EP3762137A1 - Procédé de production d'un matériau aérogel - Google Patents
Procédé de production d'un matériau aérogelInfo
- Publication number
- EP3762137A1 EP3762137A1 EP18773176.5A EP18773176A EP3762137A1 EP 3762137 A1 EP3762137 A1 EP 3762137A1 EP 18773176 A EP18773176 A EP 18773176A EP 3762137 A1 EP3762137 A1 EP 3762137A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reactor
- mixture
- hydrophobing
- airgel
- gel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 239000004964 aerogel Substances 0.000 title abstract description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 56
- 239000000203 mixture Substances 0.000 claims abstract description 47
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 42
- 238000001035 drying Methods 0.000 claims abstract description 39
- 239000003054 catalyst Substances 0.000 claims abstract description 30
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 19
- 230000032683 aging Effects 0.000 claims abstract description 14
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 13
- 238000002156 mixing Methods 0.000 claims abstract description 9
- 238000013270 controlled release Methods 0.000 claims abstract description 4
- 238000010952 in-situ formation Methods 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 82
- 239000000499 gel Substances 0.000 claims description 36
- 239000000243 solution Substances 0.000 claims description 16
- 239000004890 Hydrophobing Agent Substances 0.000 claims description 14
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 claims description 14
- 238000009413 insulation Methods 0.000 claims description 14
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 11
- 238000002360 preparation method Methods 0.000 claims description 11
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 239000002253 acid Substances 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 10
- 239000000741 silica gel Substances 0.000 claims description 10
- 229910002027 silica gel Inorganic materials 0.000 claims description 10
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 9
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 8
- 239000000470 constituent Substances 0.000 claims description 8
- 229910017604 nitric acid Inorganic materials 0.000 claims description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 claims description 6
- 230000007062 hydrolysis Effects 0.000 claims description 6
- 238000006460 hydrolysis reaction Methods 0.000 claims description 6
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 claims description 6
- 230000001476 alcoholic effect Effects 0.000 claims description 5
- 239000012159 carrier gas Substances 0.000 claims description 5
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 5
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 4
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical class [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 claims description 4
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 238000010790 dilution Methods 0.000 claims description 3
- 239000012895 dilution Substances 0.000 claims description 3
- RSIHJDGMBDPTIM-UHFFFAOYSA-N ethoxy(trimethyl)silane Chemical compound CCO[Si](C)(C)C RSIHJDGMBDPTIM-UHFFFAOYSA-N 0.000 claims description 3
- 238000009472 formulation Methods 0.000 claims description 3
- POPACFLNWGUDSR-UHFFFAOYSA-N methoxy(trimethyl)silane Chemical compound CO[Si](C)(C)C POPACFLNWGUDSR-UHFFFAOYSA-N 0.000 claims description 3
- ZUEKXCXHTXJYAR-UHFFFAOYSA-N tetrapropan-2-yl silicate Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)OC(C)C ZUEKXCXHTXJYAR-UHFFFAOYSA-N 0.000 claims description 3
- 239000005051 trimethylchlorosilane Substances 0.000 claims description 3
- 239000004567 concrete Substances 0.000 claims description 2
- 239000011888 foil Substances 0.000 claims description 2
- 239000012528 membrane Substances 0.000 claims description 2
- 239000004570 mortar (masonry) Substances 0.000 claims description 2
- 239000003791 organic solvent mixture Substances 0.000 claims description 2
- 239000011505 plaster Substances 0.000 claims description 2
- 239000004753 textile Substances 0.000 claims description 2
- 229960004592 isopropanol Drugs 0.000 claims 1
- 235000011837 pasties Nutrition 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 abstract description 9
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 abstract 1
- 230000000977 initiatory effect Effects 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 22
- 239000007788 liquid Substances 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 239000008187 granular material Substances 0.000 description 12
- 238000001879 gelation Methods 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 11
- 239000002585 base Substances 0.000 description 10
- 230000002209 hydrophobic effect Effects 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- -1 R = C 2 H 5 ) Chemical compound 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 description 5
- 239000012141 concentrate Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 239000005871 repellent Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000002940 repellent Effects 0.000 description 4
- 239000011877 solvent mixture Substances 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000000352 supercritical drying Methods 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229910008051 Si-OH Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910006358 Si—OH Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical class O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 2
- 230000035622 drinking Effects 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 125000005375 organosiloxane group Chemical group 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 125000005372 silanol group Chemical group 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000010902 straw Substances 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- URDOJQUSEUXVRP-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C(C)=C URDOJQUSEUXVRP-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- 239000007848 Bronsted acid Substances 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 150000003973 alkyl amines Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- PAFYVDNYOJAWDX-UHFFFAOYSA-L calcium;2,2,2-trichloroacetate Chemical compound [Ca+2].[O-]C(=O)C(Cl)(Cl)Cl.[O-]C(=O)C(Cl)(Cl)Cl PAFYVDNYOJAWDX-UHFFFAOYSA-L 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- BULLHNJGPPOUOX-UHFFFAOYSA-N chloroacetone Chemical compound CC(=O)CCl BULLHNJGPPOUOX-UHFFFAOYSA-N 0.000 description 1
- 229960001701 chloroform Drugs 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical group C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 235000011475 lollipops Nutrition 0.000 description 1
- 238000010327 methods by industry Methods 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 239000002088 nanocapsule Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000001282 organosilanes Chemical class 0.000 description 1
- 238000003921 particle size analysis Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000006884 silylation reaction Methods 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229950011008 tetrachloroethylene Drugs 0.000 description 1
- 238000007725 thermal activation Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000011240 wet gel Substances 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/0091—Preparation of aerogels, e.g. xerogels
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/14—Colloidal silica, e.g. dispersions, gels, sols
- C01B33/157—After-treatment of gels
- C01B33/158—Purification; Drying; Dehydrating
- C01B33/1585—Dehydration into aerogels
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/16—Preparation of silica xerogels
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/16—Preparation of silica xerogels
- C01B33/166—Preparation of silica xerogels by acidification of silicate in the presence of an inert organic phase
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/78—Heat insulating elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/10—Solid density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/32—Thermal properties
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B2001/742—Use of special materials; Materials having special structures or shape
Definitions
- the present invention relates to a special process for the preparation of aerogels, thereby airgel and use of such an airgel for
- Insulation materials for example, in the building insulation.
- Cost-effective production of aerogels and xerogels is becoming increasingly important.
- Numerous methods for their production are known. Typically, one starts from water glass (sodium silicate) or silicon alkoxylates (organosilicates) such as tetraethyl orthosilicate (TEOS) and tetramethyl orthosilicate (TMOS) as a silicon raw material, which initially form a silica sol and then a silica gel.
- TEOS tetraethyl orthosilicate
- TMOS tetramethyl orthosilicate
- supercritical drying ie drying from a supercritical fluid typically lower alcohols (high temperature supercritical drying or HTSCD) and today preferably C0 2 (low temperature supercritical drying or LTSCD).
- HTSCD high temperature supercritical drying
- LTSCD low temperature supercritical drying
- the critical parameters for the solvent used such as temperature and pressure, did not have to be undercut.
- the critical temperature and critical pressure for CO2 are about 31 ° C and about 74 bar.
- the reaction performance under such a high process pressure requires relatively expensive process control and equipment investments in the production of aerogels.
- WO 2012/044052 A2 deals with the preparation of optically transparent and non-transparent SiO 2 aerogels in granular form.
- a water glass sol is injected into an alcohol phase, which forms the gel in this.
- the gel is further exchanged with alcohol and rendered hydrophobic by means of a silylation reagent.
- the gel is dried under normal pressure or reduced pressure.
- the process makes it possible to produce airgel granules with significantly less time, but a significant disadvantage is the washing with ethanol, which is needed to remove the water from the hydrogel phase.
- the work-up of the water-alcohol mixture requires large amounts of energy, which makes this procedure for a
- WO2013 / 053951 A1 discloses a method for producing a xerogel comprising the following sequence of process steps: (a) preparation of an alcohol-containing sol; (b) - (c) gelation and aging of the sol; (d) hydrophobing the sol prepared and aged in steps (b) and (c); (e) optional pre-drying of the
- step (d) Drying in one step, as described for example in FR 2873677 A1, to obtain a homogeneous airgel.
- the embodiments show that the omission of the predrying step leads to higher thermal conductivity of the material obtained.
- a hydrophobing agent only in step (d) to a finished and aged gel on the one hand by inhibited diffusion to one
- WO2015 / 014813 A1 discloses a process in which a) a silicon dioxide sol comprising an acid-catalytically activatable hydrophobizing agent in one
- alcoholic solvent mixture is prepared; b) by solubilizing the triggering of the gelation of the sol is caused which is also optionally aged; c) the gel is rendered hydrophobic by addition of acid and d) the solvent mixture is removed by subcritical drying to form the airgel material.
- the addition of the hydrophobing agent before gel formation leads to a homogeneous and rapid hydrophobization of the gel and to a significantly lower use of water repellents.
- the embodiments of this patent application show various variants of such multi-stage production of airgel-based
- Airgel granules Materials such as granules, plates or composites.
- the gel formed in a stirred reactor is mechanically comminuted, rendered hydrophobic in another pressure reactor and then dried on a conveyor belt at 150 ° C.
- Such a multi-stage process design with multiple transfers of intermediates from one to the other reactor is very expensive and increases the manufacturing cost of finished aerogels.
- WO 2016/124680 A1 describes a process similar to that described in WO2015 / 014813 A1 for the production of an airgel material which comprises the preparation of a sol, conversion of the sol into a gel and its subsequent hydrophobicization, the main focus here being on the structuring of gel bodies and resulting options for simplifications in plant construction and process control.
- the hydrophobic gel bars are removed from the first reactor and dried in an oven at 150 ° C, during which time the gel bars disintegrate by themselves into smaller fragments leaving an airgel granulate.
- the drying step of this process is carried out as described in WO2015 / 014813 A1, in a separate reactor, which in turn requires a transfer of the intermediate product and the construction of a separate drying plant.
- Airgel materials are technically demanding and economically complicated, among other things because different steps of such multi-stage processes take a long time and take place in several reactors.
- the object of the present invention is to provide an improved method for
- the object of the present invention is to provide a process in which a minimal handling of intermediates is necessary during the production of the airgel material and if possible can be dispensed with a transfer from one reactor to another.
- step b1) adding to the mixture of a base formed in step a) and mixing the resulting mixture;
- step b2) gelling the mixture obtained in step b2) containing silica sol to form a silica gel, and optional aging of the gel;
- step b2) adding to the optionally formed in step b2) formed silica gel of a hydrophobing catalyst, in-situ formation or controlled release of a Hydrophob istskatalysators and triggering the catalyzed hydrophobization of the silica gel;
- step d) removal of the volatile constituents of the mixture formed in step c) by subcritical drying, wherein the airgel material is formed, wherein at least steps b2) to d) are carried out in one and the same reactor.
- airgel materials can be produced in particulate form, for example as a powder or granules.
- powder is understood as meaning particles having an average numerical particle size of up to 50 ⁇ m, while granules usually consist of particles having a mean numerical particle size of 50 ⁇ m to 10 mm.
- the process according to the invention is particularly suitable for the production of airgel granules having an average numerical particle size of 50 ⁇ m to 10 mm.
- the numerical average particle size of the powder or granules can be determined according to IS013320: 2009 by laser diffraction particle size analysis. In this case, from the resulting measured particle size distribution, the average value dso is determined, which represents which particle size does not exceed 50% of all particles, defined as the numerical average particle size.
- the mixture prepared in step a) of the process according to the invention consists essentially of a silicon dioxide sol, one or more lower alcohols and an acid-catalytically activatable hydrophobizing agent.
- the alcohol is preferably selected from the group consisting of methanol, ethanol, n-propanol, isopropanol, butanol and mixtures thereof.
- the silica sol may be prepared in step a) by hydrolysis of an organosilicate Si (OR) 4 , neat or as a solution in an alcohol.
- dilution of the silica sol can be effected by means of an organic solvent mixture consisting of an alcohol from the group described above, an acid-catalytically activatable hydrophobing agent and water.
- Silica sol and acid catalytically activated hydrophobing agent may contain a small amount of water, unavoidable impurities and certain additives customary in the preparation of silica sols.
- this mixture may contain at least one polymerisable functional silane and, optionally, one or more monomers which are capable of forming a polymer structure within the airgel material to be produced.
- the polymerizable functional silane radical polymerizable groups as in the case of the common vinyltrialkoxysilanes such as vinyltriethoxysilane and vinyltrimethoxysilane or 3-Trialkoxysilylpropylmethacrylate as Trimethoxysilylpropylmethacrylat or
- Triethoxysilylpropylmethacrylat Preferred monomers are also selected from the group of radically polymerizable substances such as acrylates, vinyl chloride, styrene or divinylbenzene. Additionally or alternatively, in the silica sol-containing mixture mechanically reinforcing acting additives such as short fibers,
- glass fibers or mineral fibers are added.
- organosilicates Reaction of organosilicates with water leads to its hydrolysis, wherein the silicon-bonded alkoxy groups (OR) are partially or completely replaced by silanol groups Si-OH, which in turn can react with one another and form siloxane bonds (Si-O-Si) by so-called polycondensation reactions .
- Hydrolysis and condensation are dynamic reactions of many interdependent chemical equilibria, which are strongly influenced by catalysts such as acids and bases.
- Such a hydrolyzate of an organosilicate consisting of nanoscale colloidal particles of amorphous S1O2 with a significant residual amount of unhydrolyzed alkoxy Si-OR usually have a low viscosity and are referred to as silica sol or silica sol.
- step a) of the process according to the invention preference is given to adding to an alcoholic solution of the organosilicate catalytic amounts of an acid and substoichiometric amounts of water, the molar ratio of organosilicate / water / acid being 1: 1-3, 5: 0.0001-0.01, more preferably from 1: 1-2.5: 0.0005-0.005 is maintained.
- the acid for example, sulfuric acid, hydrogen chloride or nitric acid can be used.
- a hydrophobing agent is understood to mean a component which imparts hydrophobic, water-repellent properties to an oxide surface. This is achieved by reacting a hydrophobing agent to covalently bond alkylalkoxysilanes to the oxide surface.
- the typical water repellents for silica are, for example, organosilanes, organosiloxanes and organosilazanes. It is known from WO2015 / 014813 A1 that some of these water repellents can be activated by acid catalyzation, that is, they can react with silica surface in the presence of catalytic amounts of certain acids at lower temperatures and / or faster than without a catalyst.
- Such acid catalytically activatable hydrophobizing agents include, among others, organosiloxanes and other alkylalkoxysilanes. Hexamethyldisiloxane and trialkylalkoxysilanes, in particular, are particularly suitable as acid-catalyzable water repellents Trimethylalkoxysilanes such as trimethylethoxysilane and trimethylmethoxysilane.
- the acid-catalytically activatable hydrophobizing agents of the present invention are very particularly preferably selected from the group consisting of hexamethyldisiloxane, trimethylethoxysilane, trimethylmethoxysilane and mixtures thereof.
- step b1) By adding a base to the mixture formed in step a) comprising silicon dioxide sol and subsequent mixing, a gelation process is initiated in step b1) of the process according to the invention shortly before the actual gelation and optional aging of the gel formed can take place in step b2).
- the previously described by hydrolysis of the organosilicate silanol groups Si-OH on the surface of the already formed colloid particles are condensed in step b2), now catalyzed by base addition, optionally by an additional heating, forming a three-dimensional particle network, the silica gel or silica gel is called.
- the gel thus formed in an alcohol / hydrophobizing medium which may also be referred to as an "organogel" is still subjected to an aging step whereby the particle network structure is mechanically solidified to form new chemical bonds.
- the sol system and added base amount are usually chosen so that the gelling time is between 5 and 15 minutes. If base addition and mixing take place outside the reactor, in which the remaining process steps b2) -d) are carried out, a transfer into this same reactor must take place before gelling commences. The actual gelation and optional aging of the gel formed in step b2) takes place in any case in the mentioned reactor, where all process steps b2) -d) take place.
- step b1) of the process according to the invention a slight increase in the viscosity of the mixture can take place so that the ratio of dynamic viscosity of the mixture obtained in step b1) to the dynamic viscosity of the mixture formed in step a) is at most 10, preferably at most 5, particularly preferably at most 2 is.
- step b2) The gelation taking place in step b2) leads to a substantial viscosity ingress of the mixture, so that the ratio of dynamic viscosity of the gel formed in step b2) to the dynamic viscosity of the mixture formed in step a) is greater than 10, preferably greater than 50, particularly preferred is greater than 100.
- step b1) of the process according to the invention preference is given to using a base selected from the group consisting of ammonia, lower aliphatic alkylamines, aminosilanes, ammonium fluoride, alkali metal hydroxide (in particular sodium hydroxide or potassium hydroxide) or alkaline earth metal hydroxides.
- Lower aliphatic amines are understood as meaning primary, secondary or tertiary alkylamines having a molar mass of less than 500 g / mol.
- Examples of aminosilanes are aminopropyltrimethoxysilane or Aminopropyltriethoxysilane particularly suitable.
- the base used in step b1) of the process according to the invention is selected from the group consisting of ammonia, ammonium fluoride or aminosilanes.
- the base used in step b1) of the process according to the invention is selected from the group consisting of ammonia, ammonium fluoride or aminosilanes.
- Step b1) is preferably carried out within a maximum of 1 hour, preferably within 30 minutes, particularly preferably within 10 minutes before step b2).
- steps b1) and b2) are carried out in one step so that the addition of the base and subsequent mixing takes place in the reactor in which all the remaining process steps b2) to d) take place.
- Step b2) can be carried out at a temperature of 60 to 130 ° C, particularly preferably from 80 to 120 ° C.
- the usual duration of this step is from 5 to 240 minutes, preferably from 10 to 180 minutes.
- step b2) of the process according to the invention is carried out at a temperature of 90 to 115 ° C. within 20 to 75 minutes.
- step c) of the process according to the invention the hydrophobization of the silicon dioxide sol prepared in step b2) is triggered by means of a hydrophobizing catalyst.
- the hydrophobizing catalyst can be added to the sol or is released directly into silica sol.
- hydrophobizing agents are classically activated in the presence of Bronsted acids which generate H + or H 3 O + ions.
- the gelation process taking place under slightly basic conditions and the hydrophobing process taking place under acidic conditions can be carried out in a single organogel cleanly separated from each other in time.
- a hydrophobing catalyst is selected from the group consisting of hydrogen chloride (gaseous or as a solution), nitric acid, sulfuric acid, trimethylchlorosilane and mixtures thereof.
- Alcoholic solutions of hydrogen chloride, nitric acid, sulfuric acid or trimethylchlorosilane are particularly preferably used as hydrophobizing catalysts.
- the hydrophobizing catalyst is in situ by a radical decomposition process in the gel educated.
- the hydrophobizing catalyst is formed by free-radical decomposition of previously added chlorine-containing organic compounds such as weakly or unstabilized PVC, trichloromethane, chloroacetone or tetrachlorethylene.
- the hydrophobization catalyst which is advantageously HCl, can be released at a desired time, which can be accomplished either by electromagnetic radiation (UV, X-ray) or by common radical starters.
- UV, X-ray electromagnetic radiation
- common radical starters for gels with high optical transparency and small thickness, photochemical radical decomposition processes are preferred.
- the hydrophobizing catalyst is released by slow-release agents in the gel, wherein the release is optionally initiated or accelerated by thermal activation.
- Hydrogen chloride, nitric acid or sulfuric acid or precursors thereof which are released by "slow-release” or “controlled-release” additives such as microcapsules, nanocapsules or particles contained in the sol are preferably used as the hydrophobizing catalyst in this case.
- these agents are activated by externally controllable process parameters such as pressure, temperature or electromagnetic radiation (light, radio waves, microwaves).
- Step b2) and / or step c) of the process according to the invention is preferably carried out in a pressure vessel at a pressure of 1 to 20 bar, more preferably under a pressure of 1, 1 to 10 bar (absolute), most preferably under a pressure of 1, 2 to 5 bar (absolute) performed.
- the boiling point of the solvent mixture used is usually between 80 and 100 ° C.
- Working in the pressure vessel allows analogous to the example of a steam cooking pot, step b2) according to the invention can be carried out at much higher temperatures in the range 80-130 ° C, which increases the reaction rate.
- the hydrophobing time can be drastically reduced (for example from 24 hours at 65 ° C to only 3 hours at 90 ° C), which results in a significant increase in the efficiency of the process.
- the hydrophobing of the silicon dioxide according to step c) is carried out at a temperature of 80 to 130 ° C, under a pressure of 1, 2 to 4 bar within 20 to 180 minutes.
- step d) of the process according to the invention the volatiles present in the hydrophobized silica gel, such as, for example, alcohols and remaining hydrophobing agent, are removed by subcritical drying, leaving behind the final airgel structure.
- volatiles present in the hydrophobized silica gel such as, for example, alcohols and remaining hydrophobing agent
- subcritical drying means that the temperature and / or pressure set during drying are less than the critical parameters of the solvent mixture used (pore liquid) and accordingly this pore liquid is not present as supercritical fluid during drying.
- step d) is carried out at least partially under reduced pressure, more preferably under an absolute pressure of 0.1 to 1 bar. Drying in a vacuum has the advantage that it can take place at a low temperature, that is to say with a reduced heat energy requirement. In particular, at the end of the drying is achieved at the same temperature by working in a vacuum, a lower residual amount of solvents (residual moisture) in the airgel material. From a process engineering point of view, however, the heat transfer by convective gas exchange with the material to be dried increases with increasing pressure, which in turn reduces the drying time and increases the process efficiency. Particularly preferably, step d) of the process according to the invention is carried out at a temperature of 100 to 200 ° C. and under a pressure of 0.1 to 4 bar.
- a carrier gas is introduced continuously into the reactor and discharged from the reactor after mixing with the gaseous constituents of the reactor.
- a carrier gas for example, nitrogen can be used.
- the carrier gas used is preheated to a temperature of 50 to 200 ° C.
- the preheated carrier gas can be introduced into the reactor, in the pressure of 1 to 4 bar is set.
- the heat transfer between the introduced gas and solid / liquid reaction mixture is favored in the reactor. It has proven to be particularly advantageous if the time-related gas input into the reactor, based on reactor volume, corresponds to an hourly space velocity of gas (GHSV) of 150 to 1500 h 1 , where:
- GHSV hourly space velocity of gas
- GHVS [h 1 ] gas entry into the reactor in L per hour / reactor volume in L
- Steps b2) to d) of the process according to the invention are carried out in a single reactor.
- this is a closable pressure vessel, which is designed for a process pressure of 0.05 to 20 bar.
- both the process steps in the suppression for example from 0.05 to 1 bar, as well as at overpressure, for example, be carried out from 1 to 20 bar.
- the volatile constituents of the mixture obtained in step in step d) of the process according to the invention are preferably at least 85%, particularly preferably at least 95% recovered and used again in step a).
- the reactor may have any form known in the process technology. As particularly preferred, axisymmetric reactors have been found. Particularly preferably, one or more tubes are used as reactors. In a particularly preferred embodiment of the invention, the reactor is designed as a bundle of tubes arranged parallel to one another. In principle, different shapes of the pipe cross-section can be used. Advantageously, it is pipes with a circular or square, in particular square inner profile. Furthermore, it is advantageous to handle, if in each case a certain number of tubes is held together to form a tube bundle. In an advantageous embodiment, all the tubes have an identical cross section, which is preferably round or hexagonal. This makes it possible to build compact tube bundles with little dead volume between the individual tubes.
- the tubes are used with a maximum diameter of 5 to 50 mm, preferably from 10 to 35 mm, particularly preferably from 20 to 26 mm.
- the reactor in which steps b2) to d) are carried out is a tube with a diameter of 5 to 50 mm or a bundle of a plurality of such tubes arranged parallel to one another.
- the spatial orientation of the reactor used in steps b) to d) may possibly play an important role in optimizing the operation according to the method of the invention.
- the axis of symmetry in the longitudinal direction of the axisymmetric reactor used in steps b2) to c) during the execution of these steps forms a horizontal angle of 10 to 45 degrees, preferably 15 to 30 degrees, particularly preferably 17 to 25 degrees ,
- airgel material with a density of less than 0.3 g / cm 3 , preferably of less than 0.2 g / cm 3 , more preferably of less than 0.15 g / cm 3 and a thermal conductivity of 12 to 30 mW / (mK) at normal pressure and 20 ° C, are produced.
- This may in particular be a granulate having an average numerical particle size of 50 pm to 10 mm.
- the thermal conductivity of the airgel material as powder or granules in the bed is measured according to EN 12667: 2001 at a mean measuring temperature of 20 ° C, a contact pressure of 250 Pa under air atmosphere and at atmospheric pressure.
- Another object of the invention is a method in which from the airgel material produced by the process according to the invention a thermal and / or acoustic insulation plate is formed.
- a thermal and / or acoustic insulation plate is formed.
- Such an insulating plate can reduce the heat and / or sound passage and thus has thermal and / or acoustic insulation properties.
- the airgel material produced by the process according to the invention or the insulation plate (insulation plate) formed therefrom can be used for thermal insulation.
- the airgel material produced according to the invention can be used in plaster, mortar and concrete formulations for thermal insulation.
- the airgel material produced according to the invention can be used as a bed for thermal insulation in Schüttdämmanassembleen, for example in Thermoisolier employern.
- the airgel material produced according to the invention can be used in thermally and / or acoustically insulating coatings, for example as
- TEOS tetraethylorthosilicate
- S1O2 equivalent content 20% by weight
- the sol concentrate was diluted with ethanol and hexamethyldisiloxane (HMDSO) as a hydrophobing agent to about 6% by weight of S1O2 equivalent, with the volume fraction of HMDSO in the sol being about 30% by volume. 1370 ml_ of this sol was preheated to 35 ° C and by addition of
- Synerese Eatkeit (pore fluid) drained and recovered, which corresponded to a shrinkage of the aged gel of about 18%.
- the bottom plate was screwed tight again and 350 mL of a dilute ethanolic H2SO4 solution (hydrophobing catalyst) was added, with the gel bars in the reactor block were completely covered with the hydrophobizing catalyst liquid.
- the head cover was again screwed media-tight and the reactor heated by means of hot plates to a target temperature of 110 ° C.
- the gel bars were then hydrophobized for 2.5 hours, with an overpressure of about 1.7 bar was measured. Thereafter, the heater was turned off again. After a cooling time of about 30 minutes, with the residual overpressure falling below 0.5 bar, the reactor lid was carefully opened again and removed. By loosening the bottom plate was the excess
- the reactor was vertical (alignment of the holes or the formed gel bars).
- the reactor lid was now again screwed media-tight and the reactor placed on its side, which has a horizontal alignment of the tie rods result.
- the fixing screws for the bottom plate were loosened for the drying process, so that a gap between reactor block and bottom plate of about 1-2 mm resulted, over which the drying gases could escape.
- T 200 ° C
- the drying in the reactor was completed after about 1 hour, after which nitrogen supply and reactor heating were switched off.
- the reactor was cooled for 45 minutes and approximately 1250 ml of a bluish-white, particulate, hydrophobic airgel was obtained as a bed.
- Analysis of the product showed a bulk density of 0.1 1 - 0.13 g / cm 3 and a thermal conductivity of 17.8 mW / m K for the bed.
- a silica sol concentrate analogous to Example 1 was diluted with ethanol and HMDSO to 5.7% by weight of S1O2 equivalent S1O2.
- the HMDSO content in the sol mixture was 33% by volume.
- 10 ml of 2M aqueous NH 3 solution were added to 410 ml of this sol at room temperature and, after brief stirring, transferred to a beaker which was filled with a bundle of length-cut plastic drinking straw tubes
- Inner diameter of about 8 mm of polypropylene was completely filled. The latter served as a form for the (aero) loops to be prepared.
- the beaker was covered with a watch glass, sealed with parafilm and placed in a holding cabinet at 65 ° C.
- the gelation took place after about 10-12 minutes -
- the gel bars were allowed to age for 14 hours at 65 ° C. Thereafter, about 80 mL of syneresis liquid was decanted off and the shaping drinking straws were removed, leaving the vertical standing bars behind. Now one became
- Hydrophobizing catalyst solution consisting of 250 mL HMDSO, 10 mL ethanol and 7.5 mL 37 wt .-% hydrochloric acid solution was added, the lollipops generously (about 1.5 cm) were covered with liquid.
- the watch glass-covered and parafilm-sealed beaker was again incubated in the oven at 65 ° C for 24 hours for the hydrophobization reaction. Thereafter, the excess hydrophobizing catalyst solution was decanted off and the gel bars were then dried in a drying oven under a nitrogen atmosphere for 3 hours at 150 ° C.
- the product was larger rod fragments with a length between
- the bulk density of the material thus obtained was 0.1 13 g / cm 3 .
- the thermal conductivity of the unchanged sample was 22-23 mW / m K. The higher value was due to the large fragments and the resulting proportion of large air holes.
- the total process time was 42 hours.
- Comparative Example 1 Compared to Example 1, Comparative Example 1 has the disadvantage of an additionally required transfer of hydrophobized gel into the drying installation and the associated additional investment costs in a technical installation.
- the experimental reactor was an electrically heatable tube made of stainless steel 1.4571
- a P750 sol concentrate with an equivalent content S1O2 of 20.0% by weight was prepared from Dynasilan 40 (manufacturer: Evonik Resource Efficiency GmbH), diluted to 5.8% by weight with ethanol and HMDSO (30% by volume in the sol). at
- Discharge vessel and removed from the system. Thereafter, the head sample was filled with 200 ml of a dilute, ethanolic nitric acid solution and added slowly over the head template.
- the tube reactor was closed again pressure-tight and heated to a nominal temperature of 100 ° C.
- the gel bar in the tube was now hydrophobicized for 90 minutes, with a
- Example 2 experiment An analogous to Example 2 experiment was carried out using the same starting ol and identical process parameters. When filling the reactor, this was in a vertical position. After completion of aging and draining the
- Syneresis liquid the hydrophobizing catalyst solution was added while still vertically aligned in the manner described in Example 2 overhead.
- the hydrophobing catalyst was recovered with the reactor open by tilting it to the vertical position over the top.
- the reactor was rotated in the horizontal.
- the pilot plant used consisted of a stirred reactor for sol production and a tube bundle reactor with head and lid unit and corresponding auxiliary units (heating, heat exchanger, condenser) and tanks / templates for the used
- the tube bundle reactor consisted of a heat exchanger of parallel tubes with an inner diameter of 18 mm and a through
- Heat transfer fluid flushable jacket The reactor was bolted firmly to the ground at a fixed angle to the horizontal of 19 °.
- 76 L of a sol according to Example 2 were prepared by dilution of the sol concentrate with ethanol and HMDSO in the stirred reactor and preheated to 45 ° C. Thereafter, dilute ethanolic ammonia solution was added and the so-activated sol via transfer line with pressure equalization in the pre-heated to 60 ° C.
- Tube bundle reactor transferred.
- the diluted with ethanol and HMDSO sol mixture and a dilute ammonia solution was fed by means of two separate pipes in the desired ratio to the reactor and homogeneously mixed in the same by means of a mixing device located at the reactor inlet, such as a blend or a static mixer during the filling process. Thereafter, the head and bottom valves of the reactor were closed, whereby the heat exchanger tubes formed with the forming tie rods a pressure-tight closing system.
- Heat exchanger liquid raised to 1 12 ° C.
- the pressure rose rapidly to a value of 2.5 bar.
- the bottom and head valves were carefully opened, and then the syneresis liquid in the original was collected.
- 18.5 L of a dilute solution of nitric acid in ethanol in the stirred reactor were preheated to 60 ° C and then pumped into the above-mentioned template. The heating of the
- Tube bundle heat exchanger was set to 95 ° C.
- Hydrophobing catalyst liquid removed from the system.
- the system consisting of the reactor and the peripheral circuit was aerated slowly against a nitrogen atmosphere and finally a nitrogen flow of 1.36 m 3 / min was set.
- the heating setpoint was also set to 160 ° C.
- ethylene tetrafluoroethylene (ETFE) inner coating and hermetically sealable lid was adapted to the barrel body of hexagonal polypropylene plastic honeycomb (Tubus honeycomb, cell size 8 mm, length 450 mm) inserted in a vertical orientation such that the entire vessel volume except for an approximately 4 cm air gap to the lid with the
- Honeycomb block was filled. Head cover and bottom of the barrel were each equipped with a ball valve; The barrel was freely rotatably mounted on an aluminum frame via a horizontal axis.
- a Solkonzentrat prepared from Dynasylan ® -40 (manufacturer: Evonik Resource Efficiency GmbH) was diluted analogously to Example 2 to a silicate content of 6.0 wt .-%, wherein the volume fraction of HMDSO in the sol 29.2 vol .-% and by adding dilute ethanolic Activated ammonia solution and homogenized by stirring. 41.1 L of this sol were introduced at room temperature into the honeycomb-loaded barrel body. The drum was sealed and transferred to a preheated to 65 ° C oven with enough capacity.
- Hydrophobizing catalyst fluid was drained via the bottom valve. Then, the honeycomb block was removed from the barrel via a dedicated auxiliary construction and the hydrophobic gel bars were deflated by tapping.
- Airgel material was mechanically comminuted so that a broad size distribution between 0.2 mm and 6 mm of the particles resulted and determined the thermal conductivity of the bed by means of two-plate device to 16.7 mW / (m K).
- Comparative Example 2 has the disadvantage of an additionally required transfer, for example via a lock system, of hydrophobized gel into an additional drying system to be procured and associated additional investment costs.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Architecture (AREA)
- Electromagnetism (AREA)
- Acoustics & Sound (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Silicon Compounds (AREA)
- Thermal Insulation (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
Abstract
L'invention concerne un procédé de production d'un matériau aérogel à base de dioxyde de silicium amorphe. Le procédé comprend des étapes suivantes consistant à : a) préparer un mélange contenant un sol de dioxyde de silicium, de l'alcool et un agent d'hydrophobisation pouvant être activé par des réactions catalysées par des acides ; b1) ajouter au mélange obtenu à l'étape a) une base et mélanger le mélange en résultant ; b2) gélifier le mélange obtenu à l'étape b1) contenant le sol de dioxyde de silicium, un gel de dioxyde de silicium se formant, et en option faire vieillir le gel ; c) ajouter au gel de dioxyde de silicium obtenu à l'étape b2) et en option vieilli un catalyseur d'hydrophobisation, obtenir sur place ou dégager de manière contrôlée un catalyseur d'hydrophobisation et déclencher l'hydrophobisation catalysée du dioxyde de silicium ; d) supprimer les éléments volatiles du mélange obtenu à l'étape c) par séchage sous-critique, le matériau aérogel étant obtenu, au moins les étapes b2) à d) étant mises en œuvre dans un seul et même réacteur.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18159929 | 2018-03-05 | ||
PCT/EP2018/075446 WO2019170264A1 (fr) | 2018-03-05 | 2018-09-20 | Procédé de production d'un matériau aérogel |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3762137A1 true EP3762137A1 (fr) | 2021-01-13 |
Family
ID=61622316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18773176.5A Pending EP3762137A1 (fr) | 2018-03-05 | 2018-09-20 | Procédé de production d'un matériau aérogel |
Country Status (6)
Country | Link |
---|---|
US (1) | US12060278B2 (fr) |
EP (1) | EP3762137A1 (fr) |
JP (1) | JP7184916B2 (fr) |
KR (1) | KR102489744B1 (fr) |
CN (1) | CN111818994A (fr) |
WO (1) | WO2019170264A1 (fr) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6952764B2 (ja) | 2016-07-29 | 2021-10-20 | エボニック オペレーションズ ゲーエムベーハー | 疎水性の断熱材料の製造方法 |
MX2019008516A (es) | 2017-01-18 | 2019-09-18 | Evonik Degussa Gmbh | Material de aislamiento termico granulado y procedimiento para producirlo. |
DE102017209782A1 (de) | 2017-06-09 | 2018-12-13 | Evonik Degussa Gmbh | Verfahren zur Wärmedämmung eines evakuierbaren Behälters |
EP3597615A1 (fr) | 2018-07-17 | 2020-01-22 | Evonik Operations GmbH | Matériau d'oxyde mixte granulaire et composition d'isolation thermique sur sa base |
JP7009673B2 (ja) | 2018-07-17 | 2022-01-25 | エボニック オペレーションズ ゲーエムベーハー | ヒュームドシリカ造粒物に基づく断熱組成物、その製造方法およびその使用 |
US11987528B2 (en) | 2018-07-18 | 2024-05-21 | Kingspan Insulation Limited | Process for hydrophobizing shaped insulation-material bodies based on silica at ambient pressure |
CN113636824B (zh) * | 2021-08-20 | 2023-02-14 | 巩义市泛锐熠辉复合材料有限公司 | 一种增强型二氧化硅气凝胶复合材料的制备方法 |
CN116376368B (zh) * | 2023-04-23 | 2024-01-26 | 刘闽瑶 | 一种微态激发低碳节能涂料及其制备方法 |
Family Cites Families (126)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2595262A (en) | 1949-03-26 | 1952-05-06 | Monsanto Chemicals | Method and apparatus for filling containers |
DE952891C (de) | 1954-01-23 | 1956-11-22 | Degussa | Verfahren zur Herstellung von feinverteilten Metalloxyden und deren Gemischen |
DE1567440B1 (de) | 1965-04-29 | 1971-02-25 | Degussa | Kugelfoermiges kieselsaeuregranulat |
FR1497527A (fr) | 1966-06-03 | 1967-10-13 | Saint Gobain | Produits isolants, tels que coquilles, utilisables pour le calorifugeage à haute température et procédé ainsi qu'installation pour leur fabrication |
US3562177A (en) | 1966-12-09 | 1971-02-09 | Monsanto Co | Ammonia containing silica-and-organo-silica-aerogel thickening agents and their preparation |
DE2533925C3 (de) | 1975-07-30 | 1980-12-11 | Degussa Ag, 6000 Frankfurt | Verfahren zur Herstellung von feinstteiligen Oxiden von Metallen und/oder des Siliciums |
US4048290A (en) | 1976-01-28 | 1977-09-13 | Cabot Corporation | Process for the production of finely-divided metal and metalloid oxides |
DE2754517A1 (de) | 1977-12-07 | 1979-06-13 | Wacker Chemie Gmbh | Verfahren zum verbessern von waermeschutzgegenstaenden |
JPS54101795A (en) | 1978-01-30 | 1979-08-10 | Toyo Soda Mfg Co Ltd | Hydrophobic rendering method for oxide fine powder |
US4175159A (en) | 1978-07-31 | 1979-11-20 | General Electric Company | Silicone emulsions for treating silicate particulate matter |
DE2931585A1 (de) | 1979-08-03 | 1981-02-12 | Degussa | Temperaturstabilisiertes, pyrogen hergestelltes aluminiumoxid-mischoxid, das verfahren zu seiner herstellung und verwendung |
DE2931810A1 (de) | 1979-08-06 | 1981-02-19 | Degussa | Temperaturstabilisiertes siliciumdioxid-mischoxid, das verfahren zu seiner herstellung und verwendung |
DE3000542A1 (de) | 1980-01-09 | 1981-08-27 | Degussa Ag, 6000 Frankfurt | Waermeisolationsmischung und verfahren zu deren herstellung |
DE3037409A1 (de) | 1980-10-03 | 1982-05-19 | Dr. Carl Riffer Baustoffwerke KG, 5403 Mülheim-Klärlich | Hohlblockstein mit integrierter waermedaemmung, mittel zum verfuellen und verfahren zu seiner herstellung sowie vorrichtung zur durchfuehrung des verfahrens |
DE3814968A1 (de) * | 1988-05-03 | 1989-11-16 | Basf Ag | Daemmstoff der dichte 0,1 bis 0,4 g/cm(pfeil hoch)3(pfeil hoch) |
DE3912504A1 (de) | 1989-04-17 | 1990-10-18 | Degussa | Presslinge auf basis von pyrogen hergestelltem siliciumdioxid, verfahren zu ihrer herstellung und ihre verwendung |
US5183710A (en) | 1990-08-30 | 1993-02-02 | U-Sus Distributors, Inc. | Hydrophobic inorganic materials and process for making same |
US5565142A (en) | 1992-04-01 | 1996-10-15 | Deshpande; Ravindra | Preparation of high porosity xerogels by chemical surface modification. |
DE4221716A1 (de) | 1992-07-02 | 1994-01-05 | Wacker Chemie Gmbh | Verfahren zur Hydrophobierung von pyrogen hergestelltem Siliciumdioxid |
DE4310613A1 (de) | 1993-03-31 | 1994-10-06 | Wacker Chemie Gmbh | Mikroporöser Wärmedämmformkörper |
DE4315088A1 (de) | 1993-05-06 | 1994-11-10 | Wacker Chemie Gmbh | Verfahren zur Herstellung eines mikroporösen Körpers mit wärmedämmenden Eigenschaften |
SE501701C2 (sv) | 1993-09-29 | 1995-04-24 | Electrolux Ab | Sätt att fylla och packa isoleringspulver i väggarna hos en skåpkropp |
DE4427137B4 (de) | 1993-10-07 | 2007-08-23 | Degussa Gmbh | Fällungskieselsäure |
DE4419234A1 (de) | 1994-06-01 | 1995-12-07 | Wacker Chemie Gmbh | Verfahren zur Silylierung von anorganischen Oxiden |
ES2154748T3 (es) | 1995-02-04 | 2001-04-16 | Degussa | Granulados a base de dioxido de silicio preparado por via pirogena, procedimiento para su preparacion y su empleo. |
DE19506141A1 (de) | 1995-02-22 | 1996-08-29 | Hoechst Ag | Verwendung von Aerogelen in der Pharmazie, in der Kosmetik und im Pflanzenschutz |
IN191468B (fr) | 1996-03-29 | 2003-12-06 | Degussa | |
JPH10152360A (ja) | 1996-11-20 | 1998-06-09 | C I Kasei Co Ltd | エアロゲル断熱パネルおよびその製造方法 |
DE19720269A1 (de) | 1997-05-14 | 1998-11-19 | Inst Neue Mat Gemein Gmbh | Nanokomposit für thermische Isolierzwecke |
US6058979A (en) | 1997-07-23 | 2000-05-09 | Cuming Corporation | Subsea pipeline insulation |
DE19752659A1 (de) | 1997-11-27 | 1999-06-24 | Wacker Chemie Gmbh | Organosiliciumverbindungenhaltige hydrophobierende Pulver enthaltende Baustoffmassen |
DE19756633A1 (de) * | 1997-12-19 | 1999-06-24 | Hoechst Ag | Verfahren zur unterkritischen Trocknung von Lyogelen zu Aerogelen |
DE19807700A1 (de) | 1998-02-24 | 1999-08-26 | Degussa | Fällungskieselsäuregranulate |
US6099749A (en) | 1998-09-25 | 2000-08-08 | Cabot Corporation | Method of compacting a fumed metal oxide-containing composition |
DE19857912A1 (de) | 1998-12-16 | 2000-07-06 | Degussa | Toner und/oder Toner-Mischungen |
DE19948394C1 (de) | 1999-10-07 | 2001-02-01 | Wacker Chemie Gmbh | Verfahren zur Verfestigung von mineralischem porösem Schüttgut, mineralisches poröses Schüttgut und dessen Verwendung |
DE10135452A1 (de) | 2001-07-20 | 2003-02-06 | Degussa | Pyrogen hergestellte Aluminium-Silicium-Mischoxide |
US6472067B1 (en) | 2001-09-27 | 2002-10-29 | Hc Chem Research And Service Corp. | Non-flammable polymer composite panels |
JP4369239B2 (ja) | 2002-01-29 | 2009-11-18 | キャボット コーポレイション | 耐熱性エーロゲル絶縁複合材料およびその製造方法、エーロゲルバインダー組成物およびその製造方法 |
DE10330221A1 (de) | 2002-08-03 | 2004-02-12 | Degussa Ag | Hochdispersible Fällungskieselsäure |
DE10260323A1 (de) | 2002-12-20 | 2004-07-08 | Wacker-Chemie Gmbh | Wasserbenetzbare silylierte Metalloxide |
MXPA05007588A (es) | 2003-01-22 | 2006-02-22 | Degussa | Silice altamente dispersable para utilizar en hule. |
DE10339679A1 (de) | 2003-08-28 | 2005-03-31 | Wacker-Chemie Gmbh | Kontinuierliches Verfahren zur Herstellung einer Wärmedämmplatte |
FR2873677B1 (fr) | 2004-07-29 | 2007-08-17 | Armines Ass Pour La Rech Et Le | Procede d'elaboration de serogels de silice hydrophobes |
US20060027227A1 (en) | 2004-08-09 | 2006-02-09 | Steve Everett | Volcano furnace |
GB0505270D0 (en) | 2005-03-15 | 2005-04-20 | Microtherm Int Ltd | Granular fibre-free microporous thermal insulation material and method |
US7562534B2 (en) | 2006-03-23 | 2009-07-21 | Praxair Technology, Inc. | Cryogenic aerogel insulation system |
DE202006012748U1 (de) | 2006-08-18 | 2006-10-19 | Schlagmann Baustoffwerke Gmbh & Co. Kg | Wärmedämmziegel |
DE102006039273A1 (de) | 2006-08-22 | 2008-02-28 | Evonik Degussa Gmbh | Pyrogenes Siliciumdioxid zur Verwendung als Hilfsstoff in pharmazeutischen und kosmetischen Zusammensetzungen |
DE102007051830A1 (de) | 2007-10-30 | 2009-05-07 | Rimmele, Matthias | Wärmedämmmaterialaufweisender Baustein sowie Verfahren zu seiner Herstellung |
DE102007042000B4 (de) | 2007-09-04 | 2021-12-09 | Evonik Operations Gmbh | Zweischaliges Mauerwerk mit integrierter hydrophober, mikroporöser Wärmedämmung |
DE102008005548A1 (de) | 2008-01-23 | 2009-07-30 | Günter Dr. Kratel | Mehrschalige Hohlbausteine mit integrierter Wärmedämmung |
DE202007013074U1 (de) | 2007-09-18 | 2008-02-14 | Kratel, Günter, Dr. | Mauerwerk mit integrierter Vakuumisolation auf Basis mikroporöser Wärmedämmung |
DE102007020716A1 (de) | 2007-05-03 | 2008-11-06 | Günter Dr. Kratel | Hohlbausteine mit integrierter mikroporöser Wärmedämmung |
DE102007024097A1 (de) | 2007-05-22 | 2008-11-27 | Evonik Degussa Gmbh | Kieselsäuren |
DE102007031635A1 (de) | 2007-07-06 | 2009-01-15 | Evonik Degussa Gmbh | Verfahren zur Herstellung von Metalloxidgranulaten |
DE102007043946A1 (de) | 2007-09-14 | 2009-03-19 | Bayerisches Zentrum für Angewandte Energieforschung e.V. | Faserverbünde und deren Verwendung in Vakuumisolationssystemen |
DE102008005005A1 (de) | 2008-01-17 | 2009-07-23 | Evonik Degussa Gmbh | Kohlenstoff-Aerogele, Verfahren zu deren Herstellung und deren Verwendung |
DE102008035867A1 (de) | 2008-08-01 | 2010-02-04 | Evonik Degussa Gmbh | Neuartige Fällungskieselsäuren für Trägeranwendungen |
DE102008036430A1 (de) | 2008-08-05 | 2010-02-11 | Günter Dr. Kratel | Baustein mit integrierter hydrophober, mikroporöser Kieselsäure als Wärmedämmung |
US20100146992A1 (en) | 2008-12-10 | 2010-06-17 | Miller Thomas M | Insulation for storage or transport of cryogenic fluids |
DE102008064572A1 (de) | 2008-12-30 | 2010-07-08 | Alsecco Gmbh & Co Kg | Mehrschichtige Wärmedämmplatte und Verfahren zum Aufbau einer Wärmedämmfassade |
ES2424219T3 (es) | 2009-02-13 | 2013-09-30 | Evonik Degussa Gmbh | Un material de aislamiento térmico que comprende sílice precipitada |
WO2010126792A1 (fr) | 2009-04-27 | 2010-11-04 | Ulrich Bauer | Compositions d'aérogel et leurs procédés de fabrication et d'utilisation |
ITMI20090950A1 (it) | 2009-05-29 | 2010-11-30 | Gegussa Novara Technology Spa | Processo per la preparazione di un aerogelo in pellets |
WO2011020671A1 (fr) | 2009-08-20 | 2011-02-24 | Evonik Röhm Gmbh | Dalle isolante en plastique, système et procédé d'isolation thermique |
CN105669101A (zh) | 2009-11-25 | 2016-06-15 | 卡博特公司 | 气凝胶复合材料及其制造和使用方法 |
DE102009054566A1 (de) | 2009-12-11 | 2010-11-11 | Wacker Chemie Ag | Hydrophobe Wärmedämmung |
US8647653B2 (en) | 2009-12-26 | 2014-02-11 | Evonik Degussa Gmbh | Water containing powder composition |
FR2955102B1 (fr) | 2010-01-11 | 2012-08-10 | Parexlanko | Enduit isolant a base de xerogel de silice. |
DE102010029513A1 (de) | 2010-05-31 | 2011-02-24 | Wacker Chemie Ag | Dämmung mit Schichtaufbau |
DE102010040346A1 (de) | 2010-09-07 | 2012-03-08 | BSH Bosch und Siemens Hausgeräte GmbH | Wärmeisolierender Formkörper und Verfahren zu dessen Fertigung |
DE102010046684A1 (de) | 2010-09-27 | 2012-03-29 | Günter Kratel | Stabilisierter Wärmedämmformkörper mit hydrophoben, mikroporösem Dämmstoffkern und hydrophiler Oberfläche |
DE102010046678A1 (de) | 2010-09-27 | 2012-03-29 | Günter Kratel | Mikroporöser, hydrophober Dämmformkörper mit hygrisch aktiver, oberflächennaher Schicht |
KR101187568B1 (ko) | 2010-09-29 | 2012-10-04 | 한국에너지기술연구원 | 실리카 에어로겔 과립의 제조방법 |
KR20120070948A (ko) | 2010-12-22 | 2012-07-02 | 주식회사 화인텍 | 단열 성능을 지닌 소수성 실리카 에어로젤 분말의 제조방법 |
KR101646423B1 (ko) | 2011-07-27 | 2016-08-05 | 에보니크 데구사 게엠베하 | 소수성 단열 성형물의 제조 방법 |
WO2013044012A1 (fr) | 2011-09-22 | 2013-03-28 | 3M Innovative Properties Company | Éléments de système d'échappement thermiquement isolé |
FR2981341B1 (fr) | 2011-10-14 | 2018-02-16 | Enersens | Procede de fabrication de xerogels |
HUP1100603A2 (en) * | 2011-10-28 | 2013-06-28 | Debreceni Egyetem | Method and installation for preparation of silicate - alcogels, xerogels, aerogels |
DE102012211121A1 (de) | 2012-06-28 | 2014-01-02 | Evonik Industries Ag | Granuläre, funktionalisierte Kieselsäure, Verfahren zu deren Herstellung und deren Verwendung |
HUE026454T2 (en) | 2012-10-26 | 2016-05-30 | Evonik Degussa Gmbh | Method for producing a heat insulating mixture |
PL2931677T3 (pl) | 2012-12-11 | 2021-12-13 | Empa Eidgenössische Materialprüfungs- Und Forschungsanstalt | Termoizalacyjne materiały tynkarskie na bazie aerożelu |
DE102012224201A1 (de) | 2012-12-21 | 2014-07-10 | Evonik Industries Ag | Vakuumisolierende Fassadenplatte mit verbesserter Handhabbarkeit |
PL3536837T3 (pl) | 2013-03-27 | 2024-07-15 | 3M Innovative Properties Company | Komponenty izolowane termicznie |
EP3022025B1 (fr) | 2013-07-16 | 2017-05-17 | Evonik Degussa GmbH | Procédé de remplissage des cavités de briques creuses avec une composition de matériau thermo-isolant contenant un agent hydrophobisant |
EP2832690A1 (fr) | 2013-08-02 | 2015-02-04 | EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt | Procédé de fabrication d'un matériau aérogel |
DE102013016705A1 (de) | 2013-10-09 | 2015-04-09 | Stiebel Eltron Gmbh & Co. Kg | Verfahren zur Dämmung eines Warmwasserspeichers und Warmwasserspeicher |
DE102014203091A1 (de) | 2014-02-20 | 2015-08-20 | Evonik Degussa Gmbh | Mit einem wärmedämmenden Material befüllter Rahmen und Verfahren zu dessen Herstellung |
JP6262872B2 (ja) | 2014-02-26 | 2018-01-17 | エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated | 触媒組成物及び発泡体の製造方法 |
FR3018207B1 (fr) | 2014-03-07 | 2016-03-18 | Enersens | Procede de fabrication d'aerogels par chauffage dielectrique |
CN105016349B (zh) * | 2014-04-24 | 2017-05-17 | 苏州同玄新材料有限公司 | 二氧化硅气凝胶、其连续化常压干燥制备方法及系统 |
EP2982660B1 (fr) | 2014-08-08 | 2018-10-10 | Evonik Degussa GmbH | Procédé de fabrication d'un corps de moulage d'isolation thermique hydrophobe |
WO2016045777A1 (fr) | 2014-09-24 | 2016-03-31 | Linde Aktiengesellschaft | Procédé pour compacter un matériau en vrac isolant |
EP3045600A1 (fr) | 2015-01-16 | 2016-07-20 | Evonik Degussa GmbH | Corps d'isolation thermique comprenant des éléments tensioactifs |
US9593797B2 (en) | 2015-01-30 | 2017-03-14 | Johns Manville | Hybrid high temperature insulation |
EP3053952A1 (fr) | 2015-02-04 | 2016-08-10 | Eidgenössische Materialprüfungs- und Forschungsanstalt EMPA | Procédé de production d'un matériau aérogel |
DE102015206433A1 (de) | 2015-04-10 | 2016-10-13 | Evonik Degussa Gmbh | Verfahren zur Herstellung eines Wärmedämmformkörpers |
WO2016171558A1 (fr) | 2015-04-24 | 2016-10-27 | Separex S.A.S. | Procédé d'application d'un revêtement d'aérogel de polyméthylsilsesquioxane sur un substrat poreux |
DE102015207939A1 (de) * | 2015-04-29 | 2016-11-03 | Wacker Chemie Ag | Verfahren zur Herstellung organisch modifizierter Aerogele |
CN106316439B (zh) | 2015-06-15 | 2019-01-25 | 上海赐业新能源材料科技有限公司 | 一种高强度防水性纳米微孔保温板的制备方法 |
KR20170014634A (ko) * | 2015-07-30 | 2017-02-08 | 현대자동차주식회사 | 단열 코팅 조성물 및 단열 코팅층 |
DE102015216505A1 (de) | 2015-08-28 | 2017-03-02 | Wacker Chemie Ag | Silica Formkörper mit geringer thermischer Leitfähigkeit |
PL3386915T3 (pl) | 2015-12-10 | 2022-11-21 | Evonik Operations Gmbh | Sposób izolacji termicznej pojemnika, w którym można wytwarzać próżnię |
DE102015225714A1 (de) | 2015-12-17 | 2017-06-22 | Evonik Degussa Gmbh | Isolationsverbund mit diffusionsoffenem Randverbund |
CH712479A1 (de) * | 2016-05-20 | 2017-11-30 | Flumroc Ag | Anlage und Verfahren zur Herstellung eines Aerogel-Verbundwerkstoffs und Aerogel-Verbundwerkstoff. |
JP6952764B2 (ja) | 2016-07-29 | 2021-10-20 | エボニック オペレーションズ ゲーエムベーハー | 疎水性の断熱材料の製造方法 |
MX2019008516A (es) | 2017-01-18 | 2019-09-18 | Evonik Degussa Gmbh | Material de aislamiento termico granulado y procedimiento para producirlo. |
CN106830878B (zh) | 2017-01-18 | 2018-04-06 | 加新科技(深圳)有限公司 | 一种超疏水性硅铝锆复合材料及其制备方法 |
EP3580387B1 (fr) | 2017-02-09 | 2020-12-16 | Evonik Operations GmbH | Procédé destiné à la fabrication d'une couche d'isolation thermique |
EP3403818A1 (fr) | 2017-05-15 | 2018-11-21 | Evonik Degussa GmbH | Corps moulé thermo-isolant contenant un substrat poreux |
CN110662726A (zh) | 2017-05-17 | 2020-01-07 | 赢创运营有限公司 | 具有硬化表面的芯疏水性隔热片材 |
DE102017209782A1 (de) | 2017-06-09 | 2018-12-13 | Evonik Degussa Gmbh | Verfahren zur Wärmedämmung eines evakuierbaren Behälters |
ES2840899T3 (es) | 2017-08-25 | 2021-07-07 | Evonik Operations Gmbh | Granulado de aislamiento térmico con hidrofobicidad reducida |
CN107381581A (zh) * | 2017-08-28 | 2017-11-24 | 优澎(嘉兴)新材料科技有限公司 | 疏水性二氧化硅气凝胶材料及其制备方法 |
US11046850B2 (en) | 2017-09-27 | 2021-06-29 | Evonik Operations Gmbh | Mixed metal catalyst compositions and methods for making polyurethane foam |
EP3498671A1 (fr) | 2017-12-15 | 2019-06-19 | EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt | Aérogel de silice super-isolant présentant une rigidité et une densité élevées |
JP7009673B2 (ja) | 2018-07-17 | 2022-01-25 | エボニック オペレーションズ ゲーエムベーハー | ヒュームドシリカ造粒物に基づく断熱組成物、その製造方法およびその使用 |
EP3597615A1 (fr) | 2018-07-17 | 2020-01-22 | Evonik Operations GmbH | Matériau d'oxyde mixte granulaire et composition d'isolation thermique sur sa base |
US11987528B2 (en) | 2018-07-18 | 2024-05-21 | Kingspan Insulation Limited | Process for hydrophobizing shaped insulation-material bodies based on silica at ambient pressure |
EP4041697B1 (fr) | 2019-10-07 | 2024-07-10 | Kingspan Insulation Limited | Feuille d'isolation thermique à base de silice revêtue d'une composition intumescente |
EP3870537A1 (fr) | 2020-01-14 | 2021-09-01 | Evonik Operations GmbH | Matériau granulaire hydrophobe à base de silice présentant une polarité accrue |
JP2023511850A (ja) | 2020-01-14 | 2023-03-23 | エボニック オペレーションズ ゲーエムベーハー | 表面活性が変更されたヒュームドシリカ |
WO2021170435A1 (fr) | 2020-02-28 | 2021-09-02 | Evonik Operations Gmbh | Corps moulé d'isolation thermique à base de silice |
US20230348285A1 (en) | 2020-04-30 | 2023-11-02 | Evonik Operations Gmbh | Silica aerogel with increased alkaline stability |
CA3172845A1 (fr) | 2020-05-25 | 2021-12-02 | Evonik Operations Gmbh | Granules de silice pour traitement thermique |
-
2018
- 2018-09-20 US US16/978,164 patent/US12060278B2/en active Active
- 2018-09-20 KR KR1020207027954A patent/KR102489744B1/ko active IP Right Grant
- 2018-09-20 CN CN201880090769.3A patent/CN111818994A/zh active Pending
- 2018-09-20 WO PCT/EP2018/075446 patent/WO2019170264A1/fr unknown
- 2018-09-20 EP EP18773176.5A patent/EP3762137A1/fr active Pending
- 2018-09-20 JP JP2020546413A patent/JP7184916B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
KR20200127014A (ko) | 2020-11-09 |
CN111818994A (zh) | 2020-10-23 |
US12060278B2 (en) | 2024-08-13 |
JP7184916B2 (ja) | 2022-12-06 |
WO2019170264A1 (fr) | 2019-09-12 |
JP2021517103A (ja) | 2021-07-15 |
KR102489744B1 (ko) | 2023-01-19 |
US20210039954A1 (en) | 2021-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019170264A1 (fr) | Procédé de production d'un matériau aérogel | |
WO2015014813A1 (fr) | Procédé de production d'un matériau aérogel | |
DE19648798C2 (de) | Verfahren zur Herstellung von organisch modifizierten Aerogelen durch Oberflächenmodifikation des wäßrigen Gels (ohne vorherigen Lösungsmitteltausch) und anschließender Trocknung | |
EP3253712A1 (fr) | Procédé de fabrication d'aérogel et matériau composite à base d'aérogel | |
EP0805781B1 (fr) | Procede de production d'aerogels modifies | |
DE69732758T2 (de) | Verfahren zur Herstellung eines Aerogels | |
EP0859739B1 (fr) | Procede de preparation d'aerogels modifies de maniere organique a l'aide d'alcools | |
EP0789667B1 (fr) | Procede de production d'aerogels | |
DD247610A5 (de) | Verfahren zur herstellung von aerogelen | |
WO2016124680A1 (fr) | Procédé de production d'un matériau aérogel | |
EP0861207B1 (fr) | Procede de preparation d'aerogels modifies de maniere organique a l'aide d'alcools, selon lequel les sels formes sont precipites | |
EP2644566A1 (fr) | Procédé de fabrication d'aérogels | |
EP0868402A1 (fr) | Procede de production d'aerogels inorganiques dans des conditions sous-critiques | |
CH712479A1 (de) | Anlage und Verfahren zur Herstellung eines Aerogel-Verbundwerkstoffs und Aerogel-Verbundwerkstoff. | |
EP0925256A1 (fr) | Procede de production d'aerogels modifies de maniere organique | |
DE19631267C1 (de) | Verfahren zur Herstellung von organisch modifizierten Aerogelen | |
DE102020112973A1 (de) | Verfahren zur Herstellung von Aerogelen und mit diesem erhältliche Aerogele | |
EP3424881A1 (fr) | Procédé de fabrication d'aérogels | |
DE102014101709A1 (de) | Verfahren zur Herstellung von Aerogelen | |
EP0984829B1 (fr) | Procede de production de lyogels et d'aerogels se presentant sensiblement sous la forme de billes | |
EP0984828A1 (fr) | Procede de production de logels et d'aerogels se presentant sensiblement sous la forme de billes | |
EP4201882A1 (fr) | Corps moulé monolithique en silice et sa fabrication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200904 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |