EP2991806B1 - Outil de serrage - Google Patents
Outil de serrage Download PDFInfo
- Publication number
- EP2991806B1 EP2991806B1 EP14724023.8A EP14724023A EP2991806B1 EP 2991806 B1 EP2991806 B1 EP 2991806B1 EP 14724023 A EP14724023 A EP 14724023A EP 2991806 B1 EP2991806 B1 EP 2991806B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wedge
- handle
- clamping arm
- clamping
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006073 displacement reaction Methods 0.000 claims description 13
- 230000007246 mechanism Effects 0.000 description 6
- 230000002349 favourable effect Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 210000003127 knee Anatomy 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B5/00—Clamps
- B25B5/06—Arrangements for positively actuating jaws
- B25B5/12—Arrangements for positively actuating jaws using toggle links
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B5/00—Clamps
- B25B5/006—Supporting devices for clamps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B5/00—Clamps
- B25B5/06—Arrangements for positively actuating jaws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B7/00—Pliers; Other hand-held gripping tools with jaws on pivoted limbs; Details applicable generally to pivoted-limb hand tools
- B25B7/12—Pliers; Other hand-held gripping tools with jaws on pivoted limbs; Details applicable generally to pivoted-limb hand tools involving special transmission means between the handles and the jaws, e.g. toggle levers, gears
- B25B7/123—Pliers; Other hand-held gripping tools with jaws on pivoted limbs; Details applicable generally to pivoted-limb hand tools involving special transmission means between the handles and the jaws, e.g. toggle levers, gears with self-locking toggle levers
Definitions
- Toggle clamps are used, for example, to clamp workpieces on a machine table.
- the mobility of the first wedge element allows in a certain range to adapt to different heights of exciting workpieces.
- More toggle levers are from the US 2010/0148414 A1 or the WO 2010/045504 A1 known.
- a toggle clamp which has a base and an L-shaped clamp arm made of a U-shaped strip and pivotally connected at its free ends to the base.
- the connection is at a point where a pivot bearing passes laterally through the strip ends.
- It is also a clamping element provided, which sits at the other end of the clamping arm.
- a handle is pivotally connected at one end to a point which lies in the bend of the L of the clamp arm.
- a connection has an end which is pivotally connected to the base and pivotally connected at the other end to the handle at a point between the pivotal connection of the handle with the clamping arm and the pivotal connection between the connection and the base.
- the pivot connections between one end of the connection and the base, the handle with the clamping arm, and the handle with the other end of the connection are aligned.
- the pivot connection between the handle and the other end of the connection is between the other of the pivotal connections.
- Means are provided on the base for limiting the movement of the connection and the clamping arm.
- clamping tools are from the US 3,116,656 , of the US 2,531,285 , of the US 3,600,986 and the US 2,751,801 known.
- the invention has for its object to provide a clamping tool of the type mentioned, which has a wide variation in a simple structure.
- the adjusting device comprises an active element which is pivotally mounted on the web element about a fifth pivot axis.
- the web element with the first wedge member is permanently connected by a hinge connection for the articulation. It can thereby keep the number of components low and thus can be the corresponding clamping tool made in a simple manner. It results in a wide range of variations for the clamping of workpieces with respect the workpiece height above a base on which the clamping tool is placed. A clamping force can be adjusted easily.
- the tensioning tool according to the invention can be used as a toggle clamp, for example as a machine tensioner or as a pair of pliers such as a grip pliers.
- the web element is rigid and in particular integrally formed.
- the clamping tool can be produced in a simple manner.
- the web element between a joint for articulation on the handle or on the clamping arm and a hinge for articulation to the first wedge element is rigid.
- the web element then represents only a fixed bridge element.
- first pivot axis, the second pivot axis, the third pivot axis and the fourth pivot axis are oriented parallel to each other.
- a clamping tool can be realized in a simple manner.
- an actuating device which acts on the second wedge element and by which a position of the second wedge element is adjustable, wherein the first wedge element acts on the second wedge element to the drive.
- adjusting device is adjustable from which pivot position of the handle, the first wedge element entrains the second wedge element.
- the locking force of the clamping tool for a workpiece is adjustable.
- the adjusting device is arranged on the web element and held on the web element.
- the adjusting device then has the same pivot point as the web element. This results in a simple construction of the clamping tool.
- On the adjusting device can easily with a tool like a Screwdriver or tool-free access, as there is enough space for the action available. It can be realized in a simple manner that a clamping force over a large angular range for the clamping arm to a pad and in particular the entire angular range is defined adjustable. If the clamping force is set, then this is at least approximately the same for different workpiece heights. This makes it easy to operate the clamping tool.
- the adjusting device comprises an active element, which is pivotally mounted on the web element about a fifth pivot axis. By a relative angular position of the active element to the web element can then adjust the locking force.
- the fifth pivot axis is parallel to the fourth pivot axis. This results in a simple structure.
- a steep element by which an angular position of the active element is detectably adjustable relative to the web element.
- the adjusting element is in particular a spacer element, which defines a distance to the web element at or in the vicinity of one end of the active element and thus defines the angular position of the active element to the web element.
- the adjusting element is a screw which is guided in a thread on the active element and which is supported on the web element, in particular via one end. This results in a simple structure.
- the thread guide of the screw can be set detectable in a simple manner, the relative position of the active element to the web element.
- the active element is supported on the first wedge element at least in a partial region of a pivoting mobility of the active element. This results in increased stability.
- the active element is formed rounded at an area with which it is effective on the second wedge element.
- the rounding is defined.
- the starting position of the second wedge element can be determined in an effective manner in a predetermined pivoting range and, in turn, the position can be determined from which the first wedge element can carry the second wedge element. This in turn sets the locking force. It can be at least approximately set with appropriate training an angle-independent clamping force.
- a spring device which acts on the second wedge element, wherein a spring force of the spring device tends to push the second wedge element in the direction of the web element.
- the spring device then ensures that when the first wedge element does not touch the second wedge element, the second wedge element can abut against a contact surface of an actuating device.
- the guide is disposed on the base. This results in a simple structure.
- the base has an underside which faces away from the clamping arm and the guide lies at a height distance from the underside of the base.
- a gap between a plane at which the bottom is located, and the guide is formed.
- This can be used, for example, to arrange the guide in a handle element, which can be grasped by an operator. For example, if the base is fixed to an application via the bottom, then there is a gap between the application and the guide and thus the handle element. Through this gap, an operator can reach through and, for example, grasp the handle and the handle element with one hand.
- the clamping tool is fixable to an application via the underside of the base. This results in a simple fixability.
- a handle element is arranged on the base.
- an operator can grasp the handle element and the handle with one hand and clamp a workpiece, for example by a movement of the handle on the handle element.
- the workpiece may then be clamped, for example, between the clamp arm and a pad or between the clamp arm (first clamp arm) and a second clamp arm located on the base.
- the handle element is rigidly connected to the base.
- a toggle lever tensioner can be realized in a simple manner as a horizontal tensioner or in the form of a grip pliers, wherein a workpiece can be clamped by movement of the handle on the handle element.
- first wedge element and the second wedge element are then arranged on the handle element and can be guided linearly thereon. This results in a simple compact design with extensive applications.
- the handle element of the base and the handle are arranged opposite and are tangible together by the hand of an operator. This results in ease of use and especially one-handed operation.
- a clamping tool in the form of a toggle clamp is a first clamping arm and on the base a second clamping arm is arranged, wherein a workpiece between the first clamping arm and the second clamping arm can be clamped. It is realized by a toggle clamping tool with adjustable clamping force. Such a clamping tool can be used for example as a grip pliers.
- the second clamping arm is firmly connected to the base.
- a corresponding pliers can be realized in a structurally simple manner.
- the clamping tool which is a toggle lever, designed as a pair of pliers and / or grip pliers.
- the clamping arm and / or a further clamping arm has a first region on which an angled second region is seated, wherein a contact element for a workpiece is arranged on the second region. It can thereby achieve a high clamping force for the clamping of a workpiece.
- the abutment element is pivotally or rotatably seated on the second area.
- an alignment can be achieved, for example, to compensate for irregularities or to clamp workpieces with non-parallel opposite surfaces can.
- the second region is oriented in the angular range between 70 ° and 110 ° to the first region, and preferably the second region is oriented at least approximately at right angles to the first region.
- the second region of the first clamping arm and the second region of the second clamping arm are at least approximately aligned with each other when the first clamping arm is in a starting position. This results in an effective clamping of a workpiece between corresponding contact elements of the first clamping arm and the second clamping arm.
- An inventive clamping tool may be formed as a horizontal clamp, in which a clamping of a workpiece by the clamping arm by a pivoting of the handle on the base is to be effected.
- clamping arm is then articulated to the base, the handle is articulated to the clamping arm and the web element is articulated to the handle.
- the web element is aligned at least approximately parallel to the clamping arm at a toggle dead center. It can thereby be realized in a simple manner, a horizontal tensioner.
- a first embodiment of a clamping tool according to the invention is a toggle clamp, which in the FIGS. 1 to 8 shown and designated there by 10, comprises a base 12. About the base 12 of the toggle clamp 10 can be fixed to a pad 14. The pad 14 is for example a machine table. The base 12 can be screwed to the base 14, for example. A workpiece 15 is to be clamped to the toggle clamp 10 with the pad 14.
- a clamping arm 20 is articulated via a first joint 16, which defines a first pivot axis 18.
- the first pivot axis is in FIG. 1 oriented perpendicular to the plane of the drawing. It is oriented in particular parallel to the base 14.
- the clamping arm 20 is angled out with a first region 22 and a region 24 oriented transversely to the first region 22.
- the first joint 16 is positioned near one end of the first region 22.
- a contact element 28 which is designed in particular as a pressure piece.
- the contact element 28 is mounted on a retaining ball 30.
- the contact element 28 has a contact surface 32 for the workpiece 15.
- the contact element 28 further has a holder 32 adapted to the holding ball 30.
- the retaining ball 30 is fixed via a retaining pin 34 on the second region 24 of the clamping arm 20.
- a distance of the abutment element 28 to the clamping arm 20 is detectably adjustable.
- the retaining pin 34 is formed in particular in a partial area as a threaded pin, which is guided on a thread of the clamping arm 20.
- a handle 40 is articulated via a second joint 36, which defines a second pivot axis 38.
- the second joint 36 is arranged at the first region 22 in the vicinity of one end, which faces away from the end, in the vicinity of which the first joint 16 is positioned.
- the second joint 36 has a greater distance to the pad 14 than the first joint 16 when the toggle clamp 10 is placed with the base 12 on the pad.
- the handle 40 is angled with a first region 42 and a second region 44. Between the first region 42 and the second region 44 is a finite angle 46, which is for example in the range between 120 ° and 150 °.
- a handle element 48 is arranged for example of a plastic material at an end region.
- the grip element 48 has a contact region 52 for a user's hand.
- the second pivot axis 38 is parallel to the first pivot axis 18.
- a third joint 54 is arranged, which defines a third pivot axis 56.
- the third hinge 54 is spaced from the first hinge 16 and the second hinge 36.
- the third pivot axis 56 is parallel to the first pivot axis 18.
- a distance of the third hinge 54 from the pad 14 depends on a pivotal position of the handle 40.
- a web member 57 is hinged to the handle 40.
- the third joint 54 sits in particular on the second region 44 of the handle in the vicinity of the transition of the first region 42 to the second region 44.
- a guide 58 for a first wedge member 60 is formed.
- the first wedge element 60 is in particular guided in a linearly slidable manner in the guide 58 on the base 12.
- a displacement direction 62 is parallel to a guide surface 64 of the base 12.
- the guide surface 64 is particularly flat. It is preferably oriented parallel to the pad 14 when the base 12 is placed on the pad 14. Irrespective of its position on the guide 58, the first wedge element 60 has the same distance to the base.
- the first wedge element 60 has a lower side 66, with which the first wedge element 60 is placed on the guide surface 64.
- the underside 66 is oriented parallel to the guide surface 64.
- the first wedge element 60 further has a first wedge surface 68, which is oriented at an acute angle, for example in the range between 10 ° and 20 ° to the bottom 66.
- the web element 57 is articulated via a fourth joint 70 to the first wedge element 60 and permanently connected thereto.
- the fourth joint 70 defines a fourth pivot axis 72, which is parallel to the first pivot axis 18.
- the articulation of the stake 57 on the first wedge member 60 is outside the first wedge surface 68th
- the web element 57 is rigid. In particular, it is rigidly formed between the third hinge 54 and the fourth hinge 70, i. H. not movable in itself. It is not interrupted by another joint or the like.
- the first wedge element 60 is associated with a second wedge element 74.
- the second wedge element 74 is likewise guided linearly on the base 12 in a displacement direction 76 parallel to the displacement direction 62.
- the second wedge member 74 is disposed above the first wedge member 60.
- a guide 78 of the second wedge member 74 on the base 12 is formed so that the height position of the second wedge member 74 does not change relative to the guide surface 64. This is achieved for example by a lateral guide (not visible in the figures due to the selected representation).
- the second wedge element 74 has a second wedge surface 80, which is adapted to the first wedge surface 68 and is parallel thereto. Opposite the second wedge surface 80, the second wedge element 74 has an upper side 82 over which the second wedge element 74 is slidably guided, for example, on a corresponding wall 84 of the base 12 opposite the guide surface 64. The upper side 82 is oriented parallel to the underside 66 of the first wedge element 60.
- the second wedge element 74 is supported on the base 12 via a spring device 86.
- the spring device 86 is in particular supported on a rear wall 88 which lies between the wall 84 and the guide surface 64. Furthermore, the spring device 86, which has one or more compression springs, is fixed or supported on a side of the second wedge element 74 facing the rear wall 88.
- a force direction 90 of the spring device 86 points away from the rear wall 88 toward the web element 57.
- the force direction 90 is oriented in particular at least approximately parallel to the guide surface 64.
- the spring device 86 tends to push the second wedge member 74 toward the web member 57 too.
- an intermediate element 75 is arranged between the first wedge element 60 and the second wedge element 74. This is arranged parallel to the wedge surfaces 68 and 80 and formed and guided parallel to the guide surface 64 on the base 12. In a height direction to it is at the base 12 freely movable "floating" out. Via the intermediate element 75, the first wedge element 60 acts on the second wedge element 74. The intermediate element absorbs transverse forces and discharges them to the base 12. It is characterized a transverse mobility of the wedge elements 60 and 74 prevented.
- the second wedge element 74 is associated with an adjusting device 92, by which is adjustable in which position the second wedge element 74 can be pressed in the direction of the web element 57 by the spring device 86.
- a clamping force is adjustable.
- the actuating device 92 comprises an active element 94.
- the active element 94 has a contact surface 96 for the second wedge element 74 on one side, which is opposite to the side on which the spring device 86 is supported. In the area of the contact surface 96, the active element 94 is in particular rounded.
- the active element 94 is pivotally mounted on the web element 57 via a corresponding holder 98.
- a fifth joint 100 is provided for this purpose, which defines a fifth pivot axis 102.
- the fifth pivot axis 102 is parallel to the first pivot axis 18.
- the fifth joint 100 divides the active element 94 into a first region and into a second region. At the first area, the abutment surface 96 is formed. An actuating element 104 is seated on the second region. The actuating element 104 is in particular a screw, which is guided via an external thread on an internal thread of the active element 94. The actuator 104 has an area 106, which projects beyond the active element 94 in the direction of the bar member 57. A length of this region 106 to the web element 57 is adjustable. This is in FIG. 1 indicated by the double arrow with the reference numeral 108. Over one end of the region 106, the adjusting element 104 is supported on a corresponding outer side of the web element 57. A rotational position of the actuating element 104 on the active element 94 determines a pivot position of the active element 94 relative to the web element 57.
- the adjusting element 104 is positioned above the wall 84, so that can be acted upon by a suitable tool such as a screwdriver on the adjusting element 104 to its adjustment.
- the toggle clamp 10 is designed as a horizontal clamp. About the joints 16, 36, 54 and 70, a toggle lever is realized.
- the workpiece 15 can be clamped to the base 14 by the handle 40 is pivoted toward the base 12. This direction of movement is in FIG. 1 indicated by the reference numeral 110.
- FIG. 1 a position of the handle is shown in which the workpiece 15 is not yet clamped.
- the spring device 86 presses the second wedge element 74 against the abutment surface 96 of the active element 94.
- the exact location of the second wedge element 74 relative to the base 12 is set via the position of the actuating element 104 on the active element 94.
- the toggle clamp 10 is designed and in particular dimensioned so that in a first position range of the handle 40, in which there is no tension, wherein FIG. 1 shows a position of the handle 40 in this first position range, the first wedge surface 68 is spaced from the second wedge surface 80 further than the height of the intermediate member 75.
- the intermediate element 75 is due to its free storage in the height direction on one side to the first Keilfphie 68 and an air gap 112 is located between an opposite side of the intermediate member 75 and the second wedge surface 80th
- the displacement of the first wedge member 60 to this position defines the extent of self-adjustability of the toggle clamp 10.
- the web element 57 is at least approximately parallel to the clamping arm 20 (and in particular to a longitudinal extension direction 116 of the second region 24 of the clamping arm 20), ie piercing points of the pivot axes 38, 56, 72 lie on a line.
- the clamping arm 20 presses secured on the contact element 28 on the workpiece 15 and biases this against the pad.
- the workpiece 15 is then securely and firmly clamped between the contact element 28 on the clamping arm 20 and the base 14.
- the clamping force (the toggle lever force) via the adjusting device 92 is adjustable.
- the web element 57 which is formed as a rigid element, is directly and permanently connected to the first wedge element 60 and hinged directly to this via the fourth joint 70. This results in a simple structure with a large variation width for a clamping height (workpiece height).
- the adjusting device 92 with the adjusting element 104 is arranged on the web element 57.
- the active element 94 is arranged pivotably on the web element 57. This makes it easy to adjust the corresponding clamping force (toggle lever force) via the position of the second wedge element 74 in the first position range of the handle 40.
- the actuator 104 can be easily accessed with a standard tool such as a screwdriver to adjust the appropriate force.
- the mobility of the first wedge member 60 allows a degree of compensation for different workpiece heights; a support point of the clamp arm 20 is variable.
- the toggle clamp 10 is thereby self-adjusting ("self adjusting toggle clamp").
- a second embodiment of a clamping tool according to the invention in the form of a toggle clamp which in the FIGS. 7 to 13 is shown and designated there by 120, comprises a base 122 for fixing to the base 14.
- a first joint 124 At the base 122 is a first joint 124, a clamping arm 126 hinged pivotally.
- the clamping arm 126 is basically the same design as the clamping arm 20 described above.
- a contact element 28 as described above.
- a handle 130 is pivotally articulated via a second joint 128. This is height-spaced to the first joint 124.
- a guide 132 for a first wedge element 134 and a second wedge element 136 is seated on the handle.
- a web element 138 is pivotally connected to the clamping arm 126 via a third joint 140. Via a fourth joint 142, the web element 138 is pivotally connected to the first wedge element 134 and permanently connected thereto.
- the first wedge element 134 is displaceable parallel to the handle 130.
- the second wedge member 136 is positioned above the first wedge member 134. Via a spring device 144, it is pressed in the direction of the rod element 138.
- the first joint 124, the second joint 128, the third joint 140 and the fourth joint 142 form a knee lever.
- a contact element 94 acts on the second wedge element 136 via a contact surface 96.
- the second wedge element 136 has a recess 146, for example in the form of an oblong hole recess.
- This recess 146 is formed continuously.
- the passage direction of this recess 146 is perpendicular to the plane according to the FIGS. 7 and 8th .
- the second joint 128 is disposed while fixed to the base 122 positioned.
- the recess 146 allows a displaceability of the second wedge element 136 on the handle 130.
- the handle 14 For clamping a workpiece to the base 14, the handle 14 is pivoted in the direction 148 to the base.
- the toggle clamp 120 is also a horizontal tensioner. As a result of this pivoting, the web element 138 pushes the first wedge element 134 toward a gripping element 150 which is seated on the handle 130.
- FIGS. 7 and 8th For example, a position of the handle 130 in a first position range is shown in which a corresponding wedge surface of the first wedge member 134 is spaced from the corresponding wedge surface of the second wedge member 136.
- the position of the second wedge element 136 on the handle 130 is determined by the setting of the adjusting device 92.
- the in the FIGS. 7 and 8th shown position corresponds to the position which for the toggle clamp 10 in the FIGS. 1 and 2 is shown.
- the handle 130 with the guide 132 and the web element 138 are at a certain angle 152 to each other.
- this angle 152 By pivoting the handle 130 on the base 122 to this angle 152 is reduced.
- the distance between the first wedge surface of the first wedge member 134 and the second wedge surface of the second wedge member 136 decreases and an intermediate member 137 contacts the same.
- From the corresponding angular position 152 * then takes place on further reduction of the angle, a displacement of the second wedge member 136 driven by the first wedge member 134 to the handle member 150 (see. Figures 11 and 12 ). This movement takes place counter to the spring force of the spring device 144.
- the first wedge element 134 is thereby also pushed away from the contact surface 96 of the adjusting device 92.
- a toggle dead center is at least approximately reached when the angle 152 is at 0 °, ie the handle 130 and the web element 138 are aligned parallel to each other or piercing points of pivot axes of the second articulation 128, the third articulation 140 and the fourth articulation 142 are in line.
- the clamping force (toggle lever force) can be adjusted.
- the web element 138 is rigid. It is permanently pivotally connected to the first wedge element 134 and hinged thereto.
- FIG. 13 is an embodiment accordingly FIG. 7 shown, wherein there is a workpiece 154 of greater height clamped.
- a first hinge 164 to a first pivot axis 166 (which is perpendicular to the plane of FIG. 14 is located) a clamping arm 167 pivoted.
- On the clamping arm in turn sits a contact element corresponding to the contact element 28.
- On the base 162 is pivotally connected via a second joint 168 with a second pivot axis 170, a handle 172.
- the second pivot axis 170 is parallel to the first pivot axis 166.
- the first hinge 164 and the second hinge 168 are at the same height.
- a web element 178 is pivotably articulated above the first joint 164 via a third joint 174 with a third pivot axis 176.
- a first wedge element 182 is guided linearly displaceable on a guide 180.
- the web element 178 is over a fourth joint 184 with a fourth pivot axis 186 continuously pivotally hinged to the first wedge member 182.
- the first wedge element 182 is assigned a likewise linearly displaceable second wedge element 188 on the handle 172. Furthermore, an adjusting device corresponding to the adjusting device 92 is positioned on the web element 178. Therefore, the same reference numeral as in the first embodiment and the second embodiment is used here.
- the toggle clamp 160 is designed as a vertical clamp. Clamping of a workpiece to a substrate is achieved when the handle 172 is pivoted in a direction 190 away from the base 162.
- An angle 192 lies between the guide 180 and the web element 178.
- this angle 192 (cf. Figures 14 and 16 ) reduced.
- the second wedge element 188 is supported on a rear wall 196 via a spring device 194.
- a position in a first position range of the handle 172 is shown in which an intermediate member 183 on a first wedge surface of the first wedge member 182, the second wedge member 188 still not touched.
- the second wedge element 188 is moved by the spring device 194 to the corresponding active element 94 of the actuator 92 and is applied to this.
- the set position (pivot position) of the active element 94 relative to the web element 178 determines this starting position of the second wedge element 188.
- the angle 192 is reduced.
- the first wedge element 182 acts on the second wedge element 188 and drives its displacement against the spring force of the spring device 194 of the active element 94 away.
- a toggle dead center is reached when the angle 192 is at 0 °, i. H. the guide 180 of the handle 172 and the web element 178 are at least approximately parallel to each other or piercing points of the pivot axes 170, 176 and 186 lie in a line.
- FIG. 20 the toggle clamp 160 is shown in which a larger workpiece is clamped.
- a corresponding web element 57, 138, 178 is of rigid construction and is articulated directly and permanently (permanently) to the first wedge element 60, 134, 182, ie. H. There is a permanent pivotal connection between the first wedge member 60, 134, 182 and the web member 57, 138, 178 before.
- the adjusting device 92 is positioned on the corresponding web element 57, 138, 178 and thus has its center of rotation.
- the clamping force (toggle force) can be adjusted via the adjusting device 92 in a simple manner.
- access to the actuating element 104 can be realized in a simple manner.
- the clamping force can be determined at least approximately constant over a large angular range / height range of workpieces.
- a fourth embodiment of a clamping tool according to the invention is a Toggle clamps.
- This toggle clamp 200 includes a base 202.
- the base 202 has a bottom 204.
- At the bottom 204 there is a pin 206 on which a head 208 is seated.
- the head 208 has a larger diameter than the pin 206.
- the head 208 is spaced from the bottom 204.
- the base 202 and thus also the clamping tool 200 can be fixed to an application ( FIG. 21 (b) ).
- a slot 210 is arranged on a corresponding plate 212, which can be fixed via appropriate fastening elements 214 such as screws on an application such as a machine table.
- the slot 210 has a first portion 216 and a second portion 218 connected to the first portion 216.
- the second portion 218 is formed so that the head 208 is submergible.
- the first region 216 is formed to form a blocking surface for the head 208.
- a groove 220 is formed in the plate 212.
- the groove 220 has a greater width B than the slot 210 in the first region 216.
- the blocking surface for the head 208 is formed.
- the head 208 is submerged in the groove 220. As the base 202 is pushed into the first region 216 with the pin 206 and the head 208, the head 208 may abut the blocking surface, with the pin 206 penetrating through the slot 210. It can thereby achieve an axial fixation.
- the pin 206 is formed with the head 208 as a screw and it can be the base 202 clamped to the plate 212, in which case the head 208 rests in the groove 220 on the locking surface and the bottom 204 abuts the top of the plate 212.
- the base 202 is fixed to the plate 212 separately from the application, and then the plate 212 is fixed to the application via the fasteners 214.
- a handle element 222 is firmly seated at the base.
- the handle member 222 has a longitudinal extension direction 224 that is transverse and, in particular, perpendicular to the bottom 204.
- a (first) clamping arm 226 is pivotally hinged. It is pivotable about a corresponding pivot bearing 228 about a first pivot axis 230.
- the first pivot axis 230 is oriented transversely and in particular perpendicular to the longitudinal extension direction 224 of the handle element 222. In the FIGS. 21 (a) and 22 the first pivot axis 230 is oriented perpendicular to the plane of the drawing.
- the clamp arm has a central first region 232 at which a second region 234 to the one side and a third region 236 sit to the other side.
- first region 232, the second region 234 and the third region 236 are integrally connected to one another.
- about the third portion 236 of the clamping arm 226 is hinged to the base 202.
- a contact element 238 for a workpiece is arranged at the second region 234.
- This contact element 238 is seated pivotably about a pivot axis 240 on the second region 234.
- the pivot axis 240 is oriented in particular parallel to the first pivot axis 230 or parallel to the bottom 204.
- the second region 234 is angled toward the first region 232.
- a corresponding angle 242 is in particular in the range between 70 ° and 110 ° and is in particular a right angle.
- the third region 236 is at an acute angle to the first region 232.
- a handle 244 is articulated.
- a corresponding pivot bearing 246 is provided which allows pivoting of the handle 244 relative to the clamp arm 226 about a second pivot axis 248.
- the second pivot axis 248 is parallel to the first pivot axis 230.
- a web member 252 articulated to the handle 244 .
- a first wedge element 254 is linearly guided via a corresponding guide 256, which is arranged on the handle element 222.
- the first wedge element 254 has a first wedge surface 258, which faces a second wedge surface 260 of a second wedge element 262.
- the second wedge member is also linearly guided on the handle member 222.
- the second wedge surface 260 is supported on the first wedge surface 258.
- a displacement of the first wedge element 254 causes a displacement of the second wedge element 262.
- the web element 252 is connected to the first wedge element 254 and pivotally connected thereto via a corresponding pivot bearing 264 about a fourth pivot axis 266.
- the third pivot axis 250 and the fourth pivot axis 266 are parallel to the first pivot axis 230.
- the web element 252 is associated with an adjusting device 268 corresponding to the steep 92.
- the second wedge element 262 is supported on the handle element 222 via a spring device 270.
- the mechanism of the toggle clamp 200 corresponds to the mechanism of the toggle clamp 10 as described above.
- a workpiece can be clamped between the abutment element 238 and a corresponding base (to which the base 202 is then also fixed).
- the clamping force (the knee lever force) can be adjusted via the adjusting device 268.
- a handle member 222 is provided which is spaced from the bottom 204 of the base. An operator can grasp the handle 244 and the fixed handle member 222 together with one hand. By pushing down the handle 244 on the handle member 222, the abutment member 238 is moved toward the pad to clamp a workpiece. The toggle clamp 200 is then a horizontal tensioner.
- toggle clamp 200 works like the toggle clamp 10.
- a fifth embodiment of a clamping tool according to the invention which in the Figures 23 and 24 shown there and designated 300, is a toggle clamp in the form of a pair of pliers or gripping pliers.
- the gripping pliers 300 are designed similar to the clamping tool 200.
- the same reference numerals are used for the same elements.
- the grip pliers 300 include a base 302 on which the handle member 222 is seated with the corresponding mechanism. At the base 302, the first clamping arm 226 is correspondingly articulated with its contact element 238. On the clamping arm 226 is pivotally mounted the handle 244 as described above.
- the mechanism for providing the toggle force and adjusting the tension force (toggle force) is the same as described above.
- the second clamping arm 306 cooperates with the first clamping arm 226. It has a first region (middle region) 308, on which on the one side a second region 310 and to the other side, a third region 312 is arranged. The first region, the second region and the third region are in particular integrally connected to one another. Via the third region 312, the second clamping arm 306 is rigidly connected to the base 302.
- the second region 310 sits at an angle to the first region 308.
- An angle 314 is adapted to the angle 242 for the first clamping arm 226.
- the angle 314 is a right angle.
- an abutment member 316 for a workpiece.
- a workpiece is clamped between the first clamping arm 226 and the second clamping arm 306 and in each case adjacent to the contact elements 238 and 316.
- the clamping tool 300 is designed as a pair of pliers and gripping pliers in particular. With the clamp arms 226, 306 open, in which position the handle 244 is pivoted away from the handle member 222 (this would be the in FIG. 1 shown position) is a mouth between the investment elements 238 and 316 open. By pivoting the handle 244 onto the handle member 222, a workpiece can be clamped between the first clamp arm 226 and the second clamp arm 306 and then transported, for example.
- An operator can grasp the handle 244 and the handle element 222 with one hand.
- the grip pliers 300 has a toggle lever.
- the knee lever force is as described above analogous to the toggle clamp 10 via the adjusting device 268 adjustable.
- the mechanism corresponds to the mechanism as described in connection with toggle clamps 200 and 10.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Jigs For Machine Tools (AREA)
- Gripping Jigs, Holding Jigs, And Positioning Jigs (AREA)
Claims (15)
- Outil de serrage, comprenant- une base (12 ; 122 ; 162 ; 202 ; 302),- un bras de blocage (20 ; 126 ; 167 ; 226), qui est articulé au niveau de la base (12 ; 122 ; 162 ; 202 ; 302) de manière à pouvoir pivoter autour d'un premier axe de pivotement (18 ; 166 ; 230),- une poignée (40 ; 244), qui est articulée au niveau du bras de blocage (20 ; 226) de manière à pouvoir pivoter autour d'un deuxième axe de pivotement (38 ; 248), et un élément de liaison (57 ; 252), qui est articulé de manière à pouvoir pivoter au niveau de la poignée (40 ; 244) autour d'un troisième axe de pivotement (56 ; 250), ou- une poignée (130 ; 172), qui est articulée au niveau de la base (122 ; 162) de manière à pouvoir pivoter autour d'un deuxième axe de pivotement (170), et un élément de liaison (138; 178), qui est articulé de manière à pouvoir pivoter au niveau du bras de blocage (126 ; 167) autour d'un troisième axe de pivotement (176),- un premier élément formant une cale (60 ; 134 ; 182 ; 254) avec une première surface de cale (68 ; 258), lequel est guidé de manière linéaire au niveau d'un système de guidage (58 ; 132 ; 180 ; 256), dans lequel l'élément de liaison (57 ; 138 ; 178 ; 252) est relié au premier élément formant une cale (60 ; 134 ; 182 ; 254) et est articulé au niveau du premier élément formant une cale (60 ; 134 ; 182 ; 254) de manière à pouvoir pivoter autour d'un quatrième axe de pivotement (72 ; 186 ; 266),- un deuxième élément formant une cale (74 ; 136 ; 182 ; 262) avec une deuxième surface de cale (80 ; 260) tournée vers la première surface de cale (68 ; 258), lequel est adapté au premier élément formant une cale (60 ; 134 ; 182 ; 254) et est guidé de manière linéaire, dans lequel dans une première zone de positionnement de la poignée (40; 130; 172; 244), la première surface de cale (68 ; 258) et la deuxième surface de cale (80 ; 260) sont espacées et dans une deuxième zone de position de la poignée (40 ; 130 ; 172 ; 244), la deuxième surface de cale (80 ; 260) prend appui au niveau de la première surface de cale (68 ; 258) et un coulissement du premier élément formant une cale (60 ; 134 ; 182 ; 254) entraîne un coulissement du deuxième élément formant une cale (74 ; 136 ; 188 ; 262), et- un dispositif de réglage (92 ; 268), qui agit sur le deuxième élément formant une cale (74 ; 136 ; 188 ; 262) et lequel permet de régler une position du deuxième élément formant une cale (74 ; 136 ; 188 ; 262), dans le cadre de laquelle le premier élément formant une cale (60 ; 134 ; 182 ; 254) agit sur le deuxième élément formant une cale (74; 136; 188; 262) aux fins de l'entraînement de ce dernier, dans lequel le dispositif de réglage (92 ; 268) est disposé au niveau de l'élément de liaison (57 ; 138 ; 178 ; 252) et est maintenu au niveau de l'élément de liaison (57 ; 138 ; 178 ; 252),caractérisé en ce que le dispositif de réglage (92 ; 268) comprend un élément actif (94), qui repose au niveau de l'élément de liaison (57 ; 138 ; 178 ; 252) de manière à pouvoir pivoter autour d'un cinquième axe de pivotement (102).
- Outil de serrage selon la revendication 1, caractérisé en ce que l'élément de liaison (57 ; 138 ; 178 ; 252) est réalisé de manière rigide et est réalisé en particulier d'un seul tenant.
- Outil de serrage selon la revendication 1 ou 2, caractérisé en ce que l'élément de liaison (57 ; 138 ; 178 ; 252) est réalisé de manière rigide entre une articulation (54; 140; 174) destinée à être articulée au niveau de la poignée (40; 244) ou au niveau du bras de blocage (126; 167) et une articulation (70; 142; 184) destinée à être articulée au niveau du premier élément formant une cale (60 ; 134 ; 182 ; 254).
- Outil de serrage selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier axe de pivotement (18 ; 166 ; 230), le deuxième axe de pivotement (38; 170; 248), le troisième axe de pivotement (56 ; 176 ; 250) et le quatrième axe de pivotement (72 ; 186 ; 266) sont orientés de manière parallèle les uns par rapport aux autres.
- Outil de serrage selon l'une quelconque des revendications précédentes, caractérisé en ce que le cinquième axe de pivotement (102) est parallèle par rapport au quatrième axe de pivotement (72 ; 186 ; 266).
- Outil de serrage selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un élément de réglage (104) repose au niveau de l'élément actif (94), lequel permet de régler par immobilisation une position angulaire de l'élément actif (94) par rapport à l'élément de liaison (57 ; 138 ; 178 ; 252), et en particulier en ce que l'élément de réglage (104) est une vis, qui est guidée dans un filetage au niveau de l'élément actif (94) et qui prend appui au niveau de l'élément de liaison (57; 138; 178; 252) en particulier par l'intermédiaire d'une extrémité.
- Outil de serrage selon l'une quelconque des revendications précédentes, caractérisé en ce que l'élément actif (94) prend appui au niveau du premier élément formant une cale (60 ; 134 ; 182 ; 254) au moins dans une zone partielle d'un mouvement de pivotement possible de l'élément actif (94).
- Outil de serrage selon l'une quelconque des revendications précédentes, caractérisé en ce que l'élément actif (94) est réalisé de manière arrondie au niveau d'une zone (96), par laquelle ledit élément actif peut agir sur le deuxième élément de liaison (74 ; 136 ; 188 ; 262).
- Outil de serrage selon l'une quelconque des revendications précédentes, caractérisé par un dispositif à ressorts (86 ; 144 ; 194 ; 270), qui agit sur le deuxième élément de liaison (74 ; 136 ; 188 ; 262), dans lequel une force de ressort du dispositif à ressorts (86 ; 144 ; 194 ; 270) est recherchée pour pousser le deuxième élément formant une cale (74 ; 136 ; 188 ; 262) en direction de l'élément de liaison (57 ; 138 ; 178 ; 252).
- Outil de serrage selon l'une quelconque des revendications précédentes, caractérisé en ce que le guidage (58 ; 256) est disposé au niveau de la base (12 ; 202 ; 302), et en particulier en ce que la base (202 ; 302) présente un côté inférieur (204 ; 304), qui est opposé au bras de blocage (226), et en ce que le guidage (256) se situe à un espacement en hauteur donné par rapport au côté inférieur (204 ; 304) de la base (202 ; 302), et en particulier en ce que l'outil de serrage peut être fixé, par l'intermédiaire du côté inférieur (204) de la base (202), au niveau d'une application.
- Outil de serrage selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un élément de poignée (222) est disposé au niveau de la base (202 ; 302), et en particulier en ce que l'élément de poignée (222) est relié de manière rigide à la base (202 ; 302), et en particulier en ce que dans une position de départ de l'outil de serrage, la poignée (244) et l'élément de poignée (222) sont orientés au moins approximativement de manière parallèle l'un par rapport à l'autre, et en particulier en ce que le guidage (256) est disposé au niveau de l'élément de poignée (222), et en particulier en ce que le premier élément formant une cale (254) et le deuxième élément formant une cale (262) sont disposés au niveau de l'élément de poignée (222), et en particulier en ce que l'élément de poignée (222) est disposé de manière à faire face à la base (202 ; 302) et à la poignée (244) et peut être saisi par la main d'un utilisateur.
- Outil de serrage selon l'une quelconque des revendications précédentes, caractérisé en ce que le bras de blocage est un premier bras de blocage (226), et un deuxième bras de blocage (306) est disposé au niveau de la base (202), dans lequel une pièce peut être coincée entre le premier bras de blocage (226) et le deuxième bras de blocage (306), et en particulier en ce que le deuxième bras de blocage (306) est relié de manière solidaire à la base (302), et en particulier caractérisé par une réalisation sous la forme d'une pince et/ou d'une pince à agripper.
- Outil de serrage selon l'une quelconque des revendications précédentes, caractérisé en ce que le bras de blocage (226) et/ou un autre bras de blocage (306) présentent une première zone (232 ; 308), au niveau de laquelle une deuxième zone (234; 310) coudée repose, dans lequel un élément d'appui (238; 316) pour une pièce est disposé au niveau de la deuxième zone (234 ; 310), et en particulier en ce que l'élément d'appui (238 ; 316) repose de manière à pouvoir pivoter ou de manière à pouvoir tourner au niveau de la deuxième zone (234 ; 310), et en particulier en ce que la deuxième zone (234; 310) est orientée dans une plage angulaire comprise entre 70° et 100° par rapport à la première zone (232 ; 308) et est orientée en particulier au moins approximativement à angle droit par rapport à la première zone (232 ; 308), et en particulier en ce qu'en présence d'un premier bras de blocage (226) et d'un deuxième bras de blocage (306), la première zone (234) du premier bras de blocage (226) et la deuxième zone (310) du deuxième bras de blocage (306) sont orientées au moins approximativement au même niveau l'une par rapport à l'autre, quand le premier bras de blocage (226) est dans une position de départ.
- Outil de serrage selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un enserrage d'une pièce par le bras de blocage (20 ; 126 ; 226) doit être provoqué par un pivotement de la poignée (40 ; 130 ; 244) sur la base (12 ; 122 ; 302).
- Outil de serrage selon l'une quelconque des revendications précédentes, caractérisé en ce que le bras de blocage (20 ; 226) est articulé au niveau de la base (12 ; 202 ; 302), la poignée (40 ; 244) est articulée au niveau du bras de blocage (20 ; 226), et l'élément de liaison (57 ; 252) est articulé au niveau de la poignée (40 ; 244), et en particulier en ce que l'élément de liaison (57 ; 252) est orienté au moins approximativement de manière parallèle par rapport au bras de blocage (20 ; 226) au niveau d'un point mort de levier coudé.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013104413.1A DE102013104413C5 (de) | 2013-04-30 | 2013-04-30 | Kniehebelspanner |
PCT/EP2014/058683 WO2014177539A1 (fr) | 2013-04-30 | 2014-04-29 | Outil de serrage |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2991806A1 EP2991806A1 (fr) | 2016-03-09 |
EP2991806B1 true EP2991806B1 (fr) | 2017-03-22 |
Family
ID=50588717
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14719789.1A Active EP2991805B1 (fr) | 2013-04-30 | 2014-04-29 | Sauterelle de bridage |
EP14724023.8A Active EP2991806B1 (fr) | 2013-04-30 | 2014-04-29 | Outil de serrage |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14719789.1A Active EP2991805B1 (fr) | 2013-04-30 | 2014-04-29 | Sauterelle de bridage |
Country Status (7)
Country | Link |
---|---|
US (2) | US20160184978A1 (fr) |
EP (2) | EP2991805B1 (fr) |
CN (2) | CN105163910A (fr) |
DE (1) | DE102013104413C5 (fr) |
PL (1) | PL2991805T3 (fr) |
TW (1) | TWI523737B (fr) |
WO (2) | WO2014177539A1 (fr) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013104413C5 (de) * | 2013-04-30 | 2016-08-11 | Bessey Tool Gmbh & Co. Kg | Kniehebelspanner |
US11118383B2 (en) | 2015-04-16 | 2021-09-14 | Speedy Block Grisendi S.R.L. Piú Brevemente Speedy Block S.R.L. | Clamping device |
US10458820B2 (en) * | 2015-09-18 | 2019-10-29 | Fisher Controls International Llc | Position sensor mounts for a diagnostic system for fluid control valves |
US10800009B2 (en) | 2016-01-20 | 2020-10-13 | Delaware Capital Formation, Inc. | Toggle clamp |
US20170361692A1 (en) * | 2016-06-16 | 2017-12-21 | American Specialty Cars | Latch system for pickup bed tonneau cover |
US10112319B2 (en) * | 2016-11-01 | 2018-10-30 | Angelo Lamar Flamingo | Brick clamp |
TWI617399B (zh) * | 2016-12-16 | 2018-03-11 | 賴秋吉 | 束環鉗 |
DE102016226329A1 (de) | 2016-12-30 | 2018-07-05 | Bessey Tool Gmbh & Co. Kg | Kniehebelspannervorrichtung |
TWI608909B (zh) * | 2017-05-02 | 2017-12-21 | 賴秋吉 | 鉗具 |
DE102017113996A1 (de) * | 2017-06-23 | 2018-12-27 | Bessey Tool Gmbh & Co. Kg | Zwinge und Verfahren zum Betreiben einer Zwinge |
DE102018105231A1 (de) * | 2018-03-07 | 2019-09-12 | Franka Emika Gmbh | Schnellmontagevorrichtung für Roboterarm |
EP3552880B1 (fr) | 2018-04-11 | 2020-10-14 | Thule Sweden AB | Dispositif de fixation pour support de charge |
US20220040822A1 (en) * | 2018-11-05 | 2022-02-10 | Fireball Tool Works Llc | Welding Clamp With Position Shifting Base |
WO2020243780A1 (fr) * | 2019-06-04 | 2020-12-10 | Holz Industries Pty Ltd | Dispositif d'accouplement de galerie de toit |
DE102019122574A1 (de) * | 2019-08-22 | 2021-02-25 | Valeo Schalter Und Sensoren Gmbh | Einstellvorrichtung, Einstelleinheit, Head-Up-Display und Kraftfahrzeug |
NO346588B1 (en) * | 2020-10-30 | 2022-10-17 | Seasystems As | A clamp for a sea fastening arrangement |
DE102023103565A1 (de) | 2023-02-14 | 2024-08-14 | Andreas Maier Gmbh & Co. Kg | Spannvorrichtung |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2350034A (en) * | 1942-07-27 | 1944-05-30 | Knu Vise Inc | Toggle clamp |
US2531285A (en) * | 1948-03-08 | 1950-11-21 | Edward L Manspeaker | Wrench with self-adjusting jaws |
US2751801A (en) * | 1954-05-17 | 1956-06-26 | John L Hostetter | Self-adjusting plier-type toggle locking wrench |
US2920518A (en) * | 1957-09-10 | 1960-01-12 | Pointe Gabriel M La | Toggle-joint wrench with cam release means |
US3116656A (en) * | 1962-02-26 | 1964-01-07 | John L Hostetter | Self-adjusting plier-type toggle locking wrench |
US3446102A (en) * | 1966-03-11 | 1969-05-27 | Clarence E Hallmark | Pliers |
US3600986A (en) * | 1968-08-27 | 1971-08-24 | Leverage Tools Inc | Self-adjusting locking wrench |
US3964738A (en) * | 1974-05-24 | 1976-06-22 | Owen Walter L | Clamp |
US3971552A (en) * | 1975-11-12 | 1976-07-27 | Mayfield Johnny W | Quick release pipe vise |
US4407493A (en) * | 1981-08-05 | 1983-10-04 | Carr Lane Mfg. Co. | Self-adjusting toggle clamps for factory fixtures and the like |
US4679782A (en) * | 1985-01-02 | 1987-07-14 | Aladdin Engineering & Mfg | Mechanical toggle clamp with means for applying uniform clamping force |
US4747588A (en) * | 1986-08-15 | 1988-05-31 | Dillhoff George A | Universal clamping tool |
US5688014A (en) * | 1994-11-14 | 1997-11-18 | Kot; Norbert J. | Clamp having self-limiting internal overstress relief |
US5678811A (en) * | 1995-04-26 | 1997-10-21 | Steven C. Johnson | Stacked lumber clamp |
AU1790897A (en) * | 1997-02-17 | 1998-09-08 | Bessey & Sohn Gmbh & Co. | Gripping device |
JPH10249741A (ja) * | 1997-03-07 | 1998-09-22 | Ishihara Yukihiro | トグルクランプ |
CN2405705Y (zh) * | 1998-10-27 | 2000-11-15 | 马全明 | 圆钢旋风剥皮机 |
US6591719B1 (en) | 2001-07-19 | 2003-07-15 | Newell Rubbermaid, Inc. | Adjustable pliers wrench |
EP1535702B1 (fr) * | 2002-07-25 | 2011-08-03 | Nishimura Press Kougyousho Co., Ltd. | Dispositif de serrage |
DE10351224A1 (de) | 2003-10-27 | 2005-06-16 | Bessey & Sohn Gmbh & Co. Kg | Klemmen-Handwerkzeug |
US8104754B1 (en) * | 2008-05-30 | 2012-01-31 | Allen Ip Inc. | Adjustable workpiece positioning and clamping system |
CN102186631B (zh) * | 2008-10-15 | 2015-09-16 | 罗伯特·N·普尔 | 自调节肘节式夹具 |
CN101780667A (zh) * | 2009-01-15 | 2010-07-21 | 纬泰机械(上海)有限公司 | 肘节夹钳 |
US8225700B2 (en) * | 2009-01-26 | 2012-07-24 | Hile Jeffrey B | Locking pliers with quick jaw release |
US20110107880A1 (en) * | 2009-11-11 | 2011-05-12 | Stucky Andrew C | Pliers Having Generally Parallel Jaws |
CN202367622U (zh) * | 2011-12-28 | 2012-08-08 | 山东法因数控机械股份有限公司 | 一种液压夹钳 |
US9409281B2 (en) * | 2013-03-15 | 2016-08-09 | Dunlop Sports Co. Ltd. | Clamping device for a golf club head |
DE102013104413C5 (de) * | 2013-04-30 | 2016-08-11 | Bessey Tool Gmbh & Co. Kg | Kniehebelspanner |
-
2013
- 2013-04-30 DE DE102013104413.1A patent/DE102013104413C5/de not_active Expired - Fee Related
-
2014
- 2014-04-23 TW TW103114652A patent/TWI523737B/zh active
- 2014-04-29 WO PCT/EP2014/058683 patent/WO2014177539A1/fr active Application Filing
- 2014-04-29 EP EP14719789.1A patent/EP2991805B1/fr active Active
- 2014-04-29 EP EP14724023.8A patent/EP2991806B1/fr active Active
- 2014-04-29 WO PCT/EP2014/058651 patent/WO2014177529A1/fr active Application Filing
- 2014-04-29 CN CN201480024786.9A patent/CN105163910A/zh active Pending
- 2014-04-29 CN CN201480024774.6A patent/CN105163909B/zh active Active
- 2014-04-29 PL PL14719789T patent/PL2991805T3/pl unknown
-
2015
- 2015-10-06 US US14/875,796 patent/US20160184978A1/en not_active Abandoned
- 2015-10-06 US US14/875,807 patent/US9889543B2/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2991806A1 (fr) | 2016-03-09 |
TWI523737B (zh) | 2016-03-01 |
TW201509607A (zh) | 2015-03-16 |
WO2014177539A1 (fr) | 2014-11-06 |
EP2991805A1 (fr) | 2016-03-09 |
US20160184978A1 (en) | 2016-06-30 |
DE102013104413B3 (de) | 2014-07-17 |
PL2991805T3 (pl) | 2017-09-29 |
US20160184979A1 (en) | 2016-06-30 |
DE102013104413C5 (de) | 2016-08-11 |
CN105163909A (zh) | 2015-12-16 |
EP2991805B1 (fr) | 2017-02-15 |
WO2014177529A1 (fr) | 2014-11-06 |
US9889543B2 (en) | 2018-02-13 |
CN105163910A (zh) | 2015-12-16 |
CN105163909B (zh) | 2017-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2991806B1 (fr) | Outil de serrage | |
DE102007027808B3 (de) | Spannvorrichtung | |
DE69504791T2 (de) | Spannzwinge mit geneigter Schraubspindel | |
EP0910497B1 (fr) | Serre-joints | |
EP1527847B1 (fr) | Outil de serrage | |
EP1099900A1 (fr) | Support articulé | |
DE2749025A1 (de) | Einstellbare spannzange | |
WO2018115171A2 (fr) | Outil à main doté d'une fonction cliquet | |
EP1055487A1 (fr) | Pince avec machoires paralleles | |
EP1810784B1 (fr) | Dispositif de serrage de tubes à réglage variable | |
DE102019101156B3 (de) | Klemme für einen fahrrad-montageständer | |
DE3444725A1 (de) | Rohrzange | |
WO2018121978A2 (fr) | Dispositif de serrage à genouillère | |
DE19909274A1 (de) | Abzieher | |
DE102019110984A1 (de) | Klemmhalter | |
DE4108690C2 (de) | Schnittlaufzange | |
DE4338179C2 (de) | Hebelspannzwinge | |
DE102012107587A1 (de) | Spannwerkzeug und Verfahren dazu | |
CH695099A5 (de) | Spannvorrichtung, insbesondere für handgeführte Elektrowerkzeuge. | |
DE102006059807B3 (de) | Schraubzange | |
DE10044874A1 (de) | Schlüsselzange | |
EP0440121B1 (fr) | Disposition de brides | |
DE3108276A1 (de) | Greif- oder klemmwerkzeug | |
DE4203900C1 (fr) | ||
DE4122078A1 (de) | Zange zum setzen und halten von naegeln und schrauben |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20151120 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20161107 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 877245 Country of ref document: AT Kind code of ref document: T Effective date: 20170415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014003126 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170623 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170622 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170622 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170722 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170724 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014003126 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20171229 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170522 |
|
26N | No opposition filed |
Effective date: 20180102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170430 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170429 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170430 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 877245 Country of ref document: AT Kind code of ref document: T Effective date: 20190429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190429 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230707 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240425 Year of fee payment: 11 |