EP2976172A1 - Inoculant a particules de surface - Google Patents

Inoculant a particules de surface

Info

Publication number
EP2976172A1
EP2976172A1 EP14716891.8A EP14716891A EP2976172A1 EP 2976172 A1 EP2976172 A1 EP 2976172A1 EP 14716891 A EP14716891 A EP 14716891A EP 2976172 A1 EP2976172 A1 EP 2976172A1
Authority
EP
European Patent Office
Prior art keywords
particles
inoculant
cast iron
iron
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14716891.8A
Other languages
German (de)
English (en)
Other versions
EP2976172B1 (fr
Inventor
Thomas Margaria
Aurélie FAY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ferroglobe France SAS
Original Assignee
Ferropem SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ferropem SAS filed Critical Ferropem SAS
Priority to SI201431959T priority Critical patent/SI2976172T1/sl
Publication of EP2976172A1 publication Critical patent/EP2976172A1/fr
Application granted granted Critical
Publication of EP2976172B1 publication Critical patent/EP2976172B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • C21C1/105Nodularising additive agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0037Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by injecting powdered material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • C21D5/02Heat treatments of cast-iron improving the malleability of grey cast-iron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/006Graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys

Definitions

  • the present invention relates to an inoculant product for the treatment of cast iron, as well as to a method of manufacturing said inoculant.
  • Cast iron is a well-known iron-carbon alloy and widely used for the manufacture of mechanical parts.
  • the melt is obtained by mixing the constituents of the alloy in the liquid state at a temperature of between 1150 ° C. and 1350 ° C. before pouring into a mold and cooling the alloy obtained.
  • the carbon can adopt different physico-chemical structures depending on several parameters.
  • White cast iron has the characteristic of being hard and brittle, which is undesirable for some applications.
  • Gray cast iron is softer and can be worked.
  • the liquid iron undergoes an inoculation treatment to introduce graphitizing components into the cast iron which will favor the appearance of graphite rather than iron carbide when cooling the cast iron in the mold.
  • the formed graphite may be spheroidal, vermicular or lamellar.
  • One or the other graphitic form can be obtained preferentially by a particular treatment of the cast iron using specific components.
  • the formation of spheroidal graphite can be promoted by a so-called nodulising treatment aimed primarily at providing the magnesium melt in sufficient quantity so that the graphite can grow so as to form round particles (spheroids).
  • nodulising components may be included in the inoculant alloy, for example.
  • Mention may also be made of the addition of desulphurizing products, or of products making it possible to specifically treat certain defects of the cast iron as a function of the initial composition of the molten bath, such as micro-shrinkage, which may appear during cooling. It may include lanthanum and rare earths.
  • These treatments can be performed in one or more times and at different times during the manufacture of the cast iron.
  • additions of inoculants are known in the bag, before casting of the cast iron in the mold (inoculation in the bag), during casting, or in the casting stream (late inoculation).
  • inoculants are conventionally made from a ferro-silicon type alloy FeSi6 5 or FeSi 75 with adjustment of chemistry according to target composition of the inoculant.
  • the adjustment is possible in oven or in pocket, with often poor yields depending on the elements to be added. It can also be mixtures of several alloys.
  • the inoculation efficiency of the cast iron part also depends on its thickness.
  • the inoculant is also desirable for the inoculant to be insensitive to the basic composition of the cast iron, which can vary from one batch to another (carbon content, silicon, initial sulfur, in particular, etc.) .
  • the present invention aims to provide a new product inoculant for the treatment of melting in the liquid phase, responding to all or part of these constraints.
  • a particulate inoculant in powder form, comprising, on the one hand, support particles made of a fusible material in liquid iron, and on the other hand, surface particles made of a material that promotes germination and growth of graphite, arranged and distributed discontinuously on the surface of the support particles, the surface particles having a particle size such that their d50 is less than or equal to one tenth of the d50 of the support particles.
  • the surface particles form a discontinuous coating, the support particle always having areas of contact with the cast iron.
  • the surface particles may be placed on the surface of the support particles by any appropriate technique, for example by grafting, gluing or coating, provided that the support particle is protected from access to the liquid iron when the inoculant is incorporated therein.
  • the surface particles have a particle size smaller than that of the support particles. It has been surprisingly found that such a configuration, namely a set of support particles partially coated with support particles, of a different nature, such as a different particle size, had a profile of dissolution and inoculation responding to the problems mentioned.
  • the difference in kind between the support particles and the support particles can further be expressed in the constituent materials of the particles, respectively.
  • the inoculant effect is provided by the support particle / particle array disposed at the surface and not by adjusting the chemical composition of an alloy, the The incorporation efficiencies of the added elements are greatly improved.
  • the support particles have low inoculating properties.
  • low or medium inoculants that can be dope by this means.
  • the carrier particles have inoculant properties for compositions or conditions different from those for which the whole carrier particles and surface particles act.
  • the support particles are made from silicon, whose proportion is variable, up to 100% by weight relative to the mass of the support particles.
  • the support particles may be made from carbon, whose proportion is variable, up to 100% by weight relative to the mass of the support particles. If necessary, it is in the form of graphite. Associated with silicon, it can be in the form of silicon carbide, for example.
  • the carrier particles contain at least 40% by weight of silicon relative to the mass of the support particles.
  • the support particles are made from an alloy, more particularly ferrous.
  • the support particles comprise, especially in allied form, at least one addition element, such as aluminum or calcium, especially between 0.2 and 5% by weight for each element of addition, relative to the mass of the support particles.
  • the carrier particles comprise, especially in allied form, at least one treatment element with an anti-shrinkage effect, in particular in an amount of between 0.5 and 6% by weight, relative to the weight of the carrier particles.
  • the proportion of surface particles is 1 to 8% by weight, preferably 1 to 5%, relative to the mass of the inoculant.
  • the surface particles are distributed substantially homogeneously on the surface of the support particles, in particular within a batch of particles.
  • the surface particles, until the introduction into the cast iron occupy between 80 and 90% of the surface of the support particles.
  • the surface particles are chosen, individually or as a mixture, from metal elements, such as aluminum, bismuth and manganese, silicides, especially iron, rare earths and calcium, oxides, such as aluminum oxides. , calcium, silicon or barium, metal sulphides, especially iron, calcium and rare earths, sulphates, in particular barium, and carbon black.
  • metal elements such as aluminum, bismuth and manganese, silicides, especially iron, rare earths and calcium, oxides, such as aluminum oxides.
  • oxides such as aluminum oxides.
  • calcium, silicon or barium metal sulphides, especially iron, calcium and rare earths, sulphates, in particular barium, and carbon black.
  • the invention also relates to a method of manufacturing an inoculant of the invention.
  • a first step of the process there are support particles in a meltable material in liquid iron, having a particle size ranging from 0.2 to 7 mm, on the one hand, and surface particles having a particle size such that their d50 is less than or equal to one-tenth of the d50 of the support particles, on the other hand, then in a second step, the surface particles are deposited on the support particles.
  • This step can be implemented by any technique well known to those skilled in the art.
  • particle size ranging from 0.2 to 7 mm By particle size ranging from 0.2 to 7 mm, the conventional particle sizes in the range of inoculants of cast iron, namely the particle sizes 0.2-0.5 mm, 0.4-2 mm and 2-7 mm, are included.
  • the deposition of the surface particles is carried out mechanically, by incrustation.
  • the support particles and the surface particles are mixed, dry, at high speed, by example of 1000 to 1500 revolutions / min, to obtain an encrustation deposition of the surface particles on the surface of the support particles, in a discontinuous distribution.
  • a binder in the first step, is also available in a solvent, then in the second step, the carrier particles, the surface particles and the binder are mixed, and the solvent of the binder, for example by evaporation.
  • the carrier particles, the surface particles and the binder can be added at the same time or successively, in any order. For example, premixing of the surface particles in the binder solution can be performed, to which the carrier particles are then added.
  • a suitable binder is advantageously chosen from organic and polymeric binders, and in particular from polyvinyl alcohol (PVA), cellulose (CMC), polyvinylpyrrolidone (PVP) and cement.
  • PVA polyvinyl alcohol
  • CMC cellulose
  • PVP polyvinylpyrrolidone
  • a preferred method of the invention consists in using support particles made of an FeSi material containing aluminum and calcium, and / or surface particles made of a material chosen from aluminum, bismuth and silicides, especially from iron, rare earths and calcium, oxides, such as oxides of aluminum, calcium, silicon or barium, metal sulphides, especially iron, calcium and rare earths, sulphates, in particular barium, and black of carbon.
  • FIG. 1 is an overall scanning electron microscope view of a batch of particulate inoculant according to the invention comprising support particles (black) on the surface of which are fixed surface particles (white) conferring on the together a strong inoculating power.
  • FIG. 2 is a zoom of FIG. 1 on an inoculant particle according to the invention.
  • An inoculant according to the invention may be manufactured in the following manner.
  • a FeSi alloy containing 1% by weight of aluminum and 1.5% by weight of calcium and having a particle size between 0.4 and 2 mm are introduced into a fluidized bed reactor, the FeSi alloy being fluidized by air injection.
  • the minimum fluidization speed is determined conventionally, then the air flow rate is kept substantially constant and higher than this minimum speed.
  • the temperature inside the reactor is raised to about 100 ° C. This temperature will allow the water injected later to be eliminated.
  • the particles of this alloy will form the support particles on whose surface the inoculant particles will be fixed.
  • the surface particles will be particles of calcium silicide CaSi and metallic aluminum, both having particle sizes less than 400 micrometers.
  • the surface particles to be fixed are premixed with a binder in aqueous solution, and then injected into the reactor in about 30 minutes at a temperature of 100 ° C.
  • the whole surface particles, carrier particles and binder are fluidized and heated until the introduced water has been completely evaporated. It will be possible to control the evaporation of water by any usual method, in particular by measuring the humidity of the air leaving the reactor.
  • the inoculant according to the invention is then recovered and characterized to evaluate the effectiveness of the coating. This characterization can be made in particular by scanning electron microscope control.
  • the binder used may be of organic or polymeric binder type, such as, for example, binders of polyvinyl alcohol (PVA), cellulose (CMC) and polyvinylpyrrolidone (PVP) type.
  • PVA polyvinyl alcohol
  • CMC cellulose
  • PVP polyvinylpyrrolidone
  • the amount of water used for the dilution of the binder obviously depends on the solubility of the latter in the water and should be adapted accordingly.
  • inorganic binders in particular of sodium silicate type, as well as hydraulic binders of the cement or lime type.
  • the nature of the binder used may depend on the inoculant materials and supports used.
  • the amount of binder used will be calculated so as to best allow the almost total fixing of the surface particles without manifest excess which could then degrade the final performance of the inoculant according to the invention.
  • the amount of binder used will obviously depend on its stickiness and will also have to be adapted accordingly. In particular, it will be possible to carry out tests and visual verification using a scanning electron microscope in particular.
  • the amount of binder used may be between 0.001 and 1% by weight of binder relative to the total mass of the particles (carrier particles and surface particles).
  • approximately 500 kg of FeSi 7 o containing 1% by mass of AI and 1, 5% by weight of Ca, of particle size 0.2-0.5 mm are introduced into a fluidized bed reactor.
  • the FeSi alloy is fluidized by air injection.
  • the temperature inside the reactor is raised to 100 ° C.
  • These particles are the support particles.
  • a suspension is carried out with PVP and water. 8% of surface particles, containing Bi bismuth and ferro-silico-rare earth FeSiTR alloy, both with a particle size ⁇ 200 ⁇ are added to the PVP + water solution, and then suspended.
  • This suspension is then injected at a rate of 10% by weight into the reactor for about 40 minutes at a temperature of 100 ° C. After total injection of the mixture, the inside of the reactor is maintained at 100 ° C. until the product is completely dried.
  • approximately 1000 kg of FeSi 7 o containing 1% by weight of AI and 1, 5% by weight of Ca, with a particle size of 2 - 7 mm and approximately 50 kg of aluminum powder of particle size ⁇ 300 ⁇ m are introduced into a fluidized bed reactor. All the particles are fluidized by injection of depleted air. The temperature inside the reactor is raised to 100 ° C. A suspension is carried out with PVP and water. This suspension is then injected at a rate of 10% by weight into the reactor for about 40 minutes at a temperature of 100 ° C. After total injection of the mixture, the inside of the reactor is maintained at 100 ° C. until the product is completely dried.
  • the implementation of the process is not limited to the use of a fluidized bed reactor and other coating techniques can be used. In particular, the following methods may be mentioned.
  • a first method is the use of a high speed mixer, for example of the order of 1000 to 1500 revolutions per minute.
  • the mixing speed allows the mechanical inlay of the fine surface particles into the larger particles of FeSi (carrier particles).
  • Such a mechanical incrustation does not require the use of a binder and it is then called dry coating and cold.
  • the FeSi 7 type support particles containing mainly the FeSi 2 , 4 and Si phases can be directly encrusted with the surface particles.
  • a second method is the use of a high shear mixer.
  • mixing is carried out at a greater or lesser speed (between 50 and 500 rpm, for example) in a mixer of the mixer granulator type, in the presence of a binder (examples mentioned above).
  • a drying step is performed to remove water from the binder.
  • Drying means can equip the mixer. It may especially be a burner ramp, for example gas, heating the outside of the mixer by conduction; a heating mat, for example silicone, surrounding in particular the walls of the mixer; or any other system for bringing the powder inside the mixer to a temperature between 80 and 150 ° C to remove water.
  • a burner ramp for example gas, heating the outside of the mixer by conduction
  • a heating mat for example silicone, surrounding in particular the walls of the mixer
  • the mixer systems used, of the drum or granulator type must allow movement of the powder inside said mixer resulting in efficient mixing and some regularity of the bonding.
  • the mixer may be equipped with stirring fins on its walls or a granulator mixer with central or remote rotation system along one or two axes.
  • the process of the invention can be carried out indifferently continuously, or discontinuously batchwise.
  • the support and surface particles may be added together or separately. When added together, it may be advantageously premixed before adding the binder to ensure the bonding.
  • the carrier particles When they are added separately, the carrier particles will preferably be introduced first before adding the surface particles, preferably continuously, the binder also being introduced preferentially continuously.
  • support particles based on FeSi it is of course possible to use other materials conventionally used in foundry, and in particular SiC or graphite support particles. The manufacturing examples should simply be transposed to these materials.
  • the examples are given for most common use cases with an inoculant according to the invention, the support particle of which is of FeSi type.
  • inoculants according to the invention comprising other types of support particles such as silicon carbide or graphite, these materials are, however, used less frequently in the foundry.
  • a spheroidal graphite cast iron bath was treated at a rate of 0.3% by weight with an alloy inoculant type FeSi May 7, and containing 0.8% by weight of aluminum and 0.7% by mass of calcium .
  • the treatment is carried out by adding the inoculant into the cast iron bag, before filling the mold.
  • the residual magnesium of the cast iron is 400 thousandths.
  • the cast iron was then poured into a mold of the BCIRA type.
  • the treated cast has the following characteristics:
  • a spheroidal graphite cast iron bath was treated at a level of 0.3% by weight with an inoculant according to the invention having the following composition:
  • Binder 10% by weight of an aqueous solution of PVP - Deposition of the surface particles by bonding carried out by fluidization at 100 ° C.
  • the treatment is carried out by adding the inoculant into the cast iron bag, before filling the mold.
  • the amount of carbon equivalent of the cast iron (Ceq) is 4.32%.
  • the residual magnesium of the cast iron is 400 thousandths.
  • the cast iron was then poured into a mold of the BCIRA type.
  • the treated cast has the following characteristics:
  • Example 3 inoculant according to the invention
  • FeSiTR ferro-silico-rare earth alloy
  • Binder 10% by weight of an aqueous solution of PVP - Deposition of the surface particles by bonding carried out by fluidization at
  • the treatment is carried out by adding the inoculant into the cast iron bag, before filling the mold.
  • the amount of carbon equivalent (Ceq) of the cast iron is 4.32%.
  • the residual magnesium is 420 thousandths.
  • the cast iron is cast in a BCIRA mold.
  • the cast iron has the following characteristics:
  • a bath of spheroidal graphite cast iron was treated at a rate of 0.3% by weight with an inoculant conventionally developed type FeSi May 7, and containing 1, 2% by weight of aluminum, 1, 5% by mass calcium and 1.5% by weight of zirconium.
  • the treatment is carried out by adding the inoculant into the cast iron bag, before filling the mold.
  • the amount of carbon equivalent of the cast iron (Ceq) is 4.32%.
  • the residual magnesium of the cast iron is 400 thousandths.
  • the cast iron was then poured into a mold of the BCIRA type.
  • the treated cast has the following characteristics:
  • the treatment is carried out by adding the inoculant into the cast iron bag, before filling the mold.
  • the amount of carbon equivalent of the cast iron (Ceq) is 4.3%.
  • the cast iron is cast in a BCIRA mold.
  • the cast iron has the following characteristics:
  • Binder 5% by weight of an aqueous solution of cement
  • the treatment is carried out by adding the inoculant into the cast iron bag, before filling the mold.
  • the amount of carbon equivalent of the cast iron (Ceq) is 4.3%.
  • the cast iron is cast in a BCIRA mold.
  • the cast iron has the following characteristics:
  • the treatment is carried out by adding the inoculant into the cast iron bag, before filling the mold.
  • the cast iron has the following characteristics:
  • Example 8 Pieces of different thicknesses - inoculant according to the invention
  • Binder 2% by weight of an aqueous solution of PVP
  • the treatment is carried out by adding the inoculant to the jet during filling of the mold.
  • the amount of carbon equivalent of the cast iron (Ceq) is 4.32%.
  • the cast iron is then cast in a mold to manufacture a part having different thicknesses: 4 mm and 25 mm.
  • the cast iron On the casting on the 4 mm thick part, the cast iron has the following characteristics:
  • the cast iron On the casting, on the 25 mm thick part, the cast iron has the following characteristics:
  • Example 9 Parts of different thicknesses - inoculant according to the prior art
  • the treatment is carried out by adding the inoculant to the jet during filling of the mold.
  • the amount of carbon equivalent of the cast iron (Ceq) is 4.31%.
  • the cast iron is then cast in a mold to manufacture a part having different thicknesses: 4 mm and 25 mm.
  • the cast iron On the casting on the 4 mm thick part, the cast iron has the following characteristics:
  • the cast iron On the casting, on the 25 mm thick part, the cast iron has the following characteristics:
  • Type VI graphite 73 '
  • Binder 10% by weight of an aqueous solution of cement
  • the treatment is carried out by adding the inoculant into the tundish during the filling of the mold.
  • the amount of carbon equivalent of the cast iron (Ceq) is 4.33%.
  • the cast iron is then poured into a mold to make a thick piece (170mm).
  • the cast iron has the following characteristics:
  • the treatment is carried out by adding the inoculant into the tundish during the filling of the mold.
  • the amount of carbon equivalent of the cast iron (Ceq) is 4.31%.
  • the cast iron is then cast in a mold to make a thick piece: 170 mm.
  • the cast iron has the following characteristics:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cultivation Of Plants (AREA)
  • Pretreatment Of Seeds And Plants (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Powder Metallurgy (AREA)

Abstract

La présente invention se rapporte à un inoculant particulaire pour le traitement de la fonte en phase liquide, comprenant, d'une part, des particules support en un matériau fusible dans la fonte liquide, et d'autre part, des particules de surface en un matériau favorisant la germination et la croissance de graphite, disposées et réparties de manière discontinue à la surface des particules support, les particules de surface présentant une granulométrie telle que leur d50 est inférieur ou égal à un dixième dud50 des particules support.

Description

INOCULANT A PARTICULES DE SURFACE
La présente invention se rapporte à un produit inoculant pour le traitement de la fonte, ainsi qu'à un procédé de fabrication dudit inoculant.
La fonte est un alliage fer-carbone bien connu et largement utilisé pour la fabrication de pièces mécaniques. La fonte est obtenue par mélange des constituants de l'alliage à l'état liquide à une température comprise entre 1 135°C et 1350°C avant coulée dans un moule et refroidissement de l'alliage obtenu.
Lors de son refroidissement, le carbone peut adopter différentes structures physico-chimiques dépendant de plusieurs paramètres.
Lorsque le carbone s'associe au fer et forme du carbure de fer FesC (également appelé cémentite), la fonte résultante est appelée fonte blanche. La fonte blanche présente la caractéristique d'être dure et cassante, ce qui n'est pas souhaitable pour certaines applications.
Si le carbone apparaît sous forme de graphite, la fonte résultante est appelée fonte grise. La fonte grise est plus tendre et peut être travaillée.
Pour obtenir des pièces en fonte possédant de bonnes propriétés mécaniques, il faut donc obtenir une structure de la fonte comprenant le maximum de carbone sous forme graphite et limiter le plus possible la formation de ces carbures de fer qui durcissent et fragilisent l'alliage.
En l'absence de tout traitement particulier, le carbone a toutefois tendance à s'associer au fer pour former du carbure de fer.
Il est donc nécessaire de traiter la fonte à l'état liquide de manière à modifier les paramètres d'association du carbone et obtenir la structure souhaitée.
A cette fin, la fonte liquide subit un traitement d'inoculation visant à introduire dans la fonte des composants graphitisants qui vont favoriser, lors du refroidissement de la fonte dans le moule, l'apparition de graphite plutôt que de carbure de fer.
De manière générale, les composants d'un inoculant sont des éléments favorisant la formation de graphite pendant la solidification de la fonte. On peut citer, à titre d'exemple, le carbone, le silicium, le calcium, l'aluminium, ... Bien évidemment, un inoculant peut être également conçu pour remplir d'autres fonctions et comprendre à cette fin d'autres composants présentant un effet particulier.
On peut notamment souhaiter, selon les propriétés recherchées, que le graphite formé soit sphéroïdal, vermiculaire ou lamellaire. L'une ou l'autre forme graphitique pourra être obtenue de manière préférentielle par un traitement particulier de la fonte à l'aide de composants spécifiques. Ainsi, par exemple, la formation de graphite sphéroïdal peut être favorisée par un traitement dit nodulisant visant principalement à apporter à la fonte du magnésium en quantité suffisante pour que le graphite puisse croître de manière à former des particules rondes (sphéroïdes).
Ces composants nodulisants peuvent être inclus dans l'alliage inoculant, par exemple.
On peut encore citer l'addition de produits désulfurants, ou de produits permettant de traiter spécifiquement certains défauts de la fonte en fonction de la composition initiale du bain de fonte liquide, tels que les micro retassures, susceptibles d'apparaître lors du refroidissement. Il pourra notamment s'agir de lanthane et de terres rares.
Ces traitements peuvent s'effectuer en une ou plusieurs fois et à différents moments de la fabrication de la fonte. On connaît notamment des ajouts d'inoculant dans la poche, avant la coulée de la fonte dans le moule (inoculation en poche), pendant la coulée, ou encore dans le jet de coulée (inoculation tardive).
La plupart des inoculants sont classiquement fabriqués à partir d'un alliage ferro-silicium de type FeSi65 ou FeSi75 avec ajustement de la chimie suivant la composition visée de l'inoculant. L'ajustement est possible en four ou en poche, avec des rendements souvent médiocres selon les éléments à ajouter. Il peut également s'agir de mélanges de plusieurs alliages.
Il convient de noter que l'efficacité d'inoculation de la pièce en fonte dépend également de son épaisseur.
Dans les zones de faibles épaisseurs, refroidissant plus vite, on notera un risque plus élevé de formation de carbures.
Inversement, dans les zones de plus fortes épaisseurs, le refroidissement sera plus lent et favorisera la formation de graphite. Toutefois, dans les pièces de fortes épaisseurs, le refroidissement peut être trop lent et le graphite formé peut perdre sa nodularité au voisinage du centre de la pièce. Il s'ensuit que les pièces avec des zones d'épaisseur différentes pourront avoir des structures physico-chimiques différentes d'une zone à l'autre, ce qui n'est pas souhaitable.
Il existe donc un besoin pour un inoculant permettant d'inoculer des pièces en fonte de différentes épaisseurs en limitant le risque de dégénérescence du graphite et la formation de carbures, et d'assurer une bonne uniformité de la structure métallurgique d'une zone de la pièce à l'autre.
Par ailleurs, il est également souhaitable que l'inoculant soit peu sensible à la composition de base de la fonte qui peut varier d'un lot à l'autre (taux de carbone, silicium, soufre initiaux, notamment, etc ...).
De plus, il reste bien évidemment souhaitable qu'un tel inoculant ne nécessite pas un taux d'addition supérieur aux produits connus et qu'il conserve des bonnes propriétés de dissolution dans la fonte, similaires à ces produits et ne génère pas sensiblement plus de crasses et laitiers que ces derniers.
Pour ce faire, la présente invention vise à proposer un nouveau produit inoculant pour le traitement de la fonte en phase liquide, répondant à tout ou partie de ces contraintes. A cet effet, elle apporte un inoculant particulaire, en poudre, comprenant, d'une part, des particules support en un matériau fusible dans la fonte liquide, et d'autre part, des particules de surface en un matériau favorisant la germination et la croissance de graphite, disposées et réparties de manière discontinue à la surface des particules support, les particules de surface présentant une granulométrie telle que leur d50 est inférieur ou égal à un dixième du d50 des particules support..
Ainsi disposées, les particules de surface forment un enrobage discontinu, la particule support présentant toujours des zones de contact avec la fonte.
Les particules de surface pourront être disposées à la surface des particules support par toute technique appropriée, par exemple par greffage, collage, enrobage, sous réserve de conserver pour la particule support des accès à la fonte liquide lorsque l'inoculant y est incorporé.
Comme indiqué précédemment, les particules de surface ont une granulométrie inférieure à celle des particules support. Il a en effet été constaté de manière surprenante qu'une telle configuration, à savoir un ensemble de particules support partiellement revêtues de particules de support, d'une nature différente, telle qu'une granulométrie différente, présentait un profil de dissolution et d'inoculation répondant aux problèmes évoqués. La différence de nature entre les particules support et les particules de support peut en outre s'exprimer dans les matériaux constitutifs des particules, respectivement.
Il a notamment été constaté qu'une telle structure physico chimique limitait fortement la dégénération du graphite au centre de pièces de fortes épaisseurs. Une telle structure permet également d'améliorer fortement l'homogénéité de l'inoculation, et plus particulièrement pour les pièces présentant des zones d'épaisseurs variables.
Par ailleurs, par rapport à une technique de fabrication classique en alliage au four, étant donné que l'effet inoculant est apporté par l'ensemble particules support / particules disposées en surface et non par ajustement de la composition chimique d'un alliage, les rendements d'incorporation des éléments additionnés en sont grandement améliorés.
Selon un premier mode de réalisation, les particules support possèdent des propriétés peu inoculantes. Ainsi, grâce à l'invention, on pourra utiliser des produits faiblement ou moyennement inoculants que l'on pourra doper par ce moyen.
Selon un deuxième mode de réalisation, les particules support possèdent des propriétés inoculantes pour des compositions ou conditions différentes de celles pour lesquelles l'ensemble particules de support et particules de surface agissent.
Avantageusement, les particules support sont réalisées à partir de silicium, dont la proportion est variable, pouvant atteindre 100% en masse par rapport à la masse des particules support.
De manière complémentaire ou alternative, les particules support pourront être réalisées à partir de carbone, dont la proportion est variable, pouvant atteindre 100% en masse par rapport à la masse des particules support. Le cas échéant, il est sous forme de graphite. Associé au silicium, il peut se présenter sous la forme de carbure de silicium par exemple.
Avantageusement encore, les particules support contiennent au moins 40 % en masse de silicium par rapport à la masse des particules support.
De manière préférentielle, les particules support sont réalisées à partir d'un alliage, plus particulièrement ferreux.
De manière avantageuse, les particules support comprennent, notamment sous forme alliée, au moins un élément d'addition, tel que de aluminium ou du calcium, notamment entre 0,2 et 5 % en masse pour chaque élément d'addition, par rapport à la masse des particules support.
De manière avantageuse encore, les particules support comprennent, notamment sous forme alliée, au moins un élément de traitement à effet anti-retassure notamment en une quantité comprise entre 0,5 et 6 % en masse, par rapport à la masse des particules support.
Préférentiellement, la proportion de particules de surface est comprise en 1 et 8 % en masse, de préférence de 1 à 5 %, par rapport à la masse de l'inoculant.
Avantageusement, les particules de surface sont réparties de manière sensiblement homogène à la surface des particules support, notamment au sein d'un lot de particules.
De manière préférentielle, les particules de surface, jusqu'à l'introduction dans la fonte, occupent entre 80 et 90 % de la surface des particules support.
Avantageusement, les particules de surface sont choisies, individuellement ou en mélange, parmi des éléments métalliques, tels qu'aluminium, bismuth et manganèse, des siliciures, notamment de fer, terres rares et calcium, des oxydes, tels qu'oxydes d'aluminium, de calcium, de silicium ou de baryum, des sulfures métalliques, notamment de fer, calcium et terres rares, des sulfates, notamment de baryum, et du noir de carbone.
L'invention concerne aussi un procédé de fabrication d'un inoculant de l'invention. Selon une première étape du procédé, on dispose de particules support en un matériau fusible dans la fonte liquide, présentant une granulométrie variant de 0,2 à 7 mm, d'une part, et de particules de surface présentant une granulométrie telle que leur d50 est inférieur ou égal à un dixième du d50 des particules support, d'autre part, puis dans une seconde étape on procède au dépôt des particules de surface sur les particules de support. Cette étape peut être mise en œuvre par toute technique bien connue de l'homme du métier.
Par granulométrie variant de 0,2 à 7 mm, on inclut les granulométries classiques du domaine des inoculants de la fonte, à savoir les granulométries 0,2-0,5 mm, 0,4-2 mm et 2-7 mm.
Dans une variante de l'invention, le dépôt des particules de surface est réalisé mécaniquement, par incrustation. A cet effet, on mélange les particules support et les particules de surface, à sec, à grande vitesse, par exemple de 1000 à 1500 tours/min, pour obtenir un dépôt par incrustation des particules de surface à la surface des particules support, selon une répartition discontinue.
Dans une autre variante de l'invention, à la première étape, on dispose en outre d'un liant dans un solvant, puis à la seconde étape, on mélange les particules support, les particules de surface et le liant, puis on élimine le solvant du liant, par exemple par évaporation. Comme il sera décrit plus en détail, les particules de support, les particules de surface et le liant peuvent être ajoutés en même temps ou successivement, dans quelque ordre que ce soit. Par exemple, un mélange préalable des particules de surface dans la solution de liant peut être effectué, auquel sont ensuite ajoutées les particules support.
Un liant approprié est avantageusement choisi parmi les liants organiques et polymères, et notamment, parmi l'alcool polyvinylique (APV), la cellulose (CMC), la polyvinylpyrrolidone (PVP) et le ciment.
Un procédé préféré de l'invention consiste à utiliser des particules support en un matériau FeSi contenant de l'aluminium et du calcium, et/ou des particules de surface en un matériau choisi parmi l'aluminium, le bismuth, les siliciures, notamment de fer, terres rares et calcium, des oxydes, tels qu'oxydes d'aluminium, de calcium, de silicium ou de baryum, des sulfures métalliques, notamment de fer, calcium et terres rares, des sulfates, notamment de baryum, et du noir de carbone.
La présente invention sera mieux comprise à la lumière de la description détaillée et des exemples de mises en œuvre qui suivent en regard du dessin annexé dans lequel :
- la figure 1 est une vue d'ensemble au microscope électronique à balayage d'un lot d'inoculant particulaire selon l'invention comprenant des particules support (noires) à la surface desquelles sont fixées des particules de surface (blanches) conférant à l'ensemble un fort pouvoir inoculant.
- la figure 2 est un zoom de la figure 1 sur une particule inoculante selon l'invention.
Un inoculant selon l'invention pourra être fabriqué de la manière suivante.
Environ 500 kilogrammes d'un alliage FeSi contenant 1 % en masse d'aluminium et 1 ,5 % en masse de calcium et possédant une granulométrie comprise entre 0,4 et 2 mm sont introduits dans un réacteur en lit fluidisé, l'alliage FeSi étant mis en fluidisation par injection d'air.
La vitesse minimale de fluidisation est déterminée classiquement, puis le débit d'air est maintenu sensiblement constant et supérieur à cette vitesse minimale.
La température à l'intérieur du réacteur est portée à environ 100°C. Cette température permettra à l'eau injectée ultérieurement d'être éliminée.
Les particules de cet alliage formeront les particules supports à la surface desquelles seront fixées les particules inoculantes.
Les particules de surface seront, dans le présent exemple, des particules de siliciure de calcium CaSi et d'aluminium métallique, présentant toutes deux des granulométries inférieures à 400 micromètres.
On utilisera 5 % en masse de ces particules de surface, soit environ 25 kilogrammes de ce mélange de particules CaSi et Al.
Afin de permettre la fixation sur les particules supports, les particules de surface à fixer sont préalablement mélangées avec un liant en solution aqueuse, puis injectées dans le réacteur en environ 30 minutes à la température de 100°C.
Après injection totale du mélange de particules et du liant, l'ensemble particules de surface, particules support et liant est fluidisé et chauffé jusqu'à ce que l'eau introduite ait été complètement évaporée. On pourra contrôler l'évaporation de l'eau par toute méthode usuelle, notamment par mesure de l'humidité de l'air sortant du réacteur.
L'inoculant selon l'invention est ensuite récupéré et caractérisé pour évaluer l'efficacité de l'enrobage. Cette caractérisation pourra être faite notamment par contrôle au microscope électronique à balayage.
Le liant utilisé pourra être de type liant organique ou polymère, comme par exemple, des liants de type alcool polyvinylique (APV), cellulose (CMC) et polyvinylpyrrolidone (PVP) ... Bien évidemment, cette liste n'est pas limitative.
La quantité d'eau utilisée pour la dilution du liant dépend bien évidemment de la solubilité de ce dernier dans l'eau et devra être adaptée en conséquence.
Il est également possible d'envisager l'utilisation de liants minéraux, notamment de type silicate de sodium, ainsi que des liants hydrauliques de type ciment ou chaux. Bien évidemment, la nature du liant utilisé pourra dépendre des matériaux inoculants et supports utilisés.
La quantité de liant utilisée sera calculée de manière à permettre au mieux la fixation quasi-totale des particules de surface sans excès manifeste qui pourrait ensuite dégrader les performances finales de l'inoculant selon l'invention.
Cette quantité de liant utilisée dépendra bien évidemment de son pouvoir collant et devra également être adaptée en conséquence. On pourra notamment procéder par tests et vérification visuelle à l'aide d'un microscope électronique à balayage notamment. Typiquement, la quantité de liant utilisée pourra être comprise entre 0,001 et 1 % en masse de liant par rapport à la masse totale des particules (particules support et particules de surface).
Selon un autre exemple possible de fabrication de l'inoculant selon l'invention, environ 500 kg de FeSi7o contenant 1 % en masse d'AI et 1 ,5 % en masse de Ca, de granulométrie 0,2-0,5 mm sont introduits dans un réacteur à lit fluidisé. L'alliage FeSi est mis en fluidisation par injection d'air. La température à l'intérieur du réacteur est portée à 100°C. Ces particules sont les particules support. Une suspension est réalisée avec du PVP et de l'eau. 8 % de particules de surface, contenant du bismuth Bi et d'alliage ferro-silico-terres rares FeSiTR, toutes deux de granulométrie <200μηη sont ajoutées à la solution PVP + eau, puis mises en suspension. Cette suspension est ensuite injectée à raison de 10 % en masse dans le réacteur pendant environ 40 min à la température de 100°C. Après injection totale du mélange, l'intérieur du réacteur est maintenu à 100°C jusqu'à séchage complet du produit.
Selon encore un autre exemple possible de fabrication de l'inoculant selon l'invention, environ 1000 kg de FeSi7o contenant 1 % en masse d'AI et 1 ,5 % en masse de Ca, de granulométrie 2 - 7 mm et environ 50 kg de poudre d'Aluminium de granulométrie <300μηη sont introduits dans un réacteur à lit fluidisé. L'ensemble des particules est mis en fluidisation par injection d'air appauvri. La température à l'intérieur du réacteur est portée à 100°C. Une suspension est réalisée avec du PVP et de l'eau. Cette suspension est ensuite injectée à raison de 10 % en masse dans le réacteur pendant environ 40 min à la température de 100°C. Après injection totale du mélange, l'intérieur du réacteur est maintenu à 100°C jusqu'à séchage complet du produit. Bien évidemment, la mise en œuvre du procédé n'est pas limitée à l'utilisation d'un réacteur à lit fluidisé et d'autres techniques d'enrobage peuvent être utilisées. On peut notamment citer les méthodes suivantes.
Une première méthode est l'utilisation d'un mélangeur à grande vitesse, par exemple de l'ordre de 1000 à 1500 tours par minute.
La vitesse de mélange permet l'incrustation mécanique des fines particules de surface dans les particules plus grosses de FeSi (particules support). Une telle incrustation mécanique ne nécessite pas l'utilisation d'un liant et on parle alors d'enrobage à sec et à froid. Les particules support du type FeSi75 contenant principalement les phases FeSi2,4 et Si, peuvent être incrustées directement par les particules de surface.
Une deuxième méthode est l'utilisation d'un mélangeur à fort taux de cisaillement.
Dans ce cas, le mélange s'effectue à plus ou moins grande vitesse (entre 50 et 500 tours par minutes, par exemple) dans un mélangeur du type mélangeur granulateur, en présence d'un liant (exemples cités précédemment). Après mélange, on procède à une étape de séchage pour éliminer l'eau du liant.
Des moyens de séchage peuvent équiper le mélangeur. Il peut notamment s'agir d'une rampe de brûleurs, par exemple à gaz, chauffant l'extérieur du mélangeur par conduction ; d'un tapis chauffant, par exemple en silicone, entourant notamment les parois du mélangeur ; ou encore de tout autre système permettant d'amener la poudre à l'intérieur du mélangeur à une température comprise entre 80 et 150°C en vue d'éliminer l'eau.
Les systèmes de mélangeurs utilisés, du type à tambour ou granulateur doivent permettre un mouvement de la poudre à l'intérieur dudit mélangeur entraînant un brassage efficace et une certaine régularité du collage.
A cette fin, le mélangeur peut être équipé d'ailettes de brassage sur ses parois ou encore un mélangeur granulateur à système de rotation central ou déporté selon un ou deux axes.
Le procédé de l'invention peut être conduit indifféremment en continu, ou en discontinu par lots (batch).
Lors de la mise en œuvre, les particules support et de surface peuvent être ajoutées soit ensemble, soit de manière séparée. Lorsqu'elles sont ajoutées ensemble, elle pourront être avantageusement pré-mélangées, avant ajout du liant pour assurer le collage.
Lorsqu'elles sont ajoutées séparément, on introduira préférentiellement les particules support en premier avant d'ajouter les particules de surface, préférentiellement en continu, le liant étant également introduit préférentiellement en continu.
Il convient également de noter que bien qu'illustré avec des particules support à base de FeSi, il est bien évidemment possible d'utiliser d'autres matériaux classiquement utilisés en fonderie, et notamment des particules support de type SiC ou graphite. Il convient de simplement transposer les exemples de fabrication à ces matériaux.
Les résultats d'un tel inoculant selon l'invention ont été testés sur un bain de fonte.
Comme pour le procédé de fabrication, les exemples sont donnés pour des cas d'utilisation les plus courants avec un inoculant selon l'invention dont la particule support est de type FeSi.
Cela n'empêche en aucune manière l'utilisation d'inoculants selon l'invention comprenant d'autres types de particules support tel que le carbure de silicium ou le graphite, ces matériaux étant toutefois utilisés moins fréquemment en fonderie.
Exemple 1 : inoculant selon l'art antérieur (référence)
Un bain de fonte à graphite sphéroïdal a été traité à un taux de 0,3 % en poids avec un alliage inoculant de type FeSi75, et contenant 0,8 % en masse d'aluminium et 0,7 % en masse de calcium.
Le traitement s'effectue par ajout de l'inoculant dans la poche de fonte, avant remplissage du moule.
La quantité de carbone équivalent de la fonte (Ceq) est à 4,32 % (calculé selon la formule simplifiée Ceq = %C + 1/3 (%Si + %P) où %C, %Si et %P sont les teneurs en carbone, silicium et phosphore de la fonte).
Le magnésium résiduel de la fonte est à 400 millièmes.
La fonte a ensuite été coulée dans un moule de type BCIRA.
A une épaisseur de 6 mm, la fonte traitée présente les caractéristiques suivantes :
- Structure de la matrice : 55 % perlite, 15 % ferrite, 30 % cémentite
- Nombre de nodules par mm2 : 270 - Graphite de type VI : 57 %
- Nodularité moyenne : 85 %
- Diamètre moyen : 16,2 microns Exemple 2 : inoculant selon l'invention
Un bain de fonte à graphite sphéroïdal a été traité à un taux de 0,3 % en masse avec un inoculant selon l'invention possédant la composition suivante :
- Alliage de particule support : FeSi75, et contenant 0,8 % en masse d'aluminium et 0,7 % en masse de calcium
- Particules de surface : 1 ,5% en masse de particules de CaSi possédant une taille inférieure à 50 microns et 1 ,5% en masse de particules d'aluminium métallique de taille inférieure à 50 microns
- Liant : 10% en masse d'une solution aqueuse de PVP - Dépôt des particules de surface par collage réalisé par fluidisation à 100°C.
Le traitement s'effectue par ajout de l'inoculant dans la poche de fonte, avant remplissage du moule.
La quantité de carbone équivalent de la fonte (Ceq) est à 4,32 %. Le magnésium résiduel de la fonte est à 400 millièmes.
La fonte a ensuite été coulée dans un moule de type BCIRA.
A une épaisseur de 6 mm, la fonte traitée présente les caractéristiques suivantes :
- Structure de la matrice : 45 % perlite, 50 % ferrite, 5 % cémentite - Nombre de nodules par mm2 : 540
- Graphite de type VI : 59 %
- Nodularité moyenne : 92 %
- Diamètre moyen : 18,7 microns Exemple 3 : inoculant suivant l'invention
Traitement d'un bain de fonte à graphite sphéroïdal à 0,3 % en masse avec un produit constitué :
- d'un alliage support: FeSi 75 avec Al = 0,8 % en masse et Ca = 0,7 % en masse - de particules en surface : 2,5 % de particules de Bismuth Bi de taille <10Όμηη, et 2,5 % en masse de particules de l'alliage ferro-silico-terres rares (FeSiTR) de taille <100μηη.
- Liant : 10% en masse d'une solution aqueuse de PVP - Dépôt des particules de surface par collage réalisé par fluidisation à
100°C.
Le traitement s'effectue par ajout de l'inoculant dans la poche de fonte, avant remplissage du moule.
La quantité de carbone équivalent (Ceq) de la fonte est à 4,32 %. Le magnésium résiduel est à 420 millièmes.
La fonte est coulée dans un moule BCIRA.
A l'épaisseur de 6 mm, la fonte présente les caractéristiques suivantes :
- Structure de la matrice = 50 % Perlite - 50 % Ferrite - 0 % de cémentite
- Nombre de nodules/mm2 = 570
- Graphite de type VI = 62 %
- Nodularité moyenne = 92 %
- Diamètre moyen = 17,8μηη
Exemple 4 : inoculant suivant l'art antérieur
Un bain de fonte à graphite sphéroïdal a été traité à un taux de 0,3 % en masse avec un inoculant élaboré classiquement de type FeSi75, et contenant 1 ,2 % en masse d'aluminium, 1 ,5 % en masse de calcium et 1 ,5 % en masse de zirconium.
Le traitement s'effectue par ajout de l'inoculant dans la poche de fonte, avant remplissage du moule.
La quantité de carbone équivalent de la fonte (Ceq) est à 4,32 %.
Le magnésium résiduel de la fonte est à 400 millièmes. La fonte a ensuite été coulée dans un moule de type BCIRA.
A une épaisseur de 6 mm, la fonte traitée présente les caractéristiques suivantes :
- Structure de la matrice : 45 % perlite, 50 % ferrite, 5 % cémentite
- Nombre de nodules par mm2 : 505
- Graphite de type VI : 59 %
- Nodularité moyenne : 87 % - Diamètre moyen : 18,9 microns
Ainsi, on voit que pour obtenir sensiblement les mêmes résultats, il serait nécessaire d'augmenter largement les quantités de composants inoculants et d'introduire du zirconium, par rapport à un inoculant possédant une structure selon notre invention.
Exemple 5: inoculant suivant l'art antérieur
Traitement d'un bain de fonte de graphite lamellaire à 0,3 % en poids avec un produit base FeSi 75 avec Al = 1 ,0% en poids et Ca = 1 ,5 % en poids.
Le traitement s'effectue par ajout de l'inoculant dans la poche de fonte, avant remplissage du moule.
La quantité de carbone équivalent de la fonte (Ceq) est à 4,3 %.
La fonte est coulée dans un moule BCIRA.
A l'épaisseur de 6 mm, la fonte présente les caractéristiques suivantes :
- Nombre de cellules eutectiques/mm2: 0,2
- 40 % cémentite Exemple 6: inoculant suivant l'invention
Traitement d'un bain de fonte de graphite lamellaire à 0,3 % en masse avec un produit constitué :
- d'un alliage support: FeSi 75 avec Al = 1 ,0 % en masse et Ca = 1 ,5 % en masse.
- de particules en surface : 5 % en masse de particules de sulfate de baryum BaSO4 de taille <100μηη
- Liant : 5% en masse d'une solution aqueuse de ciment
- Dépôt des particules de surface par collage réalisé par fluidisation à 100°C.
Le traitement s'effectue par ajout de l'inoculant dans la poche de fonte, avant remplissage du moule.
La quantité de carbone équivalent de la fonte (Ceq) est à 4,3 %. La fonte est coulée dans un moule BCIRA.
A l'épaisseur de 6 mm, la fonte présente les caractéristiques suivantes :
- Nombre de cellules eutectiques par mm2 : 2 - Pas de cémentite
Exemple 7: inoculant suivant l'art antérieur
Traitement d'un bain de fonte de graphite lamellaire à 0,3 % en masse avec un produit base FeSi75 avec FeSi 75 avec Al = 1 ,0 % en masse, Ca = 1 ,5% en masse et Zr = 1 ,5 % en masse.
Le traitement s'effectue par ajout de l'inoculant dans la poche de fonte, avant remplissage du moule.
La quantité de carbone équivalent de la fonte (Ceq) est à 4,3 %. La fonte est coulée dans un moule BCIRA.
A l'épaisseur de 6 mm, la fonte présente les caractéristiques suivantes :
- Nombre de cellules eutectiques par mm2 : 1 ,5.
- 5 % de cémentite
Exemple 8: Pièces d'épaisseurs différentes - inoculant selon l'invention
Traitement d'un bain de fonte de graphite sphéroidal à 0,3 % en masse avec un produit constitué :
- d'un alliage support: FeSi 75 avec Al = 1 ,0 % en masse et Ca =
1 ,0 % en masse
- de particules en surface : 5 % d'un mélange de poudres d'aluminium (taille <75μηη) et de CaSi (taille <75μηη)
- Liant : 2% en masse d'une solution aqueuse de PVP
- Dépôt des particules de surface par collage réalisé par fluidisation à 100°C.
Le traitement s'effectue par ajout de l'inoculant au jet lors du remplissage du moule.
La quantité de carbone équivalent de la fonte (Ceq) est à 4,32 %. La fonte est ensuite coulée dans un moule pour fabriquer une pièce ayant des épaisseurs différentes: 4 mm et 25 mm.
Sur la pièce coulée, sur la partie d'épaisseur de 4 mm, la fonte présente les caractéristiques suivantes :
- Nombre de nodules /mm2 : 502
- Diamètre moyen : 17μηη
- Graphite de type VI : 85 % - Nodularité : 98 %
- Cémentite : 0 %
- Ferrite : 48 %
- Perlite : 52 %
Sur la pièce coulée, sur la partie d'épaisseur de 25 mm, la fonte présente les caractéristiques suivantes :
- Nombre de nodules /mm2 : 250
- Diamètre moyen : 23 μιτι
- Graphite de type VI : 87 %
- Nodularité : 98.5 %
- Cémentite : 0 %
- Ferrite : 50 %
- Perlite : 50 % Exemple 9: Pièces d'épaisseurs différentes - inoculant selon l'art antérieur
Traitement d'un bain de fonte de graphite sphéroidal à 0,3 % en masse avec un alliage FeSi75 obtenu classiquement, contenant 1 ,0% Al, 1 .0 % Ca et 1 .5 % Zr.
Le traitement s'effectue par ajout de l'inoculant au jet lors du remplissage du moule.
La quantité de carbone équivalent de la fonte (Ceq) est à 4,31 %. La fonte est ensuite coulée dans un moule pour fabriquer une pièce ayant des épaisseurs différentes: 4 mm et 25 mm.
Sur la pièce coulée, sur la partie d'épaisseur de 4 mm, la fonte présente les caractéristiques suivantes :
- Nombre de nodules /mm2 : 350.
- Diamètre moyen : 19 μιτι
- Graphite de type VI : 70 %
- Nodularité : 95 %
- Cémentite : 30 %
- Ferrite : 40 %
- Perlite : 30 %
Sur la pièce coulée, sur la partie d'épaisseur de 25 mm, la fonte présente les caractéristiques suivantes :
- Nombre de nodules /mm2 : 150. Diamètre moyen : 25 μιτι
Graphite de type VI : 73 '
Nodularité : 95.5 %
Cémentite : 0 %
Ferrite : 50 %
Perlite : 50 %
Ainsi, on voit qu'il est possible avec l'inoculant selon l'invention d'inoculer efficacement les différentes parties d'une pièce avec différentes épaisseurs, alors qu'il est difficile d'y parvenir avec un inoculant fabriqué suivant l'art antérieur.
Exemple 10: Pièces de forte épaisseur - inoculant selon l'invention Traitement d'un bain de fonte de graphite sphéroidal à 0,3 % en masse avec un produit constitué :
- d'un alliage support: FeSi75 avec Al = 1 ,0 % en masse et Ca = 1 ,0
% en masse
- de particules en surface : 5 % d'un mélange de poudres d'aluminium (taille <75μηη) et de CaSi (taille <75μηη)
- Liant : 10% en masse d'une solution aqueuse de ciment
- Dépôt des particules de surface par collage réalisé par fluidisation à 100°C.
Le traitement s'effectue par ajout de l'inoculant dans le bassin de coulée lors du remplissage du moule.
La quantité de carbone équivalent de la fonte (Ceq) est à 4,33 %. La fonte est ensuite coulée dans un moule pour fabriquer une pièce de forte épaisseur (170mm).
Sur la pièce coulée d'épaisseur 170mm, au centre de la pièce, la fonte présente les caractéristiques suivantes :
- Nombre de nodules /mm2 : 160
- Graphite de type VI : 65 %
Diamètre moyen : 25
Nodularité : 99.2 %
Cémentite : 0 %
Ferrite : 50 %
Perlite : 50 % Exemple 1 1 : Pièces de forte épaisseur - inoculant selon l'art antérieur
Traitement d'un bain de fonte de graphite sphéroidal à 0,3 % en masse avec un alliage FeSi75 obtenu classiquement, contenant 1 .0 % de Bi, et 0.6 % de Terres Rares.
Le traitement s'effectue par ajout de l'inoculant dans le bassin de coulée lors du remplissage du moule.
La quantité de carbone équivalent de la fonte (Ceq) est à 4,31 %.
La fonte est ensuite coulée dans un moule pour fabriquer une pièce de forte épaisseur : 170 mm.
Sur la pièce coulée, en milieu de la pièce d'épaisseur 170 mm, la fonte présente les caractéristiques suivantes :
- Nombre de nodules /mm2 : 155.
- Diamètre moyen : 22 μιτι
- Graphite de type VI : 50 %
- Nodularité : 85 %
- Cémentite : 0 %
- Ferrite : 52 %
- Perlite : 48 %
Ainsi, on voit qu'il est possible avec l'inoculant selon l'invention d'inoculer efficacement des pièces de fortes épaisseurs, tout en conservant une bonne nodularité du graphite.
Bien que l'invention ait été décrite avec un exemple particulier de réalisation, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits, ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.

Claims

REVENDICATIONS
1 . Inoculant particulaire en poudre pour le traitement de la fonte en phase liquide, caractérisé en ce qu'il comprend, d'une part, des particules support en un matériau fusible dans la fonte liquide, et d'autre part, des particules de surface en un matériau favorisant la germination et la croissance de graphite, disposées et réparties de manière discontinue à la surface des particules support, les particules de surface présentant une granulométrie telle que leur d50 est inférieur ou égal à un dixième du d50 des particules support.
2. Inoculant selon la revendication 1 , caractérisé en ce que les particules support sont en un matériau favorisant l'association du carbone au fer sous forme de graphite.
3. Inoculant selon la revendication 1 ou 2, caractérisé en ce que les particules support sont en un matériau à base de silicium et/ou de carbone.
4. Inoculant selon la revendication 3, caractérisé en ce que les particules support contiennent au moins 40 % en masse de silicium par rapport à la masse desdites particules.
5. Inoculant selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les particules support sont réalisées à partir d'un alliage ferreux.
6. Inoculant selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les particules support comprennent, notamment sous forme alliée, au moins un élément d'addition, tel que de l'aluminium ou du calcium, notamment entre 0,2 et 5 % en masse pour chaque élément d'addition, par rapport à la masse des particules support.
7. Inoculant selon l'une quelconque des revendications 1 à 6, caractérisé en ce que les particules support comprennent, notamment sous forme alliée, au moins un élément de traitement à effet anti-retassure, notamment en une quantité comprise entre 0,5 et 6 % en masse, par rapport à la masse des particules support.
8. Inoculant selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la proportion des particules de surface est comprise en 1 et 8 % en masse, par rapport à la masse d'inoculant.
9. Inoculant selon l'une quelconque des revendications 1 à 8, caractérisé en ce que, jusqu'à l'introduction dans la fonte, les particules de surface occupent entre 80 et 90 % de la surface des particules support.
10. Inoculant selon l'une quelconque des revendications 1 à 9, caractérisé en ce que les particules de surface sont choisies, individuellement ou en mélange, parmi des éléments métalliques, tels qu'aluminium, bismuth et manganèse, des siliciures, notamment de fer, terres rares et calcium, des oxydes, tels qu'oxydes d'aluminium, de calcium, de silicium ou de baryum, des sulfures métalliques, notamment de fer, calcium et terres rares, des sulfates, notamment de baryum, et du noir de carbone.
1 1 . Inoculant selon l'une quelconque des revendications 1 à 10, caractérisé en ce que les particules de surface sont incrustées à la surface des particules support.
12. Inoculant selon l'une quelconque des revendications 1 à 10, caractérisé en ce que les particules de surface sont collées par l'intermédiaire d'un liant à la surface des particules support.
13. Procédé de fabrication d'un inoculant pour le traitement de la fonte selon l'une quelconque des revendications 1 à 12, comprenant les étapes suivantes :
On dispose de particules support en un matériau fusible dans la fonte liquide, présentant une granulométrie variant de 0,2 à 7 mm, d'une part, et de particules de surface présentant une granulométrie telle que leur d50 est inférieur ou égal à un dixième du d50 des particules support, d'autre part,
On mélange les particules support et les particules de surface, à sec, à grande vitesse, par exemple de 1000 à 1500 tours/min, pour obtenir un dépôt par incrustation des particules de surface à la surface des particules support, selon une répartition discontinue.
14. Procédé de fabrication d'un inoculant selon l'une quelconque des revendications 1 à 12, comprenant les étapes suivantes :
On dispose de particules support présentant une granulométrie variant de 0,2 à 7 mm, de particules de surface présentant une granulométrie telle que leur d50 est inférieur ou égal à un dixième du d50 des particules support, et d'un liant dans un solvant,
On mélange les particules support, les particules de surface et le liant, et
On élimine le solvant du liant, par exemple par évaporation.
15. Procédé selon la revendication 14, caractérisé en ce que le liant est choisi parmi les liants organiques et polymères, et notamment, parmi l'alcool polyvinylique (APV), la cellulose (CMC), la polyvinyipyrrolidone (PVP) et le ciment.
16. Procédé selon l'une quelconque des revendications 13 à 15, caractérisé en ce que les particules support sont en un matériau FeSi contenant de l'aluminium et du calcium.
17. Procédé selon l'une quelconque des revendications 13 à 16, caractérisé en ce que les particules de surface sont en un matériau choisi parmi l'aluminium, le bismuth, les siliciures, notamment de fer, terres rares et calcium, des oxydes, tels qu'oxydes d'aluminium, de calcium, de silicium ou de baryum, des sulfures métalliques, notamment de fer, calcium et terres rares, des sulfates, notamment de baryum, et du noir de carbone.
EP14716891.8A 2013-03-19 2014-03-19 Inoculant a particules de surface Active EP2976172B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201431959T SI2976172T1 (sl) 2013-03-19 2014-03-19 Inokulant s površinskimi delci

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1352419A FR3003577B1 (fr) 2013-03-19 2013-03-19 Inoculant a particules de surface
PCT/FR2014/050636 WO2014147342A1 (fr) 2013-03-19 2014-03-19 Inoculant a particules de surface

Publications (2)

Publication Number Publication Date
EP2976172A1 true EP2976172A1 (fr) 2016-01-27
EP2976172B1 EP2976172B1 (fr) 2022-04-27

Family

ID=48656082

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14716891.8A Active EP2976172B1 (fr) 2013-03-19 2014-03-19 Inoculant a particules de surface

Country Status (15)

Country Link
US (1) US10351920B2 (fr)
EP (1) EP2976172B1 (fr)
JP (2) JP2016519714A (fr)
KR (1) KR20150131087A (fr)
CN (1) CN105121061A (fr)
BR (1) BR112015023924B8 (fr)
CA (1) CA2905802C (fr)
DK (1) DK2976172T3 (fr)
ES (1) ES2915375T3 (fr)
FR (1) FR3003577B1 (fr)
MX (1) MX2015013384A (fr)
PT (1) PT2976172T (fr)
SI (1) SI2976172T1 (fr)
UA (1) UA118555C2 (fr)
WO (1) WO2014147342A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3003577B1 (fr) * 2013-03-19 2016-05-06 Ferropem Inoculant a particules de surface
KR20240049856A (ko) 2013-06-14 2024-04-17 게노마티카 인코포레이티드 오메가-수산화 지방산 유도체를 생성하는 방법들
PL3087179T3 (pl) 2014-06-16 2020-09-21 Genomatica, Inc. Polipeptydy fuzyjne związane z omega-hydroksylazą o ulepszonych właściwościach
WO2017101987A1 (fr) 2015-12-15 2017-06-22 REG Life Sciences, LLC Variants de polypeptides de fusion liés à oméga-hydroxylase, à propriétés améliorées
NO20161094A1 (en) * 2016-06-30 2018-01-01 Elkem As Cast Iron Inoculant and Method for Production of Cast Iron Inoculant
NO347571B1 (en) * 2016-06-30 2024-01-15 Elkem Materials Cast Iron Inoculant and Method for Production of Cast Iron Inoculant
BR102016022690B1 (pt) * 2016-09-29 2022-02-08 Tupy S.A. Liga de ferro fundido vermicular para bloco e cabeçote de motor a combustão interna
CN107326138A (zh) * 2017-07-10 2017-11-07 山东力得制动科技有限公司 一种铸造汽车制动毂铸件用灰铸铁的熔炼工艺
NO20172063A1 (en) 2017-12-29 2019-07-01 Elkem Materials Cast iron inoculant and method for production of cast iron inoculant
NO20172061A1 (en) * 2017-12-29 2019-07-01 Elkem Materials Cast iron inoculant and method for production of cast iron inoculant
NO20172064A1 (en) 2017-12-29 2019-07-01 Elkem Materials Cast iron inoculant and method for production of cast iron inoculant
NO20172065A1 (en) 2017-12-29 2019-07-01 Elkem Materials Cast iron inoculant and method for production of cast iron inoculant
NO346252B1 (en) 2017-12-29 2022-05-09 Elkem Materials Cast iron inoculant and method for production of cast iron inoculant
CN110396638A (zh) * 2019-07-10 2019-11-01 广西大学 一种灰铸铁的孕育剂及其制备方法
CN113061689B (zh) * 2021-03-24 2022-05-17 宁夏科通新材料科技有限公司 用矿石原料制备硅钙钡铝合金的方法
CN113174460A (zh) * 2021-03-31 2021-07-27 江苏亚峰合金材料有限公司 一种加硅脱氧孕育剂的制备工艺
CN113106186A (zh) * 2021-04-21 2021-07-13 江苏亚峰合金材料有限公司 一种强韧铸铁用的孕育剂的制备方法
CN113789449B (zh) * 2021-09-28 2023-03-24 四川兰德高科技产业有限公司 一种细化剂及其制备方法和应用
CN114653902B (zh) * 2022-04-19 2024-03-22 江苏亚峰合金材料有限公司 一种含稀土元素的环保型铸造孕育剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2157395A1 (de) * 1971-11-19 1973-05-24 Metallgesellschaft Ag Mittel zum behandeln von eisenlegierungsschmelzen
CN101608280B (zh) * 2009-07-17 2011-01-05 河北科技大学 用于生产d型石墨铸铁的复合孕育剂及其制备方法
CN102373361A (zh) * 2010-08-20 2012-03-14 沈阳福铝科技有限公司 延长球化剂起爆时间的方法和环保型球化剂及制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817408B1 (fr) * 1967-06-15 1973-05-29
US4152150A (en) * 1977-12-09 1979-05-01 Caterpillar Tractor Co. Particulate treating material
JPS5544561A (en) * 1978-09-27 1980-03-28 Meika Giken Kk Additive for manufacturing tough cast iron
GB2064370B (en) * 1979-12-05 1983-09-01 Atomic Energy Authority Uk Coating of particles
JPS5687604A (en) * 1979-12-05 1981-07-16 Atomic Energy Authority Uk Particle coating
DE3431263A1 (de) * 1984-08-24 1986-03-06 Elektroschmelzwerk Kempten GmbH, 8000 München Verfahren zur behandlung von gusseisenschmelzen mit siliciumcarbid
JPS63282206A (ja) * 1987-05-15 1988-11-18 Meika Giken Kk 強靭鋳鉄用接種剤及びその接種方法
US5951738A (en) * 1995-10-27 1999-09-14 Alcan International Limited Production of granules of reactive metals, for example magnesium and magnesium alloy
JPH09291333A (ja) * 1996-04-25 1997-11-11 Toyota Central Res & Dev Lab Inc 接種調製快削鋳鉄及びその切削方法
JPH10273710A (ja) * 1996-10-24 1998-10-13 Hitachi Metals Ltd 球状黒鉛鋳鉄製造用添加剤、球状黒鉛鋳鉄の製造方法および球状黒鉛鋳鉄鋳物部品
US6126713A (en) * 1996-10-24 2000-10-03 Hitachi Metals, Ltd. Additive for use in producing spheroidal graphite cast iron
JP3962450B2 (ja) * 1997-07-03 2007-08-22 アイシン高丘株式会社 接種フィルタ及び鋳鉄溶湯接種方法
NO306169B1 (no) * 1997-12-08 1999-09-27 Elkem Materials Ympemiddel for stöpejern og fremgangsmÕte for fremstilling av ympemiddel
US6126731A (en) * 1998-08-21 2000-10-03 Idea Development Company Polymerizable ink composition
CA2409524A1 (fr) * 2002-10-23 2004-04-23 Hydro-Quebec Particule comportant un noyau a base de graphite recouvert d'au moins une couche continue ou discontinue, leurs procedes d'obtention et leurs utilisations
US9833838B2 (en) * 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9803439B2 (en) * 2013-03-12 2017-10-31 Baker Hughes Ferrous disintegrable powder compact, method of making and article of same
FR3003577B1 (fr) * 2013-03-19 2016-05-06 Ferropem Inoculant a particules de surface

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2157395A1 (de) * 1971-11-19 1973-05-24 Metallgesellschaft Ag Mittel zum behandeln von eisenlegierungsschmelzen
CN101608280B (zh) * 2009-07-17 2011-01-05 河北科技大学 用于生产d型石墨铸铁的复合孕育剂及其制备方法
CN102373361A (zh) * 2010-08-20 2012-03-14 沈阳福铝科技有限公司 延长球化剂起爆时间的方法和环保型球化剂及制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EUN-HEE KIM ET AL: "Dual coating process for a high funtional reinforcement phase in metal matrix composites", 22 December 2010 (2010-12-22), pages 1 - 6, XP002628151, ISSN: 0300-9440, Retrieved from the Internet <URL:http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6THD-51S6FS0-3-9&_cdi=5280&_user=987766&_pii=S0300944010003309&_origin=gateway&_coverDate=12%2F22%2F2010&_sk=999999999&view=c&wchp=dGLzVtz-zSkWA&md5=2cbf5f60882e864557abe16aff1d6a3f&ie=/sdarticle.pdf> [retrieved on 20110314], DOI: 10.1016/J.PORGCOAT.2010.11.011 *
See also references of WO2014147342A1 *
V Т KALININ ET AL: "Theory and Practice of Cast-Iron Inoculation by Ultra - and Nanodispersed Materials", 1 January 2010 (2010-01-01), pages 341 - 62107, XP055128013, Retrieved from the Internet <URL:http://metaljournal.com.ua/assets/Uploads/attachments/Kalinin341.pdf> [retrieved on 20140710] *

Also Published As

Publication number Publication date
UA118555C2 (uk) 2019-02-11
CN105121061A (zh) 2015-12-02
KR20150131087A (ko) 2015-11-24
CA2905802A1 (fr) 2014-09-25
SI2976172T1 (sl) 2022-07-29
US20160047008A1 (en) 2016-02-18
JP2019073801A (ja) 2019-05-16
BR112015023924A2 (pt) 2017-07-18
BR112015023924B8 (pt) 2020-05-05
JP2016519714A (ja) 2016-07-07
PT2976172T (pt) 2022-07-18
US10351920B2 (en) 2019-07-16
EP2976172B1 (fr) 2022-04-27
MX2015013384A (es) 2016-05-05
CA2905802C (fr) 2020-12-08
BR112015023924B1 (pt) 2020-01-28
FR3003577A1 (fr) 2014-09-26
FR3003577B1 (fr) 2016-05-06
DK2976172T3 (da) 2022-07-04
ES2915375T3 (es) 2022-06-22
WO2014147342A1 (fr) 2014-09-25

Similar Documents

Publication Publication Date Title
CA2905802C (fr) Inoculant a particules de surface
CA2889124C (fr) Alliage inoculant pour pieces epaisses en fonte
FR2988206A1 (fr) Procede de fabrication d&#39;un element magnetocalorique, et element magnetocalorique ainsi obtenu
FR2935618A1 (fr) Procede pour former un revetement anti-adherent a base de carbure de silicium
CA2484036A1 (fr) Alliage inoculant anti microretassure pour traitement des fontes de moulage
FR2638763A1 (fr) Procede de traitement d&#39;un bain de fusion de fonte a l&#39;aide de magnesium pur
EP2176192B1 (fr) Melange sec pour le traitement de substrats refractaires et procede le mettant en oeuvre
EP0769567B1 (fr) Procédé pour revêtir une tôle
FR3071423B1 (fr) Barbotine de fonderie
CH715619B1 (fr) Procédé de fabrication d&#39;une pièce en alliage d&#39;un métal précieux avec du bore, procédé de fabrication d&#39;un tel alliage et alliage d&#39;or et de bore 18 carats.
WO2023122998A1 (fr) Matériau composite fer-carbone minéralisé, son procédé de préparation et son application
FR3124409A1 (fr) Procede de fabrication d’une piece en alliage d’aluminium 6061 par fabrication additive
EP3227247A1 (fr) Fabrication d&#39;éléments de construction en béton contenant des coquillages concassés, auto drainants et mécaniquement résistants
WO2004094339A1 (fr) L’utilisation d’un materiau ceramique a base de carbure de silicium dans les milieux agressifs
FR3089138A1 (fr) Poudre de moule et revêtement de moule
FR2825098A1 (fr) Procede de fabrication d&#39;une composition de traitement de sol, compositions de traitement de sol et utilisation de telles compositions
FR2748409A1 (fr) Nouveau revetement isolant pour moule metallique et procede de realisation d&#39;un tel revetement
FR2838134A1 (fr) Pion inoculant anti microretassures pour traitement des fontes de moulage
FR2834721A1 (fr) Melange a fort pouvoir inoculant pour traitement des fontes gl
CH278655A (fr) Procédé pour l&#39;obtention d&#39;une pièce en fonte graphitique et pièce obtenue par ce procédé.
BE499772A (fr)
BE718736A (fr)
FR2719318A1 (fr) Matériau pour cible de pulvérisation cathodique.
CH229052A (fr) Aimant permanent et procédé pour le fabriquer.
BE887007A (fr) Milieu filtrant destine a des fluides

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181018

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014083404

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1486543

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2915375

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220622

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20220629

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2976172

Country of ref document: PT

Date of ref document: 20220718

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20220712

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20220427

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220728

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014083404

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

26N No opposition filed

Effective date: 20230130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1486543

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230319

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230319

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230319

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240212

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240306

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240318

Year of fee payment: 11

Ref country code: CZ

Payment date: 20240207

Year of fee payment: 11

Ref country code: PT

Payment date: 20240221

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20240207

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240206

Year of fee payment: 11

Ref country code: NO

Payment date: 20240222

Year of fee payment: 11

Ref country code: IT

Payment date: 20240304

Year of fee payment: 11

Ref country code: FR

Payment date: 20240212

Year of fee payment: 11

Ref country code: DK

Payment date: 20240206

Year of fee payment: 11

Ref country code: BE

Payment date: 20240322

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240401

Year of fee payment: 11