Science and Technology 35(4):519-534, 2000 , to which express reference is made).
  • iSMB and SSMB systems there is at least one step in which the system operates in a closed loop, with no product inflow or outflow.
  • An SSMB system divides the introductions and collections of flows into sub-sequences applied periodically.
  • SMB systems are: the time-varying SMB system and the POWERFEED TM system, as described in the document US 5,102,553 and in the article "PowerFeed operation of simulated moving bed units: changing flow-rates during the switching interval", by Zhang et al. in Journal of Chromatography A, 1006:87-99, 2003 , to which express reference is made; the MODICON TM system, as described in the document US 7,479,228 , to which express reference is made; and the SMB system with internal recirculation, as described in document US 8,282,831 , to which express reference is made.
  • An AMB system operates similarly to an SMB system. However, instead of moving the feed stream and eluent injection points, as well as collection points, by means of a valve system, a set of adsorption units (columns) are physically displaced from supply and collection points. Again, the operation makes it possible to simulate a continuous counter-current moving bed.
  • a VARICOL TM Chromatography System is as described in the documents US 6,136,198 , US 6,375,839 US 6,413,419 and US 6,712,973 , to which express reference is made.
  • a VARICOL TM system comprises a plurality of individual adsorbent-containing columns that are connected in series. An eluent is passed through the columns in a first direction. Unlike the SMB system, the injection points for the mixture to be separated and for the eluent and the collection points for the separated compounds in the system are moved periodically but asynchronously, by means of a set of valves.
  • VARICOL TM does not simulate the operation of a single column containing a moving bed of solid adsorbent, with the solid adsorbent moving in a direction countercurrent to the flow of eluent, and so the operating principle of VARICOL TM cannot be implemented in an equivalent AMB system.
  • Each sequence (phases n°1 to 4) is repeated six times by shifting the cell inputs and outputs by incrementing the cell number, from the left to the right of the system: the charge is thus injected at the top of cell n°1 in sequence n°1, then at the top of cell n°2 in sequence n°2, etc.
  • a complete production cycle is carried out after completion of the six successive sequences, when the point of injection of the load, initially at the entry of cell n°1, returns again to the entry of cell n°1.
  • zones 1, 2, 3 and 4 can vary depending on the quality of separation desired. It is therefore possible to design systems of the same type with one cell, two cells, three cells, four cells and up to twelve or more cells.
  • the method can also be implemented in a closed loop or open loop non-continuous multi-column installation, such as the DCC system described in the patent WO 2007/012750 .
  • a multi-column installation (in particular of the SMB type or the like) contains one or more cleaning zones, making it possible to disconnect a column from the separation loop, in order to periodically desorb strongly adsorbed compounds (impurities), then to regenerate and rebalance the adsorbent with the eluent of the separation.
  • the product is processed on an Applexion ® XA2014-22 resin in a volume of 30 mL per column (in this example, 30 mL represents 1BV where BV means the bed volume, or Bed Volume, of resin).
  • the resin is a strong cationic resin, of the polystyrene-DVB polymer type with 8% DVB, with a monodisperse particle size of 220 ⁇ m, and an ion exchange capacity of 1.8 eq/L resin .
  • the resin is converted beforehand into the Na form using a 4% sodium hydroxide solution.
  • the starting mixture for the chromatography step contains 17.5 g/L of tryptophan, 3.7 g/L of residual sugars, and exhibits a conductivity of 18.5 mS/cm induced by the salts in solution.
  • the figure 2 represents the evolution of the concentrations at a point of the system which sees all of the separation stages take place, from the start of the elution of the raffinate to the end of the rinsing of the extract.
  • Phase A is the injection phase of the starting mixture
  • phase B is the elution phase with the sodium hydroxide solution.
  • the main impurities are residues of substrates, minerals, as well as solid residues of cellular metabolism.
  • the pH of the must is here adjusted to 2.7 by adding H 2 SO 4 .
  • the tryptophan is in a predominantly zwitterionic form.
  • microfiltration permeate thus treated contains 98% of the tryptophan initially present in the must, at a concentration of 15 g/L.
  • the impurities are present in it up to 25 g/L of mineral salts: its conductivity is 15.9 mS/cm. A sugar level of 3 g/L is also measured.
  • This permeate is used as the feed for the SSMB system described above.
  • Each column contains 475 mL of Applexion ® XA2014-22 resin.
  • the resin is initially conditioned in NH 4 + form by percolation of NH 3 ammonia with a concentration of 3 N.
  • the system is operated at 4.5 BV/h.
  • the feed product is injected at the head of zone 3. At each production period, 7.5 BV of feed product are injected. On three columns, the tryptophan is slowed down by the phenomenon of retardation on the resin, and thus separated from the impurities which are eluted and collected, at the zone outlet, in a so-called “raffinate” fraction. The majority of impurities (salts and sugars) are eluted in this raffinate: its conductivity is 17.6 mS/cm.
  • the system is set up such that 0.1% of the initial tryptophan is eluted in the raffinate fraction.
  • ammonia diluted to 2 g/L (eluent) which makes it possible to desorb the tryptophan.
  • 5 BV of eluent are injected.
  • the tryptophan is recovered during this elution in a so-called “ extract ” fraction .
  • the conductivity of the extract is less than 200 ⁇ S/cm: it is demineralised up to 98.8% relative to the feed product. We also measure an 89% reduction in residual sugars, and a 75% reduction in color.
  • the eluent/feed product ratio is 0.67 (volume/volume).
  • a concentration phenomenon is observed during this operation: the tryptophan is eluted at 20 g/L (against 15 g/L in the feed product). More than 99% of initial tryptophan is recovered in the extract during this step.
  • the quantity of NH 3 used is 0.59 mol per L of resin, for a quantity of tryptophan injected of 1.47 mol/L of resin (i.e. 0.4 mol NH 3 per mole of tryptophan): this demonstrates that the retention mechanism is not ion exchange.
  • the profile measured in the nine columns, in steady state, and during a loop step, is represented on the picture 3 .
  • the profiles of tryptophan concentrations, of Brix (representative of the concentration of dry matter) and of conductivity (representative of the concentration of saline impurities) are represented there.
  • the separation between the tryptophan elution zone (zone 1, columns Nos. 2, 3 and 4) and the raffinate collection zone (zone 3, columns Nos. 7, 8 and 9) is thus observed.
  • the resin is converted beforehand into the NH 4 + form using NH 3 at 3%, rinsed, then balanced by passage of NH 3 at 2 g/L.
  • the chromatography feed contains 32.76 g/L of phenylalanine and exhibits a conductivity of 36.8 mS/cm due to the salt concentration of the medium.
  • the feed product is injected in excess onto the resin, at 4 BV/h: a phenomenon of retention of phenylalanine with respect to the salts and the sugars is observed, then an escape of the amino acid. Once the output concentration equals the input amino acid concentration, the feedstock injection is stopped.
  • the elution of phenylalanine is carried out with an NH 3 concentration of 2 g/L, at 4 BV/h.
  • phase 4 represents the evolution of the concentrations at a point in the system which sees all of the separation stages take place, from the start of the raffinate elution to the end of the extract rinsing.
  • Phase A is the injection phase of the starting mixture
  • phase B is the elution phase with the NH 3 solution.
  • This example is implemented using a histidine solution at 12.98 g/L, with a conductivity of 17.48 mS/cm and containing 3.9 g/L of sugars.
  • the resin is converted beforehand into the NH 4 + form using NH 3 at 3%, rinsed, then balanced by passage of NH 3 at 2 g/L.
  • the feed product is injected in excess onto the resin, at 2 BV/h: a histidine retention phenomenon is observed, followed by an escape of the amino acid. Once the output concentration equals the input amino acid concentration, the feedstock injection is stopped.
  • the histidine is eluted with an NH 3 concentration of 2 g/L, at 2 BV/h.
  • phase A is the injection phase of the starting mixture
  • phase B is the elution phase with the NH3 solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Indole Compounds (AREA)

Claims (14)

  1. Verfahren zur Reinigung einer Aminosäure, ausgehend von einer ferner Zucker und/oder Salze umfassenden Ausgangsmischung,
    wobei die Aminosäure einen aromatischen Zyklus umfasst und eine Säurekonstante Ka und eine Basizitätskonstante Kb aufweist,
    wobei das Verfahren umfasst:
    - in einem ersten Schritt: Kontaktieren der Ausgangsmischung mit einem kationischen Harz mit aufgepfropften Säurefunktionen, bei denen es sich um starke Säuren handelt, bei einem pH-Wert größer und gleich pKa und kleiner oder gleich pKb-6;
    - in einem zweiten Schritt: Eluieren mit einer wässrigen Elutionsmittellösung mit einem den pH-Wert des ersten Schritts übersteigenden pH-Wert, wodurch ein an Aminosäure angereicherter Fluss erfasst werden kann, der weniger Zucker und/oder Salze enthält als die Ausgangsmischung, wobei es sich bei der Elutionsmittellösung um eine Lösung aus einer Base im Wasser handelt;
    wobei das Verhältnis der Anzahl der Mole der Base in der im 2. Schritt verwendeten Elutionsmittellösung zur Anzahl der Mole der Aminosäure in der im 1. Schritt kontaktierten Ausgangsmischung kleiner oder gleich 3 ist,
    wobei die Aminosäure infolge ihrer Affinität zum Harz durch eine Verzögerungserscheinung von der Ausgangsmischung getrennt wird.
  2. Verfahren nach Anspruch 1, wobei der 2. Elutionsschritt ein isokratischer Elutionsschritt ist.
  3. Verfahren nach Anspruch 1 oder 2, wobei es sich bei der Aminosäure um Tryptophan, Phenylalanin, Tyrosin oder Histidin handelt.
  4. Verfahren nach einem der Ansprüche 1 - 3, wobei der 2. Elutionsschritt unmittelbar im Anschluss an den 1. Kontaktierschritt ohne Zwischenspülung ausgeführt wird.
  5. Verfahren nach einem der Ansprüche 1 - 4, wobei es sich bei der Base um Natrium, Kalium, Ammoniak oder eine Mischung davon, vorzugsweise aber um Ammoniak, handelt, und die Konzentration der Base in der Elutionsmittel vorzugsweise 0,01 - 50 g/L, insbesondere 0,2 - 20 g/L, weiter bevorzugt 0,5 - 10 g/L und besonders bevorzugt 1 - 5 g/L beträgt.
  6. Verfahren nach einem der Ansprüche 1 - 5, wobei das Verhältnis der Anzahl der Mole der Base Base in der im 2. Schritt verwendeten Elutionsmittellösung zur Anzahl der Mole der Aminosäure in der im 1. Schritt kontaktierten Ausgangsmischung kleiner oder gleich 2, insbesondere kleiner oder gleich 1 und besonders bevorzugt kleiner oder gleich 0,5 ist.
  7. Verfahren nach einem der Ansprüche 1 - 6, wobei das kationische Harz ein Polystyrol-Divinylbenzol-Copolymer ist.
  8. Verfahren nach einem der Ansprüche 1 - 7, wobei das kationische Harz einen Vernetzungsgrad von 5 - 12 %, insbesondere 6 - 11 %, vorzugsweise 7 - 10 %, besonders bevorzugt 8 - 9 % aufweist.
  9. Verfahren nach einem der Ansprüche 1 - 8, wobei das kationische Harz in Form eines einwertigen Kations, vorzugsweise in Form von Na+ oder K+ oder NH4 +, und besonders bevorzugt in Form von NH4 + vorliegt.
  10. Verfahren nach einem der Ansprüche 1 - 9, das in einer mehrere Säulen umfassenden Chromatographieeinrichtung ausgeführt wird,
    wobei die Einrichtung vorzugsweise höchstens 30, insbesondere höchstens 20, höchstens 12, höchstens 8 oder höchstens 6 Säulen aufweist.
  11. Verfahren nach einem der Ansprüche 1 - 10, das in einer Chromatographieeinrichtung mit nicht statischem Fließbett, vorzugsweise in einer Chromatographieeinrichtung mit simuliertem Bewegtbett oder echtem Bewegtbett oder verbessertem Bewegtbett oder sequentiellem simuliertem Bewegtbet, besonders bevorzugtweise mit sequentiellem simuliertem Bewegtbett ausgeführt wird.
  12. Verfahren nach einem der Ansprüche 1 - 11, wobei die Ausgangsmischung aus der Bearbeitung einer Rohmasse resultiert, wobei es sich bei der Rohmasse vorzugsweise um eine fermentative, synthetische oder enzymatische Würze handelt und wobei die Bearbeitung vorzugsweise mindestens einen aus folgender Gruppe gewählten Schritt umfasst: Zentrifugation, frontale Filtration, Kristallisation, tangentiale Filtration, Mikrofiltration und Ultrafiltration.
  13. Verfahren nach einem der Ansprüche 1 - 12, umfassend mindestens einen Schritt des Konzentrierens des an Aminosäure angereicherten Flusses, der vorzugsweise aus folgender Gruppe gewählt ist: Konzentrieren mittels Verdampfung, inbesondere Fallfilmverdampfung, Konzentrieren mittels Verdampfung mit mehrfacher Wirkung, Membrankonzentration und insbesondere Nanofiltration, vorzugsweise wobei am Ende des mindestens einen Konzentrationsschritts ein konzentrierter Aminosäurefluss einerseits und ein Elutionsmittellösungsfluss andererseits gesammelt werden, wobei das Verfahren Wiederverwenden des Elutionsmittellösungsflusses im zweiten Elutionsschritt umfasst.
  14. Verfahren nach einem der Ansprüche 1 - 13, wobei der Unterschied zwischen dem pH-Wert der im 2. Schritt verwendeten Elutionsmittellösung und dem pH-Wert des 1. Schritts größer oder gleich 2, insbesondere größer oder gleich 4, vorzugsweise größer oder gleich 6 und besonders bevorzugt größer oder gleich 8 ist.
EP14701813.9A 2014-01-07 2014-01-07 Verfahren zur reinigung von aminosäuren Active EP3092218B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2014/050015 WO2015104464A1 (fr) 2014-01-07 2014-01-07 Procédé de purification d'acides aminés aromatiques

Publications (2)

Publication Number Publication Date
EP3092218A1 EP3092218A1 (de) 2016-11-16
EP3092218B1 true EP3092218B1 (de) 2022-03-09

Family

ID=50029144

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14701813.9A Active EP3092218B1 (de) 2014-01-07 2014-01-07 Verfahren zur reinigung von aminosäuren

Country Status (7)

Country Link
US (1) US10975031B2 (de)
EP (1) EP3092218B1 (de)
JP (1) JP6303017B2 (de)
KR (1) KR102165406B1 (de)
CN (2) CN104761423A (de)
BR (1) BR112016015718B1 (de)
WO (1) WO2015104464A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10975031B2 (en) 2014-01-07 2021-04-13 Novasep Process Method for purifying aromatic amino acids
EP3280697A1 (de) * 2015-04-08 2018-02-14 INVISTA Textiles (U.K.) Limited Materialien und verfahren zur selektiven rückgewinnung monovalenter produkte aus wässrigen lösungen mit kontinuierlichem ionenaustausch
FR3073425B1 (fr) 2017-11-16 2019-11-22 Novasep Process Procede de separation d’un melange avec mesure de purete ou rendement sur une cuve intermediaire
FR3073426B1 (fr) 2017-11-16 2022-03-25 Novasep Process Procede de separation d’un melange avec mesure de purete ou rendement par un detecteur en ligne
FR3073424B1 (fr) 2017-11-16 2022-03-25 Novasep Process Procede regule de separation d’un melange
FR3078634B1 (fr) 2018-03-09 2020-02-28 Novasep Process Separation chromatographique du sulfate d’ammonium et de l’acide 2-hydroxy-2-methylpropionique
EP3560571B1 (de) 2018-04-23 2023-12-13 Novasep Process Solutions Fruktose-reinigungsverfahren
EP3560570B1 (de) 2018-04-23 2024-01-10 Novasep Process Solutions Chromatographisches reinigungsverfahren von viskosen ladungen
EP3561080B1 (de) 2018-04-23 2023-08-02 Novasep Process Solutions Herstellungsverfahren von fruktose aus glukose
EP3852923A1 (de) * 2018-09-18 2021-07-28 INVISTA Textiles (U.K.) Limited Systeme und verfahren zur rückgewinnung von aminen und ihren derivaten aus wässrigen mischungen
KR102577334B1 (ko) 2021-05-21 2023-09-08 씨제이제일제당 (주) 암모니아의 지속 가능한 순환이 가능한 방향족 아미노산의 결정화 방법
CN114082222B (zh) * 2021-10-25 2023-03-17 青海大学 狭果茶藨子游离氨基酸纯化方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090130723A1 (en) * 2006-03-15 2009-05-21 Kyowa Hakko Bio Co., Ltd. Methods for Purifying Amino Acids

Family Cites Families (188)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985589A (en) 1957-05-22 1961-05-23 Universal Oil Prod Co Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets
GB1001603A (en) * 1961-04-10 1965-08-18 Fmc Corp Separation, purification and recovery processes
GB1145512A (en) * 1965-09-21 1969-03-19 Kyowa Hakko Kogyo Company Ltd Method for isolating tryptophan
US3761533A (en) 1970-07-23 1973-09-25 Toray Industries Separation process of components of feed mixture utilizing solid sorbent
US3706812A (en) 1970-12-07 1972-12-19 Universal Oil Prod Co Fluid-solid contacting apparatus
US3696107A (en) 1971-05-27 1972-10-03 Richard W Neuzil Improved hydrocarbon separation process
GB1512516A (en) 1974-07-31 1978-06-01 Ici Ltd Polyester composition
US4048111A (en) 1975-06-12 1977-09-13 Uop Inc. Method for manufacturing an adsorbent useful for olefin separation
US4036745A (en) 1975-09-24 1977-07-19 Uop Inc. Process for separating normal and isoparaffins
US4049688A (en) 1976-08-02 1977-09-20 Uop Inc. Process for separating esters of fatty acids by selective adsorption
US4048205A (en) 1976-08-02 1977-09-13 Uop Inc. Process for separating an ester of a monoethanoid fatty acid
US4189442A (en) 1978-10-18 1980-02-19 The Procter & Gamble Company Separation of fatty acid esters
DE2943761C2 (de) * 1979-10-30 1983-11-17 Degussa Ag, 6000 Frankfurt Verfahren zur Isolierung von Aminosäuren, die mindestens einen aromatischen oder heteroaromatischen Ring enthalten
US4313015A (en) 1980-02-07 1982-01-26 Uop Inc. Separation process
US4353838A (en) 1981-02-13 1982-10-12 Uop Inc. Process for separating a monoethanoid fatty acid
US4353839A (en) 1981-02-25 1982-10-12 Uop Inc. Process for separating saturated fatty acids
US4524030A (en) 1981-04-10 1985-06-18 Uop Inc. Process for separating fatty acids
US4519952A (en) 1981-04-10 1985-05-28 Uop Inc. Process for separating fatty acids from unsaponifiables
US4329280A (en) 1981-04-10 1982-05-11 Uop Inc. Process for separating esters of fatty and rosin acids
IN158368B (de) 1981-04-10 1986-11-01 Uop Inc
US4522761A (en) 1981-04-10 1985-06-11 Uop Inc. Process for separating fatty acids from rosin acids
US4511514A (en) 1981-04-10 1985-04-16 Uop Inc. Process for separating oleic acid from linoleic acid
US4404145A (en) 1981-04-10 1983-09-13 Uop Inc. Process for separating fatty acids from rosin acids
US4486618A (en) 1981-07-30 1984-12-04 Uop Inc. Process for separating C6 olefin hydrocarbons
JPS5861463A (ja) 1981-10-07 1983-04-12 Kureha Chem Ind Co Ltd 液体クロマトグラフイ−用担体及び該担体を用いる脂溶性物質の分離精製方法
JPS58109444A (ja) 1981-11-19 1983-06-29 Kureha Chem Ind Co Ltd エイコサペンタエン酸又はそのエステル、ドコサヘキサエン酸又はそのエステルの分離精製法
JPS5888339A (ja) 1981-11-20 1983-05-26 Kagakuhin Kensa Kyokai エイコサペンタエン酸又はそのエステルとドコサヘキサエン酸又はそのエステルの分離精製方法
US4460675A (en) 1982-01-21 1984-07-17 E. I. Du Pont De Nemours And Company Process for preparing an overcoated photopolymer printing plate
JPS5928484A (ja) * 1982-08-11 1984-02-15 Mitsui Toatsu Chem Inc L−アミノ酸の単離方法
US4495106A (en) 1982-08-13 1985-01-22 Uop Inc. Adsorbent and process for separating fatty acids from rosin acids
US4560675A (en) 1982-08-13 1985-12-24 Uop Inc. Adsorbent for separating fatty acids from rosin acids
US4521343A (en) 1983-02-04 1985-06-04 Uop Inc. Process for separating fatty acids from rosin acids with phosphorus modified alumina molecular sieve
US4433195A (en) 1983-03-02 1984-02-21 Uop Inc. Separation of trans- and cis-olefins
US4524029A (en) 1983-09-22 1985-06-18 Uop Inc. Process for separating fatty acids
JPS60197209A (ja) 1984-03-21 1985-10-05 Soken Kagaku Kk 液体クロマトグラフィーによる工業的分離法およびその装置
US4764276A (en) 1984-07-30 1988-08-16 Advanced Separation Technologies Incorporated Device for continuous contacting of fluids and solids
FR2581654B1 (fr) 1985-01-25 1987-06-26 Commissariat Energie Atomique Procede de recuperation du tryptophane ou de l'un de ses derives et son utilisation dans un procede de synthese enzymatique du tryptophane
JPS61192797A (ja) 1985-02-21 1986-08-27 日本油脂株式会社 高度不飽和酸の濃縮方法
US4605783A (en) 1985-03-21 1986-08-12 Uop Inc. Process for separating monoterpenes
US4769474A (en) * 1985-04-10 1988-09-06 Mitsui Toatsu Chemicals, Inc. Process for purifying tryptophane
JPH0761996B2 (ja) * 1986-03-18 1995-07-05 三井東圧化学株式会社 トリプトフアンの精製方法
NO157302C (no) 1985-12-19 1988-02-24 Norsk Hydro As Fremgangsmaate for fremstilling av et fiskeoljekonsentrat.
US4797233A (en) 1986-08-20 1989-01-10 Uop Inc. Process for separating mono-, di- and triglycerides
US4720579A (en) 1986-12-18 1988-01-19 Uop Inc. Separation of citric acid from fermentation broth with a neutral polymeric adsorbent
US5068419A (en) 1986-12-18 1991-11-26 Uop Separation of an organic acid from a fermentation broth with an anionic polymeric adsorbent
JPH0648990B2 (ja) 1987-01-14 1994-06-29 味の素株式会社 トリプトフアンの精製方法
IT1205043B (it) 1987-05-28 1989-03-10 Innova Di Ridolfi Flora & C S Procedimento per l'estrazione di esteri di acidi grassi poliinsaturi da olii di pesce e composizioni farmaceutiche e dietetiche contenenti detti esteri
EP0299715A3 (de) 1987-07-13 1990-07-04 MITSUI TOATSU CHEMICALS, Inc. Verfahren zur Herstellung von L-tryptophan
US4882065A (en) 1987-12-11 1989-11-21 Uop Purification of sterols with activated carbon as adsorbent and chlorobenzene as desorbent
JPH0692595B2 (ja) 1988-02-01 1994-11-16 鐘淵化学工業株式会社 脂肪酸とトリグリセリドの分離方法
US4961881A (en) 1988-02-17 1990-10-09 Uop Process for separating triglycerides and regenerating absorbent used in said separation process
JPH0746097B2 (ja) 1988-05-17 1995-05-17 三菱化成エンジニアリング株式会社 クロマト分離法
GB8819110D0 (en) 1988-08-11 1988-09-14 Norsk Hydro As Antihypertensive drug & method for production
ZA895758B (en) 1988-09-29 1990-04-25 Fishing Ind Research I Polyunsaturated fatty acids
JP2949287B2 (ja) 1988-10-04 1999-09-13 バブコツク日立株式会社 排熱回収ボイラの補助蒸気抽気方法
US4902829A (en) 1988-11-16 1990-02-20 Uop Process for the adsorptive separation of hydroxy paraffinic dicarboxylic acids from olefinic dicarboxylic acids
US5102553A (en) 1988-12-16 1992-04-07 The Amalgamated Sugar Company Time variable simulated moving bed process
US5068418A (en) 1989-05-08 1991-11-26 Uop Separation of lactic acid from fermentation broth with an anionic polymeric absorbent
FR2651149B1 (fr) 1989-08-28 1992-06-05 Inst Francais Du Petrole Procede continu et dispositif de separation chromatographique d'un melange d'au moins trois constituants en trois effluents purifies au moyen d'un seul solvant a deux temperatures et/ou a deux pressions differentes.
FR2651148B1 (fr) 1989-08-28 1992-05-07 Inst Francais Du Petrole Procede continu et dispositif de separation chromatographique d'un melange d'au moins trois constituants en trois effluents purifies au moyen de deux solvants.
US5069883A (en) 1989-10-20 1991-12-03 Progress Water Technologies Corp. Device for continuous contacting of liquids and solids
ES2056342T3 (es) * 1989-11-20 1994-10-01 Mitsui Toatsu Chemicals Procedimiento de separacion de aminoacidos.
US5225580A (en) 1990-08-16 1993-07-06 Uop Process for separating fatty acids and triglycerides
US5179219A (en) 1990-11-19 1993-01-12 Uop Process for separating fatty acids and triglycerides
JPH07106281B2 (ja) 1991-01-16 1995-11-15 綜研化学株式会社 多成分混合物の分離精製方法及び装置
JP3400466B2 (ja) 1991-10-28 2003-04-28 日本水産株式会社 高純度エイコサペンタエン酸またはそのエステルの製造方法
JP2993253B2 (ja) 1991-12-24 1999-12-20 雪印乳業株式会社 コレステロール含量の低い動物性油脂の製造法
JP3135964B2 (ja) 1991-12-24 2001-02-19 雪印乳業株式会社 コレステロール含量を低減させた飲食品の製造法
CA2111084C (fr) 1992-04-29 2004-07-06 Roger-Marc Nicoud Procede et dispositif de fractionnement d'un melange en lit mobile simule en presence d'un gaz comprime, d'un fluide supercritique ou d'un liquide subcritique
JP3025590B2 (ja) 1992-10-14 2000-03-27 エーザイ株式会社 粗製物の精製法
JP3340182B2 (ja) 1993-03-31 2002-11-05 雪印乳業株式会社 ドコサヘキサエン酸含有トリグリセリドの製造法
ES2097047T3 (es) 1993-04-29 1997-03-16 Norsk Hydro As Procedimientos para el fraccionamiento cromatografico de acidos grasos y sus derivados.
EP0715743B1 (de) 1993-08-25 2001-03-07 The Australian National University Weitwinkliges, abbildendes system
GB9404483D0 (en) 1994-03-08 1994-04-20 Norsk Hydro As Refining marine oil compositions
JPH08218091A (ja) 1995-02-17 1996-08-27 Maruha Corp 高純度の高度不飽和脂肪酸およびその誘導体の製造方法
ATE242303T1 (de) 1995-08-17 2003-06-15 Hoffmann La Roche Chromatographie-verfahren
FR2740451B1 (fr) 1995-10-27 1998-01-16 Seripharm Nouveaux intermediaires pour l'hemisynthese de taxanes, leurs procedes de preparation et leur utilisation dans la synthese generale des taxanes
JP2815562B2 (ja) 1995-11-13 1998-10-27 植田製油株式会社 高度不飽和脂肪酸含有油脂の精製方法
US5630943A (en) 1995-11-30 1997-05-20 Merck Patent Gesellschaft Mit Beschrankter Haftung Discontinuous countercurrent chromatographic process and apparatus
JPH09157684A (ja) 1995-12-08 1997-06-17 Chlorine Eng Corp Ltd 高度不飽和脂肪酸エステルの精製方法
US5917068A (en) 1995-12-29 1999-06-29 Eastman Chemical Company Polyunsaturated fatty acid and fatty acid ester mixtures free of sterols and phosphorus compounds
DE19611094C2 (de) 1996-03-21 1999-06-17 Dresden Arzneimittel Verfahren zur Reinigung von Cyclosporin A und/oder verwandten Cyclosporinen aus einem Cyclosporin-haltigen Rohextrakt unter Anwendung chromatographischer Verfahren mit Kieselgel als Adsorbens
FR2754731B1 (fr) 1996-10-18 1999-07-02 Novasep Sa Perfectionnement aux procedes d'enrichissement d'isomeres optiques par lit mobile simule
GB9701705D0 (en) 1997-01-28 1997-03-19 Norsk Hydro As Purifying polyunsatured fatty acid glycerides
US6379554B1 (en) 1997-01-29 2002-04-30 Amalgamated Research Inc. Method of displacement chromatography
JPH10310555A (ja) 1997-05-12 1998-11-24 Y M Shii:Kk 多価不飽和脂肪酸エステルの分離精製方法
US6063284A (en) 1997-05-15 2000-05-16 Em Industries, Inc. Single column closed-loop recycling with periodic intra-profile injection
FR2764822B1 (fr) 1997-06-19 1999-08-13 Novasep Methode pour optimiser le fonctionnement d'un systeme de separation des constituants d'un melange
FR2766385B1 (fr) 1997-07-24 1999-09-03 Novasep Procede pour le controle de la pression dans un systeme de separation a lit mobile simule
US5840181A (en) 1997-10-14 1998-11-24 Uop Llc Chromatographic separation of fatty acids using ultrahydrophobic silicalite
US6675839B1 (en) 1998-01-03 2004-01-13 Innovata Biomed Limited Filling method
JP2872986B1 (ja) 1998-01-21 1999-03-24 池田食研株式会社 高純度高度不飽和脂肪酸の低級アルコールエステル精製方法
US6350890B1 (en) 1998-07-22 2002-02-26 Axiva Gmbh Method for obtaining fatty acids from biomass by combined in/situ extraction, reaction and chromatography using compressed gases
FR2781388B1 (fr) 1998-07-24 2000-08-25 Inst Francais Du Petrole Dispositif de regulation en continu de la composition d'un melange de composants et systeme de separation de constituants incorporant ce dispositif d'analyse
US6413419B1 (en) 1998-10-29 2002-07-02 Institut Francais Du Petrole Process and device for separation with variable-length chromatographic
DK1128881T3 (da) 1998-10-29 2005-10-03 Inst Francais Du Petrole Fremgangsmåde til adskillelse med kromatografiske områder med variabel længde
US6375839B1 (en) 1998-10-29 2002-04-23 Institut Francais Du Petrole Process and device for separation with variable-length chromatographic zones
FR2785196B1 (fr) 1998-10-29 2000-12-15 Inst Francais Du Petrole Procede et dispositif de separation avec des zones chromatographiques a longueur variable
GB9901809D0 (en) 1999-01-27 1999-03-17 Scarista Limited Highly purified ethgyl epa and other epa derivatives for psychiatric and neurological disorderes
IT1308613B1 (it) 1999-02-17 2002-01-09 Pharmacia & Upjohn Spa Acidi grassi essenziali nella prevenzione di eventi cardiovascolari.
NO312973B1 (no) 1999-02-17 2002-07-22 Norsk Hydro As Lipase-katalysert forestring av marine oljer
CA2311974A1 (en) 1999-06-28 2000-12-28 Nisshin Flour Milling Co., Ltd. Processes of selectively separating and purifying eicosapentaenoic and docosahexaenoic acids or their esters
US6544413B1 (en) 1999-11-02 2003-04-08 Daicel Chemical Industries, Ltd. Simulated moving bed device
JP4170542B2 (ja) 1999-11-18 2008-10-22 日油株式会社 高度不飽和脂肪酸誘導体の製造方法及び高純度エイコサペンタエン酸誘導体
CA2290885A1 (fr) 1999-12-02 2001-06-02 Universite De Sherbrooke Methode pour la transformation des tissus du loup marin
EP1106602B1 (de) * 1999-12-09 2008-08-27 Archer-Daniels-Midland Company Reinigung von Aminosäuren durch chromatographische simulierte Wanderbetttrennung
US6325598B1 (en) 1999-12-23 2001-12-04 Visteon Global Technologies, Inc. Variable capacity swash plate type compressor having pressure relief valve
ATE427044T1 (de) 2000-01-14 2009-04-15 Epax As Verfahren zur aufzucht von dha-reichen beuteorganismen fuer wasserspezies
DE60137308D1 (de) 2000-01-14 2009-02-26 Epax As Marine fettzusammensetzung zur fuetterung von wasserorganismen
EP1125914A1 (de) 2000-02-14 2001-08-22 Nisshin Flour Milling Co., Ltd. Verfahren zur Reinigung und Abtrennung von Eicosapentaencarbonsäure oder ihrer Ester
WO2001072689A2 (en) * 2000-03-29 2001-10-04 Archer-Daniels-Midland Company Method for separating a basic amino acid from fermentation broth
ES2284653T3 (es) 2000-05-16 2007-11-16 Purdue Research Foundation Purificacion de insulina utilizando tecnologia de lecho movil simulado.
WO2001087452A2 (en) 2000-05-16 2001-11-22 Purdue Research Foundation Standing wave design of single and tandem simulated moving beds for resolving multicomponent mixtures
AU2001274836A1 (en) 2000-05-16 2001-11-26 Purdue Research Foundation Standing wave design of a nine-zone smb for the recovery of a solute with intermediate affinity in a ternary mixture
ATE305810T1 (de) 2000-05-22 2005-10-15 Pro Aparts Investimentos E Con Fettsäure enthaltende pharmazeutische zusammensetzung die wenigstens 80 gew. epa und dha enthält
FR2810897B1 (fr) 2000-06-28 2002-10-11 Novasep Procede et dispositif de separation en lit mobile simule d'au moins un constituant dans des colonnes ayant un rapport longueur sur diametre approprie
AU2002220007A1 (en) 2000-11-15 2002-05-27 Purdue Research Foundation Systems and processes for performing separations using a simulated moving bed apparatus
FR2823134B1 (fr) 2001-04-10 2003-09-19 Novasep Dispositif de protection du lit chromatographique dans les colonnes chromatographiques a compression axiale dynamique
FI20010977A (fi) 2001-05-09 2002-11-10 Danisco Sweeteners Oy Kromatografinen erotusmenetelmä
US20030216543A1 (en) 2001-05-16 2003-11-20 Wang Nien-Hwa Linda Insulin purification using simulated moving bed technology
DE10151155A1 (de) 2001-10-19 2003-05-08 Nutrinova Gmbh Native PUFA-Triglyceridmischungen mit einem hohen Gehalt an mehrfach ungesättigten Fettsäuren sowie Verfahren zu deren Herstellung und deren Verwendung
FR2836230B1 (fr) 2002-02-15 2004-04-23 Novasep Protection du lit chromatographique dans les dispositifs de chromatographie a compression axiale dynamique
FR2836396B1 (fr) 2002-02-22 2004-06-18 Novasep Procede et dispositif de chromatographie avec recuperation de solvant
EP2295529B2 (de) 2002-07-11 2022-05-18 Basf As Verfahren zur Verminderung von Umweltschadstoffen in einem Öl oder einem Fett und Fischfutterprodukt
SE0202188D0 (sv) 2002-07-11 2002-07-11 Pronova Biocare As A process for decreasing environmental pollutants in an oil or a fat, a volatile fat or oil environmental pollutants decreasing working fluid, a health supplement, and an animal feed product
DE10235385B4 (de) 2002-08-02 2006-10-05 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren zur chromatographischen Trennung von Komponenten
KR100481663B1 (ko) 2002-09-24 2005-04-08 김희찬 중기공성 백금을 포함하는 바이오센서 및 이를 이용한글루코스 농도 측정방법
CN112176006A (zh) 2002-10-11 2021-01-05 日本水产株式会社 制备具有不可皂化物含量降低的微生物油脂的方法和所述油脂
FR2846252B1 (fr) 2002-10-29 2005-07-01 Novasep Procede et dispositif de chromatographie integrant une etape de concentration
NO319194B1 (no) 2002-11-14 2005-06-27 Pronova Biocare As Lipase-katalysert forestringsfremgangsmate av marine oljer
ITMI20032247A1 (it) 2003-11-19 2005-05-20 Tiberio Bruzzese Interazione di derivati polari di composti insaturi con substrati inorganici
US6979402B1 (en) 2003-12-19 2005-12-27 Uop Llc Miniature actual moving bed assembly
EP1706500B1 (de) 2003-12-30 2010-09-08 DSM IP Assets B.V. Entlüftungsverfahren
ITFI20040063A1 (it) 2004-03-19 2004-06-19 Biosphere S P A Processo per la purificazione di triptofano
MY150129A (en) 2004-04-09 2013-11-29 Archer Daniels Midland Co Method of preparing fatty acid alkyl esters from waste or recycled fatty acid stock
US20060086667A1 (en) 2004-09-13 2006-04-27 Cephalon, Inc., U.S. Corporation Methods for the separation of enantiomeric sulfinylacetamides
CA2586309C (en) 2004-11-04 2014-05-27 Monsanto Technology Llc High pufa oil compositions
FR2889077B1 (fr) 2005-07-26 2007-10-12 Novasep Soc Par Actions Simpli Procede et dispositif de separation chromatographique de fractions d'un melange
ITMI20051560A1 (it) 2005-08-10 2007-02-11 Tiberio Bruzzese Composizione di acidi grassi n-3 con elevata concentrazione di epa e-o dha e contenente acidi grassi n-6
PE20070482A1 (es) 2005-08-26 2007-06-08 Ocean Nutrition Canada Ltd Metodo para remover y/o reducir esteroles a partir de aceites
US7544293B2 (en) 2005-09-26 2009-06-09 Semba Inc. Valve and process for interrupted continuous flow chromatography
US7667061B2 (en) 2005-12-16 2010-02-23 Archer-Daniels-Midland Company Method of preparing a composition using argentation chromatography
US7828978B2 (en) 2006-01-11 2010-11-09 Doug Geier Simultaneous synthesis and purification of a fatty acid monoester biodiesel fuel
CN100339357C (zh) * 2006-02-10 2007-09-26 江苏华邦生化科技有限责任公司 苯丙酮酸酶法生产l-苯丙氨酸的后提取工艺
FR2897277B1 (fr) 2006-02-10 2008-04-18 Novasep Soc Par Actions Simpli Procede et dispositif de separation.
FR2897238A1 (fr) 2006-02-15 2007-08-17 Novasep Soc Par Actions Simpli Procede de purification de la thaumatine
FR2898064A1 (fr) 2006-03-03 2007-09-07 Novasep Soc Par Actions Simpli Dispositif de chromatographie modulaire
FR2898283B1 (fr) 2006-03-08 2011-07-15 Novasep Procede et dispositif de separation de fractions d'un melange.
DK2006389T3 (en) 2006-04-13 2017-08-28 Nippon Suisan Kaisha Ltd Process for preparing concentrated polyunsaturated fatty acid oil
WO2008149177A2 (en) 2006-05-05 2008-12-11 Natural Asa Marine lipid compositions and uses thereof
WO2007144476A1 (fr) 2006-06-16 2007-12-21 Groupe Novasep Procede de separation sequence multicolonnes
EP2040810B1 (de) 2006-06-19 2019-04-17 K.D. Pharma Bexbach GmbH Verbessertes chromatographieverfahren zur gewinnung einer substanz oder einer gruppe von substanzen aus einem gemisch
AU2007270135B9 (en) 2006-07-05 2013-06-27 Fermentalg Production of ultrapure EPA and polar lipids from largely heterotrophic culture
WO2008025887A1 (fr) 2006-08-28 2008-03-06 Novasep Procede d'enrichissement d'un ou plusieurs composes d'un melange utilisant une phase mobile liquide contenant un gaz
FR2911793B1 (fr) 2007-01-26 2010-07-30 Novasep Procede de separation par chromatographie
EP1982752B1 (de) 2007-04-17 2010-08-25 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren und Vorrichtung zur chromatographischen Trennung von Komponenten mit teilweiser Rückführung von Gemischfraktionen
JP5571552B2 (ja) 2007-06-15 2014-08-13 ジーイー・ヘルスケア・バイオ−サイエンシズ・アーベー クロマトグラフィー法
AU2008269989B2 (en) 2007-06-29 2014-02-27 Dsm Ip Assets B.V. Production and purification of esters of polyunsaturated fatty acids
CA2694054C (en) 2007-07-25 2015-11-17 Epax As Omega-3 fatty acid fortified composition
FR2919200B1 (fr) 2007-07-27 2009-10-30 Novasep Procede de cristallisation en continu
DK2172558T3 (en) 2007-07-30 2017-09-25 Nippon Suisan Kaisha Ltd Process for producing an EPA-enriched oil and DHA-enriched oil
CN101376646A (zh) 2007-08-29 2009-03-04 天津科技大学 从发酵液中提取l-色氨酸的新方法
BRPI0906009A2 (pt) 2008-02-21 2015-06-30 Dow Global Technologies Inc Processo para converter uma primeira mistura
CN101245047B (zh) 2008-03-04 2010-07-14 汕头市紫光古汉氨基酸有限公司 色氨酸提纯方法
FR2929533B1 (fr) 2008-04-03 2010-04-30 Novasep Procede de separation multicolonnes a gradient.
KR101357298B1 (ko) 2008-06-20 2014-01-28 에이케이 앤 엠엔 바이오팜 주식회사 오메가-3계 고도불포화 지방산의 고순도 정제방법
WO2010018422A1 (en) 2008-08-14 2010-02-18 Novasep Process for the enrichment of isotopes
WO2010103402A1 (en) 2009-03-09 2010-09-16 Pronova Biopharma Norge As Compositions comprising a fatty acid oil mixture comprising epa and dha in free acid form and a surfactant, and methods and uses thereof
CN101691349B (zh) 2009-10-20 2011-08-24 山东恩贝生物工程有限公司 一种从发酵液中提取色氨酸的工艺
CN101709048B (zh) * 2009-11-11 2011-10-26 安徽丰原发酵技术工程研究有限公司 一种l-色氨酸的提取方法
PE20130491A1 (es) 2009-12-30 2013-05-02 Basf Pharma Callanish Ltd Proceso simulado de separacion cromatografica de lecho movil para la purificacion de acidos grasos poliinsaturados
CN101812488A (zh) 2010-01-14 2010-08-25 天津启仁医药科技有限公司 一种微生物酶法拆分dl-半胱氨酸制备d-胱氨酸和l-色氨酸的方法
CN101812009B (zh) 2010-04-28 2011-12-14 河南巨龙生物工程股份有限公司 一种从发酵液中分离提取l-色氨酸的工艺
DE102010028916A1 (de) 2010-05-12 2011-11-17 Evonik Degussa Gmbh Verfahren zur Abtrennung von Tryptophan
CN101948420B (zh) 2010-09-28 2012-06-13 中国科学院西北高原生物研究所 一种从白刺果汁中分离纯化色氨酸单体的方法
CN102146052B (zh) 2010-12-24 2013-08-21 山东鲁抗医药股份有限公司 一种制备色氨酸的方法
GB201111589D0 (en) 2011-07-06 2011-08-24 Equateq Ltd New modified process
GB201111591D0 (en) 2011-07-06 2011-08-24 Equateq Ltd Further new process
GB201111601D0 (en) 2011-07-06 2011-08-24 Equateq Ltd New process
GB201111595D0 (en) 2011-07-06 2011-08-24 Equateq Ltd Improved process
GB201111594D0 (en) 2011-07-06 2011-08-24 Equateq Ltd New improved process
WO2013084317A1 (ja) 2011-12-07 2013-06-13 トヨタ自動車株式会社 表示制御装置
CN102382030A (zh) 2011-12-16 2012-03-21 北京明新高科技发展有限公司 L-色氨酸分离纯化的一种工艺
EP2801604B1 (de) 2013-05-07 2017-04-12 Groupe Novasep Chromatographisches Verfahren zur Herstellung von hochreinen, mehrfach ungesättigten Fettsäuren
US9428711B2 (en) 2013-05-07 2016-08-30 Groupe Novasep Chromatographic process for the production of highly purified polyunsaturated fatty acids
US8802880B1 (en) 2013-05-07 2014-08-12 Group Novasep Chromatographic process for the production of highly purified polyunsaturated fatty acids
EP2883860B1 (de) 2013-12-11 2016-08-24 Novasep Process Chromatografisches Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren
US10975031B2 (en) 2014-01-07 2021-04-13 Novasep Process Method for purifying aromatic amino acids

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090130723A1 (en) * 2006-03-15 2009-05-21 Kyowa Hakko Bio Co., Ltd. Methods for Purifying Amino Acids

Also Published As

Publication number Publication date
BR112016015718A2 (pt) 2017-08-08
US20160326112A1 (en) 2016-11-10
WO2015104464A1 (fr) 2015-07-16
KR20160105827A (ko) 2016-09-07
BR112016015718B1 (pt) 2021-12-07
US10975031B2 (en) 2021-04-13
KR102165406B1 (ko) 2020-10-14
CN104761423A (zh) 2015-07-08
CN114874062A (zh) 2022-08-09
JP6303017B2 (ja) 2018-03-28
JP2017506620A (ja) 2017-03-09
EP3092218A1 (de) 2016-11-16

Similar Documents

Publication Publication Date Title
EP3092218B1 (de) Verfahren zur reinigung von aminosäuren
FR2666996A1 (fr) Methode de purification d'un aminoacide utilisant une resine echangeuse d'ions.
JP2638971B2 (ja) アミノ酸の回収方法
AU2013260020B2 (en) Purification of succinic acid
CN101792822B (zh) 从半纤维素酸水解液中分离提纯木糖、阿拉伯糖的方法
EP2117684A1 (de) Verfahren zur reinigung organischer säuren
FR2573757A1 (fr) Procede de separation de l-phenylalanine d'une solution la contenant
EP3560571B1 (de) Fruktose-reinigungsverfahren
RU2583053C2 (ru) Способ отделения триптофана
EP3561080B1 (de) Herstellungsverfahren von fruktose aus glukose
CN103113423A (zh) 一种采用离子交换与膜分离技术从发酵液中提取d-核糖的方法
EP2921471A1 (de) Extraktionsverfahren von aconitsäure aus produkten der zuckerrohrindustrie
CN103145771A (zh) 一种采用超滤与离子交换技术从发酵液中提取d-核糖的方法
EP3172183B1 (de) Verfahren zur reinigung von als hydratinhibitor verwendetem glycol
FR2900654A1 (fr) Procede de purification d'un acide organique par chromatographie
EP0781264B1 (de) Verfahren zur wiedergewinnung von zitronensäure
WO2020178512A1 (fr) Procédé de décoloration de sucre avec recyclage des effluents
EP4217110A1 (de) Reinigungsverfahren mit abwasserrückführung
WO2018204069A1 (en) Methods of regenerating a resin used to decolorize a biomass feedstream and related systems
SK1552023U1 (sk) Spôsob získavania D-manózy z epimerizačnej zmesi D-glukózy
BE544884A (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160808

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200407

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B01J 39/20 20060101ALI20210309BHEP

Ipc: B01J 39/05 20170101ALI20210309BHEP

Ipc: C07D 209/20 20060101ALI20210309BHEP

Ipc: C07C 227/40 20060101ALI20210309BHEP

Ipc: C07D 233/64 20060101AFI20210309BHEP

INTG Intention to grant announced

Effective date: 20210413

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20210907

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NOVASEP PROCESS SOLUTIONS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1474062

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014082769

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220609

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220609

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1474062

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220610

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220711

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220709

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014082769

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

26N No opposition filed

Effective date: 20221212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230124

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230119

Year of fee payment: 10

Ref country code: DE

Payment date: 20230123

Year of fee payment: 10

Ref country code: BE

Payment date: 20230119

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230119

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602014082769

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20240201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20240107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201