EP2850215A1 - Kostenreduzierter stahl für die wasserstofftechnik mit hoher beständigkeit gegen wasserstoffinduzierter versprödung - Google Patents

Kostenreduzierter stahl für die wasserstofftechnik mit hoher beständigkeit gegen wasserstoffinduzierter versprödung

Info

Publication number
EP2850215A1
EP2850215A1 EP13731695.6A EP13731695A EP2850215A1 EP 2850215 A1 EP2850215 A1 EP 2850215A1 EP 13731695 A EP13731695 A EP 13731695A EP 2850215 A1 EP2850215 A1 EP 2850215A1
Authority
EP
European Patent Office
Prior art keywords
mass
steel
hydrogen
steel according
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13731695.6A
Other languages
English (en)
French (fr)
Other versions
EP2850215B1 (de
Inventor
Wolfgang Leistner
Thorsten Michler
Werner Theisen
Mauro Sebastián MARTIN
Sebastian Weber
Sascha RIEDNER
Jörg Naumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP2850215A1 publication Critical patent/EP2850215A1/de
Application granted granted Critical
Publication of EP2850215B1 publication Critical patent/EP2850215B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0206Non-hydrocarbon fuels, e.g. hydrogen, ammonia or carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0296Manufacturing or assembly; Materials, e.g. coatings
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the invention relates to an austenitic
  • Temperature range 253 to at least +100 ° C especially between - 100 ° C and room temperature (+ 25 ° C).
  • Proposed steel is suitable for all hydrogen-contacting metallic components, such as hydrogen tanks, valves, pipes, fittings, bosses, liner springs, heat exchangers or bellows.
  • austenitic stainless steels with a high nickel content such as the material 1.4435, X2CrNiMol8-14-3.
  • a nickel content of at least 12.5 mass% is considered necessary for these austenitic steels to provide adequate resistance to
  • Nickel is, however, like molybdenum, a very expensive alloying element, so especially for a
  • Mass maintenance e.g. Tank components in the automotive sector lack cost-effective hydrogen-resistant steels.
  • the object of the invention is therefore to provide a cheaper steel that is hydrogen-induced Embrittlement throughout the temperature range, especially in the area of maximum embrittlement between
  • Corrosion resistant and can be well hot and cold forming and welding.
  • the steel according to the invention can be used with and without the addition of
  • Molybdenum be prepared.
  • the molybdenum content of the steel may be e.g. 0.5 to 3% by mass.
  • the steel can also be made without the addition of aluminum. That is, it may contain up to 0.3% by mass of aluminum as a steel-accompanying element caused by melting. The same applies to nitrogen. Also, molybdenum can only as
  • the melting-related steel accompanying elements include other common production-related elements (e.g., sulfur and phosphorus) as well as others not specifically added thereto
  • the phosphorus content ⁇ 0.05% by mass
  • the sulfur content ⁇ 0.4% by mass, in particular ⁇ 0.04% by mass.
  • the content of all other melting-related steel accompanying elements is maximum per element. 0.3 mass%.
  • the alloy according to the invention may have an yttrium content of from 0.01 to 0.2, in particular up to 0.10 mass%, with yttrium being wholly or partly replaced by one of the elements scandium, lanthanum or cerium.
  • Each zirconium content is preferably 0.01 to 0.2, in particular to 0.10 mass%, wherein hafnium or zirconium wholly or partly by 0.01 to 0.2, in particular to 0.10
  • Mass% titanium can be replaced.
  • the steel according to the invention has very good mechanical properties in a hydrogen atmosphere throughout
  • Temperature range from -253 to at least +100 ° C and
  • the steel is in the solution-annealed condition (AT) at a test temperature of -50 ° C and a gas pressure of 40 MPa
  • the corresponding relative tensile strength R__Rm, relative yield strength R_Rp0.2 and relative elongation at break R_A5 are also at least 90%.
  • the high yield strength of the steel of 300 to 400 MPa is essential.
  • the steel according to the invention can be solution-treated (AT). It can also be cold formed, in particular cold drawn or
  • the steel has a very good weldability and good corrosion resistance.
  • the steel according to the invention has a high resistance to hydrogen embrittlement in the entire temperature range of -253 ° C to at least + 1Q0 ° C and pressure range of 0.1 to 100 MPa.
  • the steel according to the invention thus represents a cost-effective hydrogen-resistant material for hydrogen technology. That is, the steel can be used for devices and components of systems for generating, storing, distributing and using hydrogen, especially when the
  • Pressure sensors, etc. including parts of these devices, such as e.g. Feathers and bellows.
  • the invention relates in particular to steels for hydrogen technology in motor vehicles. It can for
  • Hydrogen storage a (high) pressure vessel, a cryogenic (high) pressure vessel, or a liquid hydrogen tank can be used from the steel according to the invention.
  • the steel is also suitable for non-automotive applications which require excellent austenite stability, especially after cold workability.
  • the remainder of the iron and steel components accompanying the fusion have a stable austenitic structure.
  • the ⁇ -ferrite content of the steels is less than 5 percent by volume, preferably even no ⁇ -ferrite is present.
  • the yield strength Rp0.2 in the tensile test at a strain rate of 5x10-5 is 1 / s at -50 ° C in a hydrogen atmosphere of 40 MPa for Steel No. 1 200 to 300 MPa and for Steel No. 2 300 to 400 MPa.
  • the steel according to the invention may also be tungsten-free.
  • the steel according to the invention with a stable austenitic structure thus represents a cost-effective, hydrogen-resistant material for hydrogen technology.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Ein austenitischer Stahl für die Wasserstofftechnik weist folgende Zusammensetzung auf: 0,01 - 0,4 Masse-% Kohlenstoff, ≤ 5 Masse-% Silizium, 0,3 - 30 Masse-% Mangan, 10,5 - 30 Masse-% Chrom, 4 - 12,5 Masse-% Nickel, ≤ 3 Masse-% Molybdän, ≤ 0,2 Masse-% Stickstoff, ≤ 5 Masse-% Aluminium, ≤ 5 Masse-% Kupfer, ≤ 5 Masse-% Wolfram, ≤ 0,1 Masse-% Bor, ≤ 3 Masse-% Kobalt, ≤ 0,5 Masse-% Tantal, ≤ 2 Masse-% wenigstens eines der Elemente: Niob, Titan, Vanadium, Hafnium und Zirkon, ≤ 0,3 Masse-% wenigstens eines der Elemente Yttrium, Scandium, Lanthan, Cer und Neodym, Rest Eisen und erschmelzungsbedingte Stahlbegleitelemente.

Description

Kostenreduzierter Stahl für die Wasserstofftechnik mit hoher Beständigkeit gegen Wasserstoffinduzierte Versprödung
Die Erfindung bezieht sich auf einen austenitischen
korrosionsbeständigen Stahl mit hoher Beständigkeit gegen Wasserstoffinduzierte Versprödung im gesamten
Temperaturbereich (-253 bis mindestens +100 °C) insbesondere zwischen - 100 °C und Raumtemperatur (+25°C) . Der
vorgeschlagene Stahl ist für alle mit Wasserstoff in Kontakt stehenden metallischen Bauteile geeignet, wie zum Beispiel Wasserstofftanks, Ventile, Leitungen, Fittings, Boss, Liner Federn, Wärmetauscher oder Faltenbälge.
Stahl, der über längere Zeit einer mechanischen Belastung in Wasserstoffatmosphäre ausgesetzt ist, unterliegt der
Wasserstoffversprödung. Eine Ausnahme bilden austenitische Edelstahle mit hohem Nickelgehalt wie der Werkstoff 1.4435, X2CrNiMol8-14-3. Ein Nickelgehalt von mindestens 12,5 Masse-% wird bei diesen austenitischen Stählen als notwendig erachtet, um eine ausreichende Beständigkeit gegen
Wasserstoffversprödung im gesamten Temperaturbereich von -253 bis mindestens +100°C und Druckbereich von 0,1 bis 100 MPa zu erzielen. Nickel ist jedoch, wie auch Molybdän, ein sehr teures Legierungselement, so dass vor allem für eine
Massenf rtigung z.B. von Tankkomponenten im Kfz-Bereich kostengünstige wasserstoffbeständige Stähle fehlen.
Aufgabe der Erfindung ist es daher, einen kostengünstigeren Stahl bereitzustellen, der gegen wasserstoffinduzierte Versprödung im gesamten Temperaturbereich insbesondere im Bereich der maximalen asserstoffversprödung zwischen
Raumtemperatur und -100 °C resistent ist,
Korrosionsbeständigkeit aufweist und sich gut warm- und kaltumformen sowie schweißen lässt.
Dies wird erfindungsgemäß mit einem austenitischen Stahl folgender Zusammensetzung erreicht:
0,01-0,4 Masse-%, insbesondere mindestens 0,05 Masse-%
Kohlenstoff,
£ 5 Masse-%, insbesondere 0,5-3,5 Masse-% Silizium,
0,3-30 Masse-%, vorzugsweise 4-20 Masse-%, insbesondere 6-15
Masse-% Mangan,
10,5-30 Masse-%, vorzugsweise 10,5-22 Masse-%, insbesondere höchstens 20 Masse-% Chrom,
4-12,5 Masse-%, vorzugsweise 5-10 Masse-%, insbesondere höchstens 9 Masse-% Nickel,
£ 3 Masse-%, insbesondere höchstens 2,5 Masse-% Molybdän, £ 0,2 Masse-%, insbesondere £ 0,08 Masse-% Stickstoff,
£ 5 Masse-%, vorzugsweise £ 1,0 Masse-%, insbesondere maximal 0,5 Masse-% Aluminium,
£ 5 Masse-%, insbesondere mindestens 1 Masse-% Kupfer,
£ 4 Masse-%, vorzugsweise höchstens 3 Masse-%, insbesondere
0,5 bis 2,5 Masse-% Wolfram,
0,1 Masse-%, vorzugsweise maximal 0,05 Masse-% Bor,
£ 3 Masse-%, insbesondere £ 2,0 Masse-% Kobalt,
£ 0,5 Masse-%, insbesondere £ 0,3 Masse-% Tantal,
£ 2,0 Masse-%, vorzugsweise £ 1,5 Masse-% wenigstens eines der
Elemente Niob, Titan, Vanadium, Hafnium und Zirkon,
£ 0,3 Masse-%, vorzugsweise 0,01-0,2 Masse-% wenigstens eines der Elemente Yttrium, Scandium, Lanthan, Cer und Neodym,
Rest Eisen und erschmelzungsbedingte Stahlbegleitelemente. Der erfindungsgemäße Stahl kann mit und ohne Zusatz von
Molybdän hergestellt sein. Bei Zusatz von Molybdän kann der Molybdän-Gehalt des Stahls z.B. 0,5 bis 3 Masse-% betragen. Der Stahl kann ferner ohne Zusatz von Aluminium hergestellt sein. Das heißt, er kann bis zu 0,3 Masse-% Aluminium als erschmelzungsbedingtes Stahlbegleitelement enthalten. Gleiches gilt für Stickstoff. Auch kann Molybdän nur als
Stahlbegleitelement in dem Stahl enthalten sein.
Die erschmelzungsbedingten Stahlbegleitelemente umfassen weitere übliche produktionsbedingte Elemente (z.B. Schwefel und Phosphor) sowie weitere nicht gezielt hinzulegierte
Elemente. Dabei beträgt vorzugsweise der Phosphorgehalt < 0,05 Masse-%, der Schwefelgehalt ^0,4 Masse-%, insbesondere < 0,04 Masse-%. Der Gehalt aller weiteren erschmelzungsbedingten Stahlbegleitelemente beträgt pro Element maximal. 0,3 Masse-%.
Von den Mikrolegierungselementen sind insbesondere (a)
Yttrium, Scandium, Lanthan und (b) Zirkon und Hafnium
relevant .
Die erfindungsgemäße Legierung kann einen Yttrium-Gehalt von 0,01 bis 0,2, insbesondere bis 0,10 Masse-% aufweisen, wobei Yttrium ganz oder teilweise durch eines der Elemente Scandium, Lanthan oder Cer ersetzt sein kann. Der Hafnium- und der
Zirkon-Gehalt beträgt jeweils vorzugsweise 0,01 bis 0,2, insbesondere bis 0,10 Masse-%, wobei Hafnium oder Zirkon ganz oder teilweise durch 0,01 bis 0,2, insbesondere bis 0,10
Masse-% Titan ersetzt sein kann.
Durch die Herabsetzung des Nickelgehaltes auf 4 bis 12,5, insbesondere höchstens 9 Masse-% und den geringen oder gar fehlenden Molybdän-Gehalt können die Kosten der
erfindungsgemäßen Legierung herabgesetzt werden. Trotz der Herabsenkung des Nickelgehaltes und des geringen Molybdän-Gehaltes oder fehlendem Molybdän (also ohne Molybdän- Zusatz) weist der erfindungsgemäße Stahl sehr gute mechanische Eigenschaften in einer Wasserstoffatmosphäre im gesamten
Temperaturbereich von -253 bis mindestens +100 °C und
Druckbereich von 0,1 bis 100 MPa auf.
So weist der Stahl im lösungsgeglühten Zustand (AT) bei einer Prüftemperatur von -50°C und einem Gasdruck von 40 MPa
Wasserstoff im Zugversuch bei einer Dehnrate von 5x10-5 1/s eine „Relative Reduction of Area" (RAA) oder relative
Brucheinschnürung (= Brucheinschnürung Z in Luft oder
Helium/Brucheinschnürung Z in Wasserstoff x 100%) von
mindestens 90% auf. Die entsprechende relative Zugfestigkeit R__Rm, relative Streckgrenze R_Rp 0,2 und relative Bruchdehnung R_A5 betragen ebenfalls mindestens 90%. Zudem ist die hohe Streckgrenze des Stahls von 300 bis 400 MPa von wesentlicher Bedeutung.
Der erfindungsgemäße Stahl kann lösungsgeglüht (AT) sein. Er kann auch kaltverformt, insbesondere kaltgezogen oder
kaltgewalzt verwendet werden.
Der Stahl besitzt eine sehr gute Schweißbarkeit und eine gute Korrosionsbeständigkeit .
Der erfindungsgemäße Stahl weist eine hohe Beständigkeit gegen Wasserstoffversprödung im gesamten Temperaturbereich -253°C bis mindestens +1Q0°C und Druckbereich von 0,1 bis 100 MPa auf.
Der erfindungsgemäße Stahl stellt damit einen kostengünstigen wasserstoffbeständigen Werkstoff für die Wasserstofftechnik dar. Das heißt, der Stahl kann für Vorrichtungen und Bauteile von Systemen zur Erzeugung, Speicherung, Verteilung und Nutzung von Wasserstoff eingesetzt werden, insbesondere wenn die
Vorrichtungen bzw. Bauteile mit Wasserstoff in Berührung kommen. Dies gilt insbesondere für Leitungen,
Regeleinrichtungen, Ventile und andere Absperrorgane,
Behälter, Fittings, Boss und Liner, Wärmetauscher,
Drucksensoren usw. einschließlich Teile dieser Einrichtungen, wie z.B. Federn und Faltenbälge.
Die Erfindung bezieht sich insbesondere auf Stähle für die Wasserstofftechnik in Kraftfahrzeugen. Dabei kann zur
Wasserstoffspeicherung ein (Hoch-) Druckbehälter, ein Kryo- (Hoch-) Druck-Behälter, oder ein Flüssigwasserstoffbehälter aus dem erfindungsgemäßen Stahl eingesetzt werden.
Darüber hinaus eignet sich der Stahl auch für Anwendungen außerhalb der Kraftfahrzeugtechnik, die eine hervorragende Austenitstabilität insbesondere nach einer Kaltumformbarkeit benötigen .
Folgende erfindungsgemäße Stähle mit folgender Zusammensetzung (in asse-%) :
Stahl Nr. 1:
0,01 - 0,12% C
0,05 - 0,5% Si
9 - 13% Mn
16 - 20% Cr
6 - 9% Ni
1 - 4% Cu
0,01 - 0,5% AI 0 - 0,04% B
Rest Eisen und erschmelzungsbedingte Stahlbegleitelemente
Stahl Nr. 2:
0,10 - 0,20% C
0,5 - 3,5% Si
8 - 12% Mn
11 - 15% Cr
6 - 9% Ni
1 - 4% Cu
0,5 - 2,5% W
0,01 - 0,5% AI
Rest Eisen und erschmelzungsbedingte Stahlbegleitelemente weisen ein stabil austenitisches Gefüge auf. Der δ- Ferritgehalt der Stähle beträgt dabei weniger als 5 Volumen- Prozent vorzugsweise ist sogar kein δ-Ferrit vorhanden.
Im lösungsgeglühten Zustand (AT) beträgt die Streckgrenze Rp0,2 im Zugversuch mit einer Dehnrate von 5x10-5 1/s bei -50°C in einer Wasserstoffatmosphäre von 40 MPa für Stahl Nr. 1 200 bis 300 MPa und für Stahl Nr. 2 300 bis 400 MPa. Die relative Brucheinschnürung (= Brucheinschnürung Z in Helium geteilt durch die/ Brucheinschnürung Z in Wasserstoff x 100%) beträgt für beide Stähle mehr als 85%.
Durch den relativ geringen Nickelgehalt von maximal 9 Masse-% und das Fehlen von Molybdän sind beide Stähle sehr
kostengünstig.
Wie beim Stahl Nr. 1 gezeigt, kann der erfindungsgemäße Stahl auch Wolfram-frei sein. Der erfindungsgemäße Stahl mit stabil austenitischem Gefüge stellt damit einen kostengünstigen wasserstoffbeständigen Werkstoff für die Wasserstofftechnik dar.
Die nachstehenden Beispiele erfindungsgemäßer Stähle dienen der weiteren Erläuterung der Erfindung.

Claims

Patentansprüche
Austenitischer Stahl für die Wasserstofftechnik folgender Zusammensetzung:
0,01 - 0,4 Masse-% Kohlenstoff,
£ 5 Masse-% Silizium,
0,3 - 30 Masse-% Mangan,
10,5 - 30 Masse-% Chrom,
4 - 12,5 Masse-% Nickel,
£ 2 Masse-% Molybdän,
0,2 Masse-% Stickstoff,
£ 5 Masse-% Aluminium,
£ 5 Masse-% Kupfer,
£ 4 Masse-% Wolfram,
£ 0,1 Masse-% Bor,
£ 5 Masse-% Kobalt,
£ 0,5 Masse-% Tantal,
£ 2 Masse-% wenigstens eines der Elemente: Niob, Titan, Vanadium, Hafnium und Zirkon,
£ 0,3 Masse-% wenigstens eines der Elemente: Yttrium, Scandium, Lanthan, Cer und Neodym,
Rest Eisen und erschmelzungsbedingte Stahlbegleitelemente.
Stahl nach Anspruch 1, dadurch gekennzeichnet, dass der Nickelgehalt höchstens 9 Masse-% beträgt.
Stahl nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Aluminiumgehalt maximal 0,5 Masse-% beträgt.
Stahl nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Molybdängehalt £0,40 Masse-% enthält .
5. Stahl nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Mangangehalt 4-20 Masse-% beträgt
6. Legierung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass sie 1,0-4,0 Masse-% Kupfer enthält.
7. Legierung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass sie bis 3,5 Masse-% Wolfram enthält.
8. Legierung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass sie bis zu 0,04 Masse-% Bor enthält.
9. Stahl nach einem der vorstehenden Ansprüche, dadurch
gekennzeichnet, dass er 0,01 - 0,2 Masse-% Yttrium enthält, wobei das Yttrium ganz oder teilweise durch 0,01 bis 0,2 Masse-% Scandium und/oder Lanthan und/oder Cer ersetzt sein kann.
Stahl nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass er 0,01 - 0,2 Masse-% Hafnium und/ode Zirkon enthält, wobei das Hafnium oder Zirkon ganz oder teilweise durch 0,01 - 0,2 Masse-% Titan ersetzt sein kann
Stahl nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass er bis zu 0,3 Masse-% Tantal enthält
Legierung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass sie bis zu 3,0 Masse-% Kobalt enthält.
Verwendung des Stahls nach einem der vorstehenden Ansprüche in der Wasserstofftechnik in Kraftfahrzeugen.
EP13731695.6A 2012-05-16 2013-05-15 Kostenreduzierter stahl für die wasserstofftechnik mit hoher beständigkeit gegen wasserstoffinduzierte versprödung Active EP2850215B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012104260A DE102012104260A1 (de) 2012-05-16 2012-05-16 Kostenreduzierter Stahl für die Wasserstofftechnik mit hoher Beständigkeit gegen wasserstoffinduzierte Versprödung
PCT/EP2013/060084 WO2013171277A1 (de) 2012-05-16 2013-05-15 Kostenreduzierter stahl für die wasserstofftechnik mit hoher beständigkeit gegen wasserstoffinduzierter versprödung

Publications (2)

Publication Number Publication Date
EP2850215A1 true EP2850215A1 (de) 2015-03-25
EP2850215B1 EP2850215B1 (de) 2018-01-03

Family

ID=48699725

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13731695.6A Active EP2850215B1 (de) 2012-05-16 2013-05-15 Kostenreduzierter stahl für die wasserstofftechnik mit hoher beständigkeit gegen wasserstoffinduzierte versprödung

Country Status (5)

Country Link
US (1) US10513764B2 (de)
EP (1) EP2850215B1 (de)
CN (1) CN104302790A (de)
DE (1) DE102012104260A1 (de)
WO (1) WO2013171277A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6148188B2 (ja) 2014-02-13 2017-06-14 トヨタ自動車株式会社 オーステナイト系耐熱鋳鋼
WO2016195106A1 (ja) * 2015-06-05 2016-12-08 新日鐵住金株式会社 オーステナイトステンレス鋼
KR20180104520A (ko) * 2017-03-13 2018-09-21 엘지전자 주식회사 공기 조화기
KR20180104509A (ko) * 2017-03-13 2018-09-21 엘지전자 주식회사 공기 조화기
WO2018180788A1 (ja) * 2017-03-30 2018-10-04 新日鐵住金ステンレス株式会社 溶接性に優れた水素用高Mnオーステナイト系ステンレス鋼、それを用いた溶接継手および水素用機器、並びに溶接継手の製造方法
KR20180111416A (ko) * 2017-03-31 2018-10-11 엘지전자 주식회사 연성 스테인리스 강관
DE102017114262A1 (de) * 2017-06-27 2018-12-27 Salzgitter Flachstahl Gmbh Stahllegierung mit verbesserter Korrisionsbeständigkeit bei Hochtemperaturbeanspruchung und Verfahren zur Herstellung von Stahlband aus dieser Stahllegierung
RU2680557C1 (ru) * 2017-11-28 2019-02-22 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Экономнолегированная хладостойкая высокопрочная сталь
JP7262172B2 (ja) * 2018-02-23 2023-04-21 日鉄ステンレス株式会社 高Mnオーステナイト系ステンレス鋼
CN110499475B (zh) * 2019-08-19 2020-07-28 广东省材料与加工研究所 一种奥氏体耐热钢及其制备方法和应用
JP7339123B2 (ja) * 2019-10-30 2023-09-05 山陽特殊製鋼株式会社 高硬度耐水素脆化鋼
EP4032999B1 (de) 2021-01-20 2024-04-24 Poppe & Potthoff GmbH Wasserstoffverteilsystem und bauteile mit niedrigem gewicht
CN113832400A (zh) * 2021-09-24 2021-12-24 中国船舶重工集团公司第七0四研究所 一种扭矩传感器用不锈钢弹性体材料及热处理方法
WO2024128574A1 (ko) * 2022-12-16 2024-06-20 주식회사 포스코 내수소취성이 향상된 오스테나이트계 스테인리스강 및 그 제조방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR743179A (de) * 1933-03-25
AT76445B (de) 1912-02-27 1919-05-10 Ferdinand Fiala Gitter aus einander durchdringenden Stäben mit mindestens einem Hohlprofil.
SE8102015L (sv) * 1980-04-07 1981-10-08 Armco Inc Ferritfritt utskiljningsherdbart rostfritt stal
US4828630A (en) * 1988-02-04 1989-05-09 Armco Advanced Materials Corporation Duplex stainless steel with high manganese
FR2743179B1 (fr) * 1995-12-29 1998-02-13 Avenir Havas Media Dispositif support d'appareillage d'eclairage et panneau d'affichage comportant un tel dispositif
US20040258554A1 (en) * 2002-01-09 2004-12-23 Roman Radon High-chromium nitrogen containing castable alloy
EP1605073B1 (de) * 2003-03-20 2011-09-14 Sumitomo Metal Industries, Ltd. Verwendung einer austenitischer nichtrostender stahl
CN100567542C (zh) * 2003-03-20 2009-12-09 住友金属工业株式会社 高压氢气用不锈钢、由该钢制作的容器以及器具
EP1645649B1 (de) 2003-06-10 2014-07-30 Nippon Steel & Sumitomo Metal Corporation Austenitischer nichtrostender stahl für wasserstoffgas und herstellungsverfahren dafür
JP4907151B2 (ja) * 2005-11-01 2012-03-28 新日鐵住金ステンレス株式会社 高圧水素ガス用オ−ステナイト系高Mnステンレス鋼
US7754305B2 (en) * 2007-01-04 2010-07-13 Ut-Battelle, Llc High Mn austenitic stainless steel
JP5388589B2 (ja) * 2008-01-22 2014-01-15 新日鐵住金ステンレス株式会社 加工性と衝撃吸収特性に優れた構造部材用フェライト・オーステナイト系ステンレス鋼板およびその製造方法
WO2010041694A1 (ja) * 2008-10-07 2010-04-15 住友金属工業株式会社 固体高分子型燃料電池のセパレータ用ステンレス鋼板およびそれを用いた固体高分子型燃料電池
KR20130045931A (ko) * 2010-09-29 2013-05-06 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 오스테나이트계 고 Mn 스테인리스 강 및 그 제조 방법과, 그 강을 사용한 부재

Also Published As

Publication number Publication date
US10513764B2 (en) 2019-12-24
CN104302790A (zh) 2015-01-21
US20150167134A1 (en) 2015-06-18
WO2013171277A1 (de) 2013-11-21
EP2850215B1 (de) 2018-01-03
DE102012104260A1 (de) 2013-11-21

Similar Documents

Publication Publication Date Title
EP2850215A1 (de) Kostenreduzierter stahl für die wasserstofftechnik mit hoher beständigkeit gegen wasserstoffinduzierter versprödung
EP2773784B1 (de) Kostenreduzierter stahl für die wasserstofftechnik mit hoher beständigkeit gegen wasserstoffinduzierte versprödung
EP2460904B1 (de) Austenitischer Stahl für die Wasserstofftechnik
DE69303518T2 (de) Hitzebeständiger, ferritischer Stahl mit niedrigem Chromgehalt und mit verbesserter Dauerstandfestigkeit und Zäheit
DE102008005803A1 (de) Bauteil aus höher kohlnstoffhaltigem austenitischem Stahlformguss, Verfahren zu deren Herstellung und deren Verwendung
DE19947393A1 (de) Stahldraht für hochfeste Federn und Verfahren zu seiner Herstellung
DE102011013091A1 (de) Nickel-Chrom-Kobalt-Molybdän-Legierung
WO2009074205A1 (de) Leitungsteil aus nickelarmem stahl für eine abgasanlage
EP3105358A1 (de) Titanfreie legierung
DE3432337C2 (de)
EP0455625B1 (de) Hochfeste korrosionsbeständige Duplexlegierung
DE102010011609A1 (de) Nickel-Chrom-Kobalt-Molybdän-Legierung
DE112013000549B4 (de) Rostfreier ferritischer Stahl und Verfahren zur Herstellung eines Hochtemperaturbauteils
EP0615551B1 (de) Schweissbarer hochfester baustahl mit 13 % chrom
DE19758613C2 (de) Hochfeste und korrosionsbeständige Eisen-Mangan-Chrom-Legierung
DE102014002402A1 (de) Titanfreie Legierung
DE19716795C2 (de) Verwendung einer hochfesten und korrosionsbeständigen Eisen-Mangan-Chrom-Legierung
EP2809818B1 (de) Duplexstahl mit verbesserter kerbschlagzähigkeit und zerspanbarkeit
DE102011010316B4 (de) Austenitischer Stahl mit hoher Beständigkeit gegenüber wasserstoffinduzierter Versprödung
DE102012023163B4 (de) Feinkornbaustahl, Bauteil aus Feinkornbaustahl und Verwendung des Feinkornbaustahls
DE102014002693A1 (de) Titanfreie Legierung
DE102011087767A1 (de) Nichtrostender martensitischer Stahl und Verfahren zu dessen Herstellung
DE102006056932A1 (de) Eisen-Nickel-Legierung mit hoher Duktilität und geringem Ausdehnungskoeffizienten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NAUMANN, JOERG

Inventor name: WEBER, SEBASTIAN

Inventor name: RIEDNER, SASCHA

Inventor name: MARTIN, MAURO, SEBASTIAN

Inventor name: MICHLER, THORSTEN

Inventor name: LEISTNER, WOLFGANG

Inventor name: THEISEN, WERNER

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160926

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/06 20060101ALI20170628BHEP

Ipc: C21D 6/00 20060101ALI20170628BHEP

Ipc: C22C 38/00 20060101ALI20170628BHEP

Ipc: C22C 38/04 20060101ALI20170628BHEP

Ipc: C22C 38/44 20060101ALI20170628BHEP

Ipc: C22C 38/42 20060101ALI20170628BHEP

Ipc: C22C 38/48 20060101ALI20170628BHEP

Ipc: C22C 38/34 20060101ALI20170628BHEP

Ipc: C21D 8/00 20060101AFI20170628BHEP

Ipc: C22C 38/54 20060101ALI20170628BHEP

Ipc: C22C 38/08 20060101ALI20170628BHEP

Ipc: C22C 38/58 20060101ALI20170628BHEP

INTG Intention to grant announced

Effective date: 20170719

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 960326

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013009188

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180103

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180403

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180403

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180503

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013009188

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

26N No opposition filed

Effective date: 20181005

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 960326

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130515

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230517

Year of fee payment: 11

Ref country code: DE

Payment date: 20230511

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230515

Year of fee payment: 11