EP2955256B1 - Luftspinnmaschine sowie verfahren zum betrieb einer solchen - Google Patents

Luftspinnmaschine sowie verfahren zum betrieb einer solchen Download PDF

Info

Publication number
EP2955256B1
EP2955256B1 EP15170263.6A EP15170263A EP2955256B1 EP 2955256 B1 EP2955256 B1 EP 2955256B1 EP 15170263 A EP15170263 A EP 15170263A EP 2955256 B1 EP2955256 B1 EP 2955256B1
Authority
EP
European Patent Office
Prior art keywords
yarn
additive
spinning
sensor system
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15170263.6A
Other languages
English (en)
French (fr)
Other versions
EP2955256A1 (de
Inventor
Andreas Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Rieter AG
Original Assignee
Maschinenfabrik Rieter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maschinenfabrik Rieter AG filed Critical Maschinenfabrik Rieter AG
Publication of EP2955256A1 publication Critical patent/EP2955256A1/de
Application granted granted Critical
Publication of EP2955256B1 publication Critical patent/EP2955256B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H13/00Other common constructional features, details or accessories
    • D01H13/32Counting, measuring, recording or registering devices
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H1/00Spinning or twisting machines in which the product is wound-up continuously
    • D01H1/11Spinning by false-twisting
    • D01H1/115Spinning by false-twisting using pneumatic means
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H13/00Other common constructional features, details or accessories
    • D01H13/14Warning or safety devices, e.g. automatic fault detectors, stop motions ; Monitoring the entanglement of slivers in drafting arrangements
    • D01H13/22Warning or safety devices, e.g. automatic fault detectors, stop motions ; Monitoring the entanglement of slivers in drafting arrangements responsive to presence of irregularities in running material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H13/00Other common constructional features, details or accessories
    • D01H13/30Moistening, sizing, oiling, waxing, colouring, or drying yarns or the like as incidental measures during spinning or twisting
    • D01H13/304Conditioning during spinning or twisting
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H13/00Other common constructional features, details or accessories
    • D01H13/30Moistening, sizing, oiling, waxing, colouring, or drying yarns or the like as incidental measures during spinning or twisting
    • D01H13/306Moistening, sizing, oiling, waxing, colouring, or drying yarns or the like as incidental measures during spinning or twisting by applying fluids, e.g. steam or oiling liquids
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H4/00Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
    • D01H4/02Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques imparting twist by a fluid, e.g. air vortex

Definitions

  • the present invention relates to a method for operating an air spinning machine, the air spinning machine having at least one spinning station with a spinneret for the production of a yarn, a fiber assembly being fed to the spinneret during operation of the spinning station via an inlet, the fiber assembly being within a swirl chamber of the spinneret receives a rotation with the help of a vortex air flow, so that a yarn is formed from the fiber structure, which finally exits the spinneret via an outlet, and an additive is at least temporarily supplied to the spinning station with the aid of an additive supply during operation of the air spinning machine and onto the fiber structure and / or the yarn or is applied to parts of the spinneret.
  • an air spinning machine which has at least one spinning station with a spinneret for producing a yarn from a fiber structure fed to the spinneret, the spinneret having an inlet for the fiber structure, an internal swirl chamber, a yarn-forming element projecting into the swirl chamber and an outlet for the has in the interior of the vortex chamber produced with the help of a vortex air flow, and wherein the spinning station is assigned an additive supply, with the help of which the spinning station is supplied with an additive at least temporarily during operation of the spinning station and onto the fiber structure and / or the yarn or on parts of the spinneret can be applied.
  • Air spinning machines with corresponding spinning positions are known in the prior art and are used to produce a yarn from an elongated fiber structure.
  • the outer fibers of the fiber assembly are generated with the help of air nozzles inside the swirl chamber Eddy air flow in the area of an inlet opening of the yarn forming element is wound around the inner core fibers and finally form the wrapping fibers which are decisive for the desired strength of the yarn.
  • the term yarn is understood to mean a fiber structure in which at least some of the fibers are wound around an inner core.
  • This includes a yarn in the conventional sense that can be processed into a fabric, for example, using a weaving machine.
  • the invention also relates to air spinning machines, with the aid of which so-called roving (other name: fuse) can be produced.
  • roving other name: fuse
  • This type of yarn is characterized by the fact that despite a certain strength that is sufficient to transport the yarn to a subsequent textile machine, it is still draftable.
  • the roving can therefore with the help of a delay device, for. B. the drafting device, a roving textile machine, for example a ring spinning machine, are warped before it is finally spun.
  • the production of chemical fibers includes a so-called preparation of the continuous fibers during the manufacturing process.
  • a preparation agent usually oils with various additives, is applied to the continuous fibers, which enables a treatment, such as stretching the continuous fibers at high speeds. These preparation agents sometimes adhere to the chemical fibers during further treatment and lead to contamination in the air spinning machine.
  • the fibers fed to the air spinning machine in the form of a fiber assembly are generally fed to the spinneret by a pair of delivery rollers.
  • the delivery roller pair can one Corresponding output roller pair of a drafting system.
  • the drafting systems used are used to refine the fiber structure before it enters the spinneret.
  • a fiber guide element is usually arranged in the entry area of the spinneret, via which the fiber structure is guided into the spinneret and finally into the area of the yarn-forming element.
  • Spindles with an internal extraction channel are mainly used as yarn formation elements.
  • compressed air is introduced through the housing wall of the spinneret in such a way that the above-mentioned rotating vortex air flow results. This leads to the fact that individual external fibers are separated from the fiber assembly leaving the fiber guide element and turned over over the tip of the yarn-forming element. In the further course, these detached fibers rotate on the surface of the yarn-forming element.
  • the cleaning of the surfaces of the yarn forming element, the spinneret interior and the fiber guide element can be done manually by a Periodic removal of the yarn formation element take place, which, however, leads to a not inconsiderable maintenance effort, combined with a corresponding breakdown.
  • the EP 2 450 478 discloses a device which allows automatic cleaning to be carried out without stopping the machine.
  • an additive is added to the compressed air used to form the vortex air flow within the spinneret.
  • the additive is led to the yarn-forming element by the compressed air and effects a cleaning of the surface of the yarn-forming element.
  • a comparable solution is also in the EP 2 573 256 A2 described.
  • additive it is possible to apply additive to the fiber structure, parts of the spinneret or the yarn produced therefrom in order to improve the properties of the yarn produced therefrom, for example with regard to its hairiness.
  • higher production speeds can be run, so that the machine can also produce more economically and energy can be saved.
  • the object of the present invention is now to further develop the additive addition known from the prior art and to propose a corresponding air spinning machine, with the aid of which the further development can be implemented.
  • the method for operating an air spinning machine is characterized in that the yarn leaving the outlet of the spinneret is at least one physical with the aid of a sensor system Characteristic is monitored, it being determined on the basis of at least one measured value supplied by the sensor system and correlating with said parameter whether and / or how much additive has been applied to the fiber structure or the yarn produced therefrom and passing through the sensor system.
  • the monitoring according to the invention can take place during normal operation, during which the spinneret produces yarn and the addition of additives serves to improve the yarn properties. Additionally or alternatively, it is also possible to monitor the addition of additive during a cleaning operation of the spinning station, during which the additive serves the purpose of the cleaning described above.
  • additives in the prior art was only metered in quantity, it is now possible with the present invention to monitor the addition of additives qualitatively and / or quantitatively and the volume or mass flow of the added additive if there are deviations from the corresponding target values while the additive is being added to change.
  • the additive can be added in the area of the inlet of the spinneret or also within the same.
  • the invention proposes indirect monitoring, in which the additive addition is recognized and / or determined quantitatively on the basis of changes in one or more selected parameters of the yarn.
  • the parameters can be all physically measurable properties of the yarn, which change qualitatively or quantitatively when the additive is added. For example, it would be possible to monitor the so-called hairiness of the yarn. This is a measure of the fiber ends or fiber loops protruding from the package, with the addition of an additive in principle bringing about a reduction in hairiness, since the fiber components projecting outwards due to the Additive can be applied to the package.
  • other parameters such as, for example, fluctuations in mass and / or thickness, light reflectivity, light absorption capacity, uniformity of the yarn structure, etc., can also be monitored, all physical parameters which are influenced by the addition of additives being able to be taken into account.
  • the monitoring of the corresponding parameters enables a statement to be made as to whether and if so how much additive is added during normal and / or cleaning operation.
  • Liquid or solid substances can also be used as additives, water or an aqueous solution being preferred.
  • the production of the yarn is interrupted with the aid of a control unit if the additive supply detected with the aid of the sensor system deviates in a defined manner qualitatively and / or quantitatively from corresponding target values. This prevents a yarn from being produced during normal operation, during which an additive is actually supposed to be added, to whose fibers too little or no additive has been applied due to a lack of additive delivery.
  • the yarn production could be interrupted or a cleaning sequence repeated if the measured values transmitted by the sensors lie outside of defined limit values.
  • the sensor system comprises an optical sensor, with the aid of which the yarn is monitored, based on the Measured values of the optical sensor, a qualitative monitoring of the additive supply takes place.
  • the optical sensor it would be conceivable to use the optical sensor to monitor the above-mentioned hairiness of the yarn.
  • optical sensors it is also possible to monitor the light absorption or reflection or the size of the shadow of the yarn with appropriate lighting, which can change due to the addition of an additive.
  • the thickness of the yarn or other geometric properties of the same can be detected, which can be optically recognized and the amounts of which depend on the addition of additive.
  • the sensor system comprises a capacitive sensor, with the aid of which the yarn is monitored for its mass, the additive supply being quantitatively monitored on the basis of the measured values of the capacitive sensor. Since the mass of the yarn passing through the sensor system is made up of the mass of the yarn body consisting of the fiber material of the fiber composite and the additive applied, it is possible with the aid of the capacitive sensor to monitor an additive addition qualitatively but also quantitatively with otherwise constant spinning conditions. Monitoring therefore not only allows a statement to be made as to whether additive has been added, but also how much.
  • the sensors can of course include further or alternative sensors, with the aid of which individual physical properties of the yarn can be monitored.
  • the sensors can of course include further or alternative sensors, with the aid of which individual physical properties of the yarn can be monitored.
  • several capacitive sensors could also be present in order to monitor several properties of the yarn that can be measured capacitively. It is also possible to query several channels of one sensor each and evaluate them separately with the help of the control unit. It would be conceivable to use one channel of the capacitive sensor to graphically display the measured values determined on a display, while another channel is connected directly to a control unit which also monitors or controls the individual functions of the corresponding spinning station.
  • individual sensors or channels of corresponding sensors could be used to monitor the addition of additives, while other sensors or channels enable the yarn to be monitored for undesirable yarn defects (short or long thick or thin spots, etc.).
  • the additive is supplied in a pulsed manner, the quantitative monitoring of the additive supply being carried out by evaluating the short-term fluctuations in mass of the yarn detected by the capacitive sensor.
  • the additive dispenser responsible for adding the additive to the fiber structure or the yarn or an additive supply line connecting the additive dispenser with an additive store has a metering unit that opens and closes several times per second.
  • the additive is not applied to the fiber structure or the yarn as a uniform additive flow, but rather in the form of a large number of individual doses. This creates a multitude of tiny fluctuations in the mass of the yarn, which can be detected with the aid of a capacitive sensor.
  • evaluating the measured values in particular their averaging, a reliable statement can finally be made about the addition of additive or the amount of additive added.
  • the volume flow of the additive supplied is at least temporarily an amount between 0.001 ml / min and 7.0 ml / min, preferably between 0.02 ml / min and 5.0 ml / min, particularly preferably between 0, 05 and 3.0 ml / min, and / or that the mass flow of the additive supplied at least temporarily has an amount between 0.001 g / min and 7.0 g / min, preferably between 0.02 g / min and 5.0 g / min, particularly preferably between 0.05 g / min and 3.0 g / min.
  • the dosing unit should therefore allow a volume or mass flow over the ranges mentioned in order to be able to operate the individual spinning stations both in normal operation and in cleaning operation.
  • the volume flow (or mass flow) of the additive supplied during normal operation of the spinning station is between 0.001 ml / min (or g / min) and 1.5 ml / min (or g / min) ), preferably between 0.01 ml / min (or g / min) and 1.0 ml / min (or g / min) and an amount between 2.0 ml / min (or g / min) and 7.0 ml / min (or g / min), preferably between 3.0 ml / min (or g / min) and 7.0 ml / min (or g / min).
  • the exact value can be selected as a function of the properties of the fiber structure and / or its feed speed into the spinning station and / or the speed at which the yarn is drawn out of the spinning station and can therefore vary depending on the application.
  • the for the value provided for cleaning operation can be selected depending on the duration of the cleaning operation or the duration of normal operation between two cleaning sections.
  • the invention provides that the yarn is also monitored with the aid of the sensor system to determine whether the thickness and / or mass of the yarn exceeds or falls below predefined limit values, the sensor system being connected to a control unit of the air spinning machine and wherein the control unit interrupts the production of the yarn if at least one of the limit values is undershot or exceeded in a defined manner.
  • the sensors are not only used to monitor the addition of additives. Rather, the sensors can also be used to monitor whether the yarn production basically complies with the specifications. For example, excessively long or frequent thin spots in the yarn that cannot be attributed to a lack of additive would be an indication that the yarn is not being produced properly in the spinneret.
  • the signals from several sensors or individual channels of the same could be evaluated in combination in order to carry out a quality control of the yarn in addition to checking the addition of additives. If, for example, the capacitive sensor detected an unusual increase in mass or fluctuation in mass, even though the optical sensor reports that the additive is being added evenly, this would be an indication of poor yarn quality.
  • the mass and / or volume flow of the additive supplied during cleaning operation of the spinning station is higher than during normal operation, at least one of the limit values mentioned in the preceding paragraph being interrupted when the yarn is exceeded or undershot , has a different amount during cleaning operation than during normal operation. If the limit values were kept constant, an increase in the added values would be achieved The amount of additive during the cleaning operation indicates a thick spot or an impermissible change in another physical parameter of the yarn and the yarn production is interrupted, although the additive and the yarn production during the cleaning operation actually correspond to the specifications.
  • the limit values of the measured values supplied by a sensor that only monitors the qualitative additive addition could be the same in both operating modes (provided that additive is added both during normal and during cleaning operation and the measured values of the corresponding sensor can only be evaluated as to whether additive is added or not).
  • the spinning station of the air spinning machine comprises a sensor system, with the aid of which the yarn leaving the outlet of the spinning nozzle can be monitored with respect to at least one physical parameter, the spinning station being assigned a control unit which is designed on the basis of at least one supplied by the sensor system and with it of the characteristic value correlating to determine whether and / or how much additive was applied to the fiber structure or to the yarn produced therefrom and passing through the sensor system.
  • the control unit can be designed to operate the air spinning machine according to the individually described method features, which can be implemented individually or in any combination.
  • Figure 1 shows a section of a spinning station of an air spinning machine according to the invention (the air spinning machine can of course have a plurality of spinning stations, preferably arranged adjacent to one another).
  • the air spinning machine can comprise a drafting system with a plurality of drafting system rollers 13, which is supplied with a fiber structure 3, for example in the form of a doubled stretching belt (for reasons of clarity, only one of the drafting system rollers 13 shown is provided with a reference number).
  • the spinning station shown comprises a spinneret 2 with an internal vortex chamber 5 (see FIG. 2), in which the fiber structure 3 or at least some of the fibers of the fiber structure 3 are provided with a rotation after passing through an inlet 4 of the spinneret 2 (the exact How the spinning station works is described in more detail below).
  • the air spinning machine can comprise a pair of draw-off rollers 24 arranged downstream of the spinneret 2 and a winding device 1 downstream of the pair of draw-off rollers 24 for winding the yarn 6 leaving the spinneret 2 onto a sleeve.
  • a, for example pneumatically operating, yarn removal unit 12 can be provided in order to be able to remove yarn sections during a cleaner cut in which a yarn defect is removed from the yarn 6.
  • the spinning station does not necessarily have to have a drafting system.
  • the draw-off roller pair 24 or the yarn removal unit 12 is also not absolutely necessary.
  • the spinning station shown generally works according to an air spinning process.
  • the fiber structure 3 is provided in a predetermined transport direction T via an inlet opening which forms the inlet 4 mentioned and in Figure 2 shown fiber guide element 23 into the swirl chamber 5 of the spinneret 2.
  • a rotation that is to say at least some of the free fiber ends 10 of the fiber assembly 3 (see FIG. 4) are captured by a vortex air flow which is generated by air nozzles 19 correspondingly arranged in a vortex chamber wall 5 surrounding the vortex chamber 5 (the air nozzles 19 are detected) preferably supplied with compressed air via an air supply line 18, which opens into an air supply chamber 17 connected to the air nozzles 19).
  • Some of the fibers are pulled out of the fiber structure 3 at least a little and wound around the tip of a yarn-forming element 21 protruding into the swirl chamber 5.
  • Introduced compressed air finally leaves the spinneret 2 via the exhaust duct 20 and any air discharge 25 that may be present, which can be connected to a vacuum source if required.
  • the yarn 6 produced can in principle be any fiber structure 3, which is characterized in that an outer part of the fibers (so-called wrapping fibers) is an inner, preferably untwisted or, if necessary, also twisted Part of the fibers is looped around to give the yarn 6 the desired strength.
  • the spinning station is assigned an additive supply 8, which comprises one or more additive stores 15 and one or more, preferably at least partially flexible, additive supply lines 14, via which the respective additive store 15 with an additive dispenser arranged in the area of the fiber guide element 23 or within the spinneret 2 22 is in fluid communication (with regard to possible additives 9, reference is made to the previous description).
  • the additive 9 can be dispensed at different points. While in Figure 2 An embodiment is shown in which the additive dispenser 22 is located in the region of the inlet 4 of the spinneret 2 (so that the additive 9 can be applied to the fiber structure 3), the additive 9 can also be added to the compressed air introduced via the air nozzles 19. The addition of the additive 9 takes place here, for example, via the air supply line 18 or the air supply chamber 17 mentioned, which for example runs in a ring around the wall delimiting the swirl chamber 5 and via which the air nozzles 19 are supplied with compressed air. Finally, it is also conceivable to introduce the additive 9 via the discharge channel 20.
  • the additive supply 8 additionally comprises at least one metering unit 16, which is preferably is integrated into the corresponding additive supply line 14 and thus the additive 1 flows through it.
  • Figure 3 purely schematically three yarn sections. How Figure 3a ) shows, the yarn 6 produced during normal operation without the addition of additives generally has a certain hairiness, ie part of the free fiber ends and loops 10 protrude outwards. If, on the other hand, the fiber structure 3 or the yarn 6 is wetted with additive 9, at least some of these fiber ends 10 lie against the remaining yarn body (see Figure 3b )), so that the additive with the help of an optical sensor of the in Figure 1 Sensor technology shown can be recognized, since the hairiness turns out to be less when adding an additive than without adding an additive.
  • the measured variable in this case could be the light reflection or absorption of the light emitted by the sensor onto the yarn 6.
  • the shadow of the yarn 6 could be monitored, which is caused by the yarn 6 when the light is correspondingly irradiated.
  • the mass of the yarn 6 can be increased by adding additives, so that this could be detected with the aid of a capacitive sensor of the sensor system 11 and also monitored quantitatively.
  • the capacitive sensor either detects the change in the yarn mass per se (ie the change in the total mass, consisting of the mass of the fiber material of the yarn 6 and the mass of the additive 9 applied).
  • the capacitive sensor could also be designed to detect only the mass of the additive 9 (which can be water, for example).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Betrieb einer Luftspinnmaschine, wobei die Luftspinnmaschine wenigstens eine Spinnstelle mit einer Spinndüse zur Herstellung eines Garns aufweist, wobei der Spinndüse während des Betriebs der Spinnstelle ein Faserverband über einen Einlass zugeführt wird, wobei der Faserverband innerhalb einer Wirbelkammer der Spinndüse mit Hilfe einer Wirbelluftströmung eine Drehung erhält, so dass aus dem Faserverband ein Garn gebildet wird, das die Spinndüse schließlich über einen Auslass verlässt, und wobei der Spinnstelle während des Betriebs der Luftspinnmaschine mit Hilfe einer Additivversorgung zumindest zeitweise ein Additiv zugeführt und auf den Faserverband und/oder das Garn oder auf Teile der Spinndüse aufgebracht wird.
  • Darüber hinaus wird eine Luftspinnmaschine vorgeschlagen, die zumindest eine Spinnstelle mit einer Spinndüse zur Herstellung eines Garns aus einem der Spinndüse zugeführten Faserverband aufweist, wobei die Spinndüse einen Einlass für den Faserverband, eine innenliegende Wirbelkammer, ein in die Wirbelkammer ragendes Garnbildungselement sowie einen Auslass für das im Inneren der Wirbelkammer mit Hilfe einer Wirbelluftströmung erzeugte Garn aufweist, und wobei der Spinnstelle eine Additivversorgung zugeordnet ist, mit deren Hilfe der Spinnstelle während des Betriebs der Spinnstelle zumindest zeitweise ein Additiv zugeführt und auf den Faserverband und/oder das Garn oder auf Teile der Spinndüse aufgebracht werden kann.
  • Luftspinnmaschinen mit entsprechenden Spinnstellen sind im Stand der Technik bekannt und dienen der Herstellung eines Garns aus einem länglichen Faserverband. Die äußeren Fasern des Faserverbands werden hierbei mit Hilfe einer durch die Luftdüsen innerhalb der Wirbelkammer erzeugten Wirbelluftströmung im Bereich einer Einlassmündung des Garnbildungselements um die innenliegenden Kernfasern gewunden und bilden schließlich die für die gewünschte Festigkeit des Garns ausschlaggebenden Umwindefasern. Hierdurch entsteht ein Garn mit einer echten Drehung, welches schließlich über einen Abzugskanal aus der Wirbelkammer abgeführt und z. B. auf eine Hülse aufgewickelt werden kann.
  • Generell ist im Sinne der Erfindung unter dem Begriff Garn also ein Faserverband zu verstehen, bei dem zumindest ein Teil der Fasern um einen innenliegenden Kern gewunden sind. Umfasst ist somit ein Garn im herkömmlichen Sinne, das beispielsweise mit Hilfe einer Webmaschine zu einem Stoff verarbeitet werden kann. Ebenso betrifft die Erfindung jedoch auch Luftspinnmaschinen, mit deren Hilfe sogenanntes Vorgarn (andere Bezeichnung: Lunte) hergestellt werden kann. Diese Art Garn zeichnet sich dadurch aus, dass sie trotz einer gewissen Festigkeit, die ausreicht, um das Garn zu einer nachfolgenden Textilmaschine zu transportieren, noch immer verzugsfähig ist. Das Vorgarn kann also mit Hilfe einer Verzugseinrichtung, z. B. dem Streckwerk, einer das Vorgarn verarbeitenden Textilmaschine, beispielsweise einer Ringspinnmaschine, verzogen werden, bevor es endgültig versponnen wird.
  • Bei der Herstellung eines Garnes aus Chemiefasern, beispielsweise Polyester, oder Gemischen aus Natur- und Chemiefasern entstehen Ablagerungen auf der Oberfläche des Garnbildungselements. Die Herstellung von Chemiefasern umfasst eine sogenannte Präparation der Endlosfasern während des Herstellungsprozesses. Dabei wird auf die Endlosfasern ein Präparationsmittel, meist Öle mit verschiedenartigen Zusätzen, aufgebracht, welches eine Behandlung, wie beispielsweise Strecken der Endlosfasern bei hohen Geschwindigkeiten, ermöglicht. Diese Präparationsmittel bleiben teilweise an den Chemiefasern auch in der weiteren Behandlung haften und führen in der Luftspinnmaschine zu Verunreinigungen. Die der Luftspinnmaschine in Form eines Faserverbands zugeführten Fasern werden in der Regel durch ein Lieferwalzenpaar der Spinndüse zugeführt. Das Lieferwalzenpaar kann einem Ausgangswalzenpaar eines Streckwerks entsprechen. Zur Anwendung kommende Streckwerke dienen einer Verfeinerung des vorgelegten Faserverbands vor dem Eintritt in die Spinndüse.
  • Im Eintrittsbereich der Spinndüse ist in der Regel ein Faserführungselement angeordnet, über welches der Faserverband in die Spinndüse und schließlich in den Bereich des Garnbildungselements geführt wird. Als Garnbildungselemente werden mehrheitlich Spindeln mit einem innenliegenden Abzugskanal verwendet. An der Spitze des Garnbildungselements wird durch die Gehäusewandung der Spinndüse Druckluft derart eingebracht, dass sich die genannte rotierende Wirbelluftströmung ergibt. Dies führt dazu, dass aus dem das Faserführungselement verlassenden Faserverband einzelne außenliegende Fasern abgetrennt und über die Spitze des Garnbildungselements umgeschlagen werden. Im weiteren Verlauf rotieren diese herausgelösten Fasern auf der Oberfläche des Garnbildungselements. In der Folge werden durch die Vorwärtsbewegung der innenliegenden Kernfasern des Faserverbands die rotierenden Fasern um die Kernfasern gewunden und dadurch das Garn gebildet. Durch die Bewegung der einzelnen Fasern über die Oberfläche des Garnbildungselements bilden sich auf dem Garnbildungselement jedoch auch Ablagerungen aufgrund der Anhaftungen an den Fasern aus dem Herstellungsprozess. Ablagerungen auf dem Garnbildungselement können auch durch beschädigte Fasern hervorgerufen werden. Ablagerungen können aus denselben Gründen auch auf der Oberfläche des Spinndüseninnenraums oder des Faserführungselements entstehen. Diese Anhaftungen führen zu einer Verschlechterung der Oberflächenbeschaffenheit des Garnbildungselements und verursachen eine Verschlechterung der hergestellten Garnqualität. Eine regelmäßige Reinigung der betroffenen Oberflächen ist daher notwendig, um eine gleichbleibende Qualität der gesponnenen Garne aufrechterhalten zu können.
  • Die Reinigung der Oberflächen des Garnbildungselements, des Spinndüseninnenraums und des Faserführungselements kann manuell durch einen periodischen Ausbau des Garnbildungselements erfolgen, was jedoch zu einem nicht unerheblichen Wartungsaufwand, verbunden mit einem entsprechenden Betriebsausfall, führt.
  • Die EP 2 450 478 offenbart hingegen eine Vorrichtung, welche es erlaubt, eine automatische Reinigung ohne Stillsetzen der Maschine auszuführen. Zu diesem Zweck wird der für die Bildung der Wirbelluftströmung innerhalb der Spinndüse verwendeten Druckluft ein Additiv beigemischt. Das Additiv wird durch die Druckluft an das Garnbildungselement geführt und bewirkt eine Reinigung der Oberfläche des Garnbildungselements. Eine vergleichbare Lösung ist auch in der EP 2 573 256 A2 beschrieben.
  • Darüber hinaus ist es möglich, Additiv auf den Faserverband, Teile der Spinndüse oder das hieraus hergestellte Garn aufzubringen, um die Eigenschaften des daraus hergestellten Garns, beispielsweise im Hinblick auf dessen Haarigkeit, zu verbessern. Ferner lassen sich bei einer entsprechenden Additivzugabe höhere Produktionsgeschwindigkeiten fahren, so dass die Maschine auch wirtschaftlicher produzieren und Energie eingespart werden kann.
  • Aufgabe der vorliegenden Erfindung ist es nun, die aus dem Stand der Technik bekannte Additivzugabe weiterzubilden und eine entsprechende Luftspinnmaschine vorzuschlagen, mit deren Hilfe die Weiterbildung verwirklicht werden kann.
  • Die Aufgabe wird gelöst durch ein Verfahren und eine Luftspinnmaschine mit den Merkmalen der unabhängigen Patentansprüche.
  • Erfindungsgemäß zeichnet sich das Verfahren zum Betrieb einer Luftspinnmaschine dadurch aus, dass das den Auslass der Spinndüse verlassende Garn mit Hilfe einer Sensorik hinsichtlich wenigstens einer physikalischen Kenngröße überwacht wird, wobei auf Basis zumindest eines von der Sensorik gelieferten und mit der genannten Kenngröße korrelierenden Messwerts ermittelt wird, ob und/oder wie viel Additiv auf den Faserverband oder das hieraus hergestellte und die Sensorik passierende Garn aufgebracht wurde.
  • Generell kann die erfindungsgemäße Überwachung während eines Normalbetriebs erfolgen, während dessen die Spinndüse Garn produziert und die Additivzugabe zur Verbesserung der Garneigenschaften dient. Zusätzlich oder alternativ ist es ebenso möglich, die Additivzugabe während eines Reinigungsbetriebs der Spinnstelle zu überwachen, währenddessen das Additiv dem Zweck der oben beschriebenen Reinigung dient.
  • Während die im Stand der Technik erfolgte Additivzugabe lediglich mengenmäßig dosiert wurde, ist es mit der vorliegenden Erfindung nun möglich, die Additivzugabe qualitativ und/oder quantitativ zu überwachen und den Volumen- bzw. Massenstrom des zugegebenen Additivs bei Abweichung von entsprechenden Sollwerten noch während der Additivzugabe zu verändern. Im Übrigen kann die Additivzugabe im Bereich des Einlasses der Spinndüse oder auch innerhalb derselben erfolgen.
  • Die genannte Überwachung erfolgt nun nicht durch Messung des Additivvolumen- oder Massenstroms innerhalb einer das Additiv zur Spinndüse liefernden Additivleitung. Vielmehr schlägt die Erfindung eine indirekte Überwachung vor, bei der die Additivzugabe anhand von Veränderungen eines oder mehrerer ausgewählter Kenngrößen des Garns erkannt und/oder quantitativ bestimmt wird. Bei den Kenngrößen kann es sich prinzipiell um sämtliche physikalisch messbare Eigenschaften des Garns handeln, die sich durch die Zugabe des Additivs qualitativ oder quantitativ ändern. Beispielsweise wäre es möglich, die sogenannte Haarigkeit des Garns zu überwachen. Diese ist ein Maß für die vom Garnkörper abstehenden Faserenden oder Faserschleifen, wobei eine Additivzugabe prinzipiell eine Verringerung der Haarigkeit mit sich bringt, da die nach außen wegstehenden Faserbestandteile durch das Additiv an den Garnkörper angelegt werden. Ebenso verändert sich die längenbezogene Masse (= Masse des durch das Fasermaterial gebildeten Garnköpers plus Masse des zugegebenen Additivs) und eventuell auch die Dicke des Garns bei einer Additivzugabe, wobei auch diese Kenngrößen mit Hilfe einer entsprechenden Sensorik überwachbar sind. Selbstverständlich können auch andere Kenngrößen, wie beispielsweise Masse- und/oder Dickenschwankungen, Lichtreflektionsvermögen, Lichtabsorptionsvermögen, Gleichmäßigkeit der Garnstruktur, usw. überwacht werden, wobei sämtliche physikalischen Kenngrößen Berücksichtigung finden können, die durch die Additivzugabe beeinflusst werden.
  • In jedem Fall erlaubt die Überwachung der entsprechenden Kenngrößen eine Aussage darüber, ob und gegebenenfalls wie viel Additiv während des Normal- und/oder Reinigungsbetriebs zugegeben wird. Als Additiv können im Übrigen flüssige oder auch feste Substanzen (bzw. Mischungen derselben) zum Einsatz kommen, wobei Wasser oder eine wässrige Lösung bevorzugt wird.
  • Besonders vorteilhaft ist es, wenn die Herstellung des Garns mit Hilfe einer Steuereinheit unterbrochen wird, wenn die mit Hilfe der Sensorik erkannte Additivzufuhr in definierter Weise qualitativ und/oder quantitativ von entsprechenden Sollwerten abweicht. Hierdurch wird verhindert, dass während eines Normalbetriebs, währenddessen eigentlich eine Additivzugabe stattfinden soll, ein Garn produziert wird, auf dessen Fasern aufgrund eines Mangels der Additivabgabe zu wenig oder gar kein Additiv aufgebracht wurde. Gleiches gilt für den Reinigungsbetrieb. Auch hier könnte eine Unterbrechung der Garnherstellung oder eine Wiederholung einer Reinigungssequenz erfolgen, falls die von der Sensorik übermittelten Messwerte außerhalb definierter Grenzwerte liegen.
  • Insbesondere ist es vorteilhaft, wenn die Sensorik einen optischen Sensor umfasst, mit dessen Hilfe das Garn überwacht wird, wobei auf Basis der Messwerte des optischen Sensors eine qualitative Überwachung der Additivzufuhr erfolgt. Beispielsweise wäre es denkbar, mit Hilfe des optischen Sensors die oben genannte Haarigkeit des Garns zu überwachen, wobei hierfür z. B. die garnlängenbezogene Anzahl der freien, nach außen abstehenden Faserenden, deren individuelle oder gemittelte Länge oder auch die Veränderung der genannten Größen berücksichtigt werden könnten. Ebenso ist es mit Hilfe optischer Sensoren möglich, die Lichtabsorption oder -reflektion oder auch die Größe des Schattens des Garns bei entsprechender Beleuchtung zu überwachen, die sich durch die Zugabe eines Additivs ändern kann. Ferner sind die Dicke des Garns oder sonstige geometrische Eigenschaften desselben erfassbar, die optisch erkannt werden können und deren Beträge von der Additivzugabe abhängen.
  • Des Weiteren ist es vorteilhaft, wenn die Sensorik einen kapazitiven Sensor umfasst, mit dessen Hilfe das Garn hinsichtlich seiner Masse überwacht wird, wobei auf Basis der Messwerte des kapazitiven Sensors eine quantitative Überwachung der Additivzufuhr erfolgt. Da sich die Masse des die Sensorik passierenden Garns aus der Masse des aus dem Fasermaterial des Faserverbands bestehenden Garnkörpers und dem aufgebrachten Additiv zusammensetzt, ist es mit Hilfe des kapazitiven Sensors möglich, bei ansonsten gleichbleibenden Spinnbedingungen eine Additivzugabe qualitativ aber insbesondere auch quantitativ zu überwachen. Die Überwachung erlaubt somit nicht nur eine Aussage dahingehend, ob Additiv zugegeben wurde, sondern auch wie viel.
  • Prinzipiell sei an dieser Stelle darauf hingewiesen, dass die Sensorik selbstverständlich weitere oder alternative Sensoren umfassen kann, mit deren Hilfe sich einzelne physikalische Eigenschaften des Garns überwachen lassen. Beispielsweise wäre es möglich, mehrere Sensoren vorzusehen, die unterschiedliche optische Eigenschaften des Garns erfassen. Darüber hinaus könnten auch mehrere kapazitive Sensoren vorhanden sein, um mehrere Eigenschaften des Garns, die sich kapazitiv messen lassen, zu überwachen. Möglich ist es auch, mehrere Kanäle jeweils eines Sensors abzufragen und separat mit Hilfe der Steuereinheit auszuwerten. So wäre es denkbar, einen Kanal des kapazitiven Sensors zu nutzen, um die ermittelten Messwerte auf einem Display grafisch darzustellen, während ein anderer Kanal direkt mit einer Steuereinheit verbunden ist, die auch die einzelnen Funktionen der entsprechenden Spinnstelle überwacht bzw. steuert. Schließlich könnten einzelne Sensoren bzw. Kanäle entsprechender Sensoren der Überwachung der Additivzugabe dienen, während andere Sensoren bzw. Kanäle die Überwachung des Garns hinsichtlich unerwünschter Garnfehler (kurze oder lange Dick- oder Dünnstellen, etc.) ermöglichen. Generell wäre es schließlich möglich, mehrere Sensoren an unterschiedlicher Stelle zu platzieren, wobei es bevorzugt ist, sämtliche Sensoren der erfindungsgemäßen Sensorik als eine bauliche Einheit zusammenzufassen, die sich im Garnlauf zwischen dem Auslass der Spinndüse und einer in Transportrichtung des Garns nachgeordneten Spulvorrichtung befindet. Es ist daher durchaus vorstellbar, dass ein sogenannter Garnreiniger die Funktion der Sensorik übernimmt, der aus dem Stand der Technik bekannt ist und er der bisher ausschließlich die Funktion der Detektion von Garnfehlern übernimmt.
  • Des Weiteren ist es äußert vorteilhaft, wenn das Additiv pulsartig zugeführt wird, wobei die quantitative Überwachung der Additivzufuhr durch Auswertung der vom kapazitiven Sensor erkannten kurzzeitigen Masseschwankungen des Garns erfolgt. Beispielsweise wäre es denkbar, dass die für die Additivzugabe auf den Faserverband oder das Garn zuständige Additivabgabe oder ein die Additivabgabe mit einem Additivspeicher verbindende Additivversorgungsleitung eine Dosiereinheit aufweist, die mehrmals pro Sekunde öffnet und wieder schließt. Das Additiv wird in diesem Fall nicht als gleichmäßiger Additivstrom, sondern vielmehr in Form einer Vielzahl von Einzeldosen auf den Faserverband oder das Garn aufgebracht. Hierdurch entsteht eine Vielzahl von winzigen Masseschwankungen des Garns, die mit Hilfe eines kapazitiven Sensors erkannt werden können. Durch Auswertung der Messwerte, insbesondere deren Mittelung, kann schließlich eine zuverlässige Aussage über die Additivzugabe bzw. die Menge des zugegebenen Additivs getroffen werden.
  • Auch ist es von Vorteil, wenn der Volumenstrom des zugeführten Additivs zumindest zeitweise einen Betrag zwischen 0,001 ml/min und 7,0 ml/min, bevorzugt zwischen 0,02 ml/min und 5,0 ml/min, besonders bevorzugt zwischen 0,05 und 3,0 ml/min, aufweist und/oder dass der Massenstrom des zugeführten Additivs zumindest zeitweise einen Betrag zwischen 0,001 g/min und 7,0 g/min, bevorzugt zwischen 0,02 g/min und 5,0 g/min, besonders bevorzugt zwischen 0,05 g/min und 3,0 g/min, aufweist. Während höhere Werte eine Reinigung der einzelner Bereiche der Spinnstelle bzw. der vom Additiv durchströmten Abschnitte der Additivversorgung erlauben, sind kleinere Werte im Normalbetrieb von Vorteil, in dem das Additiv lediglich der Verbesserung der Garneigenschaften (Haarigkeit, Festigkeit, Dehnung und Gleichmäßigkeit des Garns) dient. Die Dosiereinheit sollte daher einen Volumen- bzw. Massenstrom über die genannten Spannbreiten erlauben, um die einzelnen Spinnstellen sowohl im Normalbetrieb als auch im Reinigungsbetrieb betreiben zu können.
  • Besondere Vorteile bringt es mit sich, wenn der Volumenstrom (bzw. Massenstrom) des zugeführten Additivs während eines Normalbetriebs der Spinnstelle einen Betrag zwischen 0,001 ml/min (bzw. g/min) und 1,5 ml/min (bzw. g/min), bevorzugt zwischen 0,01 ml/min (bzw. g/min) und 1,0 ml/min (bzw. g/min) und während eines Reinigungsbetriebs der Spinnstelle einen Betrag zwischen 2,0 ml/min (bzw. g/min) und 7,0 ml/min (bzw. g/min), bevorzugt zwischen 3,0 ml/min (bzw. g/min) und 7,0 ml/min (bzw. g/min), aufweist.
  • Der genaue Wert kann in Abhängigkeit der Eigenschaften des Faserverbands und/oder dessen Zuführgeschwindigkeit in die Spinnstelle und/oder der Abzugsgeschwindigkeit des Garns aus der Spinnstelle gewählt werden und kann daher je nach Anwendungsfall schwanken. Ebenso kann der für den Reinigungsbetrieb vorgesehene Wert in Abhängigkeit der Dauer des Reinigungsbetriebs bzw. der Dauer des Normalbetriebs zwischen zwei Reinigungsabschnitten gewählt werden.
  • Des Weiteren sieht die Erfindung vor, dass das Garn mit Hilfe der Sensorik darüber hinaus dahingehend überwacht wird, ob die Dicke und/oder Masse des Garns vorgegebene Grenzwerte in definierter Weise über- oder unterschreitet, wobei die Sensorik mit einer Steuereinheit der Luftspinnmaschine in Verbindung steht und wobei die Steuereinheit die Herstellung des Garns unterbricht, wenn zumindest einer der Grenzwerte in definierter Weise unter- bzw. überschritten wird. Die Sensorik dient in diesem Fall nicht nur der Überwachung der Additivzugabe. Vielmehr kann mit Hilfe der Sensorik auch überwacht werden, ob die Garnherstellung grundsätzlich den Vorgaben entspricht. Beispielsweise wären übermäßig lange oder häufige Dünnstellen im Garn, die sich nicht auf eine fehlende Additivzugabe zurückführen lassen, ein Indiz dafür, dass die Garnherstellung in der Spinndüse nicht einwandfrei erfolgt. Ebenso könnten die Signale mehrerer Sensoren bzw. einzelner Kanäle derselben kombiniert ausgewertet werden, um neben der Kontrolle der Additivzugabe auch eine Qualitätskontrolle des Garns vorzunehmen. Würde beispielsweise der kapazitive Sensor eine ungewöhnliche Massezunahme oder Masseschwankung erkennen, obwohl der optische Sensor meldet, dass die Additivzugabe gleichmäßig erfolgt, so wäre dies als Hinweis auf eine mangelhafte Garnqualität zu werten.
  • Ferner ist vorgesehen, dass der Massen- und/oder Volumenstrom des zugeführten Additivs während eines Reinigungsbetriebs der Spinnstelle höher ist als während eines Normalbetriebs, wobei zumindest einer der im vorangegangenen Absatz genannten Grenzwerte, bei deren Über- bzw. Unterschreiten die Herstellung des Garns unterbrochen wird, während des Reinigungsbetriebs einen anderen Betrag aufweist als während des Normalbetriebs. Würden die Grenzwerte konstant gehalten, so würde eine Erhöhung der zugegebenen Additivmenge während des Reinigungsbetriebs auf eine Dickstelle oder eine unzulässige Änderung einer anderen physikalischen Kenngröße des Garns hinweisen und die Garnherstellung unterbrochen, obwohl die Additivzugabe und die Garnherstellung während des Reinigungsbetriebs eigentlich den Vorgaben entspricht. Es wäre daher beispielsweise sinnvoll, den oberen Grenzwert der längenbezogenen Masse, bei der die Garnherstellung unterbrochen wird, während des Reinigungsbetriebs gegenüber dem Normalbetrieb zu erhöhen, da die Masse des Garns während des Reinigungsbetriebs durch die erhöhte Additivzugabe zwangsläufig erhöht wird. Ebenso sollte der entsprechende untere Grenzwert erhöht werden, um auch eine zu geringe Additivzugabe detektieren und die Garnherstellung bei Unterschreiten eines entsprechend angepassten Wertes unterbrechen zu können. Prinzipiell ist es also sinnvoll, dass die jeweiligen Grenzwerte für den Normal- und für den Reinigungsbetrieb unterschiedlich hoch gewählt werden. In diesem Zusammenhang sei jedoch darauf hingewiesen, dass dieses Vorgehen besonders die quantitative Überwachung der Additivzugabe betrifft. Hingegen könnten die Grenzwerte der Messwerte, die von einem Sensor geliefert werden, der lediglich die qualitative Additivzugabe überwacht, bei beiden Betriebsarten gleich hoch sein (vorausgesetzt, dass sowohl während des Normal- als auch während des Reinigungsbetriebs Additiv zugegeben wird und die Messwerte des entsprechenden Sensors nur dahingehend ausgewertet werden, ob Additiv zugegeben wird oder nicht).
  • Die Spinnstelle der erfindungsgemäßen Luftspinnmaschine umfasst schließlich eine Sensorik, mit deren Hilfe das den Auslass der Spinndüse verlassende Garn hinsichtlich wenigstens einer physikalischen Kenngröße überwachbar ist, wobei der Spinnstelle eine Steuereinheit zugeordnet ist, die ausgebildet ist, auf Basis zumindest eines von der Sensorik gelieferten und mit der genannten Kenngröße korrelierenden Messwerts zu ermitteln, ob und/oder wie viel Additiv auf den Faserverband oder das hieraus hergestellte und die Sensorik passierende Garn aufgebracht wurde. Hinsichtlich möglicher vorteilhafter Ausgestaltungen der Überwachung bzw. möglicher Merkmale der Sensorik bzw. der Auswertung der von der Sensorik übermittelten Messwerte wird auf die bisherige bzw. nachfolgende Beschreibung verwiesen. Generell sei an dieser Stelle darauf hingewiesen, dass die Steuereinheit ausgebildet sein kann, die Luftspinnmaschine gemäß der einzeln beschriebenen Verfahrensmerkmale zu betreiben, wobei diese einzeln oder in beliebiger Kombination verwirklicht sein können.
  • Weitere Vorteile der Erfindung sind in den nachfolgenden Ausführungsbeispielen beschrieben. Es zeigen, jeweils schematisch:
  • Figur 1
    eine Seitenansicht einer Spinnstelle einer erfindungsgemäßen Luftspinnmaschine,
    Figur 2
    einen teilweise geschnittenen Ausschnitt einer Spinnstelle einer erfindungsgemäßen Luftspinnmaschine, und
    Figur 3
    verschiedene Ausschnitte eines Garns.
  • Figur 1 zeigt einen Ausschnitt einer Spinnstelle einer erfindungsgemäßen Luftspinnmaschine (wobei die Luftspinnmaschine selbstverständlich eine Vielzahl von, vorzugsweise benachbart zueinander angeordneten, Spinnstellen aufweisen kann). Die Luftspinnmaschine kann bei Bedarf ein Streckwerk mit mehreren Streckwerkswalzen 13 umfassen, welches mit einem Faserverband 3, beispielsweise in Form eines doublierten Streckenbands, beliefert wird (aus Übersichtsgründen ist nur eine der gezeigten Streckwerkswalzen 13 mit einem Bezugszeichen versehen). Ferner umfasst die gezeigte Spinnstelle eine Spinndüse 2 mit einer innenliegenden Wirbelkammer 5 (siehe Figur 2), in welcher der Faserverband 3 bzw. mindestens ein Teil der Fasern des Faserverbands 3 nach Passieren eines Einlasses 4 der Spinndüse 2 mit einer Drehung versehen wird (die genaue Wirkungsweise der Spinnstelle wird im Folgenden noch näher beschrieben).
  • Darüber hinaus kann die Luftspinnmaschine ein der Spinndüse 2 nachgeordnetes Abzugswalzenpaar 24 sowie eine dem Abzugswalzenpaar 24 nachgeschaltete Spulvorrichtung 1 zum Aufwinden des die Spinndüse 2 verlassenden Garns 6 auf eine Hülse umfassen. Ebenso kann eine, beispielsweise pneumatisch arbeitende, Garnabfuhreinheit 12 vorhanden sein, um Garnabschnitte während eines Reinigerschnitts, bei dem ein Garnfehler aus dem Garn 6 entfernt wird, abführen zu können. Die Spinnstelle muss nicht zwangsweise ein Streckwerk aufweisen. Auch ist das Abzugswalzenpaar 24 oder die Garnabfuhreinheit 12 nicht unbedingt notwendig.
  • Die gezeigte Spinnstelle arbeitet generell nach einem Luftspinnverfahren. Zur Bildung des Garns 6 wird der Faserverband 3 in einer vorgegebenen Transportrichtung T über ein, mit einer den genannten Einlass 4 bildenden Eintrittsöffnung versehenes, und in Figur 2 gezeigtes Faserführungselement 23 in die Wirbelkammer 5 der Spinndüse 2 geführt. Dort erhält es eine Drehung, d. h. mindestens ein Teil der freien Faserenden 10 des Faserverbands 3 (vgl. Figur 4) wird von einer Wirbelluftströmung, die durch entsprechend in einer die Wirbelkammer 5 umgebenden Wirbelkammerwandung angeordnete Luftdüsen 19 erzeugt wird, erfasst (die Luftdüsen 19 werden vorzugsweise über eine Luftversorgungsleitung 18 mit Druckluft versorgt, die in eine mit den Luftdüsen 19 verbundene Luftversorgungskammer 17 mündet). Ein Teil der Fasern wird hierbei aus dem Faserverband 3 zumindest ein Stück weit herausgezogen und um die Spitze eines in die Wirbelkammer 5 ragenden Garnbildungselements 21 gewunden. Dadurch, dass der Faserverband 3 durch eine Einlassmündung des Garnbildungselements 21 über einen innerhalb des Garnbildungselements 21 angeordneten Abzugskanal 20 aus der Wirbelkammer 5 und schließlich über einen Auslass 7 aus der Spinndüse 2 abgezogen wird, werden schließlich auch die freien Faserenden 10 in Richtung der Einlassmündung gezogen und schlingen sich dabei als sogenannte Umwindefasern um die zentral verlaufenden Kernfasern - resultierend in einem die gewünschte Drehung aufweisenden Garn 6. Die über die Luftdüsen 19 eingebrachte Druckluft verlässt die Spinndüse 2 schließlich über den Abzugskanal 20 sowie eine eventuell vorhandene Luftabfuhr 25, die bei Bedarf mit einer Unterdruckquelle verbunden sein kann.
  • Generell sei an dieser Stelle klargestellt, dass es sich bei dem hergestellten Garn 6 grundsätzlich um einen beliebigen Faserverband 3 handeln kann, der sich dadurch auszeichnet, dass ein außenliegender Teil der Fasern (sogenannte Umwindefasern) um einen inneren, vorzugsweise ungedrehten oder bei Bedarf ebenfalls gedrehten Teil der Fasern, herumgeschlungen ist, um dem Garn 6 die gewünschte Festigkeit zu verleihen.
  • Des Weiteren ist der Spinnstelle eine Additivversorgung 8 zugeordnet, die ein oder mehrere Additivspeicher 15 sowie eine oder mehrere, vorzugsweise zumindest teilweise flexible, Additivversorgungsleitungen 14 umfasst, über die der jeweilige Additivspeicher 15 mit einer im Bereich des Faserführungselements 23 oder innerhalb der Spinndüse 2 angeordneten Additivabgabe 22 in Fluidverbindung steht (hinsichtlich möglicher Additive 9 wird auf die bisherige Beschreibung verwiesen).
  • Prinzipiell kann das Additiv 9 an unterschiedlicher Stelle abgegeben werden. Während in Figur 2 eine Ausführungsform gezeigt ist, bei der sich die Additivabgabe 22 im Bereich des Einlasses 4 der Spinndüse 2 befindet (so dass das Additiv 9 auf den Faserverband 3 aufgebracht werden kann), kann das Additiv 9 ebenso der über die Luftdüsen 19 eingebrachten Druckluft zugegeben werden. Der Eintrag des Additivs 9 erfolgt hierbei beispielsweise über die Luftversorgungsleitung 18 oder die genannte Luftversorgungskammer 17, die beispielsweise ringförmig um die die Wirbelkammer 5 begrenzende Wandung verläuft und über die die Luftdüsen 19 mit Druckluft versorgt werden. Schließlich ist es ebenso denkbar, das Additiv 9 über den Abzugskanal 20 einzubringen.
  • Um das Additiv 9 genau und zudem äußerst reproduzierbar über die Additivabgabe 22 abgeben zu können und darüber hinaus den abgegebenen Volumen- bzw. Massenstrom des Additivs 9 auf die jeweiligen Gegebenheiten anpassen zu können, umfasst die Additivversorgung 8 darüber hinaus zumindest eine Dosiereinheit 16, die vorzugsweise in die entsprechende Additivversorgungsleitung 14 integriert ist und damit vom Additiv 1 durchströmt wird.
  • Schließlich zeigt Figur 3 rein schematisch drei Garnabschnitte. Wie Figur 3a) zeigt, besitzt das während des Normalbetriebs ohne Additivzugabe hergestellte Garn 6 in der Regel eine gewisse Haarigkeit, d. h. ein Teil der freien Faserenden und Schlingen 10 stehen nach außen weg. Wird der Faserverband 3 bzw. das Garn 6 hingegen mit Additiv 9 benetzt, so legen sich zumindest ein Teil dieser Faserenden 10 an den restlichen Garnkörper an (siehe Figur 3b)), so dass die Additivzugabe mit Hilfe eines optischen Sensors der in Figur 1 gezeigten Sensorik erkannt werden kann, da die Haarigkeit bei einer Additivzugabe geringer ausfällt als ohne Additivzugabe. Mit Hilfe des optischen Sensors ist es daher grundsätzlich möglich, eine Additivzugabe während des Normal- und/oder Reinigungsbetriebs in qualitativer Hinsicht zu überwachen (d. h. zu überprüfen, ob ein Additiv 9 zugegeben wurde oder nicht). Als Messgröße könnte in diesem Fall die Lichtreflektion oder -absorption des vom Sensor auf das Garn 6 abgestrahlten Lichts sein. Ebenso könnte der Schatten des Garns 6 überwacht werden, der bei einer entsprechenden Lichteinstrahlung durch das Garn 6 hervorgerufen wird.
  • Ebenso kann die Masse des Garns 6 durch eine Additivzugabe zunehmen, so dass diese mit Hilfe eines kapazitiven Sensors der Sensorik 11 erkannt und auch quantitativ überwacht werden könnte. Der kapazitive Sensor erkennt hierbei entweder die Änderung der Garnmasse an sich (d. h. die Änderung der Gesamtmasse, bestehend aus der Masse des Fasermaterials des Garns 6 und der Masse des aufgebrachten Additivs 9). Ebenso könnte der kapazitive Sensor ausgebildet sein, ausschließlich die Masse des Additivs 9 (bei dem es sich beispielsweise um Wasser handeln kann) zu detektieren.
  • Schließlich ist es selbstverständlich auch möglich, dass anstelle von Absolutwerten lediglich Änderungen der überwachten Kenngröße(n) detektiert werden.
  • Abschließend zeigt Figur 3c) schematisch, dass das Additiv 9 auch perlenförmig vorliegen kann, falls das Additiv 9 pulsartig zugegeben wird. Auch in diesem Fall wäre eine qualitative und/oder quantitative Überwachung der Additivzugabe, wie in der bisherigen Beschreibung beschrieben, möglich, wobei die Überwachung während des Normalbetriebs und insbesondere auch während des Reinigungsbetriebs denkbar wäre.
  • Die vorliegende Erfindung ist nicht auf die dargestellten und beschriebenen Ausführungsbeispiele beschränkt. Abwandlungen im Rahmen der Patentansprüche sind ebenso möglich wie eine beliebige Kombination der beschriebenen Merkmale, auch wenn sie in unterschiedlichen Teilen der Beschreibung bzw. den Ansprüchen oder in unterschiedlichen Ausführungsbeispielen dargestellt und beschrieben sind, vorausgesetzt, dass die Forderungen zumindest eines unabhängigen Anspruchs erfüllt sind.
  • Bezugszeichenliste
  • 1
    Spulvorrichtung
    2
    Spinndüse
    3
    Faserverband
    4
    Einlass
    5
    Wirbelkammer
    6
    Garn
    7
    Auslass
    8
    Additivversorgung
    9
    Additiv
    10
    freies Faserende
    11
    Sensorik
    12
    Garnabfuhreinheit
    13
    Streckwerkswalze
    14
    Additivversorgungsleitung
    15
    Additivspeicher
    16
    Dosiereinheit
    17
    Luftversorgungskammer
    18
    Luftversorgungsleitung
    19
    Luftdüse
    20
    Abzugskanal
    21
    Garnbildungselement
    22
    Additivabgabe
    23
    Faserführungselement
    24
    Abzugswalzenpaar
    25
    Luftabfuhr
    T
    Transportrichtung

Claims (10)

  1. Verfahren zum Betrieb einer Luftspinnmaschine,
    - wobei die Luftspinnmaschine wenigstens eine Spinnstelle mit einer Spinndüse (2) zur Herstellung eines Garns (6) aufweist,
    - wobei der Spinndüse (2) während des Betriebs der Spinnstelle ein Faserverband (3) über einen Einlass (4) zugeführt wird,
    - wobei der Faserverband (3) innerhalb einer Wirbelkammer (5) der Spinndüse (2) mit Hilfe einer Wirbelluftströmung eine Drehung erhält, so dass aus dem Faserverband (3) ein Garn (6) gebildet wird, das die Spinndüse (2) schließlich über einen Auslass (7) verlässt, und
    - wobei der Spinnstelle während des Betriebs der Luftspinnmaschine mit Hilfe einer Additivversorgung (8) zumindest zeitweise ein Additiv (9) zugeführt und auf den Faserverband (3) und/oder das Garn (6) oder auf Teile der Spinndüse aufgebracht wird,
    wobei das den Auslass (7) verlassende Garn (6) mit Hilfe einer Sensorik (11) hinsichtlich wenigstens einer physikalischen Kenngröße überwacht wird, dadurch gekennzeichnet,
    - dass auf Basis zumindest eines von der Sensorik (11) gelieferten und mit der genannten Kenngröße korrelierenden Messwerts ermittelt wird, ob und/oder wie viel Additiv (9) auf den Faserverband (3) oder das hieraus hergestellte und die Sensorik (11) passierende Garn (6) aufgebracht wurde,
    - wobei das Garn (6) mit Hilfe der Sensorik (11) darüber hinaus dahingehend überwacht wird, ob die Dicke und/oder Masse des Garns (6) vorgegebene Grenzwerte in definierter Weise über- oder unterschreitet,
    - wobei die Sensorik (11) mit einer Steuereinheit der Luftspinnmaschine in Verbindung steht,
    - wobei die Steuereinheit die Herstellung des Garns (6) unterbricht, wenn zumindest einer der Grenzwerte in definierter Weise unter- bzw. überschritten wird, und
    - wobei der Massen- und/oder Volumenstrom des zugeführten Additivs (9) während eines Reinigungsbetriebs der Spinnstelle höher ist als während eines Normalbetriebs, wobei zumindest einer der genannten Grenzwerte während des Reinigungsbetriebs einen anderen Betrag aufweist als während des Normalbetriebs.
  2. Verfahren gemäß dem vorangegangenen Anspruch, dadurch gekennzeichnet, dass die Herstellung des Garns (6) mit Hilfe einer Steuereinheit unterbrochen wird, wenn die mit Hilfe der Sensorik (11) erkannte Additivzufuhr in definierter Weise qualitativ und/oder quantitativ von entsprechenden Sollwerten abweicht.
  3. Verfahren gemäß einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Sensorik (11) einen optischen Sensor umfasst, mit dessen Hilfe das Garn (6), beispielsweise hinsichtlich seiner Haarigkeit, überwacht wird, wobei auf Basis der Messwerte des optischen Sensors eine qualitative Überwachung der Additivzufuhr erfolgt.
  4. Verfahren gemäß einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Sensorik (11) einen kapazitiven Sensor umfasst, mit dessen Hilfe das Garn (6) hinsichtlich seiner Masse überwacht wird, wobei auf Basis der Messwerte des kapazitiven Sensors eine quantitative Überwachung der Additivzufuhr erfolgt.
  5. Verfahren gemäß dem vorangegangenen Anspruch, dadurch gekennzeichnet, dass das Additiv (9) pulsartig zugeführt wird, wobei die quantitative Überwachung der Additivzufuhr durch Auswertung der vom kapazitiven Sensor erkannten kurzzeitigen Masseschwankungen des Garns (6) erfolgt.
  6. Verfahren gemäß einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Volumenstrom des zugeführten Additivs (9) zumindest zeitweise einen Betrag zwischen 0,001 ml/min und 7,0 ml/min, bevorzugt zwischen 0,02 ml/min und 5,0 ml/min, besonders bevorzugt zwischen 0,05 und 3,0 ml/min, aufweist und/oder dass der Massenstrom des zugeführten Additivs (9) zumindest zeitweise einen Betrag zwischen 0,001 g/min und 7,0 g/min, bevorzugt zwischen 0,02 g/min und 5,0 g/min, besonders bevorzugt zwischen 0,05 g/min und 3,0 g/min, aufweist.
  7. Verfahren gemäß einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Volumenstrom des zugeführten Additivs (9) während eines Normalbetriebs der Spinnstelle (8) einen Betrag zwischen 0,001 ml/min und 1,5 ml/min, bevorzugt zwischen 0,01 ml/min und 1,0 ml/min aufweist, und dass der Volumenstrom des zugeführten Additivs (9) während eines Reinigungsbetriebs der Spinnstelle(8) einen Betrag zwischen 2,0 ml/min und 7,0 ml/min, bevorzugt zwischen 3,0 ml/min und 7,0 ml/min, aufweist.
  8. Verfahren gemäß einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Massenstrom des zugeführten Additivs (9) während eines Normalbetriebs der Spinnstelle (8) einen Betrag zwischen 0,001 g/min und 1,5 g/min, bevorzugt zwischen 0,01 g/min und 1,0 g/min aufweist, und dass der Massenstrom des zugeführten Additivs (9) während eines Reinigungsbetriebs der Spinnstelle (8) einen Betrag zwischen 2,0 g/min und 7,0 g/min, bevorzugt zwischen 3,0 g/min und 7,0 g/min, aufweist.
  9. Luftspinnmaschine,
    - die zumindest eine Spinnstelle mit einer Spinndüse (2) zur Herstellung eines Garns (6) aus einem der Spinndüse (2) zugeführten Faserverband (3) aufweist,
    - wobei die Spinndüse (2) einen Einlass (4) für den Faserverband (3),
    - eine innenliegende Wirbelkammer (5),
    - ein in die Wirbelkammer (5) ragendes Garnbildungselement (21) sowie
    - einen Auslass (7) für das im Inneren der Wirbelkammer (5) mit Hilfe einer Wirbelluftströmung erzeugte Garn (6) aufweist, und
    - wobei der Spinnstelle eine Additivversorgung (8) zugeordnet ist, mit deren Hilfe der Spinnstelle während des Betriebs der Spinnstelle zumindest zeitweise ein Additiv (9) zugeführt und auf den Faserverband (3) und/oder das Garn (6) aufgebracht werden kann,
    wobei die Spinnstelle eine Sensorik (11) umfasst, mit deren Hilfe das den Auslass (7) verlassende Garn (6) hinsichtlich wenigstens einer physikalischen Kenngröße überwachbar ist,
    dadurch gekennzeichnet,
    - dass der Spinnstelle eine Steuereinheit zugeordnet ist, die ausgebildet ist, auf Basis zumindest eines von der Sensorik (11) gelieferten und mit der genannten Kenngröße korrelierenden Messwerts zu ermitteln, ob und/oder wie viel Additiv (9) auf den Faserverband (3) oder das hieraus hergestellte und die Sensorik (11) passierende Garn (6) aufgebracht wurde,
    - wobei die Sensorik (11) ausgebildet ist, das Garn (6) darüber hinaus dahingehend zu überwachen, ob die Dicke und/oder Masse des Garns (6) vorgegebene Grenzwerte in definierter Weise über- oder unterschreitet,
    - wobei die Sensorik (11) mit der Steuereinheit der Luftspinnmaschine in Verbindung steht,
    - wobei die Steuereinheit ausgebildet ist, die Herstellung des Garns (6) zu unterbrechen, wenn zumindest einer der Grenzwerte in definierter Weise unter- bzw. überschritten wird, und
    - wobei der Massen- und/oder Volumenstrom des zugeführten Additivs (9) während eines Reinigungsbetriebs der Spinnstelle höher ist als während eines Normalbetriebs, wobei zumindest einer der genannten Grenzwerte während des Reinigungsbetriebs einen anderen Betrag aufweist als während des Normalbetriebs.
  10. Luftspinnmaschine gemäß dem vorangegangenen Anspruch, dadurch gekennzeichnet, dass die Steuereinheit mit der Sensorik (11) in Verbindung steht und ausgebildet ist, die Luftspinnmaschine unter Berücksichtigung der von der Sensorik (11) übermittelten Messwerte gemäß einem der Ansprüche 1 bis 8 zu betreiben.
EP15170263.6A 2014-06-12 2015-06-02 Luftspinnmaschine sowie verfahren zum betrieb einer solchen Active EP2955256B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH00888/14A CH709748A1 (de) 2014-06-12 2014-06-12 Luftspinnmaschine sowie Verfahren zum Betrieb einer solchen.

Publications (2)

Publication Number Publication Date
EP2955256A1 EP2955256A1 (de) 2015-12-16
EP2955256B1 true EP2955256B1 (de) 2020-07-08

Family

ID=53765043

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15170263.6A Active EP2955256B1 (de) 2014-06-12 2015-06-02 Luftspinnmaschine sowie verfahren zum betrieb einer solchen

Country Status (5)

Country Link
US (1) US9663878B2 (de)
EP (1) EP2955256B1 (de)
JP (1) JP6566551B2 (de)
CN (1) CN105297196B (de)
CH (1) CH709748A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH709749A1 (de) * 2014-06-12 2015-12-15 Rieter Ag Maschf Luftspinnmaschine sowie Verfahren zum Betrieb einer solchen.
CH709748A1 (de) * 2014-06-12 2015-12-15 Rieter Ag Maschf Luftspinnmaschine sowie Verfahren zum Betrieb einer solchen.
CH712409A1 (de) * 2016-04-29 2017-10-31 Rieter Ag Maschf Luftspinnmaschine sowie Verfahren zur Herstellung eines Garns.
CH712663A1 (de) * 2016-07-14 2018-01-15 Rieter Ag Maschf Verfahren zum Verarbeiten eines strangförmigen Faserverbands sowie Vorspinnmaschine.
EP3276057B1 (de) * 2016-07-28 2020-01-01 Rieter Ingolstadt GmbH Fadenführungseinheit, offenend-spinnmaschine und verfahren zum betreiben einer spinnstelle
CZ307261B6 (cs) * 2016-09-29 2018-05-02 Rieter Cz S.R.O. Způsob sledování příze na pracovním místě textilního stroje a textilní stroj k jeho provádění
EP3425092B1 (de) * 2017-07-06 2020-05-13 KARL MEYER Technische Textilien GmbH Vorrichtung und verfahren zum spreizen eines faserbündels
CN111663210B (zh) * 2019-03-06 2023-04-14 村田机械株式会社 空气消耗量计算装置、纺纱机、纺纱系统及空气消耗量计算方法
DE102019113977A1 (de) * 2019-05-24 2020-11-26 Saurer Spinning Solutions Gmbh & Co. Kg Verfahren zur Überwachung von erforderlichen Luftströmen zum Handhaben eines Fadens und/oder Faserbandes und Spinnmaschineneinheit
CN112481753A (zh) * 2021-01-07 2021-03-12 厦门代虬纺织有限公司 一种喷气式纺纱设备

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH581717A5 (de) * 1975-02-08 1976-11-15 Barmag Barmer Maschf
JPS5940926B2 (ja) * 1980-06-26 1984-10-03 村田機械株式会社 糸状物体のバル−ン評価方法
JPH0262937A (ja) * 1988-08-30 1990-03-02 Teijin Ltd 油剤付着量の監視方法
DE4140952A1 (de) * 1991-12-12 1993-06-17 Rieter Ingolstadt Spinnerei Verfahren und vorrichtung zur reinigung der sensorflaechen einer garnueberwachung
JPH07310223A (ja) * 1994-05-17 1995-11-28 Toray Ind Inc 繊維糸条の付着油剤量の測定方法およびその装置
JP3543377B2 (ja) * 1994-08-03 2004-07-14 株式会社豊田自動織機 紡機における油潤滑装置
JPH10130970A (ja) * 1996-10-25 1998-05-19 Nippon Seren Kk 糸の油剤含浸量の異常及び糸切れ検出装置
JP3274977B2 (ja) * 1996-12-27 2002-04-15 京セラ株式会社 オイル検出部材及びこれを用いた繊維のオイル付着量検出方法
JP2000146866A (ja) * 1998-11-04 2000-05-26 Unitika Ltd 液体付与の異常検知装置
JP2000303277A (ja) * 1999-04-14 2000-10-31 Murata Mach Ltd 糸条巻取機のオイリング装置
US6449938B1 (en) * 2000-05-24 2002-09-17 Goulston Technologies, Inc. Advanced finish nozzle system
FI110720B (fi) * 2001-04-09 2003-03-14 Metso Paper Automation Oy Menetelmä ja sovitelma mittalaitteen puhtaanapitämiseksi
DE10256293B4 (de) * 2002-12-03 2008-12-24 Oerlikon Textile Gmbh & Co. Kg Verfahren und Vorrichtung zum Betreiben einer Arbeitsstelle einer Kreuzspulen herstellenden Textilmaschine
DE10346599A1 (de) * 2003-10-04 2005-04-21 Saurer Gmbh & Co Kg Verfahren und Vorrichtung zur Überwachung eines Fadens
JP2011084854A (ja) * 2009-09-18 2011-04-28 Murata Machinery Ltd 紡績機
CN102162156A (zh) * 2010-02-24 2011-08-24 林耿霈 防止喷嘴阻塞的捻纱装置
JP2012097391A (ja) * 2010-11-05 2012-05-24 Murata Mach Ltd 紡績機
JP2013067893A (ja) * 2011-09-21 2013-04-18 Murata Mach Ltd 紡績機及び紡績糸の製造方法
JP2013160678A (ja) * 2012-02-07 2013-08-19 Murata Mach Ltd 繊維条体モニタ装置、巻取ユニット及び糸巻取機
DE102013102770A1 (de) * 2013-03-19 2014-09-25 Maschinenfabrik Rieter Ag Spinnstelle einer Spinnmaschine sowie Verfahren zum Betrieb derselben
CH709467A1 (de) * 2014-04-03 2015-10-15 Rieter Ag Maschf Spinnstelle einer Luftspinnmaschine sowie Aufsatz für die Fixierung an einer Spinndüse einer Luftspinnmaschine.
CH709465A1 (de) * 2014-04-03 2015-10-15 Rieter Ag Maschf Luftspinnmaschine sowie Verfahren zum Betrieb einer Luftspinnmaschine.
CH709466A1 (de) * 2014-04-03 2015-10-15 Rieter Ag Maschf Spinnstelle einer Luftspinnmaschine sowie Verfahren zum Betrieb einer Luftspinnmaschine.
CH709748A1 (de) * 2014-06-12 2015-12-15 Rieter Ag Maschf Luftspinnmaschine sowie Verfahren zum Betrieb einer solchen.
CH709749A1 (de) * 2014-06-12 2015-12-15 Rieter Ag Maschf Luftspinnmaschine sowie Verfahren zum Betrieb einer solchen.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP6566551B2 (ja) 2019-08-28
US20150361594A1 (en) 2015-12-17
CN105297196A (zh) 2016-02-03
EP2955256A1 (de) 2015-12-16
CH709748A1 (de) 2015-12-15
US9663878B2 (en) 2017-05-30
JP2016006246A (ja) 2016-01-14
CN105297196B (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
EP2955256B1 (de) Luftspinnmaschine sowie verfahren zum betrieb einer solchen
EP2955255B1 (de) Luftspinnmaschine sowie verfahren zum betrieb einer solchen
EP2927353B1 (de) Luftspinnmaschine sowie verfahren zum betrieb einer luftspinnmaschine
EP2767625B1 (de) Spinnstelle einer spinnmaschine
DE19501545C2 (de) Verfahren zum Andrehen eines Garnes in einer Spinnmaschine
EP2944713B1 (de) Spinnstelle für eine luftspinnmaschine sowie betrieb einer solchen
EP2767624B1 (de) Spinnstelle einer Luftdüsenspinnmaschine
EP2927355B1 (de) Spinnstelle einer luftspinnmaschine sowie aufsatz für die fixierung an einer spinndüse einer luftspinnmaschine
EP2329066B1 (de) Luftdüsenspinnaggregat mit spindelförmigem bauteil
EP3052416B1 (de) Garnreiniger sowie damit ausgerüstete spinnstelle einer spinnmaschine sowie verfahren zum betrieb einer spinnstelle
EP2927354A2 (de) Spinnstelle einer luftspinnmaschine sowie verfahren zum betrieb einer luftspinnmaschine
DE7615659U1 (de) Optischer Fadenwächter
DE102015120437A1 (de) Luftspinnmaschine sowie Verfahren zum Betrieb derselben
DE102015108706A1 (de) Spinnstelle einer Luftspinnmaschine sowie Verfahren zum Betrieb derselben
EP4015681A1 (de) Spinnstelle mit einer reinigungsdüse und verfahren zum reinigen eines garnbildungselements
DE102016119237A1 (de) Luftspinnmaschine
DE3926227C2 (de)
DE102015110992A1 (de) Spinnmaschine sowie Verfahren zum Betreiben einer Spinnmaschine mit einer Vielzahl von Spinnstellen
EP4015680A1 (de) Reinigungsvorrichtung für ein garnbildungselement einer luftspinndüse sowie verfahren zum reinigen eines solchen garnbildungselements
DE19824078C2 (de) Verfahren beim Herstellen von verdichtetem Garn und Einrichtung hierfür
EP1205588A1 (de) Steuerung von Spinnstellen in einer Spinnmaschine
CH707560A1 (de) Spinnstelle einer Luftdüsenspinnmaschine.
DE19836066A1 (de) Offenend-Spinnvorrichtung
LU102753B1 (de) Faserband-Streckwerk mit Additivzuführung
LU501576B1 (de) Luftspinnvorrichtung sowie Verfahren zur Oberflächenbehandlung innerhalb einer Luftspinnvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160608

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180326

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20200529

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1288539

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012940

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201009

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012940

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

26N No opposition filed

Effective date: 20210409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210630

Year of fee payment: 7

Ref country code: DE

Payment date: 20210628

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20210527

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210602

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210602

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210602

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1288539

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210602

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015012940

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150602

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708