EP3077656B1 - Kraftstoffpumpe - Google Patents

Kraftstoffpumpe Download PDF

Info

Publication number
EP3077656B1
EP3077656B1 EP15754184.8A EP15754184A EP3077656B1 EP 3077656 B1 EP3077656 B1 EP 3077656B1 EP 15754184 A EP15754184 A EP 15754184A EP 3077656 B1 EP3077656 B1 EP 3077656B1
Authority
EP
European Patent Office
Prior art keywords
roller
tappet body
fuel pump
piston
cam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15754184.8A
Other languages
English (en)
French (fr)
Other versions
EP3077656A1 (de
Inventor
Thomas Schmidbauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP3077656A1 publication Critical patent/EP3077656A1/de
Application granted granted Critical
Publication of EP3077656B1 publication Critical patent/EP3077656B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/102Mechanical drive, e.g. tappets or cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2307/00Preventing the rotation of tappets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8015Provisions for assembly of fuel injection apparatus in a certain orientation, e.g. markings, notches or specially shaped sleeves other than a clip

Definitions

  • the present invention relates to a fuel pump, comprising at least: a pump piston, a camshaft having at least one cam, a roller tappet arranged between the pump piston and the cam, which has a tappet body and a roller rotatably supported thereon, wherein the pump piston and the tappet body with respect Movements are coupled in directions parallel to the piston longitudinal center line, wherein the roller is in contact with the cam, wherein a geometric reference line which extends the piston longitudinal center line rectilinearly intersects the geometric axis of rotation of the roller, and wherein the plunger body has a ram body longitudinal center line parallel to the reference line ,
  • Such fuel pumps are used, for example, as high-pressure fuel pumps for fuel injection systems of internal combustion engines.
  • the role of the roller tappet abuts the peripheral surface of the cam.
  • the plunger is movably received in its tappet body in directions parallel to the tappet body longitudinal centerline in a tappet body guide.
  • the roller tappet is reciprocated in directions opposite and parallel to its tappet body longitudinal centerline.
  • the geometric axis of rotation of the camshaft is the imaginary line around which the camshaft rotates exclusively.
  • the pump piston As long as during the rotation of the cam, the distance between the contact zone roller / cam and the geometric axis of rotation of the camshaft decreases, the pump piston, usually supported by a compression spring, during the so-called. Suction phase withdrawn from the pumping chamber, causing a so-called. Suction stroke executes. On the other hand, during the rotation of the cam, the distance between the contact zone roller / cam and the increased geometric axis of rotation of the camshaft, the pump piston is moved by means of the plunger body during the so-called. Pressure phase with its one longitudinal end first in the cylinder chamber of the pump piston into it, where he performs a so-called. Compression.
  • a line load which depends inter alia on the pressure force exerted by means of a supported against the housing of the fuel pump compression spring on the roller tappet.
  • the line load acting on the roller in the contact zone is not always constant over the length of the contact zone during operation, but may, for example, be unevenly distributed due to small form and / or positional deviations with respect to the center of the roller. Then results in the middle of the roll, ie the position at half the roll length related unbalanced force introduction into the role. This can cause a torque about a torque axis perpendicular to the geometric axis of rotation of the roller.
  • the plunger body has a round basic shape in cross-section, but at the outer edge of a radial projection is formed which forms a positive rotation with a recess in the housing-fixed plunger body guide. Again, this is considered to be disadvantageous in terms of design effort and cost.
  • JP 2013 096328 A discloses a fuel pump including a pump piston, a camshaft having a cam and an intermediate pumping piston, and cam-mounted roller tappets having a tappet body and a roller rotatably supported therein.
  • the pump piston and the plunger body are motion-coupled with respect to movements in a direction parallel to a piston longitudinal centerline.
  • the roller is in contact with the cams, with a geometric reference line that extends the piston longitudinal centerline in a straight line intersecting a geometric axis of rotation of the roller.
  • the invention has the object, advantageously further develop a fuel pump of the type mentioned.
  • it is desirable to counteract a rotation of the plunger body in a simple and inexpensive manner.
  • the object is achieved by the invention initially and essentially in conjunction with the features that the ram body longitudinal center line in a projection oriented parallel to the geometric axis of rotation of the roller projection view at a lateral distance from the geometric reference line.
  • the invention proposes to offset in contrast to the prior art, the plunger body longitudinal center line and thus the, preferably circular, cross-sectional outer contour of the plunger body in or against the direction of rotation of the cam or the drive shaft (in the direction perpendicular to the reference line).
  • neither the roller nor the camshaft are added to the pump piston.
  • the desired rotational position of the plunger body in which the geometric axis of rotation of the roller and the geometric axis of rotation of the cam shaft parallel to each other, stabilized.
  • rotation of the roller tappet from this desired rotational position can be prevented or at least made more difficult during operation in the upper and lower dead center of the roller.
  • the invention is based on the fundamentally novel idea to replace the known positive rotation of the plunger body by a non-positive rotation.
  • the invention advantageously makes it possible that manufacturing tolerances need not be unnecessarily restricted. Another advantage is seen in the fact that the cost of a geometric, positive rotation on the roller tappet can be omitted.
  • a cylindrical bore is sufficient as a longitudinal guide for the tappet body without additional, elaborate groove or other devices. It has also been found that the desired rotational position of the tappet body is stabilized in positions of the roller between the two dead centers by then acting on the roller at the contact zone to the cam a also directed transversely to the contact normal direction of line load.
  • the contact zone between the cam and roller is laterally spaced from the ram body longitudinal centerline.
  • the contact zone comprises the geometric contact line between the roller and the cam and in particular a narrow zone of Hertzian pressure enclosing the geometric contact line.
  • the so-called geometric reference line intersects the geometric axis of rotation of the camshaft. Appropriately (that is not necessary), the geometric axis of rotation of the roller is perpendicular to the reference line.
  • the geometric axis of rotation of the camshaft is perpendicular to the reference line.
  • the pump piston and the plunger body can be coupled in any desired manner, in particular by means of additional components of the fuel pump, in the directions parallel to the piston longitudinal center line and opposite to each other. As a result of the movement coupling, the pump piston and the tappet body execute synchronous movements parallel to the piston longitudinal center line.
  • the slide body longitudinal center line in the projection view is on the side of the reference line which is in front of the reference line with respect to the circumferential direction of movement of the cam selected in the contact area of cam and roller for operation.
  • the ram body longitudinal center line starting from the reference line extending the piston longitudinal center line, is offset laterally against the direction of rotation of the roller and cam relative to its contact area.
  • the ram body longitudinal centerline may be on the side of the datum line that is behind the datum line with respect to the circumferential direction of travel of the cam selected in the contact area of the cam and roller for operation.
  • the fuel pump comprises a cylinder space into which the pump piston projects and relative to which the pump piston can be reciprocated in a direction parallel to the piston longitudinal center line when the camshaft is rotated by means of the roller tappet.
  • the pump piston in the cylinder chamber in this Directions is longitudinally displaceable.
  • the plunger body is movably guided in directions parallel to the plunger body longitudinal center line in a plunger body guide.
  • a guide surface formed on the plunger it is considered to be advantageous for a guide surface formed on the plunger to lie on or radially within an inner cylindrical envelope surface, that a guide surface of the plunger body guide formed in a recess of the plunger body guide lies on or radially outside an outer cylindrical envelope surface and that the diameter of the inner envelope surface is smaller than the diameter of the outer envelope surface.
  • the cylindrical envelope surface of the guide surface of the ram is concentric with the ram body longitudinal centerline. It is preferred that the guide surface of the tappet body and / or that the guide surface of the tappet body guide extend at least in sections or as a whole cylindrically. As appropriate (ie, as not necessary), it is considered that the diameter of the inner envelope surface and the diameter of the outer envelope surface are matched to achieve a clearance fit or a transition fit between the tappet body and the tappet guide.
  • the outer guide surface of the plunger and the inner guide surface of the plunger body guide each extend continuously cylindrical along its entire circumference around the plunger body longitudinal centerline. This allows a particularly simple production.
  • the inwardly facing guide surface can be created by inserting a cylindrical bore in the plunger body.
  • the outwardly facing guide surface can be made on the plunger body by means of simple turning.
  • piston longitudinal center line rectilinearly extending reference line and the plunger body longitudinal centerline lie in a common geometric plane that extends perpendicular to the geometric axis of rotation of the camshaft.
  • the plunger body is supported by a compression spring against the housing of the fuel pump adjacent to a cylinder space cooperating with the pump piston and the pump piston in leading away from the cylinder chamber, is supported parallel to the piston longitudinal center line direction against the plunger body.
  • the fuel pump is a high-pressure fuel pump that is suitable and in particular adapted for this, fuel at a pressure of more than 100 bar, in particular at a pressure between 150 and 250 bar, or at a pressure of more than 1000 bar, in particular to compress pressure between 1500 and 2500 bar.
  • it may be a gasoline injection pump or a diesel injection pump for the engine of a motor vehicle. It is understood, however, that fuel pumps according to the invention can also be used for other purposes.
  • the pump piston has an outer guide surface which forms a longitudinal guide with an inner guide surface of a pump piston guide in the direction of the piston longitudinal centerline.
  • the outer guide surface of the pump piston and the inner guide surface of the pump piston guide extend concentrically and cylindrically about the piston longitudinal centerline along their respective entire circumference.
  • the fuel pump 1 comprises a pump piston 2', whose longitudinal direction in the direction of the upper end 3 ' a cylinder room protrudes.
  • the roller tappet 7 ' is arranged between the pump piston 2' and the cam 6 '.
  • the roller tappet 7 ' is connected to the pump piston 2' on in FIG. 1 not shown manner coupled so that both components parallel to the piston longitudinal centerline 10 'perform the same movements.
  • the roller 9 ' rolls on an outer edge 12' of the cam 6 'from.
  • the plunger body 8 ' extends along a central plunger body longitudinal center line 13' that is central to it.
  • the plunger body longitudinal centerline 13' is located on a geometric reference line 20 'which extends the piston longitudinal centerline 10' in a straight line.
  • the plunger body 8 ' is in parallel to the plunger body longitudinal centerline 13' parallel directions, ie in FIG. 1 up and down, movably received in a tappet body guide 14 '. This may be part of a housing 15 'of the fuel pump 1'.
  • the plunger body 8 'and the plunger body guide 14' together form a positive rotation about the ram body longitudinal centerline 13 'from.
  • the plunger body 8 ' which otherwise has a radial projection 16' on its outer cross-section, extends into a groove 17 'in the plunger body guide 14' extending parallel to the plunger body longitudinal center line 13 'with respect to the assumed direction of rotation of the roller 9', designated by 18 '. rotationally locking engages.
  • the 18 'matching direction of rotation of the cam 6' is denoted by 19 '.
  • FIG. 1b shows a known in the prior art variant FIG.
  • a Positive rotation is formed there by the fact that in the plunger body guide 14 'radially inwardly projecting pin 21' in a parallel to the longitudinal direction Plunger body longitudinal line 13 'extending groove 22' in the plunger body 8 'protrudes.
  • FIGS. 2 to 2d is schematically simplified a preferred embodiment of a fuel pump 1 according to the invention presented.
  • FIGS. 1 to 1b numerically the same reference numerals are chosen, but in order to distinguish the in the FIGS. 1 to 1b the numbers trailing the numbers (') in the FIGS. 2 to 2d eliminated.
  • the fuel pump 1 comprises a pump piston 2, the upper end 3 of which projects in the direction of the direction into a cylinder space 23.
  • the boundary wall 24 of the cylinder chamber 23 may be, for example, part of the housing 15 of the fuel pump 1 or be firmly connected to the housing 15.
  • a fluidically connected to a fuel tank 25 inlet line 26 for fuel in which an intake valve 27 is arranged as an inlet valve. This is open when the pressure in the cylinder chamber 23 during the suction phases, the pressure in the fuel tank 25 by a certain pressure difference below.
  • an outlet 28 of which, for example, to a (in FIG. 2 not shown) high-pressure accumulator an injection system for an internal combustion engine leads.
  • a pressure valve 29 is arranged as an outlet valve. This is open during pressure phases when the fuel pressure in the cylinder chamber 23 exceeds a certain pressure.
  • the fuel pump has a camshaft 4, which has a central shaft 5 and at least the one, in FIG. 2 shown, rotatably on it (ie, not rotatable relative to the shaft 5) mounted cam 6 has.
  • the fuel pump 1 comprises a roller tappet 7. This has a plunger body 8 and a manner not shown in detail about a central geometric (ie imaginary linear) axis of rotation 11 rotatably held roller 9.
  • the plunger body 8 has on its side facing away from the pump piston 2, that is in the view of FIG. 1 lower, side a recess 30 for captive and thereby about its cross-sectional center or about its geometric axis of rotation 11 rotatable recording of the roller 9.
  • the recess 30 has a radially inwardly facing bearing surface 31, which in the in FIG. 1 visible cross section along a circular contour, namely, to prevent falling out of the roller 9 down, extends along a circumferential angle of more than 180 degrees.
  • the diameter of said circular contour is slightly larger than the outer diameter of the roller 9, so that the roller 9 is rotatably supported.
  • the diameters are chosen so that a lower, in FIG. 2 simplified only shown as a simple line gap 32 results, penetrates into the fuel during operation and one, in particular hydrodynamic, lubrication or sliding bearing of the roller 9 causes.
  • the roller tappet 7 is arranged between the pump piston 2 and the cam 6.
  • the roller tappet 7 is rotationally coupled to the pump piston 2 so that both components perform synchronous (thus, equal) movements with respect to the two directions (back and forth) parallel to the piston longitudinal centerline 10.
  • the pump piston is also in the cutting plane of FIG. 2 , but is shown without hatching.
  • the plunger body 8 is supported against a compression spring 33 in the direction parallel to the plunger body longitudinal center line away from the cam 5. This is supported in the same direction against the cylinder chamber 23 adjacent housing 15 of the fuel pump 1.
  • the compression spring 33 is dimensioned so that it is in any possible position of the plunger body 8 under a spring pressure force and thus pushes the plunger body 8 in the direction of the cam 6.
  • the plunger body 8 is supported by means of a spring plate 34 on the compression spring 33.
  • the spring plate 34 is disposed between the compression spring 33 and a front bottom of a bore 35 formed in the plunger body 8. He engages with the inner edge of its central opening axially positive fit in a groove 36 in the pump piston 2, so that a positive connection results for both mutually opposite, parallel to a piston longitudinal center line 10 axial directions.
  • the roller 9 rolls on an outer edge 12 of the cam 6 from.
  • the piston longitudinal center line 10 extends centrally through the pump piston 2.
  • the plunger body 8 extends along its central longitudinal body center line 13 plunger body. He is in parallel to the ram body longitudinal centerline 13 'parallel directions, ie in FIG. 2 up and down, movably received in a tappet body guide 14. This is in FIG. 2 shown only partially and in the example also part of the housing 15 of the fuel pump 1, in which the cylinder chamber 23 is formed.
  • FIG. 2 shows a geometric or imaginary reference line 20, which extends the piston longitudinal center line 10 in a straight line to the cam 6 and which intersects the geometric axis of rotation 11 of the roller 9.
  • the reference line 20 also intersects the geometric axis of rotation 38 of the cam 6.
  • the drawing plane of FIG. 2 corresponding and perpendicular to the geometric axis of rotation 38 of the camshaft 4 geometric plane lie (see. FIG. 2a ). This corresponds to the desired non-rotated orientation of the roller tappet 7.
  • the plane in which the ram body longitudinal center line 13 and the reference line 20 lie, is also perpendicular to the geometric axis of rotation 11 of the roller. 9
  • the plunger body longitudinal center line 13 at a lateral distance a from the geometric reference line 20.
  • the plunger body longitudinal center line thirteenth (deviating from the one in FIG. 2 and 2a shown example) is outside of the geometric axis of rotation 38 of the camshaft 4 perpendicular and leading through the reference line 20 level.
  • the plunger body 8 on the outside has a guide surface 41, which extends generally cylindrical.
  • a bore 43 whose radially inwardly facing surface forms a guide surface 42 of the tappet body guide 14.
  • the guide surface 42 is also generally cylindrical. Consequently, the plunger body 8 and the plunger body guide 14 do not form a positive connection with each other in the rotational direction about the plunger body longitudinal center line 13.
  • the pump piston 2 and formed to its longitudinally displaceable guide in the housing 15 pump piston guide (in the example is the wall of the cylinder chamber 23) each have cylindrical guide surfaces, so that the pump piston 2 and the housing 15 no positive connection in the direction of rotation around the piston longitudinal centerline 10.
  • FIGS. 2b and 2c show schematically and in comparison to Fig. 2a in a slightly different size, a respective plan view of the roller 9, in an imaginary operating condition, in which the Roller 9 abuts against the cam 6 in the edge region of its greatest eccentricity with respect to the geometric axis of rotation 38 of the camshaft 4. This situation is also called top dead center.
  • the FIGS. 2a and 2b indicate schematically comparative exemplary two different distributions of the force acting on the roller 9 in the contact zone to the cam 6 line load along the length of the contact zone 37 at. In the example of FIG. 2b acts along the contact zone with respect to the roller center 39 of the roller 9 symmetrical line load 40.
  • FIG. 2d shows, according to the lateral distance a between the reference line 20 and the plunger body longitudinal center line 13 in the fuel pump 1 according to the invention an oriented in the arrow direction of M12 rotation of the roller 9 but cause a counter to the torque M12 counter torque M3.
  • the simplified graphic in Figure 2d shows that in this case a caused by the frictional connection at the line contact of the contact zone 37 counterforce F3 acts with a lever arm of the length of the lateral distance a to the ram, compassionlticiansstoffline 13, whereby the counter torque M3 results. This acts in opposite to the torque M12 rotation about the ram body longitudinal center line 13, so that both torques proportionately or even completely compensate, whereby the roller 9 and the plunger body.

Description

  • Die vorliegende Erfindung betrifft eine Kraftstoffpumpe, zumindest umfassend: einen Pumpenkolben, eine Nockenwelle, die zumindest einen Nocken aufweist, einen zwischen dem Pumpenkolben und der Nocke angeordneten Rollenstößel, der einen Stößelkörper und eine daran drehbar gehaltene Rolle aufweist, wobei der Pumpenkolben und der Stößelkörper bezüglich Bewegungen in zu der Kolbenlängsmittellinie parallelen Richtungen bewegungsgekoppelt sind, wobei sich die Rolle in Kontakt zu dem Nocken befindet, wobei eine geometrische Bezugslinie, welche die Kolbenlängsmittellinie geradlinig verlängert, die geometrische Drehachse der Rolle schneidet, und wobei der Stößelkörper eine zu der Bezugslinie parallele Stößelkörperlängsmittellinie besitzt.
  • Derartige Kraftstoffpumpen werden zum Beispiel als Kraftstoffhochdruckpumpen für Kraftstoff-Einspritzsysteme von Verbrennungsmotoren verwendet. Die Rolle des Rollenstößels liegt an der umfangsseitigen Oberfläche des Nockens an. Der Stößel ist an seinem Stößelkörper in zu der Stößelkörperlängsmittellinie parallelen Richtungen beweglich in einer Stößelkörperführung aufgenommen. Wenn sich die Nockenwelle im Betrieb um ihre geometrische (d. h. gedachte linienhafte) Drehachse dreht, wird der Rollenstößel in den zu seiner Stößelkörperlängsmittellinie parallelen, zueinander entgegengesetzten Richtungen hin- und herbewegt. Bei der geometrischen Drehachse der Nockenwelle handelt es sich um die gedachte Linie, um die die Nockenwelle sich ausschließlich dreht.
  • Solange sich bei der Drehung des Nockens der Abstand zwischen der Kontaktzone Rolle/Nocken und der geometrischen Drehachse der Nockenwelle verkleinert, wird der Pumpenkolben, in der Regel unterstützt von einer Druckfeder, während der sog. Saugphase aus der Pumpkammer zurückgezogen, wodurch er einen sog. Ansaughub ausführt. Während sich andererseits bei der Drehung des Nockens der Abstand zwischen der Kontaktzone Rolle/Nocken und der geometrischen Drehachse der Nockenwelle vergrößert, wird der Pumpenkolben mittels des Stößelkörpers während der sog. Druckphase mit seinem einen Längsende voran in den Zylinderraum des Pumpenkolbens hinein bewegt, wobei er einen sog. Kompressionshub ausführt. Jeweils am Übergang von einer Saugphase zu einer Druckphase befindet sich die Rolle in dem sog. unteren Totpunkt, während sie sich bei jedem Übergang von einer Druckphase zu einer Saugphase in dem sog. oberen Totpunkt befindet. Dieses Prinzip einer sog. Radialkolbenpumpe ist an sich bekannt, wobei bei solchen bekannten Kraftstoffpumpen die Stößelkörperlängsmittellinie und die Bezugslinie auf einer ihnen gemeinsamen geometrischen Geraden liegen.
  • Zwischen der Rolle und dem Nocken wirkt in der Kontaktzone eine Streckenlast, die unter anderem von der Druckkraft abhängt, die mittels einer gegen das Gehäuse der Kraftstoffpumpe abgestützten Druckfeder auf den Rollenstößel ausgeübt wird. Die in der Kontaktzone auf die Rolle wirkende Streckenlast ist im Betrieb nicht immer über die Länge der Kontaktzone hinweg konstant, sondern kann bspw. schon aufgrund geringer Form- und/oder Lageabweichungen bzgl. der Rollenmitte ungleich verteilt sein. Dann resultiert eine auf die Rollenmitte, d.h. auf die Position bei der halben Rollenlänge bezogene unsymmetrische Krafteinleitung in die Rolle. Dies kann ein Drehmoment um eine zu der geometrischen Drehachse der Rolle senkrechte Drehmomentachse bewirken. Bei im Stand der Technik bekannten Kraftstoffpumpen kann eine unsymmetrische Krafteinleitung über den Rollenkontakt besonders beim Überrollen des oberen Totpunktes, jedoch auch beim Überrollen des unteren Totpunktes, unter Umständen bewirken, dass der Stößelkörper sich um seine Stößelkörperlängsmittellinie dreht, wenn keine Verdrehsicherung vorgesehen ist. Eine Drehung des Stößelkörpers kann den Pumpenantrieb blockieren und schließlich zerstören. Im Stand der Technik wurde, um ein Verdrehen des Stößelkörpers zu verhindern, versucht, jegliche unsymmetrische Krafteinleitung insbesondere durch Einschränken der Herstellungstoleranzen zu vermeiden. Dies bedeutet aber einen hohen Aufwand und hohe Kosten. Daher sind Kraftstoffpumpen bekannt, die, um eine Verdrehung des Stößelkörpers zu verhindern, formschlüssige Verdrehsicherungen besitzen. Zum Beispiel besitzt der Stößelkörper einen rechteckigen Querschnitt. Bekannt ist auch, dass der Stößelkörper im Querschnitt eine runde Grundform besitzt, an deren Außenrand aber ein radialer Vorsprung ausgebildet ist, der mit einer Vertiefung in der gehäusefesten Stößelkörperführung eine formschlüssige Verdrehsicherung bildet. Auch dies wird hinsichtlich des konstruktiven Aufwands und der Kosten als nachteilig empfunden.
  • JP 2013 096328 A offenbart eine Kraftstoffpumpe mit einem Pumpenkolben, einer Nockenwelle mit einem Nocken und einem Zwischenpumpenkolben und Nocken angeordneten Rollenstößel, der einen Stößelkörper und eine darin drehbar gehaltene Rolle aufweist. Der Pumpenkolben und der Stößelkörper sind bezüglich Bewegungen in einer zu einer Kolbenlängsmittellinie parallelen Richtungen bewegungsgekoppelt. Die Rolle befindet sich dabei in Kontakt zu den Nocken, wobei eine geometrische Bezugslinie, welche die Kolbenlängsmittellinie geradlinig verlängert, eine geometrische Drehachse der Rolle schneidet.
  • Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, eine Kraftstoffpumpe der eingangs genannten Art vorteilhaft weiterzubilden. Insbesondere wird angestrebt, einer Verdrehung des Stößelkörpers auf einfache und preiswerte Weise entgegenzuwirken.
  • Die Aufgabe wird von der Erfindung zunächst und im Wesentlichen in Verbindungen mit den Merkmalen gelöst, dass die Stößelkörperlängsmittellinie in einer zu der geometrischen Drehachse der Rolle parallel orientierten Projektionsbetrachtung in seitlichem Abstand von der geometrischen Bezugslinie verläuft. Die Erfindung schlägt vor, im Gegensatz zum Stand der Technik die Stößelkörperlängsmittellinie und somit die, vorzugsweise kreisrunde, Querschnittsaußenkontur des Stößelkörpers in oder gegen die Drehrichtung der Nocken- bzw. der Antriebswelle (in zu der Bezugslinie senkrechter Richtung) zu versetzen. Vorzugsweise werden dabei weder die Rolle noch die Nockenwelle zum Pumpenkolben versetzt. Es wurde gefunden, dass bei einer solchen grundsätzlich geänderten Lage des Stößelkörpers relativ zu der Bezugslinie einer Verdrehung des Stößelkörpers ein Gegendrehmoment entgegenwirkt, welches das durch eine unerwünschte unsymmetrische äußere Krafteinleitung bewirkte Drehmoment teilweise oder sogar vollständig aufheben kann. Ist die Stößelkörperlängsmittellinie in der besagten Projektionsbetrachtung um einen Abstand seitlich zu der in Verlängerung der Kolbenlängsmittellinie verlaufenden Bezugslinie versetzt, wirkt durch einen Kraftschluss an der Berührlinie zwischen Rolle und Nocken eine, insbesondere zu der Berührlinie von Rolle und Nocke parallele, Gegenkraft, die mit dem besagten Abstand ein gegendrehmoment bildet. Dieses wirkt einem unerwünschten, durch eine äußere unsymmetrische Krafteinleitung erzeugten Drehmoment entgegen, wodurch ein Verdrehen des Stößelkörpers verhindert werden kann.
  • Auf diese Weise wird die gewünschte Drehlage des Stößelkörpers, in welcher die geometrische Drehachse der Rolle und die geometrische Drehachse der Nockenwelle parallel zueinander verlaufen, stabilisiert. Dadurch kann im Betrieb auch in dem oberen und in dem unteren Totpunkt der Rolle eine Verdrehung des Rollenstößels aus dieser gewünschten Drehlage verhindert oder zumindest erschwert werden. Die Erfindung geht dabei von dem grundsätzlich neuartigen Gedanken aus, die bekannte formschlüssige Verdrehsicherung des Stößelkörpers durch eine kraftschlüssige Verdrehsicherung zu ersetzen. Die Erfindung ermöglicht dadurch vorteilhaft, dass Herstelltoleranzen nicht unnötig eingeschränkt werden müssen. Ein weiterer Vorteil wird darin gesehen, dass der Aufwand für eine geometrische, formschlüssige Verdrehsicherung am Rollenstößel entfallen kann. So reicht bspw. eine zylindrische Bohrung als Längsführung für den Stößelkörper ohne zusätzliche, aufwändige Nut oder sonstige Vorrichtungen. Auch wurde gefunden, dass die gewünschte Drehlage des Stößelkörpers in Positionen der Rolle zwischen den beiden Totpunkten stabilisiert wird, indem dann auf die Rolle an der Kontaktzone zu dem Nocken eine auch quer zu der Kontaktnormalenrichtung gerichtete Streckenlast wirkt.
  • Es bestehen zahlreiche Möglichkeiten zur bevorzugten Weiterbildung einer erfindungsgemäßen Kraftstoffpumpe.
  • Bei einer bevorzugten Ausgestaltung ist vorgesehen, dass zumindest im oberen Totpunkt und insbesondere im unteren Totpunkt der Rolle in der besagten Projektionsbetrachtung die Kontaktzone zwischen Nocken und Rolle von der Stößelkörperlängsmittellinie seitlich beabstandet liegt. Im oberen Totpunkt ist der Abstand zwischen der Rolle und der geometrischen Drehachse der Nockenwelle maximal. Im unteren Totpunkt ist dieser Abstand minimal. Die Kontaktzone umfasst die geometrische Berührlinie zwischen der Rolle und dem Nocken und insbesondere eine die geometrische Berührlinie einschließende schmale Zone Hertz'scher Pressung. Bei einem bevorzugten Ausführungsbeispiel schneidet die sog. geometrische Bezugslinie die geometrische Drehachse der Nockenwelle. Zweckmäßig (also nicht notwendig) verläuft die geometrische Drehachse der Rolle senkrecht zu der Bezugslinie. Ebenfalls bevorzugt verläuft die geometrische Drehachse der Nockenwelle senkrecht zu der Bezugslinie. Der Pumpenkolben und der Stößelkörper können auf beliebige Weise, insbesondere mittels zusätzlicher Komponenten der Kraftstoffpumpe, in den zu der Kolbenlängsmittellinie parallelen, zueinander entgegen gesetzten Richtungen bewegungsgekoppelt sein. Zufolge der Bewegungskopplung führen der Pumpenkolben und der Stößelkörper parallel zu der Kolbenlängsmittellinie zueinander synchrone Bewegungen aus.
  • Es besteht die Möglichkeit, dass die Stößelkörperlängsmittellinie in der Projektionsbetrachtung auf derjenigen Seite der Bezugslinie liegt, die in Bezug auf die im Kontaktbereich von Nocken und Rolle für den Betrieb gewählte Umfangsbewegungsrichtung des Nockens vor der Bezugslinie liegt. In diesem Fall ist mit anderen Worten die Stößelkörperlängsmittellinie ausgehend von der die Kolbenlängsmittellinie verlängernden sog. Bezugslinie entgegen der auf ihren Kontaktbereich bezogenen Drehrichtungen von Rolle und Nocken seitlich versetzt angeordnet. Alternativ besteht die Möglichkeit, dass die Stößelkörperlängsmittellinie in der Projektionsbetrachtung auf derjenigen Seite der Bezugslinie liegt, die in Bezug auf die im Kontaktbereich von Nocken und Rolle für den Betrieb gewählte Umfangsbewegungsrichtung des Nockens hinter der Bezugslinie liegt.
  • Vorzugsweise umfasst die Kraftstoffpumpe einen Zylinderraum, in den der Pumpenkolben hineinragt und relativ zu dem sich der Pumpenkolben bei einer Drehung der Nockenwelle mittels des Rollenstößels in zu der Kolbenlängsmittellinie parallelen Richtungen hin- und herbewegen lässt. Als zweckmäßig wird angesehen, dass der Pumpenkolben in dem Zylinderraum in diesen Richtungen längsverschiebbar geführt ist. Bevorzugt ist, dass der Stößelkörper in zu der Stößelkörperlängsmittellinie parallelen Richtungen beweglich in einer Stößelkörperführung geführt ist. Als zweckmäßig wird angesehen, dass eine an dem Stößel außen ausgebildete Führungsoberfläche auf oder radial innerhalb einer inneren zylindrischen Hüllfläche liegt, dass eine in einer Ausnehmung der Stößelkörperführung ausgebildete Führungsoberfläche der Stößelkörperführung auf oder radial außerhalb einer äußeren zylindrischen Hüllfläche liegt und dass der Durchmesser der inneren Hüllfläche kleiner als der Durchmesser der äußeren Hüllfläche ist. Die zylindrische Hüllfläche der Führungsoberfläche des Stößels ist konzentrisch zu der Stößelkörperlängsmittellinie. Bevorzugt ist, dass die Führungsoberfläche des Stößelkörpers und/oder dass die Führungsoberfläche der Stößelkörperführung zumindest abschnittsweise oder insgesamt zylindrisch verlaufen. Als zweckmäßig (d.h. aber als nicht notwendig) wird angesehen, dass der Durchmesser der inneren Hüllfläche und der Durchmesser der äußeren Hüllfläche zur Erzielung einer Spielpassung oder einer Übergangspassung zwischen dem Stößelkörper und der Stößelführung aufeinander abgestimmt sind.
  • In einem bevorzugten Ausführungsbeispiel ist vorgesehen, dass die äußere Führungsoberfläche des Stößels und die innere Führungsoberfläche der Stößelkörperführung entlang ihres jeweiligen gesamten Umfanges um die Stößelkörperlängsmittellinie jeweils durchgehend zylindrisch verlaufen. Dies ermöglicht eine besonders einfache Herstellung. Die nach innen weisende Führungsoberfläche kann durch Einbringen einer zylindrischen Bohrung in den Stößelkörper erzeugt werden. Die nach außen weisende Führungsoberfläche kann an dem Stößelkörper mittels einfacher Drehbearbeitung hergestellt werden.
  • Bevorzugt ist, dass die die Kolbenlängsmittellinie geradlinig verlängernde Bezugslinie und die Stößelkörperlängsmittellinie in einer ihnen gemeinsamen geometrischen Ebene liegen, die sich senkrecht zu der geometrischen Drehachse der Nockenwelle erstreckt.
  • Um zu ermöglichen, dass der Pumpenkolben und der Stößelkörper bezüglich Bewegungen in zu der Kolbenlängsmittellinie parallelen Richtungen bewegungsgekoppelt sind, besteht die bevorzugte Möglichkeit, dass der Stößelkörper mittels einer Druckfeder gegen das einem mit dem Pumpenkolben zusammenwirkenden Zylinderraum benachbarte Gehäuse der Kraftstoffpumpe abgestützt ist und dass der Pumpenkolben in von dem Zylinderraum weg führender, zu der Kolbenlängsmittellinie paralleler Richtung gegen den Stößelkörper abgestützt ist.
  • Bevorzugt ist daran gedacht, dass es sich bei der Kraftstoffpumpe um eine Kraftstoffhochdruckpumpe handelt, die dazu geeignet und insbesondere daran angepasst ist, Kraftstoff auf Druck von mehr als 100 bar, insbesondere auf Druck zwischen 150 und 250 bar, oder auf Druck von mehr als 1000 bar, insbesondere auf Druck zwischen 1500 und 2500 bar, zu verdichten. Zum Beispiel kann es sich um eine Benzineinspritzpumpe oder um eine Dieseleinspritzpumpe für den Motor eines Kraftfahrzeugs handeln. Es versteht sich aber, dass erfindungsgemäße Kraftstoffpumpen auch für andere Zwecke verwendet werden können.
  • Als zweckmäßig wird angesehen, dass der Pumpenkolben eine äußere Führungsoberfläche aufweist, die mit einer inneren Führungsoberfläche einer Pumpenkolbenführung in Richtung der Kolbenlängsmittellinie eine Längsführung bildet. Zur einfachen und preiswerten Herstellung ist bevorzugt, dass die äußere Führungsoberfläche des Pumpenkolbens und die innere Führungsoberfläche der Pumpenkolbenführung entlang ihres jeweiligen gesamten Umfanges konzentrisch und zylindrisch um die Kolbenlängsmittellinie verlaufen.
  • Nachfolgend wird mit Bezug auf die beigefügten Figuren 1, 1a und 1b eine bekannte Kraftstoffpumpe und mit Bezug auf die beigefügten Figuren 2, 2a, 2b, 2c und 2d ein Ausführungsbeispiel einer erfindungsgemäßen Kraftstoffpumpe erläutert. Im Einzelnen zeigt:
    • Fig. 1: in einem Längsschnitt schematisch vereinfacht Komponenten und deren Anordnung bei einer bekannten Kraftstoffpumpe;
    • Fig. 1a: in einer Schnittansicht entlang Schnittlinie Ia-Ia gemäß Fig. 1 eine erste bekannte formschlüssige Verdrehsicherung für den Stößelkörper;
    • Fig. 1b: in einer Fig. 1a vergleichbaren Schnittansicht eine zu Figs. 1, 1a alternative zweite bekannte formschlüssige Verdrehsicherung für den Stößelkörper;
    • Fig. 2: in einem Längsschnitt schematisch vereinfacht Komponenten und deren Anordnung bei einer erfindungsgemäßen Kraftstoffpumpe gemäß einem bevorzugten Ausführungsbeispiel;
    • Fig. 2a: eine Schnittansicht entlang Schnittebene IIa-IIa gemäß Fig. 2, unter Fortlassung der Druckfeder und in von Fig. 2a abweichendem Maßstab;
    • Fig. 2b: schematisch und im Vergleich zu Fig. 2a in etwas anderer Größe eine Draufsicht auf die Rolle mit einer an ihrer gestrichelt angedeuteten Kontaktlinie zu dem Nocken auf sie einwirkenden symmetrischen Streckenlast;
    • Fig. 2c: schematisch und im Vergleich zu Fig. 2a in etwas anderer Größe eine Draufsicht auf die Rolle mit einer an ihrer gestrichelt angedeuteten Kontaktlinie zu dem Nocken auf sie einwirkenden unsymmetrischen Streckenlast und
    • Fig. 2d: schematisch eine Draufsicht auf einen Längenabschnitt der Rolle mit die Rolle in ihrer Drehlage stabilisierender Gegenkraft und daraus resultierendem Gegendrehmoment.
  • Zunächst werden mit Bezug auf die Figuren 1, 1a und 1b zu einer bekannten Kraftstoffpumpe 1' Komponenten und deren relative Lage zueinander beschrieben. Die Kraftstoffpumpe 1' umfasst einen Pumpenkolben 2', dessen in Blickrichtung oberes Längsende 3' in einen Zylinderraum ragt. Eine Nockenwelle 4' umfasst eine zentrale Welle 5' und zumindest einen darauf drehfest (also relativ zu der Welle 5' nicht verdrehbar) montierten Nocken 6'. Die Kraftstoffpumpe 1' umfasst einen Rollenstößel 7'. Dieser weist einen Stößelkörper 8' und eine daran auf nicht näher dargestellte Weise um eine mittige geometrische (d. h. gedachte linienhafte) Drehachse 11' drehbar gehaltene Rolle 9' auf. Der Rollenstößel 7' ist zwischen dem Pumpenkolben 2' und dem Nocken 6' angeordnet. Der Rollenstößel 7' ist mit dem Pumpenkolben 2' auf in Figur 1 nicht dargestellte Weise gekoppelt, so dass beide Komponenten parallel zu der Kolbenlängsmittellinie 10' die gleichen Bewegungen ausführen. Die Rolle 9' rollt auf einem Außenrand 12' des Nockens 6' ab. Durch den Pumpenkolben 2' führt in dessen Längsrichtung mittig eine Kolbenlängsmittellinie 10' . Der Stößelkörper 8' erstreckt sich entlang einer für ihn zentralen Stößelkörperlängsmittellinie 13'. Bei der bekannten Kraftstoffpumpe 1' liegt die Stößelkörperlängsmittellinie 13' auf einer geometrischen Bezugslinie 20', welche die Kolbenlängsmittellinie 10' geradlinig verlängert. Bei der bekannten Kraftstoffpumpe 1' verlaufen somit die Kolbenlängsmittellinie 10' und die Stößelkörperlängsmittellinie 13' auf einer gemeinsamen Geraden. Der Stößelkörper 8' ist in zu der Stößelkörperlängsmittellinie 13' parallelen Richtungen, also in Figur 1 nach oben und nach unten, beweglich in einer Stößelkörperführung 14' aufgenommen. Diese kann Bestandteil eines Gehäuses 15' der Kraftstoffpumpe 1' sein. Um eine unerwünschte Verdrehung des Stößelkörpers 8' um seine Stößelkörperlängsmittellinie 13' zu verhindern, bilden der Stößelkörper 8' und die Stößelkörperführung 14' gemeinsame eine formschlüssige Verdrehsicherung um die Stößelkörperlängsmittellinie 13' aus. In dem Beispiel der Figuren 1 und 1a weist dazu der im Übrigen an seinem Außenquerschnitt kreisrunde Stößelkörper 8' einen radialen Vorsprung 16' auf, der in eine parallel zur der Stößelkörperlängsmittellinie 13' verlaufende Nut 17' in der Stößelkörperführung 14' bezüglich der angenommenen, mit 18' bezeichneten Drehrichtung des Rolle 9' drehformschlüssig eingreift. Die zu 18' passende Drehrichtung des Nockens 6' ist mit 19' bezeichnet. Figur 1b zeigt eine im Stand der Technik bekannte Variante zu Figur 1a. Eine formschlüssige Verdrehsicherung wird dort dadurch gebildet, dass ein in der Stößelkörperführung 14' nach radial innen vorstehender Zapfen 21' in eine parallel zu der Stößelkörperlängsmittellinie 13' verlaufende Nut 22' in dem Stößelkörper 8' hineinragt.
  • Mit Bezug auf die Figuren 2 bis 2d wird schematisch vereinfacht ein bevorzugtes Ausführungsbeispiel einer erfindungsgemäßen Kraftstoffpumpe 1 vorgestellt. Zur besseren Übersicht sind für Komponenten, die denen aus den Figuren 1 bis 1b entsprechen, zahlenmäßig die gleichen Bezugsziffern gewählt, wobei aber zur Unterscheidung der in den Figuren 1 bis 1b den Zahlen nachgestellte Strich (') in den Figuren 2 bis 2d entfällt.
  • Die Kraftstoffpumpe 1 umfasst einen Pumpenkolben 2, dessen in Blickrichtung oberes Längsende 3 in einen Zylinderraum 23 ragt. Die Begrenzungswand 24 des Zylinderraums 23 kann bspw. Bestandteil des Gehäuses 15 der Kraftstoffpumpe 1 sein oder fest mit deren Gehäuse 15 verbunden sein. In der Nähe des Stirnendes mündet in den Zylinderraum 23 eine mit einem Kraftstoffstank 25 fluidisch verbundene Einlassleitung 26 für Kraftstoff, in der ein Ansaugventil 27 als Einlassventil angeordnet ist. Dieses ist geöffnet, wenn der Druck in dem Zylinderraum 23 während der Saugphasen den Druck in dem Kraftstofftank 25 um eine bestimmte Druckdifferenz unterschreitet. Ebenfalls in der Nähe des Stirnendes geht von dem Zylinderraum 23 eine Auslassleitung 28 aus, die zum Beispiel zu einem (in Figur 2 nicht mit dargestellten) Hochdruckspeicher einer Einspritzanlage für einen Verbrennungsmotor führt. In der Auslassleitung 28 ist ein Druckventil 29 als Auslassventil angeordnet. Dieses ist während Druckphasen geöffnet, wenn der Kraftstoffdruck in dem Zylinderraum 23 einen bestimmten Druck übersteigt.
  • Die Kraftstoffpumpe besitzt eine Nockenwelle 4, die eine zentrale Welle 5 und zumindest den einen, in Figur 2 gezeigten, darauf drehfest (also relativ zu der Welle 5 nicht verdrehbar) montierten Nocken 6 aufweist. Die Kraftstoffpumpe 1 umfasst einen Rollenstößel 7. Dieser weist einen Stößelkörper 8 und eine daran auf nicht näher dargestellte Weise um eine mittige geometrische (d. h. gedachte linienhafte) Drehachse 11 drehbar gehaltene Rolle 9 auf. Der Stößelkörper 8 besitzt auf seiner dem Pumpenkolben 2 abgewandten, das heißt in der Ansicht von Figur 1 unteren, Seite eine Ausnehmung 30 zur verliersicheren und dabei um ihre Querschnittsmitte bzw. um ihre geometrische Drehachse 11 drehbaren Aufnahme der Rolle 9. Die Ausnehmung 30 hat dazu eine nach radial innen weisende Lageroberfläche 31, die sich in dem in Figur 1 sichtbaren Querschnitt entlang einer Kreiskontur, und zwar, um ein Herausfallen der Rolle 9 nach unten zu verhindern, entlang einem Umfangswinkel von mehr als 180 Grad erstreckt. Der Durchmesser besagter Kreiskontur ist geringfügig größer als der Außendurchmesser der Rolle 9, so dass die Rolle 9 drehbar gehalten ist. In dem Beispiel sind die Durchmesser so gewählt, dass ein geringer, in Figur 2 vereinfacht nur als einfache Linie gezeigter Spalt 32 resultiert, in den während des Betriebs Kraftstoff eindringt und eine, insbesondere hydrodynamische, Schmierung bzw. Gleitlagerung der Rolle 9 bewirkt.
  • Der Rollenstößel 7 ist zwischen dem Pumpenkolben 2 und dem Nocken 6 angeordnet. Der Rollenstößel 7 ist mit dem Pumpenkolben 2 bewegungsmäßig gekoppelt, so dass beide Komponenten in Bezug auf die beiden zu der Kolbenlängsmittellinie 10 parallelen Richtungen (hin und zurück) synchrone (insofern gleiche) Bewegungen ausführen. Der Pumpenkolben liegt auch in der Schnittebene von Figur 2, ist aber ohne Schraffur gezeigt. In dem gezeigten Ausführungsbeispiel stützt sich der Stößelkörper 8 in der von dem Nocken 5 weg führenden, zu der Stößelkörperlängsmittellinie parallelen Richtung gegen eine Druckfeder 33 ab. Diese ist in gleicher Richtung gegen das dem Zylinderraum 23 benachbarte Gehäuse 15 der Kraftstoffpumpe 1 abgestützt. Die Druckfeder 33 ist so bemessen, dass sie in jeder möglichen Position des Stößelkörpers 8 unter einer Federdruckkraft steht und somit den Stößelkörper 8 in Richtung zu dem Nocken 6 drückt. In dem Beispiel ist der Stößelkörper 8 mittels eines Federtellers 34 an der Druckfeder 33 abgestützt. Der Federteller 34 ist zwischen der Druckfeder 33 und einem Stirnboden einer in dem Stößelkörper 8 ausgebildeten Bohrung 35 angeordnet. Er greift mit dem Innenrand seiner zentralen Öffnung axial formschlüssig in eine Nut 36 in dem Pumpenkolben 2 ein, so dass für beide zueinander entgegengesetzte, zu einer Kolbenlängsmittellinie 10 parallele Axialrichtungen ein Formschluss resultiert.
  • Die Rolle 9 rollt auf einem Außenrand 12 des Nockens 6 ab. Die Kolbenlängsmittellinie 10 verläuft mittig durch den Pumpenkolben 2. Der Stößelkörper 8 erstreckt sich entlang seiner zentralen Stößelkörperlängsmittellinie 13. Er ist in zu der Stößelkörperlängsmittellinie 13' parallelen Richtungen, also in Figur 2 nach oben und nach unten, beweglich in einer Stößelkörperführung 14 aufgenommen. Diese ist in Figur 2 nur bereichsweise dargestellt und in dem Beispiel auch Bestandteil des Gehäuses 15 der Kraftstoffpumpe 1, in dem der Zylinderraum 23 ausgebildet ist.
  • Figur 2 zeigt eine geometrische bzw. gedachte Bezugslinie 20, welche die Kolbenlängsmittellinie 10 geradlinig zu dem Nocken 6 hin verlängert und welche die geometrische Drehachse 11 der Rolle 9 schneidet. In dem gewählten Ausführungs¬beispiel schneidet die Bezugslinie 20 auch die geometrische Drehachse 38 des Nockens 6. In dem Beispiel ist vorgesehen, dass die Stößelkörperlängsmittelinie 13 und die Bezugslinie 20 in einer ihnen gemeinsamen, der Zeichenebene von Figur 2 entsprechenden und zu der geometrischen Drehachse 38 der Nockenwelle 4 senkrechten geometrischen Ebene liegen (vgl. Figur 2a). Dies entspricht der gewünschten unverdrehten Ausrichtung des Rollenstößels 7. Die Ebene, in der die Stößelkörperlängsmittellinie 13 und die Bezugslinie 20 liegen, verläuft auch senkrecht zu der geometrischen Drehachse 11 der Rolle 9.
  • Im Gegensatz zu der bekannten Kraftstoffpumpe 1' verläuft bei der erfindungs-gemäßen Kraftstoffpumpe 1 die Stößelkörperlängsmittellinie 13 in seitlichem Abstand a von der geometrischen Bezugslinie 20. Eine solche Betrachtung bezüglich eines seitlichen Abstands wäre im Sinne von Anspruch 1 auch dann möglich, wenn die Stößelkörperlängsmittellinie 13 (abweichend von dem in den Figur 2 und 2a gezeigten Beispiel) außerhalb der zu der geometrischen Drehachse 38 der Nockenwelle 4 senkrechten und durch die Bezugslinie 20 führenden Ebene liegt. Befände sich die Stößelkörperlängsmittellinie 13 abweichend von dem in den Figuren 2 und 2a gezeigten Beispiel, bspw. lagemäßig ausgehend von der in Figur 2 gezeigten Position hinter die Zeichenebene von Figur 2 verschoben, ergäbe sich in einer zu einer zu der Drehachse 38 parallel, also in Blickrichtung von Figur 2, orientierten Projektionsbetrachtung wiederum, dass die Stößelkörperlängsmittellinie 13 in seitlichem Abstand a von der geometrischen Bezugslinie 20 verläuft. Bei einer solchen Projektionsbetrachtung werden die beiden Linien 13 und 20 in eine gemeinsame Betrachtungsebene projiziert. Bei dem in Figur 2 gezeigten Ausführungsbeispiel ist vorgesehen, dass die Stößelkörperlängsmittellinie 13 in der Projektionsbetrachtung auf derjenigen Seite der Bezugslinie 20 liegt, die in Bezug auf die in der Kontaktzone 37 von Nocken 6 und Rolle 9 für den Betrieb gewählte Umfangsbewegungsrichtung (diese ist in Figur 2 zugleich durch den Drehrichtungspfeil 19 angegeben) des Nockens 6 vor der Bezugslinie 20 liegt.
  • In dem gezeigten Ausführungsbeispiel besitzt der Stößelkörper 8 aussenseitig eine Führungsoberfläche 41, die insgesamt zylindrisch verläuft. In dem die Stößelkörperführung 14 bildenden Bereich des Gehäuses 15 der Kraftstoffpumpe 1 befindet sich eine Bohrung 43, deren nach radial innen weisende Oberfläche eine Führungsoberfläche 42 der Stößelkörperführung 14 bildet. Die Führungsoberfläche 42 verläuft ebenfalls insgesamt zylindrisch. Folglich bilden der Stößelkörper 8 und die Stößelkörperführung 14 miteinander keinen Formschluss in Drehrichtung um die Stößelkörperlängsmittellinie 13 aus. Der Pumpenkolben 2 und die zu seiner längsverschieblichen Führung in dem Gehäuse 15 ausgebildete Pumpen-kolbenführung (in dem Beispiel handelt es sich um die Wand des Zylinderraumes 23) weisen jeweils zylindrische Führungsoberflächen auf, so dass der Pumpenkolben 2 und das Gehäuse 15 keinen Formschluss in Drehrichtung um die Kolbenlängsmittellinie 10 ausbilden.
  • Die Figuren 2b und 2c zeigen schematisch und im Vergleich zu Fig. 2a in etwas abweichender Größe eine jeweilige Draufsicht auf die Rolle 9, und zwar in einem gedachten Betriebszustand, bei dem die Rolle 9 an dem Nocken 6 im Randbereich seiner größten Exzentrizität bzgl. der geometrischen Drehachse 38 der Nockenwelle 4 anliegt. Diese Lage wird auch als oberer Totpunkt bezeichnet. Die Figuren 2a und 2b geben schematisch vergleichend exemplarisch zwei unterschiedliche Verteilungen der auf die Rolle 9 in der Kontaktzone zu dem Nocken 6 einwirkenden Streckenlast entlang der Länge der Kontaktzone 37 an. Im Beispiel von Figur 2b wirkt entlang der Kontaktzone eine bezüglich der Rollenmitte 39 der Rolle 9 symmetrische Streckenlast 40. Bei einer symmetrischen Streckenlast 40 verursacht diese auch in den beiden Totpunkten der Rolle 9 keine Verdrehung des Stößelkörpers 8. Davon abweichend zeigt Figur 2c eine in Bezug auf die Rollenmitte 39 unsymmetrische Streckenlast 40. Ersetzt man diese auf jeder Seite der Rollenmitte 39 durch eine resultierende Kraft F1 bzw. F2, zeigen diese parallel beabstandet in die gleiche Richtung, sind aber, wie schematisch durch die ungleichen Pfeillängen angedeutet, von verschiedenem Betrag. Die als Folge eines unsymmetrischen Kraftangriffs vorhandenen ungleichen Kräfte F1 und F2 wirken jeweils mit einem gleich langen Hebelarm um die Rollenmitte 39, so dass das in Figur 2d schematisch eingetragene Drehmoment M12 um die Stößelkörperlängsmittellinie 13 resultiert. Das Drehmoment M12 könnte ohne Gegenmaßnahme in dem oberen und in dem unteren Totpunkt der Rolle 9 eine unerwünschte Verdrehung des Stößelkörpers 8 um die Stößelkörperlängsmittellinie 13 bewirken. Wie Figur 2d zeigt, würde zufolge des seitlichen Abstands a zwischen der Bezugslinie 20 und der Stößelkörperlängsmittellinie 13 bei der erfindungsgemäßen Kraftstoffpumpe 1 eine in Pfeilrichtung von M12 orientierte Verdrehung der Rolle 9 aber ein zu dem Drehmoment M12 entgegen gerichtetes Gegendrehmoment M3 hervorrufen. Die vereinfachte Grafik in Figur 2d zeigt, dass dabei eine durch den Kraftschluss am Linienkontakt der Kontaktzone 37 verursachte Gegenkraft F3 mit einem Hebelarm von der Länge des seitlichen Abstands a um die Stößel-,körperlängsmittellinie 13 wirkt, wodurch das Gegendrehmoment M3 resultiert. Dieses wirkt in zu dem Drehmoment M12 entgegengesetztem Drehsinn um die Stößelkörperlängsmittellinie 13, so dass sich beide Drehmomente anteilig oder sogar vollständig ausgleichen, wodurch die Rolle 9 und der Stößelkörper 8 in einer gewünschten Ausrichtung stabilisiert werden, in der die Drehachsen des Nocken 6 und der Rolle 9 parallel verlaufen. Bezugszeichenliste
    1, 1' Kraftstoffpumpe 25 Kraftstofftank
    2, 2' Pumpenkolben 26 Einlassleitung
    3, 3' Längsende 27 Ansaugventil
    4, 4' Nockenwelle 28 Auslassleitung
    5, 5' Welle 29 Druckventil
    6, 6' Nocken 30 Ausnehmung
    7, 7' Rollenstößel 31 Lageroberfläche
    8, 8' Stößelkörper 32 Spalt
    9, 9' Rolle 33 Druckfeder
    10, 10' Kolbenlängsmittellinie 34 Federteller
    11, 11' geometrische Drehachse 35 Bohrung
    12, 12' Außenrand 36 Nut
    13, 13' Stößelkörperlängsmittellinie 37 Kontaktzone
    14, 14' Stößelkörperführung 38 geometrische Drehachse
    15, 15' Gehäuse 39 Rollenmitte
    16' Vorsprung 40 Streckenlast
    17' Nut 41 Führungsoberfläche
    18, 18' Drehrichtung 42 Führungsoberfläche
    19, 19' Drehrichtung 43 Bohrung
    20, 20' geometrische Bezugslinie a seitlicher Abstand
    21' Zapfen F1 Kraft
    22' Nut F2 Kraft
    23 Zylinderraum F3 Gegenkraft
    24 Begrenzungswand M12 Drehmoment
    M3 Gegendrehmoment

Claims (10)

  1. Kraftstoffpumpe (1), zumindest umfassend: einen Pumpenkolben (2), eine Nockenwelle (4), die zumindest einen Nocken (6) aufweist, einen zwischen dem Pumpenkolben (2) und der Nocke (6) angeordneten Rollenstößel (7), der einen Stößelkörper (8) und eine daran drehbar gehaltene Rolle (9) aufweist, wobei der Pumpenkolben (2) und der Stößelkörper (8) bezüglich Bewegungen in zu der Kolbenlängsmittellinie (10) parallelen Richtungen bewegungsgekoppelt sind, wobei sich die Rolle (9) in Kontakt zu dem Nocken (6) befindet, wobei eine geometrische Bezugslinie (20), welche die Kolbenlängsmittellinie (10) geradlinig verlängert, die geometrische Drehachse (11) der Rolle (9) schneidet, und wobei der Stößelkörper (8) eine zu der Bezugslinie (20) parallele Stößelkörperlängsmittellinie (13) besitzt, dadurch gekennzeichnet, dass die Stößelkörperlängsmittellinie (13) in einer zu der geo¬me¬trischen Drehachse (11) der Rolle (9) parallel orientierten Projektions¬betrachtung in seitlichem Abstand (a) von der geometrischen Bezugslinie (20) verläuft.
  2. Kraftstoffpumpe (1) nach Anspruch 1, dadurch gekennzeichnet, dass zumindest im oberen Totpunkt und insbesondere im unteren Totpunkt der Rolle (9) in der Projektionsbetrachtung die Kontaktzone (37) zwischen Nocken (6) und Rolle (9) von der Stößelkörperlängsmittellinie (13) seitlich beabstandet liegt.
  3. Kraftstoffpumpe (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die geometrische Bezugslinie (20) die geometrische Drehachse (38) der Nockenwelle (4) schneidet.
  4. Kraftstoffpumpe (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Stößelkörperlängsmittellinie (13) in der Projektions¬betrachtung auf derjenigen Seite der Bezugslinie (20) liegt, die in Bezug auf die in der Kontaktzone von Nocken (6) und Rolle (9) für den Betrieb gewählte Umfangsbewegungsrichtung des Nockens (6) vor der Bezugslinie (20) liegt, oder die in Bezug auf die in der Kontaktzone von Nocken (6) und Rolle (9) für den Betrieb gewählte Umfangsbewegungsrichtung des Nockens (6) hinter der Bezugslinie (20) liegt.
  5. Kraftstoffpumpe (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Stößelkörper (8) in zu der Stößelkörperlängsmittellinie (13) parallelen Richtungen beweglich in einer Stößelkörperführung (14) geführt ist, dass eine Führungsoberfläche (41) des Stößelkörpers (8) auf oder innerhalb einer inneren zylindrischen Hüllfläche liegt, dass eine Führungsoberfläche (42) der Stößelkörperführung (14) auf oder außerhalb einer äußeren zylindrischen Hüllfläche liegt, und dass der Durchmesser der inneren Hüllfläche kleiner als der Durchmesser der äußeren Hüllfläche ist.
  6. Kraftstoffpumpe (1) nach Anspruch 5, dadurch gekennzeichnet, dass die äußere Führungsoberfläche (41) des Stößelkörpers (8) und die innere Führungsoberfläche (42) der Stößelkörperführung (14) entlang ihres jeweiligen gesamten Umfanges um die Stößelkörperlängsmittellinie (13) jeweils durchgehend zylindrisch verlaufen.
  7. Kraftstoffpumpe (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Bezugslinie (20) und die Stößelkörperlängsmittellinie (13) in einer ihnen gemeinsamen geometrischen Ebene liegen, die sich senkrecht zu der geometrischen Drehachse (38) der Nockenwelle (4) erstreckt.
  8. Kraftstoffpumpe (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Stößelkörper (8) mittels einer Druckfeder (33) gegen den einem mit dem Pumpenkolben (2) zusammenwirkenden Zylinderraum (23) benachbarten Bereich des Gehäuses (15) der Kraftstoffpumpe (1) abgestützt ist und/oder dass der Pumpenkolben (2) in von dem Zylinderraum (23) wegführender, zu der Kolbenlängsmittellinie (10) paralleler Richtung gegen den Stößelkörper (8) abgestützt ist.
  9. Kraftstoffpumpe (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei der Kraftstoffpumpe (1) um eine Kraftstoff-hochdruckpumpe handelt, die dazu geeignet und insbesondere daran angepasst ist, Kraftstoff auf Druck von mehr als 100 bar, insbesondere auf Druck zwischen 150 und 250 bar, oder auf Druck von mehr als 1000 bar, insbesondere auf Druck zwischen 1500 und 2500 bar, zu verdichten.
  10. Kraftstoffpumpe (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Pumpenkolben (2) eine äußere Führungsoberfläche aufweist, die mit einer inneren Führungsoberfläche einer Pumpenkolbenführung in Richtung der Kolbenlängsmittellinie (10) eine Längsführung bildet, und dass die äußere Führungsoberfläche des Pumpenkolbens (2) und die innere Führungsoberfläche der Pumpen¬kolbenführung entlang ihres jeweiligen gesamten Umfanges konzentrisch und zylindrisch um die Kolbenlängsmittellinie (10) verlaufen.
EP15754184.8A 2014-10-14 2015-08-20 Kraftstoffpumpe Active EP3077656B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014220746.0A DE102014220746B3 (de) 2014-10-14 2014-10-14 Kraftstoffpumpe
PCT/EP2015/069167 WO2016058736A1 (de) 2014-10-14 2015-08-20 Kraftstoffpumpe

Publications (2)

Publication Number Publication Date
EP3077656A1 EP3077656A1 (de) 2016-10-12
EP3077656B1 true EP3077656B1 (de) 2018-01-24

Family

ID=54007693

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15754184.8A Active EP3077656B1 (de) 2014-10-14 2015-08-20 Kraftstoffpumpe

Country Status (7)

Country Link
US (1) US10054090B2 (de)
EP (1) EP3077656B1 (de)
JP (1) JP6161833B2 (de)
KR (1) KR101697770B1 (de)
CN (1) CN106062354B (de)
DE (1) DE102014220746B3 (de)
WO (1) WO2016058736A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014220746B3 (de) 2014-10-14 2016-02-11 Continental Automotive Gmbh Kraftstoffpumpe
JP7120081B2 (ja) * 2019-03-01 2022-08-17 株式会社デンソー 燃料噴射ポンプ
CN114263585A (zh) * 2021-12-16 2022-04-01 北京空天技术研究所 一种活塞泵

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT302727B (de) 1970-04-30 1972-10-25 Friedmann & Maier Ag Rollenstößel
US5094197A (en) * 1991-03-01 1992-03-10 Ferrari S.P.A. Timing system, particularly for an internal combustion engine with a number of valves per cyclinder
JPH0572043A (ja) 1991-09-10 1993-03-23 Toshiba Corp 輻射熱温度センサ
JPH05272428A (ja) 1992-03-27 1993-10-19 Mitsubishi Heavy Ind Ltd ディーゼル機関の燃料噴射装置
DE4335431A1 (de) * 1992-11-13 1995-04-20 Iav Motor Gmbh Schaltbarer Ventiltrieb mit Kipphebel und unterliegender Nockenwelle für Gaswechselventile für Verbrennungsmotoren
US5415138A (en) * 1994-02-28 1995-05-16 Brunswick Corporation Pushrod guide for an overhead valve engine and method of installing the same
JPH09264229A (ja) 1996-01-22 1997-10-07 Mitsubishi Heavy Ind Ltd 自己逆転式内燃機関の燃料調整装置
JPH10159681A (ja) 1996-12-03 1998-06-16 Yanmar Diesel Engine Co Ltd 燃料噴射ポンプ駆動装置
US5860398A (en) * 1997-10-28 1999-01-19 Koerner; Jeffrey Scott Engine tappet
JP2000220554A (ja) 1999-01-29 2000-08-08 Kubota Corp ディーゼルエンジンの燃料噴射ポンプの駆動装置
JP4016237B2 (ja) * 1999-04-16 2007-12-05 株式会社デンソー 燃料噴射ポンプ
US6435150B1 (en) * 2000-07-25 2002-08-20 Daimlerchrysler Corporation Offset tappet assembly
DE10212492B4 (de) * 2002-03-21 2012-02-02 Daimler Ag Kolbenpumpe
DE102004011284A1 (de) * 2004-03-09 2005-09-29 Robert Bosch Gmbh Hochdruckpumpe, insbesondere für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine
US7134846B2 (en) * 2004-05-28 2006-11-14 Stanadyne Corporation Radial piston pump with eccentrically driven rolling actuation ring
DE102007060772A1 (de) 2007-12-17 2009-06-18 Robert Bosch Gmbh Pumpe, insbesondere Kraftstoffhochdruckpumpe
JP2009236041A (ja) 2008-03-27 2009-10-15 Toyota Motor Corp 燃料ポンプのローラリフタ構造
DE102008019072B3 (de) 2008-04-15 2009-12-31 Dionex Softron Gmbh Kurvengetriebe, insbesondere für eine Kolbenpumpe für die Hochleistungsflüssigkeitschromatographie
DE102008001718A1 (de) 2008-05-13 2009-11-19 Robert Bosch Gmbh Hochdruckkraftstoffpumpe
DE102009014833A1 (de) 2009-03-25 2010-09-30 Daimler Ag Antriebseinrichtung und Brennkraftmaschine
JP2010248974A (ja) 2009-04-14 2010-11-04 Toyota Motor Corp 高圧燃料ポンプ
DE102009028378A1 (de) 2009-08-10 2011-02-17 Robert Bosch Gmbh Hochdruckpumpe
JP5372692B2 (ja) 2009-10-06 2013-12-18 日立オートモティブシステムズ株式会社 高圧燃料ポンプ
DE102009047568A1 (de) 2009-12-07 2011-06-09 Robert Bosch Gmbh Kraftstoffhochdruckpumpe
DE102010027749A1 (de) 2010-04-14 2011-10-20 Robert Bosch Gmbh Hochdruckpumpe
JP5195893B2 (ja) * 2010-12-24 2013-05-15 トヨタ自動車株式会社 高圧ポンプ
JP5648620B2 (ja) 2011-11-02 2015-01-07 トヨタ自動車株式会社 高圧燃料ポンプ
EP2628942B1 (de) * 2012-02-14 2014-10-01 Continental Automotive GmbH Pumpe und Common-Rail-Kraftstoffeinspritzsystem
JP6102767B2 (ja) * 2014-01-24 2017-03-29 株式会社デンソー 高圧燃料ポンプ
DE102014220746B3 (de) 2014-10-14 2016-02-11 Continental Automotive Gmbh Kraftstoffpumpe

Also Published As

Publication number Publication date
JP2017514053A (ja) 2017-06-01
CN106062354B (zh) 2018-02-06
CN106062354A (zh) 2016-10-26
WO2016058736A1 (de) 2016-04-21
KR20160107358A (ko) 2016-09-13
US10054090B2 (en) 2018-08-21
DE102014220746B3 (de) 2016-02-11
JP6161833B2 (ja) 2017-07-12
US20180171950A1 (en) 2018-06-21
EP3077656A1 (de) 2016-10-12
KR101697770B1 (ko) 2017-01-18

Similar Documents

Publication Publication Date Title
EP1797320B1 (de) RADIALKOLBENPUMPE MIT ROLLENSTÖßEL
WO2015082722A2 (de) Längenvariable pleuelstange einer brennkraftmaschine
DE102006048722A1 (de) Kolbenpumpe, insbesondere Kraftstoffhochdruckpumpe, mit Rollenstößel
WO1999002852A1 (de) Kolbenpumpe zur kraftstoffhochdruckversorgung
DE10227176A1 (de) Kraftstoffeinspritzpumpe
DE102009005731B4 (de) Ventiltrieb für Gaswechselventile mit geneigter Doppel-Kugelraste
WO2018007534A1 (de) Pleuel mit verstellbarer pleuellänge mit mechanischer betätigung
EP3077656B1 (de) Kraftstoffpumpe
DE102015100164A1 (de) Hochdruckkraftstoffpumpe
DE112016001948T5 (de) Stiftloser Stößel in einer Common-Rail-Hochdruck-Kraftstoffpumpe
DE2000477A1 (de) Hydraulische Pumpe oder Motor
EP1319831B1 (de) Kraftstoffhochdruckpumpe mit integrierter Sperrflügel-Vorförderpumpe
DE102012009794A1 (de) Hydrostatische Radialkolbenmaschine und Kolben für eine hydrostatische Radialkolbenmaschine
EP0509077B1 (de) Kolbenpumpe, insbesondere radialkolbenpumpe
EP2758678B1 (de) Pleuel
DE10361578A1 (de) Kolbenpumpe, insbesondere Hochdruck-Kraftstoffpumpe
DE112018005107T5 (de) Pumpenvorrichtung
DE3542938A1 (de) Kraftstoffeinspritzpumpe
DE102006044294B3 (de) Radialkolbenpumpe
EP2655802B1 (de) Zahnradmaschine mit kleinem durchmesser-längenverhältnis
DE69925908T2 (de) Eine Hydraulische rotierende Axialkolbenmaschine
DE10226492B4 (de) Axialkolbenmaschine mit verstellbarem Kolbenhub
DE102005060957B4 (de) Hochdruckpumpe mit mehreren Kolben pro Zylinder
DE102007018692A1 (de) Regelbare Pumpe, insbesondere Flügelzellenpumpe
EP3859159B1 (de) Schraubenverdichter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160704

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20170830

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

DAV Request for validation of the european patent (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 965928

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015002914

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180124

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180424

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180524

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015002914

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015002914

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180820

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180820

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150820

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180124

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 965928

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200820

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20230427 AND 20230503

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230825

Year of fee payment: 9

Ref country code: GB

Payment date: 20230822

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230825

Year of fee payment: 9