EP3018192B1 - Biologisch abbaubare fettzusammensetzung für windgenerator - Google Patents
Biologisch abbaubare fettzusammensetzung für windgenerator Download PDFInfo
- Publication number
- EP3018192B1 EP3018192B1 EP15192511.2A EP15192511A EP3018192B1 EP 3018192 B1 EP3018192 B1 EP 3018192B1 EP 15192511 A EP15192511 A EP 15192511A EP 3018192 B1 EP3018192 B1 EP 3018192B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- grease composition
- base oil
- thickener
- aerogenerator
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000203 mixture Substances 0.000 title claims description 113
- 239000004519 grease Substances 0.000 title claims description 83
- 239000002199 base oil Substances 0.000 claims description 56
- -1 diurea compound Chemical class 0.000 claims description 55
- 239000002562 thickening agent Substances 0.000 claims description 47
- 239000003795 chemical substances by application Substances 0.000 claims description 38
- 239000010696 ester oil Substances 0.000 claims description 25
- 150000001412 amines Chemical class 0.000 claims description 21
- 125000001931 aliphatic group Chemical group 0.000 claims description 19
- 125000002723 alicyclic group Chemical group 0.000 claims description 16
- 230000035515 penetration Effects 0.000 claims description 13
- 125000004432 carbon atom Chemical group C* 0.000 claims description 12
- 238000006065 biodegradation reaction Methods 0.000 claims description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims description 7
- 239000011574 phosphorus Substances 0.000 claims description 7
- 239000003921 oil Substances 0.000 description 17
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- 238000005096 rolling process Methods 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000000654 additive Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 235000013877 carbamide Nutrition 0.000 description 7
- 235000014113 dietary fatty acids Nutrition 0.000 description 7
- 239000000194 fatty acid Substances 0.000 description 7
- 229930195729 fatty acid Natural products 0.000 description 7
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 239000004202 carbamide Substances 0.000 description 6
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 6
- XMKLTEGSALONPH-UHFFFAOYSA-N 1,2,4,5-tetrazinane-3,6-dione Chemical class O=C1NNC(=O)NN1 XMKLTEGSALONPH-UHFFFAOYSA-N 0.000 description 5
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 5
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- 239000000344 soap Substances 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- 229920005862 polyol Polymers 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 229920002396 Polyurea Polymers 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- VPNOHCYAOXWMAR-UHFFFAOYSA-N docosan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCCCCCN VPNOHCYAOXWMAR-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 235000010446 mineral oil Nutrition 0.000 description 3
- 229920013639 polyalphaolefin Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 125000005442 diisocyanate group Chemical group 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- KZSJAGBYWSYWAK-UHFFFAOYSA-N (dithiocarboxyamino)methylcarbamodithioic acid Chemical compound SC(=S)NCNC(S)=S KZSJAGBYWSYWAK-UHFFFAOYSA-N 0.000 description 1
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000047703 Nonion Species 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- 231100000209 biodegradability test Toxicity 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- JTXUVYOABGUBMX-UHFFFAOYSA-N didodecyl hydrogen phosphate Chemical compound CCCCCCCCCCCCOP(O)(=O)OCCCCCCCCCCCC JTXUVYOABGUBMX-UHFFFAOYSA-N 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- FYOYCZHNDCCGCE-UHFFFAOYSA-N diphenyl hydrogen phosphite Chemical class C=1C=CC=CC=1OP(O)OC1=CC=CC=C1 FYOYCZHNDCCGCE-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- 150000002990 phenothiazines Chemical class 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- 235000011069 sorbitan monooleate Nutrition 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- XTTGYFREQJCEML-UHFFFAOYSA-N tributyl phosphite Chemical compound CCCCOP(OCCCC)OCCCC XTTGYFREQJCEML-UHFFFAOYSA-N 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- IKXFIBBKEARMLL-UHFFFAOYSA-N triphenoxy(sulfanylidene)-$l^{5}-phosphane Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=S)OC1=CC=CC=C1 IKXFIBBKEARMLL-UHFFFAOYSA-N 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/02—Mixtures of base-materials and thickeners
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/281—Esters of (cyclo)aliphatic monocarboxylic acids
- C10M2207/2815—Esters of (cyclo)aliphatic monocarboxylic acids used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/287—Partial esters
- C10M2207/289—Partial esters containing free hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/10—Amides of carbonic or haloformic acids
- C10M2215/102—Ureas; Semicarbazides; Allophanates
- C10M2215/1026—Ureas; Semicarbazides; Allophanates used as thickening material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/225—Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/046—Overbasedsulfonic acid salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/043—Ammonium or amine salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/02—Viscosity; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/081—Biodegradable compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/64—Environmental friendly compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/68—Shear stability
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/02—Bearings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2050/00—Form in which the lubricant is applied to the material being lubricated
- C10N2050/10—Semi-solids; greasy
Definitions
- the present invention relates to a biodegradable grease composition for an aerogenerator.
- An aerogenerator is installed outside on the land or the sea and in case a grease composition used for an aerogenerator is leaked and released to a natural environment, a water quality or soil may be contaminated. Therefore biodegradability is desired also for a grease composition for an aerogenerator.
- General aerogenerators consist of a blade (vane), tower (supporting column) and nacelle (body for generating electric power) and a grease composition is used for a spindle supporting bearing which rotates a blade by being subjected to wind power, a blade bearing used in a pitch revolving seat of the blade, a yaw rotation bearing used in a yaw rotation seat of the nacelle and the like.
- the spindle supporting bearing, blade bearing and yaw rotation bearing as noted above are constantly subjected to micro-oscillation due to a change in a wind orientation or strength and a control of the blade or nacelle, and are in an environment in which abrasion or corrosion (fretting) easily arises. Therefore excellent fretting resistance is required for a grease composition for an aerogenerator.
- JP 2011-084646 A there is disclosed a grease composition for bearings used in aerogenerators, comprising a base oil which has a kinematic viscosity of 10 to 70 mm 2 /s at 40°C and a pour point of -40°C or less, and a diurea compound as a thickener.
- a base oil which has a kinematic viscosity of 10 to 70 mm 2 /s at 40°C and a pour point of -40°C or less
- a diurea compound as a thickener.
- JP 2008-208240 A there is disclosed a biodegradable grease composition which can obtain biodegradability and extreme pressure property at low temperature by using a base oil comprising not less than 70% by mass of at least one selected from a polyol ester and a complex ester based on the whole amount of the base oil and having a kinematic viscosity at 40°C of 1 to 200 mm 2 /s.
- a base oil comprising not less than 70% by mass of at least one selected from a polyol ester and a complex ester based on the whole amount of the base oil and having a kinematic viscosity at 40°C of 1 to 200 mm 2 /s.
- fretting resistance, the use in an aerogenerator and the like are not considered.
- US2014193110 (A1 ) provides a grease composition decreasing the load sensitivity to a running torque, maintaining necessary performances for a wheel supporting rolling bearing unit, and maintaining a good lubricated condition for a long time, and, a wheel supporting rolling bearing unit having the grease composition packed therein.
- the grease composition contains base oil, thickeners, rust inhibitors, and anti-wear agents, the base oil contains mineral oil, synthetic oil or blend oil of the mineral oil and the synthetic oil, a mix ratio (mass ratio) of the mineral oil and the synthetic oil is 0:100 to 20:80, a kinematic viscosity of the base oil at a temperature of 40°C is 70 to 150 mm 2 /s, and a pour point of the base oil is equal to or lower than -40°C.
- the wheel supporting rolling bearing unit is packed with this grease composition.
- US2007072777 discloses a grease composition for a pivot assembly bearing including a thickener of 5 to 25% by mass and a base oil of 95 to 75% by mass with respect to the total mass of the thickener and the base oil.
- urea C a urea comprising diurea compounds having an aromatic (ARA)/aliphatic (ALA) substituent are used as the thickener.
- a lead free additive may be used as an additive.
- JP2003306687 (A ) provides a biodegradable grease composition being produced by compounding a base oil containing a polyol ester oil in an amount of ⁇ 60 mass% based on the total grease and having a kinetic viscosity of 25-50 mm 2 /s at 40°C with a diurea compound of general formula (1) of JP2003306687 (A ) as a thickening agent in an amount of 10-25 mass% based on the total grease and phenothiazine or a phenothiazine derivative as an antioxidant in an amount of 0.2-10 mass% based on the total grease.
- US2003176298 mentions a grease composition being produced by mixing a thickener of a calcium sulfonate complex and a second thickener component (polyurea, a metallic soap, a complex metallic soap or an N-substituted terephthalamic acid metal salt) into a base oil.
- This grease composition is excellent in heat resistance, load carrying capacity, water resistance and lubricating life.
- a grease composition is produced by mixing a thickener of an N-substituted terephthalamic acid metal salt and a second thickener component (polyurea, a metallic soap or a complex metallic soap) into a base oil. This grease composition is excellent in heat resistance, oxidation stability and lubricating life.
- a grease composition is produced by mixing a thickener of 10 to 90% by mass of polyurea and 90 to 10% by mass of a complex metallic soap into an ester oil having a kinematic viscosity at 40°C of 20 to 180 mm 2 /s.
- EP2829593 (A1 ) discloses a grease composition, which is excellent in seizure resistance without deteriorating resistance to stirring in the rolling device, and a rolling device, in which the grease composition intervenes to a predetermined portion is also disclosed by use of a grease composition comprising a base oil and a thickener, the thickener being a diurea compound obtained by allowing an amine mixture comprising alkylphenylamine, an alkyl group of which has 8 to 16 carbon atoms, and cyclohexylamine, to react with a diisocyanate compound, the amount of cyclohexylamine in the amine mixture being 80% by mole or more and less than 91 % by mole, and a worked penetration being 300 to 330.
- US2013331306 (A1 ) provides a grease composition for a rolling bearing for a motor to support a rotor of the motor, containing a pentaerythritol ester base oil with a kinematic viscosity at 40°C of 20 to 55 mm 2 /s; 7 to 13 mass % of a diurea thickener represented by formula (A) where each R group is defined; and a rust inhibitor mixture selected from the group consisting of polyol ester type rust inhibitors and organic sulfonate type rust inhibitors.
- the grease composition can prevent a peculiar noise from being produced at low temperatures, satisfy the low torque performance over a wide temperature range, extend the bearing lubrication life even under the circumstances of high temperature, and exhibit excellent rust inhibiting effect on varnish.
- US2004242439 (A1 ) describes a rolling bearing, for use in household appliances, having a high degree of quietness, an excellent durability at high temperatures and rotational speeds, a low torque, and excellent fretting property; and a lubricant composition which can be sealed into the rolling bearing.
- the lubricant composition includes a base oil and a thickening agent.
- the base oil is a mixed oil having the following characteristics of (a) to (c): (a) The base oil consists essentially of a synthetic hydrocarbon oil and an ester oil; (b) A kinematic viscosity of the mixed oil at 40°C is 40 to 70 mm 2 /second; (c) A mixing weight ratio between the ester oil of the mixed oil and the synthetic hydrocarbon oil thereof is 30:70 to 70:30.
- the thickening agent comprises a diurea compound shown by a formula (1): where R1 and R3 are a straight-chain alkyl groups having 9 to 22 carbon atoms respectively, and R2 is an aromatic hydrocarbon group having 6 to 15 carbon atoms.
- the lubricant composition is sealed into the rolling bearing.
- CN1940039 (A ) discloses a grease composition for pivot assembly bearing and bearing for pivot assembly.
- An object of the present invention is to provide a biodegradable grease composition which is excellent in fretting resistance, extreme pressure property, low temperature property, and biodegradability as well, and has a small effect to the environment even if released to a natural environment.
- the present invention relates to a biodegradable grease composition for an aerogenerator comprising a base oil composed of an ester oil having a kinematic viscosity at 40°C of 60 to 160 mm 2 /s and a thickener composed of a diurea compound obtained by allowing an amine mixture comprising a 4-8C alicyclic monoamine and a 20-24C aliphatic monoamine to react with a diisocyanate compound, wherein a content molar ratio of the alicyclic monoamine and the aliphatic monoamine in the amine mixture is 7:3 to 9:1, the content of the thickener in a total amount of the base oil and the thickener is 7 to 11% by mass and a penetration of the biodegradable grease composition is 265 to 340.
- a molar ratio of the alicyclic monoamine and the aliphatic monoamine in the amine mixture is 8:2 to 9:1.
- the alicyclic monoamine has 6 carbon atoms and the aliphatic monoamine has 22 carbon atoms.
- biodegradable grease composition for an aerogenerator comprises a phosphorus-based antiwear agent.
- biodegradable grease composition for an aerogenerator which is excellent in fretting resistance, extreme pressure property, low temperature property, and biodegradability as well, and has a small effect to the environment even if released to a natural environment, by using a biodegradable grease composition comprising a base oil composed of an ester oil having a kinematic viscosity at 40°C within a predetermined range and a thickener composed of a predetermined diurea compound.
- the biodegradable grease composition of the present invention is a biodegradable grease composition.
- Biodegradability refers to a nature of dissolving an organic substance by bacteria into carbon dioxide and water and into an inorganic compound, and ones having this nature are expressed as having biodegradability.
- Ease of microbial treatment is an index of biodegradability and as for a biodegradable grease composition, generally, a grease composition indicating a biodegradation degree of not less than 60% in a biodegradation degree test in accordance with an OECD method is regarded as a biodegradable grease composition and the same also applies herein.
- Biodegradability of a grease composition largely depends on a base oil that is a main component of the biodegradable grease composition.
- a base oil that is a main component of the biodegradable grease composition.
- an ester oil chemically synthesized using natural fat which can achieve both biodegradability and performance as a grease composition, as a raw material is used.
- the ester oil is not limited particularly as long as it has biodegradability and has a kinematic viscosity at 40°C of 60 to 160 mm 2 /s and examples thereof include a fat acid ester, and a polyol ester, pentaerythritol tetraester and diester of a fatty acid and the like, and among these, a fatty acid ester is particularly preferable since biodegradability thereof is satisfactory.
- a kinematic viscosity at 40°C of the base oil according to the present invention is not less than 60 mm 2 /s, preferably not less than 71 mm 2 /s, further preferably not less than 100 mm 2 /s. If the kinematic viscosity is less than 60 mm 2 /s, there is a tendency that extreme pressure property is deteriorated and an oil film becomes thinner. On the other hand, the kinematic viscosity at 40°C of the base oil is not more than 160 mm 2 /s, preferably not more than 150 mm 2 /s, further preferably not more than 120 mm 2 /s. If the kinematic viscosity exceeds 160 mm 2 /s, there is a tendency that fretting resistance and flowability are deteriorated.
- the content of the base oil is preferably not less than 89% by mass, more preferably not less than 90% by mass based on the total content of the base oil and the thickener. If the content of the base oil is less than 89% by mass, there is a tendency that the grease composition becomes difficult to be biodegradable and low temperature property is deteriorated. On the other hand, the content of the base oil is preferably not more than 93% by mass, more preferably not more than 91% by mass based on the total content of the base oil and the thickener. If the content of the base oil exceeds 93% by mass, there is a tendency that the biodegradable grease composition is softened and leaked.
- the thickener according to the present invention is composed of a diurea compound obtained by allowing an amine mixture comprising a 4-8C alicyclic monoamine and a 20-24C aliphatic monoamine to react with a diisocyanate compound.
- a diurea compound obtained by allowing an amine mixture comprising a 4-8C alicyclic monoamine and a 20-24C aliphatic monoamine to react with a diisocyanate compound.
- the number of carbon atoms of the alicyclic monoamine is 4 to 8, preferably 5 to 7 and a cyclohexylamine having 6 carbon atoms is further preferable in view of its ease of availability.
- Examples of an alicyclic monoamine include cyclohexylamine, alkylcyclohexylamine and the like. Among these, cyclohexylamine is preferable since it is excellent in availability and heat resistance.
- the number of carbon atoms of the aliphatic monoamine is 20 to 24, preferably 21 to 23, further preferably 22. If the number of carbon atoms of the aliphatic monoamine is less than 20, a thickening effect tends to decrease and an aliphatic monoamine having more than 24 carbon atoms is difficult to obtain.
- a content molar ratio of the alicyclic monoamine and the aliphatic monoamine in the amine mixture is 7:3 to 9:1, more preferably 8:2 to 9:1, most preferably 8:2.
- the content molar ratio of the alicyclic monoamine and the aliphatic monoamine within this range enables a grease composition for an aerogenerator which is excellent in fretting resistance, extreme pressure property and low temperature property.
- diisocyanate compound examples include 4,4'-diphenylmethane-diisocyanate, 2,4-trilenediisocyanate, 2,6-trilenediisocyanate and the like. Among these, 4,4'-diphenylmethane-diisocyanate is preferable for its easy availability.
- the reaction of the amine mixture with the diisocyanate compound can be carried out by various methods under various conditions, and it is preferable to carry out the reaction in the base oil since a diurea compound having highly uniform dispersibility can be obtained as the thickener.
- the reaction may be carried out by adding the base oil containing the diisocyanate compound dissolved therein to the base oil in which the amine mixture has been dissolved, or by adding the base oil, in which the amine mixture has been dissolved, to the base oil containing the diisocyanate compound dissolved therein.
- the reaction temperature and time in the above-mentioned reaction are not limited particularly, and may be the same as those used in usual similar reactions.
- the reaction temperature is preferably from 80°C to 100°C from the viewpoint of solubility and volatility of the amine mixture and diisocyanate.
- the reaction time is preferably less than 0.5 hour in view of improvement of production efficiency by shortening of the production period of time and also from the viewpoint of completing the reaction of the amine mixture and diisocyanate, and alternatively, the reaction may be conducted while mixing and elevating the temperature without determining the reaction time.
- the reaction of an amino group of the amine mixture and an isocyanate group of the diisocyanate compound proceeds quantitatively, and a preferred ratio thereof is 1 mole of the diisocyanate compound to 2 mole of the amine mixture.
- the diurea compound which is a reaction product obtained by the above-mentioned reaction is a mixture of a diurea compound comprising any of (a) a diurea compound in which both isocyanate groups of a diisocyanate compound are reacted with an alicyclic amine in the amine mixture; (b) a diurea compound in which both isocyanate groups of a diisocyanate compound are reacted with an aliphatic amine in the amine mixture; and (c) a diurea compound in which one of isocyanate groups of a diisocyanate compound is reacted with an alicyclic amine and the other is reacted with an aliphatic amine.
- a diurea compound used in the present invention further include a diurea compound which is a reaction product obtained by synthesizing each of the above-mentioned diurea compounds (a) to (c) and mixing these compounds.
- the content of the above thickener is not less than 7% by mass, preferably not less than 9% by mass based on the total amount of the base oil and the thickener. If the content of the thickener is less than 7% by mass, there is a tendency that the biodegradable grease composition is softened and leaked. On the other hand, the content of the thickener is not more than 11% by mass, preferably not more than 10% by mass based on the total amount of the base oil and the thickener. If the content of the thickener exceeds 11% by mass, a biodegradation rate of the biodegradable grease composition tends to decrease.
- the biodegradable grease composition of the present invention may comprise various additives such as an antioxidant, an extreme pressure agent, an antiwear agent, a dye, a color stabilizer, a viscosity improver, a structure stabilizer, a metal deactivator, a viscosity index improver, a dispersing agent and a rust-preventing agent in proper amounts to such an extent not to impair the effect of the present invention. It is noted that considering an effect to the environment, it is preferable that additives comprising heavy metal are not contained. When these additives are contained in the biodegradable grease composition, the amount thereof in the biodegradable grease composition is preferably 0.5 to 10 parts by mass based on the total of 100 parts by mass of the base oil and the thickener.
- antiwear agent examples include methylenebis(dithiocarbamate), a sulfur-based antiwear agent, a phosphorus-based antiwear agent and the like. Among these, it is more preferable to use a phosphorus-based antiwear agent since it is excellent in antiwear property.
- the phosphorus-based antiwear agent include zinc dialkyl dithiophosphate; phosphites represented by tributyl phosphite, trioleilphosphite and the like; phosphates represented by tricresylphosphate, dilauryl acid phosphate and the like; amine phosphates represented by phosphoric acid dibutyloctyl amine salt, phosphoric acid dilauryloctyl amine salt and the like; phosphorothionates represented by triphenyl phosphorothionate, alkylated phosphorothionate and the like; solid lubricants represented by calcium phosphate; and diphenyl hydrogen phosphites.
- phosphorus-based antiwear agents can be also used.
- amine phosphates are preferable since the burden on the environment is small and a specific example thereof includes Lubrizol 4320 FG manufactured by The Lubrizol Corporation and the like.
- the content thereof based on the total of 100 parts by mass of the base oil and the thickener is preferably not less than 0.1 part by mass, more preferably 0.5 to 5 parts by mass, further preferably 1 to 3 parts by mass. If the content of the antiwear agent is less than 0.1 part by mass, an effect obtained by using the antiwear agent tends not to be obtained. On the other hand, if the content of the antiwear agent exceeds 5 parts by mass, biodegradability tends to be deteriorated.
- the extreme pressure agent examples include a sulfur-based extreme pressure agent, a phosphorus-based extreme pressure agent and the like.
- the biodegradable grease composition comprises a sulfur-based extreme pressure agent since it can impart an extreme pressure effect in a small amount.
- the content thereof based on the total of 100 parts by mass of the base oil and the thickener is preferably 0.1 to 3 parts by mass, more preferably 0.5 to 2 parts by mass. If the content of the extreme pressure agent is less than 0.1 part by mass, an effect obtained by using the extreme pressure agent tends not to be obtained. On the other hand, if the content of the extreme pressure agent exceeds 3 parts by mass, a raw material cost tends to be high.
- the worked penetration of the biodegradable grease composition of the present invention is 265 to 340, preferably 270 to 320, more preferably 280 to 315. If the worked penetration exceeds 340, the biodegradable grease composition tends to be easily leaked from the inside of a bearing. On the other hand, if the worked penetration is less than 265, there is a tendency that a torque of the grease-applied parts increases and a service life is decreased because of seizure by lowering of flowability.
- biodegradable grease composition for an aerogenerator of the present invention can be used for a spindle supporting bearing, a blade bearing, a yaw rotation bearing and the like of an aerogenerator, it is preferable to use the biodegradable grease composition of the present invention for a blade bearing of an aerogenerator since it has a low viscosity and is excellent in preventing fretting due to micro-oscillation.
- MDI Millionate MT-F (4,4'- diphenyl methane diisocyanate, molecular weight: 250.25) manufactured by Nippon Polyurethane Industry Co., Ltd.
- grease compositions were respectively prepared. Firstly, a part of calcium sulphonate (10% by mass based on the thickener) and each of amines were added to a base oil, the mixture was maintained at 80 to 90°C, a diisocyanate compound was further added thereto, the mixture was heated to 160°C while stirring and an extreme pressure agent was further added thereto. The mixture was cooled while stirring and homogenized via a homogenizer treatment (pressure: about 300 bar) to prepare a base grease. Then, the remaining calcium sulphonate and other additives were added thereto and the mixture was stirred and defoamed to prepare respective test grease compositions. The obtained test grease compositions were subjected to the following evaluations. The results are shown in Tables 1 and 2.
- the worked penetration is a value obtained by dropping a cone mounted on a cone penetration meter into the test grease compositions under environment of 25°C, measuring a depth (mm) of 5-second invasion of the cone into the grease, and then multiplying the measured depth by 10 in accordance with JIS K2220-7.
- the weld load of the test grease compositions was measured with the method of ASTM D2596 (high-speed four ball test) under the following test conditions. The larger the value of weld load is, the more excellent the extreme pressure property is. It is noted that the performance target value is 2452 N or more.
- the fretting resistance test was conducted in accordance with ASTM D4170 and a Fafnir wear volume (mg) was measured from a mass difference between before and after the test. The less the Fafnir wear volume is, the more excellent the fretting resistance is. It is noted that the performance target value is 1.0 mg or less.
- a torque at starting and a torque while rotating were measured under the condition where a shear rate becomes 10s -1 after setting a gap (0.5 mm) between a rotating upper plate and a fixed lower plate, sandwiching each grease composition between the gap, and maintaining an environment of -20°C.
- the performance target value of the torque at starting is 15 mN ⁇ m or less and the performance target value of the torque while rotating is 5 mN ⁇ m or less.
- the worked penetration of each grease composition was measured after applying shearing force for two hours in accordance with ASTM D1831.
- the biodegradation rate (%) of the test grease composition of Example 1 was measured in accordance with OECD 301C. Based on the biodegradation rate of Example 1, biodegradability of other Examples and Comparative Examples was calculated in the following formula.
- the biodegradation rate of 60% or more is represented as ⁇ and the biodegradation rate of less than 60% is represented as ⁇ .
- Biodegradability % biodegradation rate of Example 1 ⁇ content of base oil of each grease composition / content of base oil of Example 1
- Oil film forming property of each grease composition was evaluated at room temperature using an oil film thickness measuring device to which optical interferometry is applied and which is manufactured by PCS Instruments.
- a 3/4 inch diameter steel ball of the bearing was set at a load of 20 N on a surface of a hard glass having a diameter of about 10 cm on which each grease composition was applied in a film thickness of 1 mm, and the hard glass was rotated so that the rolling speed of the contacting raceway portion became 1.00 m/s. Then, the rolling speed was gradually decreased to 0.10 m/s in 60 seconds and the oil film thickness at which the rolling speed became 0.10 m/s was regarded as the ELH oil film thickness of each grease composition. It is noted that the performance target value is 150 nm or more.
- a grease composition comprising a base oil composed of an ester oil having a kinematic viscosity at 40°C in a predetermined range and a thickener composed of a predetermined diurea compound is a biodegradable grease composition for an aerogenerator which is excellent in fretting resistance, extreme pressure property, low temperature property, and biodegradability as well, and has a small effect to the environment even if released to a natural environment.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Claims (4)
- Biologisch abbaubare Fettzusammensetzung für einen Aerogenerator, die umfassteine Basisölzusammensetzung mit einer kinematischen Viskosität bei 40°C von 60 bis 160 mm2/s undein Verdickungsmittel zusammengesetzt aus einer Diharnstoffverbindung, die durch Reagierenlassen einer Aminmischung, die ein 4-8C alizyklisches Monoamin und ein 20-24C aliphatisches Monoamin umfasst, mit einer Diisocyanatverbindung erhalten wird,wobeiein Molverhältnisgehalt des alizyklischen Monoamins und des aliphatischen Monoamins in der Aminmischung 7:3 bis 9:1 ist,der Gehalt des Verdickungsmittels in einer Gesamtmenge der Basisölzusammensetzung und des Verdickungsmittels 7 bis 11 Gewichts-% ist,eine Penetration der biologisch abbaubaren Fettzusammensetzung 265 bis 350 ist, wie gemäß JIS K2220-7 gemessen,die Basisölzusammensetzung aus Esteröl zusammengesetzt ist, undwobei die Fettzusammensetzung eine biologische Abbaugeschwindigkeit von 60% oder mehr aufweist, wie in der Beschreibung definiert und wie gemäß der Beschreibung gemessen, wobei die biologische Abbaugeschwindigkeit gemäß OECD 301C gemessen wird.
- Biologisch abbaubare Fettzusammensetzung für einen Aerogenerator nach Anspruch 1, wobei ein Molverhältnis des alizyklischen Monoamins und des aliphatischen Monoamins in der Aminmischung 8:2 bis 9:1 ist.
- Biologisch abbaubare Fettzusammensetzung für einen Aerogenerator nach Anspruch 1 oder 2, wobei das alizyklische Monoamin 6 Kohlenstoffatome aufweist und das aliphatische Monoamin 22 Kohlenstoffatome aufweist.
- Biologisch abbaubare Fettzusammensetzung für einen Aerogenerator nach einem der Ansprüche 1 bis 3, wobei die biologisch abbaubare Fettzusammensetzung für einen Aerogenerator ein Phosphorbasiertes Antiverschleißmittel umfasst.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014225309A JP6348050B2 (ja) | 2014-11-05 | 2014-11-05 | 風力発電機用生分解性グリース組成物 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3018192A1 EP3018192A1 (de) | 2016-05-11 |
EP3018192B1 true EP3018192B1 (de) | 2022-01-05 |
Family
ID=55072412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15192511.2A Active EP3018192B1 (de) | 2014-11-05 | 2015-11-02 | Biologisch abbaubare fettzusammensetzung für windgenerator |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3018192B1 (de) |
JP (1) | JP6348050B2 (de) |
CN (1) | CN105567386B (de) |
DK (1) | DK3018192T3 (de) |
ES (1) | ES2904491T3 (de) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6528331B2 (ja) * | 2016-04-27 | 2019-06-12 | 株式会社大都技研 | 遊技台 |
JP6528332B2 (ja) * | 2016-04-27 | 2019-06-12 | 株式会社大都技研 | 遊技台 |
JP6885686B2 (ja) * | 2016-07-26 | 2021-06-16 | 協同油脂株式会社 | グリース組成物 |
CN107723063B (zh) * | 2017-09-29 | 2023-07-04 | 新疆金雪驰科技股份有限公司 | 无皂基风电轴承用长寿命专用润滑脂及其制备方法 |
JP7348894B2 (ja) * | 2018-03-06 | 2023-09-21 | 日本グリース株式会社 | グリース組成物 |
CN109370720A (zh) * | 2018-10-30 | 2019-02-22 | 苏州玖城润滑油有限公司 | 低噪音润滑脂及其制备方法 |
RU2704968C1 (ru) * | 2019-06-11 | 2019-11-01 | Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) | Биоразлагаемая низкотемпературная пластичная смазка и способ ее получения |
CN114302942A (zh) * | 2019-08-30 | 2022-04-08 | 日本润滑脂株式会社 | 钢丝绳 |
RU2713451C1 (ru) * | 2019-10-11 | 2020-02-05 | Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) | Низкотемпературная экологичная пластичная смазка и способ ее получения |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61155496A (ja) * | 1984-12-27 | 1986-07-15 | Koyo Seiko Co Ltd | ジウレア系グリ−ス組成物 |
US6919301B2 (en) * | 2001-10-16 | 2005-07-19 | Nsk Ltd. | Grease composition and rolling apparatus |
JP2003306687A (ja) * | 2002-04-16 | 2003-10-31 | Nsk Ltd | 生分解性グリース組成物 |
JP4334915B2 (ja) * | 2003-05-29 | 2009-09-30 | Ntn株式会社 | 潤滑組成物および該潤滑組成物封入軸受 |
CN1940039A (zh) * | 2005-09-26 | 2007-04-04 | 美蓓亚株式会社 | 枢轴组件轴承用润滑脂组合物及枢轴组件用轴承 |
JP4968825B2 (ja) * | 2005-09-26 | 2012-07-04 | 日本グリース株式会社 | ピボットアッシー軸受用グリース組成物及びそれを封入したピボットアッシー用軸受 |
JP4751807B2 (ja) * | 2006-10-31 | 2011-08-17 | Ntn株式会社 | 風力発電用主軸支持装置、該装置に用いられる複列自動調心ころ軸受 |
JP2008208240A (ja) * | 2007-02-27 | 2008-09-11 | Cosmo Sekiyu Lubricants Kk | 生分解性グリース組成物 |
JP5350597B2 (ja) * | 2007-03-26 | 2013-11-27 | 協同油脂株式会社 | グリース組成物及び機械部品 |
JP5664890B2 (ja) | 2009-10-15 | 2015-02-04 | 協同油脂株式会社 | 風力発電機軸受用グリース組成物 |
WO2012036076A1 (ja) * | 2010-09-13 | 2012-03-22 | Ntn株式会社 | グリース組成物および転がり軸受 |
JP2012172066A (ja) * | 2011-02-22 | 2012-09-10 | Kyodo Yushi Co Ltd | グリース組成物 |
JP5727276B2 (ja) * | 2011-03-04 | 2015-06-03 | 協同油脂株式会社 | グリース組成物及びグリース封入転がり軸受 |
JP5895723B2 (ja) * | 2011-09-26 | 2016-03-30 | 日本精工株式会社 | 車輪支持用転がり軸受ユニット |
JP5865146B2 (ja) * | 2012-03-22 | 2016-02-17 | 株式会社ジェイテクト | グリース組成物および転動装置 |
-
2014
- 2014-11-05 JP JP2014225309A patent/JP6348050B2/ja active Active
-
2015
- 2015-11-02 ES ES15192511T patent/ES2904491T3/es active Active
- 2015-11-02 EP EP15192511.2A patent/EP3018192B1/de active Active
- 2015-11-02 DK DK15192511.2T patent/DK3018192T3/da active
- 2015-11-03 CN CN201510736916.8A patent/CN105567386B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016089040A (ja) | 2016-05-23 |
EP3018192A1 (de) | 2016-05-11 |
ES2904491T3 (es) | 2022-04-05 |
CN105567386B (zh) | 2020-10-02 |
CN105567386A (zh) | 2016-05-11 |
JP6348050B2 (ja) | 2018-06-27 |
DK3018192T3 (da) | 2022-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3018192B1 (de) | Biologisch abbaubare fettzusammensetzung für windgenerator | |
EP2489721B1 (de) | Verwendung einer schmiermittelzusammensetzung für das lager eines windkraftgenerators | |
EP2518132B1 (de) | Rostbeständige Schmierfettzusammensetzung, von Schmierfett umschlossenes Lager und rostbeständiges Mittel zur Verwendung in Schmierfettzusammensetzung | |
EP3118287B1 (de) | Schmierfettzusammensetzung und schmierfettgefülltes radlager | |
EP2687584B1 (de) | Schmierfettzusammensetzung | |
EP2264132B1 (de) | Schmierfettzusammensetzung und lager | |
KR20120136365A (ko) | 앵귤러 볼베어링을 사용한 허브 유닛 베어링용 그리스 조성물 및 허브 유닛 베어링 | |
EP2913385B1 (de) | Schmierfettzusammensetzung | |
JP7042375B2 (ja) | ハブユニット | |
EP3272843A1 (de) | Schmierfettzusammensetzung | |
JP5087989B2 (ja) | 潤滑剤組成物及びその製造方法、並びに転がり軸受 | |
JP2017002306A (ja) | グリース組成物および車両用転動装置 | |
EP3269794B1 (de) | Schmierfettzusammensetzung | |
EP2514809B1 (de) | Wälzlager | |
EP2298856A1 (de) | Schmierfettzusammensetzung für doppelgelenk und doppelgelenk | |
EP1498472B1 (de) | Verwendung einer Schmierfettzusammensetzung für ein Walzlager | |
JP5765806B2 (ja) | グリース組成物 | |
US12077721B2 (en) | Grease composition for speed reducer part of on-vehicle electric component | |
CN115867632A (zh) | 润滑脂组合物和滚动轴承 | |
JP6940454B2 (ja) | 転がり軸受用グリース組成物 | |
WO2021246049A1 (ja) | グリース組成物および転がり軸受 | |
JP6887758B2 (ja) | グリース組成物 | |
JP2008285574A (ja) | ころ軸受 | |
EP4403615A1 (de) | Schmierfettzusammensetzung für lager einer fahrzeugnabeneinheit | |
JP2021130769A (ja) | グリース組成物および転がり軸受 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20161108 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180419 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10M 169/02 20060101AFI20210630BHEP Ipc: C10N 20/02 20060101ALN20210630BHEP Ipc: C10N 30/06 20060101ALN20210630BHEP Ipc: C10N 40/02 20060101ALN20210630BHEP Ipc: C10N 50/10 20060101ALN20210630BHEP Ipc: C10N 20/00 20060101ALN20210630BHEP Ipc: C10N 30/00 20060101ALN20210630BHEP |
|
INTG | Intention to grant announced |
Effective date: 20210713 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: IWAMATSU, HIROKI Inventor name: INADA, TAKEHITO |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1460602 Country of ref document: AT Kind code of ref document: T Effective date: 20220115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015076199 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20220127 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2904491 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220405 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220105 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1460602 Country of ref document: AT Kind code of ref document: T Effective date: 20220105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220505 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220405 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220505 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015076199 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 |
|
26N | No opposition filed |
Effective date: 20221006 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20221202 Year of fee payment: 8 Ref country code: DK Payment date: 20221004 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20221102 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20221130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221102 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230929 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20151102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20231130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |