EP3027558A1 - Procédé de production d'un matériau aérogel - Google Patents

Procédé de production d'un matériau aérogel

Info

Publication number
EP3027558A1
EP3027558A1 EP14744131.5A EP14744131A EP3027558A1 EP 3027558 A1 EP3027558 A1 EP 3027558A1 EP 14744131 A EP14744131 A EP 14744131A EP 3027558 A1 EP3027558 A1 EP 3027558A1
Authority
EP
European Patent Office
Prior art keywords
sol
gel
catalyst
hydrophobing
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14744131.5A
Other languages
German (de)
English (en)
Inventor
Matthias Koebel
Shanyu ZHAO
Samuel BRUNNER
Caroline SIMMEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eidgenoessische Materialprufungs und Forschungsanstalt EMPA
Original Assignee
Eidgenoessische Materialprufungs und Forschungsanstalt EMPA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eidgenoessische Materialprufungs und Forschungsanstalt EMPA filed Critical Eidgenoessische Materialprufungs und Forschungsanstalt EMPA
Priority to EP14744131.5A priority Critical patent/EP3027558A1/fr
Publication of EP3027558A1 publication Critical patent/EP3027558A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/145Preparation of hydroorganosols, organosols or dispersions in an organic medium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/155Preparation of hydroorganogels or organogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • C01B33/1585Dehydration into aerogels

Definitions

  • the invention relates to a method for producing an airgel material according to the preamble of claim 1. Furthermore, the invention relates to a formed from an airgel material insulation board and a precursor for the production of an airgel material.
  • Aerogels are increasingly used in building technology as high-insulation materials. Numerous methods for their production are known. With increasing industrialization of these materials since the turn of the millennium, the manufacturing processes used in this process are constantly being simplified. Basically, a distinction is made between water glass (sodium silicate) and alkoxide-based compounds such as tetraethyl orthosilicate (TEOS) and tetramethyl orthosilicate (TMOS) as silicate donors, which decisively influence the further synthesis steps.
  • the hydrophobizing agents or silylation reagents used are mainly hexamethyldisilazane (HMDS), trimethylchlorosilane (TMCS) and hexamethyldisiloxane (HMDSO).
  • the critical step in the production of airgel material is the drying of a wet gel.
  • a supercritical fluid typically lower alcohols or later also CO 2 .
  • solvent drying subcritical drying
  • hydrophobic gels can be produced materials with quasi-identical properties as the supercritically dried aerogels. These were called in the beginning according to the classical definition xerogels, a term which is still used today for solvent-dried aerogels.
  • WO 1998/005591 A1 relates to a production process for organically modified, permanently hydrophobic aerogels.
  • the SiO 2 gel is obtained starting from a water glass solution by means of neutralization formed by acid or after the formation of a silica sol by ion exchange and subsequent base addition.
  • the pH value during gelation is typically in the range between 4 and 8.
  • the wet gel is washed in an organic solvent until the water content is less than 5% and then hydrophobed. Drying under atmospheric pressure by evaporation of the solvent leaves the airgel material as granules back.
  • WO 2012/044052 A2 deals with the preparation of optically transparent and non-transparent SiO 2 aerogels in granular form.
  • a water glass sol is injected into an alcohol phase, which forms in this the gel in the form of granules.
  • the gel is further exchanged with alcohol and rendered hydrophobic by means of a silylation reagent.
  • the gel is dried under atmospheric pressure or reduced pressure.
  • the process makes it possible to produce airgel granules with significantly less time, but a significant disadvantage is the washing with ethanol, which is needed to remove the water from the hydrogel phase.
  • the workup of the water-alcohol mixture requires large amounts of energy, which greatly disadvantages this process for large-scale industrial production.
  • HCl hydrophobization of alkogels in a mixture of hydrophobing agent and hydrophobing catalyst
  • WO2013 / 053951 A1 describes the preparation of silicate aerogels and xerogels starting from an alkoxide-based sol. This is gelled by base addition and aged under reflux in alcohol. The gel is then rendered hydrophobic in a solution of hydrophobing agent, preferably HMDSO, and HCl as a catalyst, also under reflux, and subcritically dried. Various forms of drying are described in detail and their influence on the quality of the resulting materials is explained. As a central point, the composition of the pore liquid before drying is too mention which is a mixture of alcohol and water repellent.
  • a disadvantage of the process according to WO2013 / 053951 A1 is that the hydrophobizing agent and optionally an associated catalyst is added to a solid only after gelation and aging of the gel. Particularly in the case of voluminous batches, the hydrophobizing agent can penetrate the interior of the gel only diffusion-limited, ie gradually, so that the hydrophobing step takes a very long time, corresponding to the material thickness.
  • the object of the invention is to provide an improved process for the production of airgel materials.
  • Other objects are to provide an improved insulation board as well as a ready-to-use precursor product for producing an airgel material. These objects are achieved according to the invention by the manufacturing method according to claim 1 and by the insulation board according to claim 14 and by the precursor product according to claim 15.
  • the process according to the invention for producing an airgel material comprises the following steps:
  • the silicon oxide sol formed in step a) contains at least one hydrophobizing agent which can be activated by acid catalysis, wherein the volume fraction of the hydrophobizing agent in the sol is 5 to 60%, and wherein the hydrophobicization in step c) is achieved by activation or addition of at least one hydrotreating agent. rophobi mecanicsmtel co-acting hydrophobing catalyst is introduced.
  • the inventive method allows a much simpler compared to the previously known methods production of silicate airgel materials. Characterized in that the hydrophobicization is an acid-catalyzed process, that is catalyzed by H + and H 3 O + ions, the process running under slightly basic conditions gelling process and the process running under acidic conditions hydrophobizing process may be performed in one and the same organogel time cleanly separated from each other , As a further advantage, the inventive method is characterized by a significantly reduced solvent expense. In particular, with the process according to the invention, it is possible to limit the amount of solvent used to produce an airgel to a maximum of 1 .1 times the gel volume. The prior art typically requires more than 2 times the gel volume of solvents.
  • Alcoholic solvent mixture in the present application is understood to mean a mixture which consists essentially of one or, where appropriate, several lower alcohols (in particular ethanol, methanol, n-propanol, isopropanol, butanols) and a suitable proportion of hydrophobizing agent. It is understood that the mixture may also contain a small amount of water, unavoidable impurities, and optionally, as explained elsewhere, certain additives.
  • a hydrophobizing agent is understood in a manner known per se to mean a component which imparts hydrophobic, ie water-repellent, properties to a surface.
  • the hydrophobic or the hydrophobing process primarily on the silicate gel and the modifications of its properties.
  • the airgel materials which can be produced by the process according to the invention can be produced in the form of granules, monolithic bodies or composites. In particular, they can be used for procedurally simple and thus also economically advantageous formation of insulating panels.
  • the process according to the invention comprises gelling an alkoxide-based silicate sol in an alcoholic solvent mixture containing at least one catalytically activatable hydrophobizing agent.
  • the gelation process is initiated by adding a dilute base such as ammonia.
  • a dilute base such as ammonia.
  • the gel thus formed which may also be referred to as "organogel” is subjected to an aging process.
  • the optionally aged gel now contains all the components required for hydrophobing and subcritical drying according to WO2013 / 053951 A1 or more precisely a pore liquid with the main components alcohol and activatable hydrophobizing agent with the exception of the hydrophobizing catalyst.
  • HMDSO hexamethyldisiloxane
  • the volume fraction of the hydrophobizing agent in the sol is from 20 to 50%, in particular from 25% to 40% and in particular from 34% to 38%.
  • the hydrophobizing catalyst for step c There are various ways to add or activate the hydrophobizing catalyst for step c).
  • the hydrophobizing catalyst is formed by a radical decomposition process in situ in the gel (claim 4).
  • the hydrophobizing catalyst is formed by free-radical decomposition of previously added chlorine-containing organic compounds such as weakly or unstabilized PVC, trichloromethane, chloroacetone or tetrachlorethylene.
  • the hydrophobization catalyst which is advantageously HCl, can be released at a desired time, which can be accomplished either by electromagnetic radiation (UV, X-ray) or by common radical starters.
  • UV, X-ray electromagnetic radiation
  • common radical starters for gels with high optical transparency and small thickness, photochemical radical decomposition processes are preferred.
  • the hydrophobizing catalyst is released by slow-release agents in the gel, wherein the release is optionally triggered or accelerated by thermal activation (claim 5).
  • HCl or precursor thereof is used as the hydrophobizing catalyst, which is released by "slow-release” or “controlled-release” additives, such as microcapsules or nanocapsules or particles, contained in the sol.
  • these agents are activated by externally controllable process parameters such as pressure, temperature or electromagnetic radiation (light, radio waves, microwaves).
  • HCl hydrophobing catalyst
  • This process is particularly suitable for the production of aerosol materials with high, exposed, outer surface such as small objects, granules and (micro) structured monoliths or composites.
  • the hydrophobizing catalyst HCl or TMCS or a mixture of these two components is used as the hydrophobizing catalyst HCl or TMCS or a mixture of these two components, which is dissolved in a dilute solvent mixture consisting of a similar or identical composition as the pore liquid and is brought into contact with the gel in the liquid phase ,
  • the amount of catalyst-loaded solution measured in terms of gel volume should be kept as small as possible in order to maintain the advantage of the lowest possible solvent balance of the process according to the invention.
  • the catalyst-containing solution in a batch process or continuous process makes up a volume fraction or volumetric flow fraction of not more than 30%, in particular not more than 10%.
  • the sol furthermore contains at least one functional silane.
  • the mechanical properties of the airgel can be modified in a targeted manner, in particular its flexibility or its strength.
  • the sol further contains at least one polymerizable monomer which is capable of forming a polymer structure within the airgel material to be produced.
  • the polymerizable monomer is selected from the group consisting of radically polymerizable substances such as acrylates, vinyl chloride, styrene or divinylbenzene. This can be achieved in particular a gain of the gel structure.
  • step c) and / or step d) is carried out in a pressure vessel at an overpressure of, for example, up to 20 bar.
  • the boiling point of the pore fluid is between 80 and 100 ° C.
  • the inventive step c) at significantly higher temperatures in the range 90-130 ° C perform to be able to, which increases the reaction rate.
  • the hydrophobing time can be drastically reduced (for example, from 24h at 65 ° C to only 3h at 90 ° C) which results in a significant increase in the efficiency of the process.
  • an initial phase of the drying step d) can also be carried out at elevated pressure.
  • initial phase in the present context is meant a part of the drying process subsequent to the hydrophobing step c).
  • a depressurization is carried out, after which, depending on the situation, a further drying can take place.
  • the step d) is carried out at reduced pressure. Drying in a vacuum has the advantage that it can take place at a low temperature, ie with reduced heat energy requirement and at a lower temperature level. In particular, at the end of the drying is achieved at the same temperature by working in a vacuum, a lower amount of solvents (residual moisture) in the airgel material. If the preceding hydrophobing step c) has been carried out at elevated pressure, the thermal energy stored in the hot gel when initiating the drying step d) can be used initially to allow the drying to proceed much more quickly, by actuating the valve on the pressure vessel and thus the pore liquid drains controlled as steam.
  • the sol is added after triggering the gelation in a fiber-based matrix.
  • fiber-based matrix is understood to mean both filamentous and fleece-like structures.
  • structural reinforcements can be embedded in the airgel material in a targeted manner.
  • such reinforcements can be brought about by addition of particles, in particular nanoparticles, or fibers and the like.
  • the preparation of the sol is carried out at the laboratory level usually in a batch process ie by stirring a mixture in a static vessel.
  • the sol is preferably formed continuously in a flow reactor.
  • step a) and preferably steps b) and c) of the process according to the invention are optionally carried out in a continuous process (claim 13).
  • step d) can also be integrated into the continuous process.
  • Water repellents and other additives polymerizable monomers, fibers, nanoparticles, etc.
  • step d) can also be integrated into the continuous process.
  • Water repellents and other additives polymerizable monomers, fibers, nanoparticles, etc.
  • the catalytically hydrophobized gels are dried undercritically.
  • the general method can be applied to a range of airgel materials, depending on the application, pure silica aerogels or organically modified aerogels, such as polymer-modified X-aerogels or Ormosil aerogels or hybrids of these classes of compounds.
  • pure silica aerogels or organically modified aerogels such as polymer-modified X-aerogels or Ormosil aerogels or hybrids of these classes of compounds.
  • all the usual configurations granules, panels, sheets, blankets, coatings, films
  • a precursor product for the production of an airgel material.
  • This contains a silica sol and / or a silica gel in an alcohol-containing solvent mixture and additionally contains at least one acid-catalytically activatable hydrophobizing agent.
  • This can be in an advantageous manner Provide storage and transportable starting material that is hydrophobicized only at the desired location and dried if necessary. For the latter, basically the same process options as described elsewhere in question come into question.
  • a silica sol concentrate is hydrolyzed by hydrolysis of TEOS in alcohol having a molar TEOS / water / oxalic acid ratio of 1: 3.5: 0.004 in ethanol at 50 ° C for 8 hours with stirring.
  • the silicate content calculated as S1O2 in the sol concentrate is 18%.
  • the sol concentrate is now diluted to the final 6% sol concentration with HMDSO and ethanol such that the HMDSO content in the sol is 20%.
  • This sol is now added 1% of a dilute, ethanolic ammonia solution, resulting in gelation within 7 minutes.
  • the fresh organogel is aged at 70 ° C for 2 hours in the block.
  • the aged gel is now mechanically crushed and the gel granules are transferred to a closed pressure vessel. This is now a mixture of HCl gas and nitrogen is pressed with an overpressure of 2.5 bar. The contents of the vessel are then heated to 100.degree. C. within 30 minutes. The mixture is then rendered hydrophobic for 90 minutes and then cooled to 50 ° C and released the pressure. The hydrophobized gel is then dried on a conveyor belt at 150 ° C.
  • the end product is a hydrophobic aerosol granule with a bulk density between 0.08 and 0.12 g / cm 3 , which has a typical thermal conductivity in the material of 0.012-0.00145 W / (m K). Measured as granulate bulk material of mean grain size of 3mm, the thermal conductivity is between 0.019 - 0.022 W / (m K). Industrial production of an airgel granulate
  • a silicon oxide sol is hydrolyzed in a flow through tube reactor by hydrolysis of TEOS in alcohol with a molar TEOS / water / hydrochloric acid ratio of 1: 1 .6: 0.003 in ethanol at 75 ° C, the water is added last and the average residence time is about one hour.
  • This sol is now diluted in the further course of the tubular reactor with HMDSO and ethanol so that the HMDSO content in the sol is 30% and the silicate content measured as S1O2 is 5.2%.
  • an ethanolic ammonia solution is metered in, and the mixture homogenized by means of static mixer.
  • the sol flows to a tempered at 65 ° C gelling, with a residence time of 25 minutes.
  • the gel is comminuted in a crusher with continuous metered addition of an ethanolic HCl solution in a granule.
  • the solvent flow of ethanolic hydrophobing catalyst is 10% of the gel volume flow.
  • the granules are then heated in a pressure conveyor belt reactor to 100 ° C and continuously hydrophobic and pre-dried at the same time. In a second part of the drying belt, there is normal pressure or negative pressure to atmosphere, and the final drying temperature is 135 ° C.
  • the end product is a hydrophobic airgel granulate with a density between 0.092 and 0.1 17 g / cm 3 obtained, which has a typical thermal conductivity in the material of 0.013 - 0.0015 W / (m K).
  • the thermal conductivity is between 0.0195 - 0.023 W / (m K).
  • the gel is broken without solvent or without hydrophobing catalyst over the crusher.
  • the gel is suspended in a chute in a stream of air over a period of 3-5 minutes as granules particles.
  • the hydrophobization catalyst is sprayed from the side as gaseous HCl or dilute ethanolic HCl solution, whereby all granular particles are uniformly exposed to the hydrophobing catalyst.
  • Hydrophobing and drying can also be carried out in a cyclone-like chute or in a fluidized-bed dryer.
  • a sol with a calculated S1O2 content of 4.8% is obtained by hydrolysis of TMOS in a solvent mixture consisting of methanol (MeOH) and water in the presence of 0.01 M HCl for 2 h at 65 ° C. Thereafter, the mixture is cooled to room temperature, so that in the subsequent dilution with HMDSO not already uses an acid-catalyzed hydrophobing of the individual sol particles.
  • the dilution with HMDSO is chosen so that the volume fractions in the sol mixture are 65% MeOH, 8% water and 27% HMDSO.
  • the gel bodies are placed in a closed pressure-tight vessel and the whole heated to 85-90 ° C. An overpressure in the vessel of about 1 atm is registered.
  • the radical initiator is activated, which triggers two processes simultaneously: on the one hand, the PVC-containing microparticles are activated and now deliver a precisely metered amount of the hydrophobing catalyst HCl to the gel. This triggers the actual hydrophobization of the gel with HMDSO.
  • HMDSO the radical polymerization of methyl methacrylates. Accordingly, polymer chains are forms, which are attached via the 3- (trimethoxysilyl) propyl methacrylate linker directly to the silicate skeleton. This results in an amplification of the gel network.
  • PEDS polyethoxydisiloxane
  • the gel plate After an aging phase of 24 h at 50 ° C, the gel plate is carefully lifted out of the mold and placed in a tempered to 65 ° C, closed vessel. At this elevated temperature, HCl exits the microencapsulation and can fully develop its property as a hydrophobing catalyst for HMDSO evenly distributed throughout the entire volume. The hydrophobing started in this way is carried out for 24 hours. Thereafter, the vessel is opened and the gel plate dried at 145 ° C in a convection oven.
  • the finished airgel insulation board has a density of 0.1 1 kg / cm 3 and a thermal conductivity of 0.0145mW / (m K). In addition, due to the addition of DMDES, this has flexible mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Silicon Compounds (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Insulation (AREA)

Abstract

L'invention concerne un procédé de production d'un matériau aérogel, le procédé comprenant les étapes suivantes: a) préparation d'un sol d'oxyde de silicium dans un mélange de solvants alcooliques; b) déclencher la gélification du sol par ajout de bases, à la suite de quoi un gel se forme, et éventuellement vieillissement du gel; c) hydrophobisation du gel éventuellement vieilli; d) élimination du mélange de solvants par séchage sous-critique, à la suite de quoi le matériau aérogel est formé. Le sol d'oxyde de silicium formé à l'étape a) contient au moins un agent d'hydrophobisation activable par catalyse acide, la proportion volumique de l'agent d'hydrophobisation dans le sol pouvant être de 5 à 60 %. L'hydrophobisation à l'étape c) est amorcée par libération ou ajout d'au moins un catalyseur d'hydrophobisation coopérant avec l'agent d'hydrophobisation.
EP14744131.5A 2013-08-02 2014-07-28 Procédé de production d'un matériau aérogel Withdrawn EP3027558A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14744131.5A EP3027558A1 (fr) 2013-08-02 2014-07-28 Procédé de production d'un matériau aérogel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13179185.7A EP2832690A1 (fr) 2013-08-02 2013-08-02 Procédé de fabrication d'un matériau aérogel
PCT/EP2014/066213 WO2015014813A1 (fr) 2013-08-02 2014-07-28 Procédé de production d'un matériau aérogel
EP14744131.5A EP3027558A1 (fr) 2013-08-02 2014-07-28 Procédé de production d'un matériau aérogel

Publications (1)

Publication Number Publication Date
EP3027558A1 true EP3027558A1 (fr) 2016-06-08

Family

ID=48917409

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13179185.7A Ceased EP2832690A1 (fr) 2013-08-02 2013-08-02 Procédé de fabrication d'un matériau aérogel
EP14744131.5A Withdrawn EP3027558A1 (fr) 2013-08-02 2014-07-28 Procédé de production d'un matériau aérogel

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP13179185.7A Ceased EP2832690A1 (fr) 2013-08-02 2013-08-02 Procédé de fabrication d'un matériau aérogel

Country Status (8)

Country Link
US (1) US20160258153A1 (fr)
EP (2) EP2832690A1 (fr)
JP (1) JP6449279B2 (fr)
KR (1) KR101813898B1 (fr)
CN (2) CN105555710A (fr)
AU (1) AU2014298538B2 (fr)
BR (1) BR112016002360A2 (fr)
WO (1) WO2015014813A1 (fr)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10563016B2 (en) * 2014-02-26 2020-02-18 Hitachi Chemical Company, Ltd. Aerogel
CH710694B1 (de) * 2015-02-04 2019-05-15 Rockwool Int Verfahren zur Herstellung eines Aerogels resp. eines Aerogel-Verbundwerkstoffs, sowie Aerogel resp. Aerogel-Verbundwerkstoff erhältlich nach dem Verfahren.
KR101789371B1 (ko) 2015-02-13 2017-10-23 주식회사 엘지화학 실리카 에어로겔 함유 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 함유 블랑켓
GB201502613D0 (en) * 2015-02-17 2015-04-01 Univ Newcastle Aerogels
DE102015211812A1 (de) 2015-06-25 2016-12-29 Wacker Chemie Ag Wirtschaftliches Verfahren zur Herstellung von organisch modifizierten Lyo- oder Aerogelen
EP3124443A1 (fr) * 2015-07-28 2017-02-01 D. Swarovski KG Procédé sol-gel continue pour la preparation de verre quartzeux
KR101931569B1 (ko) 2015-11-03 2018-12-21 주식회사 엘지화학 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔
KR101953371B1 (ko) * 2016-01-19 2019-02-28 주식회사 엘지화학 에어로겔 시트의 제조방법 및 장치
KR101774140B1 (ko) * 2016-01-19 2017-09-01 주식회사 엘지화학 에어로겔 시트의 제조방법 및 장치
KR101962207B1 (ko) * 2016-02-17 2019-03-27 주식회사 엘지화학 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치
KR101962206B1 (ko) 2016-02-19 2019-03-27 주식회사 엘지화학 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치
KR101968648B1 (ko) * 2016-02-19 2019-04-12 주식회사 엘지화학 에어로겔 시트의 제조방법 및 장치
KR20170110993A (ko) 2016-03-24 2017-10-12 주식회사 엘지화학 실리카 에어로겔 제조시스템
FR3050013B1 (fr) * 2016-04-11 2019-08-02 Saint-Gobain Isover Fours et produits d'isolation pour fours
CH712479A1 (de) * 2016-05-20 2017-11-30 Flumroc Ag Anlage und Verfahren zur Herstellung eines Aerogel-Verbundwerkstoffs und Aerogel-Verbundwerkstoff.
FR3053263B1 (fr) * 2016-07-04 2018-08-31 Keey Aerogrl Procede continu de fabrication d'un aerogel
JP6952764B2 (ja) 2016-07-29 2021-10-20 エボニック オペレーションズ ゲーエムベーハー 疎水性の断熱材料の製造方法
EP3281920A1 (fr) 2016-08-12 2018-02-14 D. Swarovski KG Procédé en continu pour la préparation de verres ou de vitrocéramiques silicatés
US11279622B2 (en) 2016-09-12 2022-03-22 Lg Chem, Ltd. Method for producing silica aerogel and silica aerogel produced thereby
KR101942474B1 (ko) * 2016-11-18 2019-01-25 주식회사 엘지화학 전가수분해된 알킬 폴리실리케이트의 합성방법
MX2019008516A (es) 2017-01-18 2019-09-18 Evonik Degussa Gmbh Material de aislamiento termico granulado y procedimiento para producirlo.
CN106955650A (zh) * 2017-04-01 2017-07-18 东华大学 一种三维多孔框架增强纤维气凝胶材料及其制备方法
DE102017209782A1 (de) 2017-06-09 2018-12-13 Evonik Degussa Gmbh Verfahren zur Wärmedämmung eines evakuierbaren Behälters
EP3498671A1 (fr) * 2017-12-15 2019-06-19 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Aérogel de silice super-isolant présentant une rigidité et une densité élevées
US12060278B2 (en) 2018-03-05 2024-08-13 Evonik Operations Gmbh Method for producing an aerogel material
EP3597615A1 (fr) 2018-07-17 2020-01-22 Evonik Operations GmbH Matériau d'oxyde mixte granulaire et composition d'isolation thermique sur sa base
JP7009673B2 (ja) 2018-07-17 2022-01-25 エボニック オペレーションズ ゲーエムベーハー ヒュームドシリカ造粒物に基づく断熱組成物、その製造方法およびその使用
US11987528B2 (en) 2018-07-18 2024-05-21 Kingspan Insulation Limited Process for hydrophobizing shaped insulation-material bodies based on silica at ambient pressure
CN111039583B (zh) * 2018-10-11 2022-10-11 卢孟磊 一种低成本快速制备微纳结构气凝胶膨胀珍珠岩的方法
DE102018128410A1 (de) * 2018-11-13 2020-05-14 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Aerogelen und mit diesem erhältliche Aerogele
WO2020125956A1 (fr) 2018-12-18 2020-06-25 Wacker Chemie Ag Procédé de préparation de particules de gel arrondies
FR3094975B1 (fr) * 2019-04-10 2022-11-18 Keey Aerogel Procédé de synthèse d’un aérogel de silice hydrophobique de type « one pot » à partir d’un précurseur de silice
EP3896035A1 (fr) * 2020-04-15 2021-10-20 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Aérogels de silice et couverture contenant un aérogel de silice
WO2021204815A1 (fr) * 2020-04-06 2021-10-14 Empa Eidgenössische Materialprüfungs- Und Forschungsanstalt Aérogels de silice
CN113563012B (zh) * 2020-04-29 2022-11-04 台湾气凝胶科技材料开发股份有限公司 御寒、隔热的疏水性气凝胶复合胶状物的制备方法及其相关产物
US20230348285A1 (en) 2020-04-30 2023-11-02 Evonik Operations Gmbh Silica aerogel with increased alkaline stability
CH717558A1 (de) 2020-06-22 2021-12-30 Rockwool Int Aerogel-Verbundwerkstoffen, sowie Wärmedämmelement.
EP4177231A1 (fr) 2021-11-03 2023-05-10 Evonik Operations GmbH Systèmes d'isolation thermique à rapport coût-efficacité amélioré
CN117510181B (zh) * 2023-11-07 2024-04-16 武汉中科先进材料科技有限公司 一种超疏水、增强型二氧化硅气凝胶毡及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2119731A1 (fr) * 2007-02-02 2009-11-18 Nissan Chemical Industries, Ltd. Sol de silice ayant un monomère réactif dispersé en son sein, procédé de fabrication du sol de silice, composition durcissable et article obtenu à partir de la composition durcissable
EP3009480A1 (fr) * 2013-06-10 2016-04-20 Nissan Chemical Industries, Ltd. Composition de résine contenant de la silice et son procédé de production, et article moulé produit à partir de la composition de résine contenant de la silice

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2659155B2 (ja) * 1992-02-03 1997-09-30 松下電工株式会社 疎水性エアロゲルの製造方法
DE69219599T2 (de) * 1992-02-18 1997-09-11 Matsushita Electric Works, Ltd., Kadoma, Osaka Verfahren zur herstellung eines hydrophoben aerogels
US5565142A (en) 1992-04-01 1996-10-15 Deshpande; Ravindra Preparation of high porosity xerogels by chemical surface modification.
WO1995006617A1 (fr) 1993-08-31 1995-03-09 Basf Aktiengesellschaft Aerogels hydrophobes d'acide silicique
DE19631267C1 (de) 1996-08-02 1998-04-30 Hoechst Ag Verfahren zur Herstellung von organisch modifizierten Aerogelen
DE19648798C2 (de) * 1996-11-26 1998-11-19 Hoechst Ag Verfahren zur Herstellung von organisch modifizierten Aerogelen durch Oberflächenmodifikation des wäßrigen Gels (ohne vorherigen Lösungsmitteltausch) und anschließender Trocknung
JP3954842B2 (ja) * 2001-08-02 2007-08-08 株式会社アルバック 疎水性多孔質材料の製造方法
FR2849444B1 (fr) * 2002-12-30 2006-07-28 Rhodia Chimie Sa Procede de preparation d'un suspension de silice dans une matiere silicone eventuellement reticulable
AU2005231228A1 (en) * 2004-01-06 2005-10-20 Aspen Aerogels, Inc. Ormosil aerogels containing silicon bonded polymethacrylate
FR2873677B1 (fr) * 2004-07-29 2007-08-17 Armines Ass Pour La Rech Et Le Procede d'elaboration de serogels de silice hydrophobes
JP2007134420A (ja) * 2005-11-09 2007-05-31 Ulvac Japan Ltd 疎水性多孔質シリカ材料による構造物内部の埋め込み方法
KR100848856B1 (ko) * 2007-03-27 2008-07-29 주식회사 넵 영구적 소수성을 갖는 에어로겔의 제조 방법 및 이로부터제조된 영구적 소수성을 갖는 에어로겔
KR100924781B1 (ko) * 2007-09-19 2009-11-03 주식회사 넵 영구적인 소수성을 갖는 고투광성 입상형 에어로겔제조방법 및 이로부터 제조된 입상형 에어로겔
CN101372337B (zh) * 2008-09-28 2010-12-08 厦门大学 共前驱体法常压干燥制备透明二氧化硅气凝胶的方法
CN101691227B (zh) * 2009-10-13 2011-10-12 厦门大学 二氧化硅气凝胶材料的制备方法
KR101187568B1 (ko) 2010-09-29 2012-10-04 한국에너지기술연구원 실리카 에어로겔 과립의 제조방법
JP5669617B2 (ja) * 2011-02-21 2015-02-12 株式会社トクヤマ エアロゲル及び該エアロゲルを用いた断熱材
FR2981341B1 (fr) 2011-10-14 2018-02-16 Enersens Procede de fabrication de xerogels
CN102951650B (zh) * 2012-08-31 2015-05-20 卢斌 一种快速制备SiO2气凝胶的常压干燥方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2119731A1 (fr) * 2007-02-02 2009-11-18 Nissan Chemical Industries, Ltd. Sol de silice ayant un monomère réactif dispersé en son sein, procédé de fabrication du sol de silice, composition durcissable et article obtenu à partir de la composition durcissable
EP3009480A1 (fr) * 2013-06-10 2016-04-20 Nissan Chemical Industries, Ltd. Composition de résine contenant de la silice et son procédé de production, et article moulé produit à partir de la composition de résine contenant de la silice

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2015014813A1 *

Also Published As

Publication number Publication date
CN114408931A (zh) 2022-04-29
CN105555710A (zh) 2016-05-04
JP6449279B2 (ja) 2019-01-09
BR112016002360A2 (pt) 2017-08-01
AU2014298538B2 (en) 2018-02-22
US20160258153A1 (en) 2016-09-08
AU2014298538A1 (en) 2016-02-25
WO2015014813A1 (fr) 2015-02-05
EP2832690A1 (fr) 2015-02-04
JP2016530199A (ja) 2016-09-29
KR20160054462A (ko) 2016-05-16
KR101813898B1 (ko) 2018-01-02

Similar Documents

Publication Publication Date Title
WO2015014813A1 (fr) Procédé de production d'un matériau aérogel
EP0672635B1 (fr) Corps moulés contenant des particules d'aérogel de silice et procédé pour leur fabrication
EP3762137A1 (fr) Procédé de production d'un matériau aérogel
EP2501652B1 (fr) Xérogel de sio2 poreux ayant une taille des pores caractéristique, ses précurseurs stables au séchage et son utilisation
WO1998050144A1 (fr) Procede de granulation d'aerogels
DE19648798A1 (de) Verfahren zur Herstellung von organisch modifizierten Aerogelen durch Oberflächenmodifikation des wäßrigen Gels (ohne vorherigen Lösungsmitteltausch) und anschließender Trocknung
EP0868402B1 (fr) Procede de production d'aerogels inorganiques dans des conditions sous-critiques
EP3341338B1 (fr) Corps moulé en silice de faible conductivité thermique
EP0765899B1 (fr) Procédé pour modifier des compositions de poudre de dispersion
EP0789667B1 (fr) Procede de production d'aerogels
WO2016123724A1 (fr) Procédé de fabrication d'aérogel et matériau composite à base d'aérogel
EP3053952A1 (fr) Procédé de production d'un matériau aérogel
WO1996022942A1 (fr) Procede de production d'aerogels modifies et leur utilisation
WO1996006808A1 (fr) Materiaux composites contenant un aerogel, leur procede de production et leur utilisation
WO1997010187A1 (fr) Materiau composite contenant un aerogel et un adhesif, procede permettant de le produire et utilisation
EP2644566A1 (fr) Procédé de fabrication d'aérogels
EP0946277A2 (fr) Procede pour la fabrication d'aerogels durablement hydrophobes modifies organiquement
EP2649118B1 (fr) Matériau composite contenant des particules nanoporeuses
DE19801004A1 (de) Verfahren zur Herstellung von im wesentlichen kugelförmigen Lyogelen in wasserunlöslichen Silylierungsmitteln
DE19954772A1 (de) Verwendung von siliciumorganischen Mikrokapseln als Latentwärmespeicher
EP3201132A1 (fr) Procédé de préparation d'aérogels
WO2016102487A1 (fr) Procédé de production de polymères en perles aminométhylés à partir d'esters carboxyliques de n-méthylphtalimide
DE102014101709A1 (de) Verfahren zur Herstellung von Aerogelen
EP0984828A1 (fr) Procede de production de logels et d'aerogels se presentant sensiblement sous la forme de billes
EP0984829A1 (fr) Procede de production de lyogels et d'aerogels se presentant sensiblement sous la forme de billes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170808

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201009

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210220