EP0615551B1 - Schweissbarer hochfester baustahl mit 13 % chrom - Google Patents

Schweissbarer hochfester baustahl mit 13 % chrom Download PDF

Info

Publication number
EP0615551B1
EP0615551B1 EP92923679A EP92923679A EP0615551B1 EP 0615551 B1 EP0615551 B1 EP 0615551B1 EP 92923679 A EP92923679 A EP 92923679A EP 92923679 A EP92923679 A EP 92923679A EP 0615551 B1 EP0615551 B1 EP 0615551B1
Authority
EP
European Patent Office
Prior art keywords
max
content
steel
pct
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92923679A
Other languages
English (en)
French (fr)
Other versions
EP0615551A1 (de
Inventor
Ingo Von Hagen
Rolf PÖPPERLING
Hubertus Schlerkmann
Ulrike Zeislmair
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann AG filed Critical Mannesmann AG
Publication of EP0615551A1 publication Critical patent/EP0615551A1/de
Application granted granted Critical
Publication of EP0615551B1 publication Critical patent/EP0615551B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum

Definitions

  • the invention relates to a process for the production of seamless steel tubes or flat products (strip and sheet) for tubes or containers which are intended for the conveyance, transport or processing of hydrocarbons.
  • seamless steel tubes or flat products strip and sheet
  • H 2 S hydrocarbons
  • pipes made from low-alloy steels with passive corrosion protection (inhibition) or from high-alloy corrosion-resistant steels are usually used in order to meet the high requirements with regard to corrosion resistance, in particular resistance to stress corrosion cracking.
  • a suitable steel can be found, for example, in DE 26 16 599 C2. Because of the high proportions of expensive alloying elements (eg 22% Cr, 5% Ni, 3% Mo), tubes and containers made from such steels are extremely cost-intensive for the above-mentioned applications. These relatively high-strength duplex steels usually have low C contents and are therefore easy to weld.
  • chromium steels are known for the production of steel pipes, which are weldable.
  • An example of this is the material AISI 410 (material no. 1.4006), which 0.08 - 0.12% C, max. Contains 1.0% Mn and 12.0 - 14.0% Cr.
  • the weldability of this steel is guaranteed due to the lower carbon content.
  • the heat treatment of the rolled products produced from them is often problematic, since this often leads to an inhomogeneous structure, which is responsible for the very poor resistance of these steels to stress corrosion cracking in the presence of H 2 S.
  • this material which is known as and is acid-resistant, used for pump pipes, heat exchangers and the like, but not used for the production of hydrocarbons; it is only used as a cast or forged product for fittings in the area of the wellhead. Its low corrosion resistance is adequately documented by reports of damage cases in the literature.
  • This steel is described as weldable, tensile, tough and corrosion-resistant.
  • the seamless steel tubes produced therefrom had a yield strength in the range of 428-502 N / mm 2 after heat treatment. Compliance with the upper limits for C with a max. 0.015% and N with max. 0.015% viewed. Mo is not provided for in this steel.
  • a steel with the composition specified in claim 1 not only also has excellent properties with regard to corrosion resistance and is easy to weld and very tough, but also even allows a 0.2% proof stress, which significantly exceeds the values known from JP 57-5849.
  • contents of C in the range from 0.015% to 0.035% and of N in the range from 0.002 to 0.02% can be permitted for the other alloy elements; This opens up new possibilities with regard to the mechanical properties.
  • the steel used according to the invention also contains Mo, in the range from 0.01% to 1.2%; this content is advantageously limited to values of at most 0.2 to 0.3%.
  • the minimum content of Mn is 1.0%, while in the known steel, much lower contents of up to 0.1% are permissible for Mn; there is a limit of 2.0%.
  • the Cr content is said to be in the range of 12.0 to 13.8%. Values in the range 0.02-0.04% have proven to be particularly favorable for the addition of Nb; however, a range of 0.01-0.05% is permissible. Since the C content is limited to 0.015 - 0.035%, these steels have good welding properties.
  • a content of 0.15 - 0.50% is prescribed for Si and a content of 1.0 - 2.0% for Mn.
  • the impurities on P and S must be max. 0.020% and 0.003% respectively.
  • a steel used in JP 57-5849 as a comparative example with the following composition shows just how important it is to precisely observe the content limits of the individual alloy elements specified according to the invention:
  • This steel which differs from the steel of the present invention in the contents of Mn, Mo and Ni by at most about half a percentage point, was not found to be corrosion-resistant there.
  • the primary material should be heated to 1100 - 1250 ° C, then pre-rolled in a first rolling phase at temperatures above 1000 ° C and then in a second rolling phase at temperatures in the range of 850 - 750 ° C with a minimum deformation of 30% are final rolled.
  • the second rolling phase is preferably carried out in such a way that, when accelerated from a final rolling temperature of greater than or equal to 850 ° C., the cooling rate is at least 5 K / s to below 200 ° C. Further cooling can take place in air. Subsequent starting is recommended, but is not absolutely necessary.
  • the cooling takes place from a final rolling temperature greater than or equal to 850 ° C. with a cooling rate of 0.5 to 2 K / s to ambient temperature.
  • Figures 1 and 2 show measurement results with regard to the erosive corrosion for different steels under different conditions.
  • Table 1 shows the chemical compositions of three different 13% chromium steels with the designations 410, 411 and 413.
  • Steel 410 corresponds to the present invention, while the other two steels are to be regarded as comparative examples.
  • the steel 411 differs from the invention by one.
  • Table 2 shows the mechanical-technological properties for flat products and pipes manufactured under different rolling and heat treatment conditions. A TM-rolled sheet, which was used at 1140 ° C and finally rolled at 800 ° C, achieved the excellent mechanical properties shown in the first line under work number 410A without any tempering treatment.
  • Table 3 shows that the steel 410 according to the invention is clearly superior to the known steels 411 and 413 in terms of its resistance to stress corrosion cracking. Only under very extreme test conditions (0.01 bar H 2 S and 5% NaCl) did the steel 410 fail the round tensile test after 1000 hours with a load of 90% R p 0.2 . The comparative steels showed sample failures even under much milder test conditions.
  • FIGS. 1 and 2 show the resistance of the steel according to the invention to abrasive corrosion under different conditions in comparison to the steels 411 and 413 and a steel X20Cr13.
  • Table 1 shows the analysis values from Table 1, it can be seen that increased levels of Ni and in particular Mo reduce the rate of corrosion in the event of abrasive corrosion.
  • the durability of the steel 410 according to the invention is, however, as the comparison with the steel X20Cr13 shows, still quite good.
  • the comparison steels 411 and 413 as can be seen from Table 3, with their increased Ni and Mo contents are clearly inferior to the steel according to the invention in terms of resistance to stress corrosion cracking.
  • the reason for the success according to the invention can be seen in the drastic limitation of the Ni and Mo contents.
  • the Mo content should even be limited to values below 0.2%.
  • Table 3 Results of stress corrosion cracking tests Test conditions Finding p (H 2 S) bar% c (NaCl)% 410 411 413 0.001 0 O O O 5 O X X 0.0035 0 O O O 5 O X X 0.01 0 O ng ng 0.5 O X ng 5 X X ng Round tensile specimens under constant load load: 90% R P0.2 Test duration: 1000 h Carrier gas: CO 2 under normal pressure Symbols: O: no findings; X: Sample failure ng: not checked

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Laminated Bodies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Heat Treatment Of Articles (AREA)
  • Soft Magnetic Materials (AREA)
  • Arc Welding In General (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von nahtlosen Stahlrohren oder Flachprodukten (Band und Blech) für Rohre oder Behälter, die zur Förderung, zum Transport oder zur Verarbeitung von Kohlenwasserstoffen vorgesehen sind. Dabei liegen bei Anwesenheit von CO2 und Wasser sowie gegebenenfalls geringer Anteile an H2S in den zu transportierenden bzw. zu verarbeitenden Medien korrosive Bedingungen vor.
  • Für die Gewinnung von Kohlenwasserstoffen unter korrosiven Bedingungen werden üblicherweise Rohre aus niedriglegierten Stählen mit passivem Korrosionsschutz (Inhibition) oder aus hochlegierten korrosionsbeständigen Stählen eingesetzt, um die hohen Anforderungen im Hinblick auf die Korrosionsbeständigkeit, insbesondere auch die Beständigkeit gegen Spannungsrißkorrosion erfüllen zu können. Ein geeigneter Stahl ist beispielsweise aus der DE 26 16 599 C2 entnehmbar. Wegen der hohen Anteile an teuren Legierungselementen (z.B. 22 % Cr, 5 % Ni, 3 % Mo) sind Rohre und Behälter aus derartigen Stählen für die oben angegebenen Einsatzfälle außerordentlich kostenintensiv. Diese relativ hochfesten Duplexstähle weisen üblicherweise niedrige C-Gehalte auf und sind daher gut schweißbar.
  • Für den Ölfeldeinsatz sind auch Stähle bekannt, die 0,18 - 0,22 % C und 12,5 - 14 % Cr enthalten (Werkstoff AISI 420). Dieser Werkstoff weist in feuchter CO2-Umgebung eine sehr gute Korrosionsbeständigkeit auf. Da Rohre aus diesem Material unter Baustellenbedingungen praktisch nicht schweißbar sind, kommen zur Verbindung der Rohre ausschließlich Schraubverbindungen zum Einsatz. Man verwendet daher Rohre aus diesem Stahl nur als förderrohre, nicht aber als Leitungsrohre. Sofern in den durch die Rohre zu fördernden Kohlenwasserstoffen auch Spuren von H2S enthalten sind, können Schädigungen durch Spannungsrißkorrosion erfolgen, da dieser Werkstoff nur eine vergleichsweise geringe Beständigkeit gegen diese Art der Korrosion aufweist.
  • Weiterhin sind für die Herstellung von Stahlrohren auch 13 %-Chromstähle bekannt, die schweißbar sind. Ein Beispiel hierfür ist der Werkstoff AISI 410 (Werkstoff-Nr. 1.4006), der 0,08 - 0,12 % C, max. 1,0 % Mn und 12,0 - 14,0 % Cr enthält. Die Schweißbarkeit dieses Stahls ist gewährleistet wegen des geringeren Kohlenstoffgehaltes. Problematisch ist jedoch vielfach die Wärmebehandlung der daraus hergestellten Walzprodukte, da diese häufig zu einem inhomogenen Gefüge führt, welches verantwortlich ist für eine sehr schlechte Beständigkeit dieser Stähle gegen Spannungsrißkorrosion bei Anwesenheit von H2S. Aus diesem Grunde wird dieser Werkstoff, der als rost- und säurebeständig anzusehen ist, zwar für Pumpenrohre, Wärmetauscher und dergleichen eingesetzt, nicht aber für die Förderung von Kohlenwasserstoffen verwendet; lediglich als Guß- oder Schmiedeprodukt wird er für Armaturen im Bereich des Bohrlochkopfes eingesetzt. Seine geringe Korrosionsbeständigkeit wird durch Berichte über Schadensfälle im Schrifttum hinreichend dokumentiert.
  • Schließlich ist aus der JP 57-5849 ein Stahl für die Herstellung nahtloser Stahlrohre mit folgender Zusammensetzung bekannt:
    max. 0,015 % C
    0,10 - 0,80 % Si
    0,10 - 2,00 % Mn
    max. 0,025 % P
    max. 0,010 % S
    11,0 - 17,0 % Cr
    0,10 - 3,00 % Ni
    max. 0,015 % N
    0,01 - 0,05 % Nb
    0,01 - 0,10 % Al
  • Rest Eisen und übliche Verunreinigungen.
  • Dieser Stahl wird beschrieben als schweißbar, zugfest, zäh und korrosionsbeständig. Die daraus hergestellten nahtlosen Stahlrohre wiesen nach einer Wärmebehandlung eine Streckgrenze im Bereich 428 - 502 N/mm2 auf. Als entscheidend wichtig für die Gewährleistung der Korrosionsbeständigkeit wird die Einhaltung der gesetzten Obergrenzen für C mit max. 0,015 % und N mit max. 0,015 % angesehen. Mo ist in diesem Stahl gar nicht vorgesehen.
  • Demgegenüber wurde im Rahmen der vorliegenden Erfindung gefunden, daß ein Stahl mit der im Patentanspruch 1 angegebenen Zusammensetzung nicht nur ebenfalls hervorragende Eigenschaften bezüglich der Korrosionsbeständigkeit besitzt und gut schweißbar und sehr zäh ist, sondern darüber hinaus sogar eine 0,2 %-Dehngrenze ermöglicht, die die aus der JP 57-5849 bekannten Werte erheblich überschreitet. Dies ist insbesondere der überraschenden Erkenntnis zu verdanken, daß eine Begrenzung des Ni-Gehaltes, der bei dem bekannten Stahl bis zu 3,0 % betragen darf, auf einen Maximalwert von 0,25 % erfolgen muß. Unter dieser Voraussetzung können im Rahmen der im Patentanspruch 1 genannten Werte für die übrigen Legierungselemente Gehalte an C im Bereich von 0,015 % bis zu 0,035 % und an N im Bereich von 0,002 bis zu 0,02 % zugelassen werden; dadurch werden im Hinblick auf die mechanischen Eigenschaften neue Möglichkeiten eröffnet. Im Unterschied zum bekannten Stahl enthält der erfindungsgemäß eingesetzte Stahl auch Mo, und zwar im Bereich 0,01 % bis 1,2 %; vorteilhafterweise wird dieser Gehalt auf Werte von maximal 0,2 bis 0,3 % begrenzt. Der Mindestgehalt an Mn beträgt 1,0 %, während bei dem bekannten Stahl für Mn auch wesentlich niedrigere Gehalte bis zu 0,1 % zulässig sind; nach oben ist eine Grenze von 2,0 % gesetzt. Der Gehalt an Cr soll im Bereich 12,0 bis 13,8 % liegen. Für die Zugabe an Nb haben sich Werte im Bereich 0,02 - 0,04 % als besonders günstig herausgestellt; zulässig ist jedoch auch ein Bereich von 0,01 - 0,05 %. Da der C-Gehalt auf 0,015 - 0,035 % beschränkt ist, weisen diese Stähle gute Schweißeigenschaften auf. Für Si ist ein Gehalt von 0,15 - 0,50 % und für Mn ein Gehalt von 1,0 - 2,0 % vorgeschrieben. Die Verunreinigungen an P und S müssen auf max. 0,020 % bzw. 0,003 % beschränkt werden.
  • Wie wesentlich die genaue Einhaltung der erfindungsgemäß vorbegebenen Gehaltsgrenzen der einzelnen Legierungselemente ist, zeigt etwa ein in der JP 57-5849 als Vergleichsbeispiel zur dortigen Erfindung herangezogener Stahl mit folgender Zusammensetzung:
    Figure imgb0001
    Figure imgb0002
  • Rest Eisen und übliche Verunreinigungen.
  • Dieser Stahl, der sich von dem Stahl der vorliegenden Erfindung in den Gehalten an Mn, Mo und Ni um jeweils höchsten etwa einen halben Prozentpunkt unterscheidet, erwies sich dort als nicht korrosionsbeständig.
  • Im Hinblick auf die walztechnische Verarbeitung des erfindungsgemäß zu verwendenden Stahls sind mehrere Möglichkeiten gegeben. Bei der Herstellung z.B. von Blechen für Behälter oder geschweißte Rohre sollte das Vormaterial auf 1100 - 1250°C erwärmt, dann in einer ersten Walzphase bei Temperaturen oberhalb 1000°C vorgewalzt und anschließend in einer zweiten Walzphase bei Temperaturen im Bereich von 850 - 750°C mit einer Mindestverformung von 30 % endgewalzt werden.
  • Vorzugsweise wird die zweite Walzphase so durchgeführt, daß von einer Endwalztemperatur größer oder gleich 850°C beschleunigt mit einer Abkühlrate von mindestens 5 K/s bis unter 200°C abgekühlt wird. Die weitere Abkühlung kann an Luft erfolgen. Ein anschließendes Anlassen empfiehlt sich, ist jedoch nicht zwingend erforderlich.
  • Bei einer anderen vorteilhaften Verfahrensvariante der Erfindung erfolgt die Abkühlung von einer Endwalztemperatur größer oder gleich 850°C mit einer Abkühlrate von 0,5 bis 2 K/s bis Umgebungstemperatur.
  • Um die Einstellung von engen Spannbreiten in den Festigkeitswerten der Produkte gezielt vorzunehmen (z.B. 15 ksi 103,4 N/mm2), können diese in einem gesonderten Verfahrensschritt in an sich bekannter Weise wärmebehandelt werden.
  • Im folgenden wird die Erfindung anhand von Vergleichsbeispielen und Versuchsergebnissen näher erläutert. Figur 1 und 2 zeigen Meßergebnisse bezüglich der abtragenden Korrosion für verschiedene Stähle unter unterschiedlichen Bedingungen.
  • In der Tabelle 1 sind die chemischen Zusammensetzungen von drei verschiedenen 13%-Chrom-Stählen mit den Bezeichnungen 410, 411 und 413 zusammengestellt. Der Stahl 410 entspricht der vorliegenden Erfindung, während die beiden anderen Stähle als Vergleichsbeispiele anzusehen sind. Der Stahl 411 unterscheidet sich von der Erfindung durch einen. Ni-Gehalt von 2,09 % und der Stahl 413 durch einen mit 0,57 % zu geringen Mn-Gehalt und einen zu hohen Ni-Gehalt von 4,19 %. Aus Tabelle 2 sind die mechanisch-technologischen Eigenschaften für unter unterschiedlichen Walz- und Wärmebehandlungsbedingungen hergestellte Flachprodukte und Rohre wiedergegeben. Ein TM-gewalztes Blech, das bei 1140°C eingesetzt und mit 800°C endgewalzt wurde, erreichte ohne eine Anlaßbehandlung die unter der Arbeitsnummer 410A in der ersten Zeile dargestellten ausgezeichneten mechanischen Eigenschaftswerte. Durch Absenken der Endwalztemperatur auf 750°C (Arbeitsnummer 410B) konnten die Festigkeitswerte noch weiter gesteigert werden, wobei allerdings die Zähigkeitseigenschaften sich geringfügig verschlechterten. Aus den im unteren Teil der Tabelle 2 (Arbeitsnummern 410.1 bis 410.5) dargestellten Versuchsergebnissen ist der Einfluß einer Wärmebehandlung durch Härten und Anlassen unter unterschiedlichen Bedingungen bei gleichen Walzbedingungen dargestellt. Man erkennt deutlich die erheblichen Steigerungen der erreichten Werte bezüglich der Festigkeitsund Zähigkeitseigenschaften.
  • Tabelle 3 zeigt, daß der erfindungsgemäße Stahl 410 in bezug auf seine Beständigkeit gegen Spannungsrißkorrosion den bekannten Stählen 411 und 413 eindeutig überlegen ist.
    Lediglich unter sehr extremen Prüfbedingungen (0,01 bar H2S und 5 % NaCl) kam es bei dem Stahl 410 zu einem Ausfall der Rundzugprobe nach 1000 Std. bei einer Belastung von 90 % Rp 0,2. Die Vergleichsstähle zeigten bereits bei wesentlich milderen Prüfbedingungen Probenausfälle.
  • Aus den Figuren 1 und 2 ist die Beständigkeit des erfindungsgemäßen Stahls gegen abtragende Korrosion unter unterschiedlichen Bedingungen im Vergleich zu den Stählen 411 und 413 sowie eines Stahls X20Cr13 entnehmbar. Unter Berücksichtigung der Analysenwerte aus Tabelle 1 ergibt sich, daß erhöhte Gehalte an Ni und insbesondere Mo die Korrosionsrate bei abtragender Korrosion vermindern. Die Beständigkeit des erfindungsgemäßen Stahls 410 ist jedoch, wie insbesondere der Vergleich mit dem Stahl X20Cr13 zeigt, noch recht gut. Trotz ihrer besseren Beständigkeit gegen abtragende Korrosion sind die Vergleichsstähle 411 und 413, wie aus Tabelle 3 hervorgeht, mit ihren erhöhten Ni- bzw. Mo-Gehalten dem erfindungsgemäßen Stahl in bezug auf Beständigkeit gegen Spannungsrißkorrosion deutlich unterlegen. Überraschenderweise ist die Ursache für den erfindungsgemäßen Erfolg in der drastischen Beschränkung der Ni- und Mo-Gehalte zu sehen. Für den Fall, daß der Spannungsrißkorrosionsbeständigkeit gegenüber der Beständigkeit gegen abtragende korrosion eine wesentlich größere Bedeutung zugemessen wird, sollte der Mo-Gehalt sogar auf Werte unter 0,2 % begrenzt werden.
    Figure imgb0003
    Figure imgb0004
    Tabelle 3:
    Ergebnisse von Spannungsrißkorrosionsversuchen
    Prüfbedingungen Befund
    p(H2S) bar % c(NaCl) % 410 411 413
    0,001 0 O O O
    5 O X X
    0,0035 0 O O O
    5 O X X
    0,01 0 O n.g. n.g.
    0,5 O X n.g.
    5 X X n.g.
    Rundzugproben unter konstanter Last Belastung: 90% RP0.2
    Versuchsdauer: 1000 h
    Trägergas: CO2 unter Normaldruck
    Symbole: O: ohne Befund; X: Probenausfall n.g.: nicht geprüft

Claims (8)

  1. Verfahren zur Herstellung von nahtlosen Stahlrohren oder Flachprodukten (Band oder Blech) für Rohre oder Behälter, die zur Förderung, zum Transport oder zur Verarbeitung von gasförmigen oder flüssigen Kohlenwasserstoffen, die CO2 und Wasser sowie gegebenenfalls geringe Anteile an H2S enthalten, bestimmt sind und beständig gegen Spannungsrißkorrosion sowie gleichzeitig gut schweißbar sind und eine 0,2 %-Dehngrenze von mindestens 450 N/mm2 aufweisen, wobei ein Ni-enthaltender Stahl verwendet wird, der darüber hinaus folgende Zusammensetzung aufweist (Gewichts-%): 0,015 - 0,035 % C 0,15 - 0,50 % Si 1,0 - 2,00 % Mn max. 0,020 % P max. 0,003 % S 12,0 - 13,8 % Cr 0,002 - 0,02 % N 0,01 - 0,05 % Nb >0 - 0,25 % Ni 0,01 - 1,2 % Mo
       Rest Eisen und übliche Verunreinigungen
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß der Gehalt an Mo auf maximal 0,20 % begrenzt wird.
  3. Verfahren nach einem der Ansprüche 1 bis 2,
    dadurch gekennzeichnet,
    daß der Gehalt an Nb auf einen Wert zwischen 0,02 % und 0,04 % eingestellt wird.
  4. Verfahren zur Herstellung von Flachprodukten nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    daß das Vormaterial auf 1100 bis 1250°C erwärmt wird, dann in einer ersten Walzphase bei Temperaturen bis hinunter auf höchstens 1000°C vorgewalzt und anschließend in einer zweiten Walzphase bei Temperaturen im Bereich von 850 - 700°C mit einer Mindestverformung von 30 % endgewalzt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    daß von einer Endwalztemperatur von mindestens 850°C aus beschleunigt mit einer Abkühlrate von mindestens 5 K/s bis unter 200°C abgekühlt wird.
  6. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet,
    daß nach der beschleunigten Abkühlung gesondert angelassen wird.
  7. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    daß von einer Endwalztemperatur von mindestens 850°C mit einer Abkühlrate von 0,5 bis 2 K/s bis auf Umgebungstemperatur abgekühlt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 4 oder 7,
    dadurch gekennzeichnet,
    daß die Walzprodukte zur Einstellung der gewünschten Festigkeitsstufe einer gesonderten Wärmebehandlung unterzogen werden.
EP92923679A 1991-12-05 1992-11-23 Schweissbarer hochfester baustahl mit 13 % chrom Expired - Lifetime EP0615551B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4140459 1991-12-05
DE4140459 1991-12-05
PCT/DE1992/000987 WO1993011270A1 (de) 1991-12-05 1992-11-23 Schweissbarer hochfester baustahl mit 13 % chrom

Publications (2)

Publication Number Publication Date
EP0615551A1 EP0615551A1 (de) 1994-09-21
EP0615551B1 true EP0615551B1 (de) 1997-02-26

Family

ID=6446565

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92923679A Expired - Lifetime EP0615551B1 (de) 1991-12-05 1992-11-23 Schweissbarer hochfester baustahl mit 13 % chrom

Country Status (12)

Country Link
US (1) US5462615A (de)
EP (1) EP0615551B1 (de)
JP (1) JPH07501581A (de)
CN (1) CN1077230A (de)
AT (1) ATE149211T1 (de)
BR (1) BR9206853A (de)
CA (1) CA2125178A1 (de)
DE (1) DE59208076D1 (de)
ES (1) ES2098556T3 (de)
NO (1) NO302302B1 (de)
RU (1) RU2102521C1 (de)
WO (1) WO1993011270A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19652335C1 (de) * 1996-12-03 1998-03-12 Mannesmann Ag Verfahren zur Herstellung von korrosionsbeständigen Flaschen oder Behältern aus Stahl
US6855213B2 (en) 1998-09-15 2005-02-15 Armco Inc. Non-ridging ferritic chromium alloyed steel
CN101823080A (zh) * 2010-04-21 2010-09-08 中国科学院金属研究所 一种1Cr13厚壁管材的冷加工工艺
RU2615426C1 (ru) * 2015-12-03 2017-04-04 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Способ производства горячекатаной высокопрочной коррозионно-стойкой стали
DE102021109866B3 (de) 2021-04-20 2022-08-11 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines Druckbehälters

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915978B2 (ja) * 1980-06-28 1984-04-12 住友金属工業株式会社 耐食性にすぐれた継目無し鋼管用鋼
EP0178334B1 (de) * 1984-10-11 1990-07-18 Kawasaki Steel Corporation Rostfreie martensitische Stähle für nahtlose Rohre
JPS61231139A (ja) * 1985-04-06 1986-10-15 Nippon Steel Corp 高強度フエライト系耐熱鋼
JPH0288716A (ja) * 1988-09-27 1990-03-28 Nippon Steel Corp 高クリープ破断強度を有する高Crフェライト系耐熱鋼管の製造方法
US5049210A (en) * 1989-02-18 1991-09-17 Nippon Steel Corporation Oil Country Tubular Goods or a line pipe formed of a high-strength martensitic stainless steel
US5110544A (en) * 1989-11-29 1992-05-05 Nippon Steel Corporation Stainless steel exhibiting excellent anticorrosion property for use in engine exhaust systems

Also Published As

Publication number Publication date
US5462615A (en) 1995-10-31
DE59208076D1 (de) 1997-04-03
ES2098556T3 (es) 1997-05-01
RU94030489A (ru) 1997-05-27
RU2102521C1 (ru) 1998-01-20
CA2125178A1 (en) 1993-06-10
WO1993011270A1 (de) 1993-06-10
BR9206853A (pt) 1995-11-21
ATE149211T1 (de) 1997-03-15
NO941164L (no) 1994-03-29
NO302302B1 (no) 1998-02-16
JPH07501581A (ja) 1995-02-16
CN1077230A (zh) 1993-10-13
EP0615551A1 (de) 1994-09-21
NO941164D0 (no) 1994-03-29

Similar Documents

Publication Publication Date Title
EP1807544B1 (de) Hochfester lufthärtender stahl mit ausgezeichneten umformeigenschaften
DE69303518T2 (de) Hitzebeständiger, ferritischer Stahl mit niedrigem Chromgehalt und mit verbesserter Dauerstandfestigkeit und Zäheit
DE60124227T2 (de) Duplex rostfreier stahl
DE102005046459B4 (de) Verfahren zur Herstellung von kaltgefertigten Präzisionsstahlrohren
EP1837415B1 (de) Legierung für Wälzlager
DE4342188C2 (de) Austenitische Legierungen und deren Verwendung
DE3029658A1 (de) Ferritischer stahl
DE1558668C3 (de) Verwendung von kriechfesten, nichtrostenden austenitischen Stählen zur Herstellung von Blechen
DE2617419C3 (de) Austenitischer nichtrostender Stahl mit verbesserter Beständigkeit gegen Lochfraßkorrosion und guter Warmverformbarkeit
EP2245201B1 (de) Hochfester niedriglegierter stahl für nahtlose rohre mit hervorragender schweissbarkeit und korrosionsbeständigkeit
DE68905066T2 (de) Hochtemperaturfestes stahlrohr mit niedrigem siliziumgehalt und mit verbesserten duktilitaets- und faehigkeitseigenschaften.
DE2525395C3 (de) Verwendung eines Stahles für Gegenstände, die mit einer Wärmezufuhr von mehr als 60000 J/cm geschweißt werden
DE1458485B2 (de) Verwendung einer austenitischen chrom-nickel-stahl-legierung
DE69612922T2 (de) Eisen-Chromlegierung mit gute Beständigkeit gegen Rillenformung und mit glatten Oberflache
EP1561833B1 (de) Stahl zur Herstellung von hochfesten Bauteilen mit herausragender Tieftemperaturzähigkeit und Verwendungen eines solchen Stahls
DE60303472T2 (de) Ferritischer rostfreier Stahl für Auspuffteile mit einer guten Verformbarkeit, einer guten Festigkeit bei hohen Temperaturen, einer guten Oxidationsbeständigkeit und mit einer guten Zähigkeit bei niedrigeren Temperaturen
EP0233437A1 (de) Aus zwei Schichten bestehendes korrosionsbeständiges Rohr oder dergleichen Behälter
EP0615551B1 (de) Schweissbarer hochfester baustahl mit 13 % chrom
EP0177739A2 (de) Verwendung eines Stahles für Bauteile der Kältetechnik
DE1533478A1 (de) Stahllegierung
DE2331134A1 (de) Walzplattierte werkstoffe aus einem grundwerkstoff aus stahl und aus plattierauflagen aus korrosionsbestaendigen, austenitischen staehlen und legierungen
DE1914230A1 (de) Chrom-Nickel-Legierung
DE69107439T2 (de) Hochfester rostfreier Stahl mit guten Zähigkeitseigenschaften, und Verfahren zu seiner Herstellung.
DE102019103502A1 (de) Verfahren zur Herstellung eines nahtlosen Stahlrohres, nahtloses Stahlrohr und Rohrprodukt
DE19652335C1 (de) Verfahren zur Herstellung von korrosionsbeständigen Flaschen oder Behältern aus Stahl

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940602

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960328

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: GUZZI E RAVIZZA S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL SE

REF Corresponds to:

Ref document number: 149211

Country of ref document: AT

Date of ref document: 19970315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59208076

Country of ref document: DE

Date of ref document: 19970403

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2098556

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970422

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981012

Year of fee payment: 7

Ref country code: FR

Payment date: 19981012

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19981020

Year of fee payment: 7

Ref country code: AT

Payment date: 19981020

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19981022

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19981030

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19981119

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981221

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991123

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991124

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

BERE Be: lapsed

Owner name: MANNESMANN A.G.

Effective date: 19991130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19991123

EUG Se: european patent has lapsed

Ref document number: 92923679.2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20001214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051123