EP3027558A1 - Procédé de production d'un matériau aérogel - Google Patents
Procédé de production d'un matériau aérogelInfo
- Publication number
- EP3027558A1 EP3027558A1 EP14744131.5A EP14744131A EP3027558A1 EP 3027558 A1 EP3027558 A1 EP 3027558A1 EP 14744131 A EP14744131 A EP 14744131A EP 3027558 A1 EP3027558 A1 EP 3027558A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sol
- gel
- catalyst
- hydrophobing
- agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 239000000463 material Substances 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title abstract description 19
- 239000004964 aerogel Substances 0.000 title abstract description 14
- 239000003054 catalyst Substances 0.000 claims abstract description 28
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 23
- 238000001035 drying Methods 0.000 claims abstract description 23
- 239000011877 solvent mixture Substances 0.000 claims abstract description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000001879 gelation Methods 0.000 claims abstract description 9
- 238000002360 preparation method Methods 0.000 claims abstract description 8
- 230000001476 alcoholic effect Effects 0.000 claims abstract description 7
- 230000032683 aging Effects 0.000 claims abstract description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 5
- 239000000499 gel Substances 0.000 claims description 51
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical group C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 claims description 17
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical group C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 claims description 10
- 239000000835 fiber Substances 0.000 claims description 6
- 239000002243 precursor Substances 0.000 claims description 6
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 6
- 239000000178 monomer Substances 0.000 claims description 5
- 239000005051 trimethylchlorosilane Substances 0.000 claims description 5
- 239000004890 Hydrophobing Agent Substances 0.000 claims description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 4
- 238000010924 continuous production Methods 0.000 claims description 4
- 238000000354 decomposition reaction Methods 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 4
- 229910000077 silane Inorganic materials 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 3
- 238000011065 in-situ storage Methods 0.000 claims description 2
- 239000000741 silica gel Substances 0.000 claims description 2
- 229910002027 silica gel Inorganic materials 0.000 claims description 2
- 238000007725 thermal activation Methods 0.000 claims description 2
- 239000004569 hydrophobicizing agent Substances 0.000 claims 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 27
- 239000008187 granular material Substances 0.000 description 16
- 239000000203 mixture Substances 0.000 description 16
- 239000002904 solvent Substances 0.000 description 15
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 11
- 230000002209 hydrophobic effect Effects 0.000 description 11
- 239000011148 porous material Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 6
- 238000009413 insulation Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 235000019353 potassium silicate Nutrition 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 239000005871 repellent Substances 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000000443 aerosol Substances 0.000 description 3
- 150000004703 alkoxides Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 239000011859 microparticle Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000002940 repellent Effects 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- 239000013590 bulk material Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 238000006884 silylation reaction Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000011240 wet gel Substances 0.000 description 2
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical class CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- 239000004965 Silica aerogel Substances 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 238000007171 acid catalysis Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- BULLHNJGPPOUOX-UHFFFAOYSA-N chloroacetone Chemical compound CC(=O)CCl BULLHNJGPPOUOX-UHFFFAOYSA-N 0.000 description 1
- 229960001701 chloroform Drugs 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002088 nanocapsule Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000000352 supercritical drying Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229950011008 tetrachloroethylene Drugs 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/78—Heat insulating elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/14—Colloidal silica, e.g. dispersions, gels, sols
- C01B33/145—Preparation of hydroorganosols, organosols or dispersions in an organic medium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/14—Colloidal silica, e.g. dispersions, gels, sols
- C01B33/155—Preparation of hydroorganogels or organogels
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/14—Colloidal silica, e.g. dispersions, gels, sols
- C01B33/157—After-treatment of gels
- C01B33/158—Purification; Drying; Dehydrating
- C01B33/1585—Dehydration into aerogels
Definitions
- the invention relates to a method for producing an airgel material according to the preamble of claim 1. Furthermore, the invention relates to a formed from an airgel material insulation board and a precursor for the production of an airgel material.
- Aerogels are increasingly used in building technology as high-insulation materials. Numerous methods for their production are known. With increasing industrialization of these materials since the turn of the millennium, the manufacturing processes used in this process are constantly being simplified. Basically, a distinction is made between water glass (sodium silicate) and alkoxide-based compounds such as tetraethyl orthosilicate (TEOS) and tetramethyl orthosilicate (TMOS) as silicate donors, which decisively influence the further synthesis steps.
- the hydrophobizing agents or silylation reagents used are mainly hexamethyldisilazane (HMDS), trimethylchlorosilane (TMCS) and hexamethyldisiloxane (HMDSO).
- the critical step in the production of airgel material is the drying of a wet gel.
- a supercritical fluid typically lower alcohols or later also CO 2 .
- solvent drying subcritical drying
- hydrophobic gels can be produced materials with quasi-identical properties as the supercritically dried aerogels. These were called in the beginning according to the classical definition xerogels, a term which is still used today for solvent-dried aerogels.
- WO 1998/005591 A1 relates to a production process for organically modified, permanently hydrophobic aerogels.
- the SiO 2 gel is obtained starting from a water glass solution by means of neutralization formed by acid or after the formation of a silica sol by ion exchange and subsequent base addition.
- the pH value during gelation is typically in the range between 4 and 8.
- the wet gel is washed in an organic solvent until the water content is less than 5% and then hydrophobed. Drying under atmospheric pressure by evaporation of the solvent leaves the airgel material as granules back.
- WO 2012/044052 A2 deals with the preparation of optically transparent and non-transparent SiO 2 aerogels in granular form.
- a water glass sol is injected into an alcohol phase, which forms in this the gel in the form of granules.
- the gel is further exchanged with alcohol and rendered hydrophobic by means of a silylation reagent.
- the gel is dried under atmospheric pressure or reduced pressure.
- the process makes it possible to produce airgel granules with significantly less time, but a significant disadvantage is the washing with ethanol, which is needed to remove the water from the hydrogel phase.
- the workup of the water-alcohol mixture requires large amounts of energy, which greatly disadvantages this process for large-scale industrial production.
- HCl hydrophobization of alkogels in a mixture of hydrophobing agent and hydrophobing catalyst
- WO2013 / 053951 A1 describes the preparation of silicate aerogels and xerogels starting from an alkoxide-based sol. This is gelled by base addition and aged under reflux in alcohol. The gel is then rendered hydrophobic in a solution of hydrophobing agent, preferably HMDSO, and HCl as a catalyst, also under reflux, and subcritically dried. Various forms of drying are described in detail and their influence on the quality of the resulting materials is explained. As a central point, the composition of the pore liquid before drying is too mention which is a mixture of alcohol and water repellent.
- a disadvantage of the process according to WO2013 / 053951 A1 is that the hydrophobizing agent and optionally an associated catalyst is added to a solid only after gelation and aging of the gel. Particularly in the case of voluminous batches, the hydrophobizing agent can penetrate the interior of the gel only diffusion-limited, ie gradually, so that the hydrophobing step takes a very long time, corresponding to the material thickness.
- the object of the invention is to provide an improved process for the production of airgel materials.
- Other objects are to provide an improved insulation board as well as a ready-to-use precursor product for producing an airgel material. These objects are achieved according to the invention by the manufacturing method according to claim 1 and by the insulation board according to claim 14 and by the precursor product according to claim 15.
- the process according to the invention for producing an airgel material comprises the following steps:
- the silicon oxide sol formed in step a) contains at least one hydrophobizing agent which can be activated by acid catalysis, wherein the volume fraction of the hydrophobizing agent in the sol is 5 to 60%, and wherein the hydrophobicization in step c) is achieved by activation or addition of at least one hydrotreating agent. rophobi mecanicsmtel co-acting hydrophobing catalyst is introduced.
- the inventive method allows a much simpler compared to the previously known methods production of silicate airgel materials. Characterized in that the hydrophobicization is an acid-catalyzed process, that is catalyzed by H + and H 3 O + ions, the process running under slightly basic conditions gelling process and the process running under acidic conditions hydrophobizing process may be performed in one and the same organogel time cleanly separated from each other , As a further advantage, the inventive method is characterized by a significantly reduced solvent expense. In particular, with the process according to the invention, it is possible to limit the amount of solvent used to produce an airgel to a maximum of 1 .1 times the gel volume. The prior art typically requires more than 2 times the gel volume of solvents.
- Alcoholic solvent mixture in the present application is understood to mean a mixture which consists essentially of one or, where appropriate, several lower alcohols (in particular ethanol, methanol, n-propanol, isopropanol, butanols) and a suitable proportion of hydrophobizing agent. It is understood that the mixture may also contain a small amount of water, unavoidable impurities, and optionally, as explained elsewhere, certain additives.
- a hydrophobizing agent is understood in a manner known per se to mean a component which imparts hydrophobic, ie water-repellent, properties to a surface.
- the hydrophobic or the hydrophobing process primarily on the silicate gel and the modifications of its properties.
- the airgel materials which can be produced by the process according to the invention can be produced in the form of granules, monolithic bodies or composites. In particular, they can be used for procedurally simple and thus also economically advantageous formation of insulating panels.
- the process according to the invention comprises gelling an alkoxide-based silicate sol in an alcoholic solvent mixture containing at least one catalytically activatable hydrophobizing agent.
- the gelation process is initiated by adding a dilute base such as ammonia.
- a dilute base such as ammonia.
- the gel thus formed which may also be referred to as "organogel” is subjected to an aging process.
- the optionally aged gel now contains all the components required for hydrophobing and subcritical drying according to WO2013 / 053951 A1 or more precisely a pore liquid with the main components alcohol and activatable hydrophobizing agent with the exception of the hydrophobizing catalyst.
- HMDSO hexamethyldisiloxane
- the volume fraction of the hydrophobizing agent in the sol is from 20 to 50%, in particular from 25% to 40% and in particular from 34% to 38%.
- the hydrophobizing catalyst for step c There are various ways to add or activate the hydrophobizing catalyst for step c).
- the hydrophobizing catalyst is formed by a radical decomposition process in situ in the gel (claim 4).
- the hydrophobizing catalyst is formed by free-radical decomposition of previously added chlorine-containing organic compounds such as weakly or unstabilized PVC, trichloromethane, chloroacetone or tetrachlorethylene.
- the hydrophobization catalyst which is advantageously HCl, can be released at a desired time, which can be accomplished either by electromagnetic radiation (UV, X-ray) or by common radical starters.
- UV, X-ray electromagnetic radiation
- common radical starters for gels with high optical transparency and small thickness, photochemical radical decomposition processes are preferred.
- the hydrophobizing catalyst is released by slow-release agents in the gel, wherein the release is optionally triggered or accelerated by thermal activation (claim 5).
- HCl or precursor thereof is used as the hydrophobizing catalyst, which is released by "slow-release” or “controlled-release” additives, such as microcapsules or nanocapsules or particles, contained in the sol.
- these agents are activated by externally controllable process parameters such as pressure, temperature or electromagnetic radiation (light, radio waves, microwaves).
- HCl hydrophobing catalyst
- This process is particularly suitable for the production of aerosol materials with high, exposed, outer surface such as small objects, granules and (micro) structured monoliths or composites.
- the hydrophobizing catalyst HCl or TMCS or a mixture of these two components is used as the hydrophobizing catalyst HCl or TMCS or a mixture of these two components, which is dissolved in a dilute solvent mixture consisting of a similar or identical composition as the pore liquid and is brought into contact with the gel in the liquid phase ,
- the amount of catalyst-loaded solution measured in terms of gel volume should be kept as small as possible in order to maintain the advantage of the lowest possible solvent balance of the process according to the invention.
- the catalyst-containing solution in a batch process or continuous process makes up a volume fraction or volumetric flow fraction of not more than 30%, in particular not more than 10%.
- the sol furthermore contains at least one functional silane.
- the mechanical properties of the airgel can be modified in a targeted manner, in particular its flexibility or its strength.
- the sol further contains at least one polymerizable monomer which is capable of forming a polymer structure within the airgel material to be produced.
- the polymerizable monomer is selected from the group consisting of radically polymerizable substances such as acrylates, vinyl chloride, styrene or divinylbenzene. This can be achieved in particular a gain of the gel structure.
- step c) and / or step d) is carried out in a pressure vessel at an overpressure of, for example, up to 20 bar.
- the boiling point of the pore fluid is between 80 and 100 ° C.
- the inventive step c) at significantly higher temperatures in the range 90-130 ° C perform to be able to, which increases the reaction rate.
- the hydrophobing time can be drastically reduced (for example, from 24h at 65 ° C to only 3h at 90 ° C) which results in a significant increase in the efficiency of the process.
- an initial phase of the drying step d) can also be carried out at elevated pressure.
- initial phase in the present context is meant a part of the drying process subsequent to the hydrophobing step c).
- a depressurization is carried out, after which, depending on the situation, a further drying can take place.
- the step d) is carried out at reduced pressure. Drying in a vacuum has the advantage that it can take place at a low temperature, ie with reduced heat energy requirement and at a lower temperature level. In particular, at the end of the drying is achieved at the same temperature by working in a vacuum, a lower amount of solvents (residual moisture) in the airgel material. If the preceding hydrophobing step c) has been carried out at elevated pressure, the thermal energy stored in the hot gel when initiating the drying step d) can be used initially to allow the drying to proceed much more quickly, by actuating the valve on the pressure vessel and thus the pore liquid drains controlled as steam.
- the sol is added after triggering the gelation in a fiber-based matrix.
- fiber-based matrix is understood to mean both filamentous and fleece-like structures.
- structural reinforcements can be embedded in the airgel material in a targeted manner.
- such reinforcements can be brought about by addition of particles, in particular nanoparticles, or fibers and the like.
- the preparation of the sol is carried out at the laboratory level usually in a batch process ie by stirring a mixture in a static vessel.
- the sol is preferably formed continuously in a flow reactor.
- step a) and preferably steps b) and c) of the process according to the invention are optionally carried out in a continuous process (claim 13).
- step d) can also be integrated into the continuous process.
- Water repellents and other additives polymerizable monomers, fibers, nanoparticles, etc.
- step d) can also be integrated into the continuous process.
- Water repellents and other additives polymerizable monomers, fibers, nanoparticles, etc.
- the catalytically hydrophobized gels are dried undercritically.
- the general method can be applied to a range of airgel materials, depending on the application, pure silica aerogels or organically modified aerogels, such as polymer-modified X-aerogels or Ormosil aerogels or hybrids of these classes of compounds.
- pure silica aerogels or organically modified aerogels such as polymer-modified X-aerogels or Ormosil aerogels or hybrids of these classes of compounds.
- all the usual configurations granules, panels, sheets, blankets, coatings, films
- a precursor product for the production of an airgel material.
- This contains a silica sol and / or a silica gel in an alcohol-containing solvent mixture and additionally contains at least one acid-catalytically activatable hydrophobizing agent.
- This can be in an advantageous manner Provide storage and transportable starting material that is hydrophobicized only at the desired location and dried if necessary. For the latter, basically the same process options as described elsewhere in question come into question.
- a silica sol concentrate is hydrolyzed by hydrolysis of TEOS in alcohol having a molar TEOS / water / oxalic acid ratio of 1: 3.5: 0.004 in ethanol at 50 ° C for 8 hours with stirring.
- the silicate content calculated as S1O2 in the sol concentrate is 18%.
- the sol concentrate is now diluted to the final 6% sol concentration with HMDSO and ethanol such that the HMDSO content in the sol is 20%.
- This sol is now added 1% of a dilute, ethanolic ammonia solution, resulting in gelation within 7 minutes.
- the fresh organogel is aged at 70 ° C for 2 hours in the block.
- the aged gel is now mechanically crushed and the gel granules are transferred to a closed pressure vessel. This is now a mixture of HCl gas and nitrogen is pressed with an overpressure of 2.5 bar. The contents of the vessel are then heated to 100.degree. C. within 30 minutes. The mixture is then rendered hydrophobic for 90 minutes and then cooled to 50 ° C and released the pressure. The hydrophobized gel is then dried on a conveyor belt at 150 ° C.
- the end product is a hydrophobic aerosol granule with a bulk density between 0.08 and 0.12 g / cm 3 , which has a typical thermal conductivity in the material of 0.012-0.00145 W / (m K). Measured as granulate bulk material of mean grain size of 3mm, the thermal conductivity is between 0.019 - 0.022 W / (m K). Industrial production of an airgel granulate
- a silicon oxide sol is hydrolyzed in a flow through tube reactor by hydrolysis of TEOS in alcohol with a molar TEOS / water / hydrochloric acid ratio of 1: 1 .6: 0.003 in ethanol at 75 ° C, the water is added last and the average residence time is about one hour.
- This sol is now diluted in the further course of the tubular reactor with HMDSO and ethanol so that the HMDSO content in the sol is 30% and the silicate content measured as S1O2 is 5.2%.
- an ethanolic ammonia solution is metered in, and the mixture homogenized by means of static mixer.
- the sol flows to a tempered at 65 ° C gelling, with a residence time of 25 minutes.
- the gel is comminuted in a crusher with continuous metered addition of an ethanolic HCl solution in a granule.
- the solvent flow of ethanolic hydrophobing catalyst is 10% of the gel volume flow.
- the granules are then heated in a pressure conveyor belt reactor to 100 ° C and continuously hydrophobic and pre-dried at the same time. In a second part of the drying belt, there is normal pressure or negative pressure to atmosphere, and the final drying temperature is 135 ° C.
- the end product is a hydrophobic airgel granulate with a density between 0.092 and 0.1 17 g / cm 3 obtained, which has a typical thermal conductivity in the material of 0.013 - 0.0015 W / (m K).
- the thermal conductivity is between 0.0195 - 0.023 W / (m K).
- the gel is broken without solvent or without hydrophobing catalyst over the crusher.
- the gel is suspended in a chute in a stream of air over a period of 3-5 minutes as granules particles.
- the hydrophobization catalyst is sprayed from the side as gaseous HCl or dilute ethanolic HCl solution, whereby all granular particles are uniformly exposed to the hydrophobing catalyst.
- Hydrophobing and drying can also be carried out in a cyclone-like chute or in a fluidized-bed dryer.
- a sol with a calculated S1O2 content of 4.8% is obtained by hydrolysis of TMOS in a solvent mixture consisting of methanol (MeOH) and water in the presence of 0.01 M HCl for 2 h at 65 ° C. Thereafter, the mixture is cooled to room temperature, so that in the subsequent dilution with HMDSO not already uses an acid-catalyzed hydrophobing of the individual sol particles.
- the dilution with HMDSO is chosen so that the volume fractions in the sol mixture are 65% MeOH, 8% water and 27% HMDSO.
- the gel bodies are placed in a closed pressure-tight vessel and the whole heated to 85-90 ° C. An overpressure in the vessel of about 1 atm is registered.
- the radical initiator is activated, which triggers two processes simultaneously: on the one hand, the PVC-containing microparticles are activated and now deliver a precisely metered amount of the hydrophobing catalyst HCl to the gel. This triggers the actual hydrophobization of the gel with HMDSO.
- HMDSO the radical polymerization of methyl methacrylates. Accordingly, polymer chains are forms, which are attached via the 3- (trimethoxysilyl) propyl methacrylate linker directly to the silicate skeleton. This results in an amplification of the gel network.
- PEDS polyethoxydisiloxane
- the gel plate After an aging phase of 24 h at 50 ° C, the gel plate is carefully lifted out of the mold and placed in a tempered to 65 ° C, closed vessel. At this elevated temperature, HCl exits the microencapsulation and can fully develop its property as a hydrophobing catalyst for HMDSO evenly distributed throughout the entire volume. The hydrophobing started in this way is carried out for 24 hours. Thereafter, the vessel is opened and the gel plate dried at 145 ° C in a convection oven.
- the finished airgel insulation board has a density of 0.1 1 kg / cm 3 and a thermal conductivity of 0.0145mW / (m K). In addition, due to the addition of DMDES, this has flexible mechanical properties.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Architecture (AREA)
- Acoustics & Sound (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Silicon Compounds (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Insulation (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14744131.5A EP3027558A1 (fr) | 2013-08-02 | 2014-07-28 | Procédé de production d'un matériau aérogel |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13179185.7A EP2832690A1 (fr) | 2013-08-02 | 2013-08-02 | Procédé de fabrication d'un matériau aérogel |
PCT/EP2014/066213 WO2015014813A1 (fr) | 2013-08-02 | 2014-07-28 | Procédé de production d'un matériau aérogel |
EP14744131.5A EP3027558A1 (fr) | 2013-08-02 | 2014-07-28 | Procédé de production d'un matériau aérogel |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3027558A1 true EP3027558A1 (fr) | 2016-06-08 |
Family
ID=48917409
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13179185.7A Ceased EP2832690A1 (fr) | 2013-08-02 | 2013-08-02 | Procédé de fabrication d'un matériau aérogel |
EP14744131.5A Withdrawn EP3027558A1 (fr) | 2013-08-02 | 2014-07-28 | Procédé de production d'un matériau aérogel |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13179185.7A Ceased EP2832690A1 (fr) | 2013-08-02 | 2013-08-02 | Procédé de fabrication d'un matériau aérogel |
Country Status (8)
Country | Link |
---|---|
US (1) | US20160258153A1 (fr) |
EP (2) | EP2832690A1 (fr) |
JP (1) | JP6449279B2 (fr) |
KR (1) | KR101813898B1 (fr) |
CN (2) | CN105555710A (fr) |
AU (1) | AU2014298538B2 (fr) |
BR (1) | BR112016002360A2 (fr) |
WO (1) | WO2015014813A1 (fr) |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10563016B2 (en) * | 2014-02-26 | 2020-02-18 | Hitachi Chemical Company, Ltd. | Aerogel |
CH710694B1 (de) * | 2015-02-04 | 2019-05-15 | Rockwool Int | Verfahren zur Herstellung eines Aerogels resp. eines Aerogel-Verbundwerkstoffs, sowie Aerogel resp. Aerogel-Verbundwerkstoff erhältlich nach dem Verfahren. |
KR101789371B1 (ko) | 2015-02-13 | 2017-10-23 | 주식회사 엘지화학 | 실리카 에어로겔 함유 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 함유 블랑켓 |
GB201502613D0 (en) * | 2015-02-17 | 2015-04-01 | Univ Newcastle | Aerogels |
DE102015211812A1 (de) | 2015-06-25 | 2016-12-29 | Wacker Chemie Ag | Wirtschaftliches Verfahren zur Herstellung von organisch modifizierten Lyo- oder Aerogelen |
EP3124443A1 (fr) * | 2015-07-28 | 2017-02-01 | D. Swarovski KG | Procédé sol-gel continue pour la preparation de verre quartzeux |
KR101931569B1 (ko) | 2015-11-03 | 2018-12-21 | 주식회사 엘지화학 | 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔 |
KR101953371B1 (ko) * | 2016-01-19 | 2019-02-28 | 주식회사 엘지화학 | 에어로겔 시트의 제조방법 및 장치 |
KR101774140B1 (ko) * | 2016-01-19 | 2017-09-01 | 주식회사 엘지화학 | 에어로겔 시트의 제조방법 및 장치 |
KR101962207B1 (ko) * | 2016-02-17 | 2019-03-27 | 주식회사 엘지화학 | 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치 |
KR101962206B1 (ko) | 2016-02-19 | 2019-03-27 | 주식회사 엘지화학 | 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치 |
KR101968648B1 (ko) * | 2016-02-19 | 2019-04-12 | 주식회사 엘지화학 | 에어로겔 시트의 제조방법 및 장치 |
KR20170110993A (ko) | 2016-03-24 | 2017-10-12 | 주식회사 엘지화학 | 실리카 에어로겔 제조시스템 |
FR3050013B1 (fr) * | 2016-04-11 | 2019-08-02 | Saint-Gobain Isover | Fours et produits d'isolation pour fours |
CH712479A1 (de) * | 2016-05-20 | 2017-11-30 | Flumroc Ag | Anlage und Verfahren zur Herstellung eines Aerogel-Verbundwerkstoffs und Aerogel-Verbundwerkstoff. |
FR3053263B1 (fr) * | 2016-07-04 | 2018-08-31 | Keey Aerogrl | Procede continu de fabrication d'un aerogel |
JP6952764B2 (ja) | 2016-07-29 | 2021-10-20 | エボニック オペレーションズ ゲーエムベーハー | 疎水性の断熱材料の製造方法 |
EP3281920A1 (fr) | 2016-08-12 | 2018-02-14 | D. Swarovski KG | Procédé en continu pour la préparation de verres ou de vitrocéramiques silicatés |
US11279622B2 (en) | 2016-09-12 | 2022-03-22 | Lg Chem, Ltd. | Method for producing silica aerogel and silica aerogel produced thereby |
KR101942474B1 (ko) * | 2016-11-18 | 2019-01-25 | 주식회사 엘지화학 | 전가수분해된 알킬 폴리실리케이트의 합성방법 |
MX2019008516A (es) | 2017-01-18 | 2019-09-18 | Evonik Degussa Gmbh | Material de aislamiento termico granulado y procedimiento para producirlo. |
CN106955650A (zh) * | 2017-04-01 | 2017-07-18 | 东华大学 | 一种三维多孔框架增强纤维气凝胶材料及其制备方法 |
DE102017209782A1 (de) | 2017-06-09 | 2018-12-13 | Evonik Degussa Gmbh | Verfahren zur Wärmedämmung eines evakuierbaren Behälters |
EP3498671A1 (fr) * | 2017-12-15 | 2019-06-19 | EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt | Aérogel de silice super-isolant présentant une rigidité et une densité élevées |
US12060278B2 (en) | 2018-03-05 | 2024-08-13 | Evonik Operations Gmbh | Method for producing an aerogel material |
EP3597615A1 (fr) | 2018-07-17 | 2020-01-22 | Evonik Operations GmbH | Matériau d'oxyde mixte granulaire et composition d'isolation thermique sur sa base |
JP7009673B2 (ja) | 2018-07-17 | 2022-01-25 | エボニック オペレーションズ ゲーエムベーハー | ヒュームドシリカ造粒物に基づく断熱組成物、その製造方法およびその使用 |
US11987528B2 (en) | 2018-07-18 | 2024-05-21 | Kingspan Insulation Limited | Process for hydrophobizing shaped insulation-material bodies based on silica at ambient pressure |
CN111039583B (zh) * | 2018-10-11 | 2022-10-11 | 卢孟磊 | 一种低成本快速制备微纳结构气凝胶膨胀珍珠岩的方法 |
DE102018128410A1 (de) * | 2018-11-13 | 2020-05-14 | Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Herstellung von Aerogelen und mit diesem erhältliche Aerogele |
WO2020125956A1 (fr) | 2018-12-18 | 2020-06-25 | Wacker Chemie Ag | Procédé de préparation de particules de gel arrondies |
FR3094975B1 (fr) * | 2019-04-10 | 2022-11-18 | Keey Aerogel | Procédé de synthèse d’un aérogel de silice hydrophobique de type « one pot » à partir d’un précurseur de silice |
EP3896035A1 (fr) * | 2020-04-15 | 2021-10-20 | EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt | Aérogels de silice et couverture contenant un aérogel de silice |
WO2021204815A1 (fr) * | 2020-04-06 | 2021-10-14 | Empa Eidgenössische Materialprüfungs- Und Forschungsanstalt | Aérogels de silice |
CN113563012B (zh) * | 2020-04-29 | 2022-11-04 | 台湾气凝胶科技材料开发股份有限公司 | 御寒、隔热的疏水性气凝胶复合胶状物的制备方法及其相关产物 |
US20230348285A1 (en) | 2020-04-30 | 2023-11-02 | Evonik Operations Gmbh | Silica aerogel with increased alkaline stability |
CH717558A1 (de) | 2020-06-22 | 2021-12-30 | Rockwool Int | Aerogel-Verbundwerkstoffen, sowie Wärmedämmelement. |
EP4177231A1 (fr) | 2021-11-03 | 2023-05-10 | Evonik Operations GmbH | Systèmes d'isolation thermique à rapport coût-efficacité amélioré |
CN117510181B (zh) * | 2023-11-07 | 2024-04-16 | 武汉中科先进材料科技有限公司 | 一种超疏水、增强型二氧化硅气凝胶毡及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2119731A1 (fr) * | 2007-02-02 | 2009-11-18 | Nissan Chemical Industries, Ltd. | Sol de silice ayant un monomère réactif dispersé en son sein, procédé de fabrication du sol de silice, composition durcissable et article obtenu à partir de la composition durcissable |
EP3009480A1 (fr) * | 2013-06-10 | 2016-04-20 | Nissan Chemical Industries, Ltd. | Composition de résine contenant de la silice et son procédé de production, et article moulé produit à partir de la composition de résine contenant de la silice |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2659155B2 (ja) * | 1992-02-03 | 1997-09-30 | 松下電工株式会社 | 疎水性エアロゲルの製造方法 |
DE69219599T2 (de) * | 1992-02-18 | 1997-09-11 | Matsushita Electric Works, Ltd., Kadoma, Osaka | Verfahren zur herstellung eines hydrophoben aerogels |
US5565142A (en) | 1992-04-01 | 1996-10-15 | Deshpande; Ravindra | Preparation of high porosity xerogels by chemical surface modification. |
WO1995006617A1 (fr) | 1993-08-31 | 1995-03-09 | Basf Aktiengesellschaft | Aerogels hydrophobes d'acide silicique |
DE19631267C1 (de) | 1996-08-02 | 1998-04-30 | Hoechst Ag | Verfahren zur Herstellung von organisch modifizierten Aerogelen |
DE19648798C2 (de) * | 1996-11-26 | 1998-11-19 | Hoechst Ag | Verfahren zur Herstellung von organisch modifizierten Aerogelen durch Oberflächenmodifikation des wäßrigen Gels (ohne vorherigen Lösungsmitteltausch) und anschließender Trocknung |
JP3954842B2 (ja) * | 2001-08-02 | 2007-08-08 | 株式会社アルバック | 疎水性多孔質材料の製造方法 |
FR2849444B1 (fr) * | 2002-12-30 | 2006-07-28 | Rhodia Chimie Sa | Procede de preparation d'un suspension de silice dans une matiere silicone eventuellement reticulable |
AU2005231228A1 (en) * | 2004-01-06 | 2005-10-20 | Aspen Aerogels, Inc. | Ormosil aerogels containing silicon bonded polymethacrylate |
FR2873677B1 (fr) * | 2004-07-29 | 2007-08-17 | Armines Ass Pour La Rech Et Le | Procede d'elaboration de serogels de silice hydrophobes |
JP2007134420A (ja) * | 2005-11-09 | 2007-05-31 | Ulvac Japan Ltd | 疎水性多孔質シリカ材料による構造物内部の埋め込み方法 |
KR100848856B1 (ko) * | 2007-03-27 | 2008-07-29 | 주식회사 넵 | 영구적 소수성을 갖는 에어로겔의 제조 방법 및 이로부터제조된 영구적 소수성을 갖는 에어로겔 |
KR100924781B1 (ko) * | 2007-09-19 | 2009-11-03 | 주식회사 넵 | 영구적인 소수성을 갖는 고투광성 입상형 에어로겔제조방법 및 이로부터 제조된 입상형 에어로겔 |
CN101372337B (zh) * | 2008-09-28 | 2010-12-08 | 厦门大学 | 共前驱体法常压干燥制备透明二氧化硅气凝胶的方法 |
CN101691227B (zh) * | 2009-10-13 | 2011-10-12 | 厦门大学 | 二氧化硅气凝胶材料的制备方法 |
KR101187568B1 (ko) | 2010-09-29 | 2012-10-04 | 한국에너지기술연구원 | 실리카 에어로겔 과립의 제조방법 |
JP5669617B2 (ja) * | 2011-02-21 | 2015-02-12 | 株式会社トクヤマ | エアロゲル及び該エアロゲルを用いた断熱材 |
FR2981341B1 (fr) | 2011-10-14 | 2018-02-16 | Enersens | Procede de fabrication de xerogels |
CN102951650B (zh) * | 2012-08-31 | 2015-05-20 | 卢斌 | 一种快速制备SiO2气凝胶的常压干燥方法 |
-
2013
- 2013-08-02 EP EP13179185.7A patent/EP2832690A1/fr not_active Ceased
-
2014
- 2014-07-28 BR BR112016002360A patent/BR112016002360A2/pt not_active IP Right Cessation
- 2014-07-28 EP EP14744131.5A patent/EP3027558A1/fr not_active Withdrawn
- 2014-07-28 US US14/908,601 patent/US20160258153A1/en not_active Abandoned
- 2014-07-28 CN CN201480050734.9A patent/CN105555710A/zh active Pending
- 2014-07-28 AU AU2014298538A patent/AU2014298538B2/en active Active
- 2014-07-28 JP JP2016530481A patent/JP6449279B2/ja not_active Expired - Fee Related
- 2014-07-28 KR KR1020167003001A patent/KR101813898B1/ko active IP Right Grant
- 2014-07-28 WO PCT/EP2014/066213 patent/WO2015014813A1/fr active Application Filing
- 2014-07-28 CN CN202111139256.7A patent/CN114408931A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2119731A1 (fr) * | 2007-02-02 | 2009-11-18 | Nissan Chemical Industries, Ltd. | Sol de silice ayant un monomère réactif dispersé en son sein, procédé de fabrication du sol de silice, composition durcissable et article obtenu à partir de la composition durcissable |
EP3009480A1 (fr) * | 2013-06-10 | 2016-04-20 | Nissan Chemical Industries, Ltd. | Composition de résine contenant de la silice et son procédé de production, et article moulé produit à partir de la composition de résine contenant de la silice |
Non-Patent Citations (1)
Title |
---|
See also references of WO2015014813A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN114408931A (zh) | 2022-04-29 |
CN105555710A (zh) | 2016-05-04 |
JP6449279B2 (ja) | 2019-01-09 |
BR112016002360A2 (pt) | 2017-08-01 |
AU2014298538B2 (en) | 2018-02-22 |
US20160258153A1 (en) | 2016-09-08 |
AU2014298538A1 (en) | 2016-02-25 |
WO2015014813A1 (fr) | 2015-02-05 |
EP2832690A1 (fr) | 2015-02-04 |
JP2016530199A (ja) | 2016-09-29 |
KR20160054462A (ko) | 2016-05-16 |
KR101813898B1 (ko) | 2018-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015014813A1 (fr) | Procédé de production d'un matériau aérogel | |
EP0672635B1 (fr) | Corps moulés contenant des particules d'aérogel de silice et procédé pour leur fabrication | |
EP3762137A1 (fr) | Procédé de production d'un matériau aérogel | |
EP2501652B1 (fr) | Xérogel de sio2 poreux ayant une taille des pores caractéristique, ses précurseurs stables au séchage et son utilisation | |
WO1998050144A1 (fr) | Procede de granulation d'aerogels | |
DE19648798A1 (de) | Verfahren zur Herstellung von organisch modifizierten Aerogelen durch Oberflächenmodifikation des wäßrigen Gels (ohne vorherigen Lösungsmitteltausch) und anschließender Trocknung | |
EP0868402B1 (fr) | Procede de production d'aerogels inorganiques dans des conditions sous-critiques | |
EP3341338B1 (fr) | Corps moulé en silice de faible conductivité thermique | |
EP0765899B1 (fr) | Procédé pour modifier des compositions de poudre de dispersion | |
EP0789667B1 (fr) | Procede de production d'aerogels | |
WO2016123724A1 (fr) | Procédé de fabrication d'aérogel et matériau composite à base d'aérogel | |
EP3053952A1 (fr) | Procédé de production d'un matériau aérogel | |
WO1996022942A1 (fr) | Procede de production d'aerogels modifies et leur utilisation | |
WO1996006808A1 (fr) | Materiaux composites contenant un aerogel, leur procede de production et leur utilisation | |
WO1997010187A1 (fr) | Materiau composite contenant un aerogel et un adhesif, procede permettant de le produire et utilisation | |
EP2644566A1 (fr) | Procédé de fabrication d'aérogels | |
EP0946277A2 (fr) | Procede pour la fabrication d'aerogels durablement hydrophobes modifies organiquement | |
EP2649118B1 (fr) | Matériau composite contenant des particules nanoporeuses | |
DE19801004A1 (de) | Verfahren zur Herstellung von im wesentlichen kugelförmigen Lyogelen in wasserunlöslichen Silylierungsmitteln | |
DE19954772A1 (de) | Verwendung von siliciumorganischen Mikrokapseln als Latentwärmespeicher | |
EP3201132A1 (fr) | Procédé de préparation d'aérogels | |
WO2016102487A1 (fr) | Procédé de production de polymères en perles aminométhylés à partir d'esters carboxyliques de n-méthylphtalimide | |
DE102014101709A1 (de) | Verfahren zur Herstellung von Aerogelen | |
EP0984828A1 (fr) | Procede de production de logels et d'aerogels se presentant sensiblement sous la forme de billes | |
EP0984829A1 (fr) | Procede de production de lyogels et d'aerogels se presentant sensiblement sous la forme de billes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160201 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170808 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20201009 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20210220 |