EP2729682A2 - Moteur à combustion interne deux temps, procédé d'opération d'un moteur à combustion interne deux temps et un procédé pour la conversion d'un moteur à deux temps - Google Patents
Moteur à combustion interne deux temps, procédé d'opération d'un moteur à combustion interne deux temps et un procédé pour la conversion d'un moteur à deux tempsInfo
- Publication number
- EP2729682A2 EP2729682A2 EP11770825.5A EP11770825A EP2729682A2 EP 2729682 A2 EP2729682 A2 EP 2729682A2 EP 11770825 A EP11770825 A EP 11770825A EP 2729682 A2 EP2729682 A2 EP 2729682A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- cylinder
- engine
- fuel
- stroke
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B7/00—Engines characterised by the fuel-air charge being ignited by compression ignition of an additional fuel
- F02B7/06—Engines characterised by the fuel-air charge being ignited by compression ignition of an additional fuel the fuel in the charge being gaseous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B19/00—Engines characterised by precombustion chambers
- F02B19/10—Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder
- F02B19/1019—Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder with only one pre-combustion chamber
- F02B19/108—Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder with only one pre-combustion chamber with fuel injection at least into pre-combustion chamber, i.e. injector mounted directly in the pre-combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B19/00—Engines characterised by precombustion chambers
- F02B19/10—Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder
- F02B19/1095—Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder with more than one pre-combustion chamber (a stepped form of the main combustion chamber above the piston is to be considered as a pre-combustion chamber if this stepped portion is not a squish area)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B19/00—Engines characterised by precombustion chambers
- F02B19/12—Engines characterised by precombustion chambers with positive ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B19/00—Engines characterised by precombustion chambers
- F02B19/14—Engines characterised by precombustion chambers with compression ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B25/00—Engines characterised by using fresh charge for scavenging cylinders
- F02B25/02—Engines characterised by using fresh charge for scavenging cylinders using unidirectional scavenging
- F02B25/04—Engines having ports both in cylinder head and in cylinder wall near bottom of piston stroke
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B43/00—Engines characterised by operating on gaseous fuels; Plants including such engines
- F02B43/10—Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/02—Engines characterised by their cycles, e.g. six-stroke
- F02B2075/022—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
- F02B2075/025—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
Definitions
- the invention relates to a two-stroke internal combustion engine comprising at least one cylinder with a piston arranged reciprocateably between its top dead center and bottom dead center, and a cylinder cover defining a combustion chamber, oxygen containing gas inlet in the lower part of the cylinder to be open into the combustion chamber at least while the piston is at its bottom dead center position, a gaseous fuel inlet arranged in the cylinder between the oxygen containing gas inlet and the cylinder cover and an exhaust valve arranged to the cylinder cover at a center axis of the cylinder.
- Invention relates also method of operating a two-stroke internal combustion engine by gaseous fuel, and method of converting a two-stroke engine operated with a liquid fuel into a gas operated two stroke engine and to a two- stroke engine cylinder cover assembly.
- US 5,035,206 discloses a dual fuel natural gas / diesel 2-stroke engine having at least one cylinder with a piston in the cylinder, oxygen containing gas inlet port means around the cylinder to be uncovered by downward movement of the piston in the cylinder, oxygen containing gas means for forcing oxygen containing gas through said inlet port means when uncovered, an exhaust port and a valve means therein, diesel injection means to inject diesel fuel into the cylinder once each cycle, and gas injection means for injecting natural gas into the cylinder once each cycle, which gas injection means includes a delivery conduit for natural gas, opening into the cylinder at a location above said oxygen containing gas inlet port means, whereby the piston when descending completely uncovers said conduit before beginning to uncover said inlet port means.
- the engine at idle receives only the diesel fuel.
- natural gas begins to be injected.
- the gas quantity increases due to an increase in load, the initiation of gas injection through the injector is advanced, while the end or termination of gas injection is unchanged.
- a gas valve injector injects a controlled quantity of natural gas through the conduit into the cylinder of the engine.
- a two-stroke internal combustion engine comprising at least one cylinder with a piston arranged reciprocateably between its top dead center and bottom dead center, and a cylinder cover defining a combustion chamber, oxygen containing gas inlet in the lower part of the cylinder to opening into the combustion chamber at least while the piston is at its bottom dead center position, a gaseous fuel inlet arranged in the cylinder between the oxygen containing gas inlet and the cylinder cover, and an exhaust valve arranged to the cylinder cover.
- the cylinder cover is provided with at least one pilot ignition pre-chamber opening into the combustion chamber through its pre-chamber port.
- This provides the effects and benefits of being capable of utilizing gas at considerably low pressure which make the gas feeding system safe and substantially of simple construction.
- the location of the a gaseous fuel inlet i.e. gas injection ports is selected so that the gas pressure during the admission of gas into the combustion chamber while the piston is moving towards the top dead center, is lower than 1 MPa.
- the utilization of pre-chamber facilitates igniting a substantially lean gas mixture in the combustion chamber which provides increased efficiency and reduced oxides of nitrogen (NOx) emissions.
- the cylinder cover is provided with at least two pre-chambers and the pre-chambers are arranged rotationally symmetrically into the cylinder cover in respect to the center axis of the cylinder.
- the exhaust valve is arranged to the cylinder cover at a center axis of the cylinder.
- the exhaust valve timing is variably controllable.
- the pre-chambers are each provided with a pilot fuel injector.
- the engine comprises at least two gaseous fuel inlets arranged at the same longitudinal positions in the cylinder.
- the engine comprises at least two gaseous fuel inlets arranged equally spaced to the circumference of the cylinder.
- Objects of the invention are met by a method of operating a two-stroke internal combustion engine comprising steps of: after the power stroke of the engine arranging the piston to pass oxygen containing gas inlet in the lower part of a cylinder of the engine by a downward movement of the piston and allowing the oxygen containing gas to enter into a combustion chamber of the engine through the inlet, maintaining an exhaust valve of the engine open, and arranging the piston to pass oxygen containing gas inlet in the lower part of a cylinder by an upward movement piston thus stopping the oxygen containing gas to enter into a combustion chamber, introducing gaseous fuel through at least one gaseous fuel inlet arranged in the cylinder and closing the exhaust valve of the engine, compressing the oxygen containing gas and the gaseous fuel in the combustion chamber by arranging the piston to move towards its top dead center and igniting the mixture of oxygen containing gas and
- liquid fuel is introduced into the pre-chamber and the liquid fuel ignited by compression ignition in the at least one pre-chamber.
- fuel is ignited by spark ignition in the at least one pre-chamber.
- fuel is ignited by applying heat from the glow plug in the at least one pre-chamber.
- the gaseous fuel into the combustion chamber at a pressure of ⁇ 1 MPa.
- the engine with liquid fuel only e.g. in case of malfunction of the operation with the gaseous fuel.
- a method of converting a two-stroke engine operated with a liquid fuel into a gas operated two stroke engine and having a cylinder cover in each cylinder of the engine and an inlet opening for introducing oxygen containing combustion gas into a combustion chamber arranged to a liner of each cylinder of the engine.
- the method comprising a steps of:
- new cylinder cover comprises an exhaust gas port and a valve, and a pre-chamber for facilitating the ignition of fuel in the combustion chamber
- Figure 1 illustrates a two-stroke engine according to an embodiment of the invention
- Figure 2 illustrates an operation of a two-stroke engine according to an embodiment of the invention
- FIG. 3 illustrates a detail of a two-stroke engine according to an embodiment of the invention
- Figure 1 shows schematically a two-stroke engine 10.
- the engine comprises a body part 12 and a cylinder unit 14 of several cylinder units of the engine 10.
- the engine is further provided with an inlet conduit oxygen containing gas to be used for combustion of fuel.
- the oxygen containing gas is often the air.
- the inlet conduit is connected to a compressor unit or a like (not shown) for providing pressurized oxygen containing gas, which is fed into the engine through an oxygen containing gas inlet 18.
- the oxygen containing gas inlet 18 comprises several openings arranged to the circumference of a cylinder 20 wall.
- the oxygen containing gas inlet 18 is arranged at the lower part of the cylinder 20 to be open into the combustion chamber 22 while the piston 24 is at its bottom dead center position or in proximity thereof.
- the combustion chamber 22 is defined by the cylinder 20, the piston 24 and a cylinder cover 26 of the engine.
- the cylinder cover 26 is provided with an exhaust valve 28 arranged to therein, advantageously at a center axis of the cylinder.
- the engine is a crosshead engine.
- the engine comprises further a gaseous fuel inlet 30 arranged in the cylinder 20 between the oxygen containing gas inlet 18 and the cylinder cover 26.
- the gaseous fuel inlet 30 is preferably arranged longitudinally at such a location that the piston 24, when moving upwards towards the cylinder cover, covers the inlet 30 preventing the hot and high pressure gases form combustion to penetrate the gas valve and supply system.
- the gaseous fuel inlet 30 comprises a replaceable, separate insert 30' as depicted in figure 3, arranged in the liner of the cylinder 20.
- the insert 30' has an opening with specific characteristics, like predetermined cross section flow area. Such an insert may be changed to match the cross section area e.g. with the fuel gas calorific value to be utilized.
- the gaseous fuel inlet 30 is provided with a control valve system by means of which the admission of the gas may be controlled independently of the position of the piston, while the piston is below the gaseous fuel inlet 30 in the cylinder 20.
- the gaseous fuel inlet 30 is connected to a source of gas 32 from which the gaseous fuel is introduced into the combustion chamber at a pressure of ⁇ 1 MPa.
- figure 1 there are shown projections l-l and ll-ll of the cylinder of the engine in the sections 1 a and 1 b.
- the cylinder cover 26 is provided three pilot ignition pre-chamber ports 34 which opens to the combustion chamber 22.
- a two-stroke engine cylinder cover assembly according to an embodiment comprises an exhaust valve and port, at least one pre-chamber and at least one nozzle hole for a liquid fuel injector 38 arranged thereto.
- the pre-chambers 36 are utilized to provide a higher kinetic energy for igniting the substantially lean gas mixture in the combustion chamber 22 providing better penetration of the pre-ignition.
- the lean oxygen containing gas/gas mixture coming from the combustion chamber 22 can be ignited according to an embodiment of the invention by the injection of a liquid fuel reactive in excess of oxygen and self igniting beyond pressure and temperature conditions prevailing in the pre-chamber 36.
- a glow plug 36" is assembled and used to assist the ignition or a spark plug 36' to accomplish the ignition of the gas instead of the pilot fuel.
- the shape of the pre-chamber is dependent on the actual method of ignition. Pilot fuel ignition with or without glow plug can provide higher ignition energy than a conventional spark pre- chamber ignition system. The requirements are generally fast and repeatable mixing of the oxygen containing gas/gas fuel mixture introduced into the pre- chamber and of the pilot fuel to be injected so, that an efficient circulation and fast mixing of the fuel gas with the pilot fuel injected is accomplished.
- the provision of the pre-chambers results in repeatable and powerful combustion both in the pre-chamber as well as in the combustion chamber, which results in higher engine efficiency and increased combustion stability. The result is also lesser harmful emissions relative to the output of the engine..
- the introduction pressure of the gaseous fuel is less than 1 MPa.
- the pre-chambers 36 are arranged rotationally symmetrically and equally spaced into the cylinder cover 26. This provides substantially equal distribution of the combustion front in the cross section of the combustion chamber 22.
- the figure 1 section 1 b in turn shows that the engine 10 comprises at least two gaseous fuel inlets 30 arranged at the same longitudinal positions in the cylinder 20. Also the gaseous fuel inlets 30 are arranged rotationally equally spaced to the circumference of the cylinder 20.
- the cylinder cover 26 for two-stroke gas engine comprises according to an embodiment of the invention three pre-chambers 36 arranged rotationally equally spaced and between each pre-chamber a back-up fuel injector 37 also arrange rotationally equally spaced. This is shown in figure 1 sections 1 a and 1 b.
- the back-up fuel injectors are injectors for liquid fuel.
- the back-up fuel injectors are dimensioned to provide the operation of the engine with 100% of the power obtained by operating the engine with the gaseous fuel, while the pilot fuel injectors are capable of practically only ignite the gaseous fuel.
- the engine may be operated with liquid fuel only making use of the fuel injectors e.g. in case of malfunction of the operation with the gaseous fuel.
- the method of operating a two-stroke engine 10 is explained in the following with the reference to the figure 2 and its parts 2a, 2b, and 2c depicting different stages of the working cycle of the engine.
- the part 2a describes a scavenging phase after the power stroke of the engine.
- the piston 24 has passed the oxygen containing gas inlet 18 in the lower part of a cylinder 20 by a downward movement of the piston during the power stroke.
- the piston 24 is at is bottom dead center and the oxygen containing gas, such as the air, is allowed to enter into the combustion chamber of the engine..
- the inlet is connected to a compressor the gas is pressurized and it is thus flown into the combustion chamber.(pressure difference between inlet and outlet causes the flow) Simultaneously the exhaust valve 28 is maintained open and therefore the removal of combustion gases from the combustion chamber may take place while the fresh charge is entered into the combustion chamber.
- the upward movement of the piston 24 commences and the piston is arranged to pass the oxygen containing gas inlet 18 in the lower part of a cylinder 20 by an upward movement piston, which is shown in part 2b in figure 2.
- the entering of oxygen containing gas into a combustion chamber is stopped.
- the closing movement of the exhaust valve 28 has started. That takes place after injection of the fuel.
- gaseous fuel is introduced through the gaseous fuel inlet 30 in the cylinder 20 and the exhaust valve 28 is closed. Timing of the gaseous fuel introduction, closing of the exhaust valve are controlled so that no unburned gaseous fuel is escaped by the scavenging action.
- the position of the piston is determined by the geometry of the crank shaft, connecting rod, piston rod and piston.
- the oxygen containing gas and the gaseous fuel are compressed in the combustion chamber by arranging the piston 24 to move towards its top dead center until the ignition of the charge takes place. This is shown in the part 2c of figure 2.
- the mixture of oxygen containing gas and the gaseous fuel is ignited by introducing 38 liquid fuel into the pre-chamber 36 arranged in to the cylinder cover 26.
- the liquid fuel along with the gaseous fuel and oxygen ignites in the pre-chamber and since the pre-chamber opens into the combustion chamber the charge in the combustion chamber ignites subsequently since combustion in the pre-chamber expands into the main combustion chamber.
- the liquid fuel 38 may be ignited by compression ignition in the pre- chamber 36. During and after the combustion of the fuel material the power stroke takes place finally resulting in the situation shown in the part 2a.
- the engine is provided with a control system 40, which reads the information of the position of the crankshaft 42 of the engine by means of a probe 44.
- the control system is connected to operate the pilot fuel injector 38 and the exhaust valve in the cylinder cover 26.
- This way particularly the exhaust valve 28 timing is variably controllable and also controllable without fixed relationship to the position of the piston 24.
- the timing and position of the exhaust valve 28 may be controlled based on the actual working circumstances of the engine.
- the engine is operated so that the effective compression ratio is ⁇ 12:1 .
- the effective compression ratio is controlled to be ⁇ 12:1 by controlling the closing of the exhaust valve in relation to the position of the piston 24 during the scavenging / compression stage.
- control system 40 is also arranged to control the operation of the further a gaseous fuel inlet 30 and its timing in relation to the position of the piston 24.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14182313.8A EP2826978A1 (fr) | 2011-07-08 | 2011-07-08 | Moteur à combustion interne à deux temps, procédé de fonctionnement d'un moteur à combustion interne à deux temps et procédé de conversion d'un moteur à deux temps |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/FI2011/050643 WO2013007863A2 (fr) | 2011-07-08 | 2011-07-08 | Moteur deux-temps à combustion interne, procédé d'actionnement d'un moteur deux-temps à combustion interne et procédé de conversion d'un moteur deux-temps |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14182313.8A Division EP2826978A1 (fr) | 2011-07-08 | 2011-07-08 | Moteur à combustion interne à deux temps, procédé de fonctionnement d'un moteur à combustion interne à deux temps et procédé de conversion d'un moteur à deux temps |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2729682A2 true EP2729682A2 (fr) | 2014-05-14 |
Family
ID=44863060
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11770825.5A Withdrawn EP2729682A2 (fr) | 2011-07-08 | 2011-07-08 | Moteur à combustion interne deux temps, procédé d'opération d'un moteur à combustion interne deux temps et un procédé pour la conversion d'un moteur à deux temps |
EP14182313.8A Withdrawn EP2826978A1 (fr) | 2011-07-08 | 2011-07-08 | Moteur à combustion interne à deux temps, procédé de fonctionnement d'un moteur à combustion interne à deux temps et procédé de conversion d'un moteur à deux temps |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14182313.8A Withdrawn EP2826978A1 (fr) | 2011-07-08 | 2011-07-08 | Moteur à combustion interne à deux temps, procédé de fonctionnement d'un moteur à combustion interne à deux temps et procédé de conversion d'un moteur à deux temps |
Country Status (7)
Country | Link |
---|---|
EP (2) | EP2729682A2 (fr) |
JP (1) | JP6080224B2 (fr) |
KR (1) | KR101931840B1 (fr) |
CN (1) | CN103748334B (fr) |
BR (1) | BR112014000342A2 (fr) |
RU (1) | RU2014104497A (fr) |
WO (1) | WO2013007863A2 (fr) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8925518B1 (en) | 2014-03-17 | 2015-01-06 | Woodward, Inc. | Use of prechambers with dual fuel source engines |
EP3015699B1 (fr) | 2014-10-31 | 2018-12-05 | Winterthur Gas & Diesel AG | Système d'alimentation en gaz équipé d'un système de contrôle et cylindre pour un moteur à combustion interne à piston élévateur, moteur à combustion interne à piston élévateur, ainsi que procédé de fonctionnement d'un moteur à combustion interne à piston élévateur |
EP3015679B1 (fr) * | 2014-10-31 | 2018-12-05 | Winterthur Gas & Diesel AG | Cylindre pour un moteur a combustion interne a piston elevateur, moteur a combustion interne a piston elevateur, ainsi que procede de fonctionnement d'un moteur a combustion interne a piston elevateur |
JP6455085B2 (ja) * | 2014-11-04 | 2019-01-23 | 株式会社Ihi | ユニフロー掃気式2サイクルエンジン |
CN107110103B (zh) * | 2014-11-04 | 2019-07-26 | 株式会社 Ihi | 单流扫气式双循环发动机 |
JP6432285B2 (ja) * | 2014-11-04 | 2018-12-05 | 株式会社Ihi | ユニフロー掃気式2サイクルエンジン |
KR20160120171A (ko) * | 2015-04-07 | 2016-10-17 | 현대중공업 주식회사 | 가스연료 추진 컨테이너 운반선 |
JP6455312B2 (ja) * | 2015-05-21 | 2019-01-23 | 株式会社Ihi | ユニフロー掃気式2サイクルエンジン |
DK3147477T3 (en) * | 2015-09-23 | 2019-01-21 | Winterthur Gas & Diesel Ag | Gas supply system and cylinder liner for a piston combustion engine, piston combustion engine and method of operation of a piston combustion engine |
US9915189B2 (en) | 2015-11-19 | 2018-03-13 | Caterpillar Inc. | Multipoint ignition systems and methods |
CN110821664A (zh) * | 2018-08-07 | 2020-02-21 | 大连理工大学 | 一种双燃料点火室式四冲程发动机及燃烧控制方法 |
CN110821659A (zh) * | 2018-08-07 | 2020-02-21 | 大连理工大学 | 一种基于重整气的单一燃料点火室式二冲程发动机及燃烧控制方法 |
CN110821663A (zh) * | 2018-08-07 | 2020-02-21 | 大连理工大学 | 一种基于重整气的单一燃料压燃式二冲程发动机及燃烧控制方法 |
CN110821655B (zh) * | 2018-08-07 | 2022-04-05 | 大连理工大学 | 一种基于重整气的单一燃料等离子电嘴式二冲程发动机及燃烧控制方法 |
CN110821641A (zh) * | 2018-08-07 | 2020-02-21 | 大连理工大学 | 一种具有高能点火燃料的点火室式发动机及其控制方法 |
CN110821652A (zh) * | 2018-08-07 | 2020-02-21 | 大连理工大学 | 一种基于重整气的双燃料点火室式二冲程发动机及燃烧控制方法 |
CN110821658A (zh) * | 2018-08-07 | 2020-02-21 | 大连理工大学 | 一种基于重整气的单一燃料点火室式四冲程发动机及燃烧控制方法 |
CN110821665A (zh) * | 2018-08-07 | 2020-02-21 | 大连理工大学 | 一种基于重整气的双燃料等离子电嘴式二冲程发动机及燃烧控制方法 |
CN110821662A (zh) * | 2018-08-07 | 2020-02-21 | 大连理工大学 | 一种基于重整气的双燃料压燃式二冲程发动机及燃烧控制方法 |
CN110821654B (zh) * | 2018-08-07 | 2022-04-01 | 大连理工大学 | 一种基于重整气的双燃料火花塞式四冲程发动机及燃烧控制方法 |
CN110821639B (zh) * | 2018-08-07 | 2022-04-05 | 大连理工大学 | 一种具有高能点火燃料的多模式发动机及其控制方法 |
CN110821638B (zh) * | 2018-08-07 | 2022-04-05 | 大连理工大学 | 一种具有高能点火燃料的点火室式发动机及其控制方法 |
CN110821650A (zh) * | 2018-08-07 | 2020-02-21 | 大连理工大学 | 一种双燃料点火室式二冲程发动机及燃烧控制方法 |
CN110821653A (zh) * | 2018-08-07 | 2020-02-21 | 大连理工大学 | 一种基于重整气的双燃料点火室式四冲程发动机及燃烧控制方法 |
CN110821651A (zh) * | 2018-08-07 | 2020-02-21 | 大连理工大学 | 一种双燃料等离子电嘴式二冲程发动机及燃烧控制方法 |
CN110821643B (zh) * | 2018-08-07 | 2022-04-05 | 大连理工大学 | 一种具有高能点火燃料的点火室式发动机 |
CN110821661B (zh) * | 2018-08-07 | 2022-04-01 | 大连理工大学 | 一种基于重整气的双燃料压燃式四冲程发动机及燃烧控制方法 |
CN110821640A (zh) * | 2018-08-07 | 2020-02-21 | 大连理工大学 | 一种具有高能点火燃料的点火室式发动机及其控制方法 |
CN110821642A (zh) * | 2018-08-07 | 2020-02-21 | 大连理工大学 | 一种具有高能点火燃料的点火室式发动机及其控制方法 |
CN110821666A (zh) * | 2018-08-07 | 2020-02-21 | 大连理工大学 | 一种双燃料火花塞式四冲程发动机及燃烧控制方法 |
CN110821660A (zh) * | 2018-08-07 | 2020-02-21 | 大连理工大学 | 一种基于重整气的单一燃料火花塞式四冲程发动机及燃烧控制方法 |
JP7263811B2 (ja) * | 2019-02-07 | 2023-04-25 | 株式会社Ihi | エンジンシステム |
KR20210005520A (ko) * | 2019-07-05 | 2021-01-14 | 만 에너지 솔루션즈, 필리알 아프 만 에너지 솔루션즈 에스이, 티스크란드 | 대형 2행정 단류 소기식 기체 연료 엔진 |
CN112211713B (zh) * | 2019-07-11 | 2021-12-21 | 曼能源解决方案公司(德国曼能源解决方案股份公司子公司) | 内燃发动机 |
DK180375B1 (en) * | 2019-07-11 | 2021-02-12 | Man Energy Solutions Filial Af Man Energy Solutions Se Tyskland | Internal combustion engine |
KR20210008318A (ko) * | 2019-07-11 | 2021-01-21 | 만 에너지 솔루션즈, 필리알 아프 만 에너지 솔루션즈 에스이, 티스크란드 | 내연 엔진 |
DK181032B1 (en) * | 2020-06-17 | 2022-10-07 | Man Energy Solutions Filial Af Man Energy Solutions Se Tyskland | Internal combustion engine |
DK180798B1 (en) * | 2020-07-15 | 2022-04-01 | Man Energy Solutions Filial Af Man Energy Solutions Se Tyskland | Internal combustion engine |
DK180922B1 (en) * | 2020-11-06 | 2022-06-27 | Man Energy Solutions Filial Af Man Energy Solutions Se Tyskland | Compression-ignited internal combustion engine operating on ammonia and retrofit kit |
EP4187067A1 (fr) * | 2021-11-24 | 2023-05-31 | Winterthur Gas & Diesel Ltd. | Moteur à combustion interne |
EP4405248A1 (fr) | 2022-10-31 | 2024-07-31 | Wärtsilä Services Switzerland Ltd | Conversion in situ de groupe motopropulseur d'un navire |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4404899A1 (de) * | 1994-02-16 | 1995-08-17 | Avl Verbrennungskraft Messtech | Zweistoff-Brennkraftmaschine |
WO2009114264A1 (fr) * | 2008-03-12 | 2009-09-17 | Cameron International Corporation | Préchambre |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2658487A (en) * | 1949-05-10 | 1953-11-10 | Basabe Nicolas Iturbe | Two-stroke internal-combustion engine |
US2747556A (en) * | 1952-01-04 | 1956-05-29 | Hovalwerk Ag Ospelt | Internal-combustion engines |
FR1328345A (fr) * | 1962-03-20 | 1963-05-31 | Moteur à combustion à deux temps, à charge stratifiée | |
JPH01227817A (ja) * | 1988-03-09 | 1989-09-12 | Kioritz Corp | 二サイクル・ユニフロー火花点火機関 |
JPH01300012A (ja) * | 1988-05-25 | 1989-12-04 | Kioritz Corp | 二サイクル・ユニフロー火花点火機関 |
JP2711565B2 (ja) * | 1989-05-11 | 1998-02-10 | 株式会社いすゞセラミックス研究所 | エンジンのサイクル制御装置 |
GB8915352D0 (en) * | 1989-07-04 | 1989-08-23 | Ortech Corp | Dual fuel natural gas/diesel 2-stroke engine |
US4966103A (en) * | 1989-11-09 | 1990-10-30 | Cooper Industries, Inc. | Combustion system for dual fuel engine |
JPH06123248A (ja) * | 1992-10-09 | 1994-05-06 | Nippon Carbureter Co Ltd | 気体燃料ー液体燃料併用エンジンの燃料切替え方法 |
JPH08291769A (ja) * | 1995-04-19 | 1996-11-05 | Isuzu Ceramics Kenkyusho:Kk | 2サイクル改質ガスエンジン |
JPH11324750A (ja) * | 1998-05-13 | 1999-11-26 | Niigata Eng Co Ltd | 複合エンジン及びその運転方法 |
JP3930639B2 (ja) * | 1998-05-14 | 2007-06-13 | 新潟原動機株式会社 | 予燃焼室方式ガスエンジン |
JP2000018013A (ja) * | 1998-07-03 | 2000-01-18 | Mitsubishi Heavy Ind Ltd | 内燃機関の圧縮比調整装置 |
JP2001164955A (ja) * | 1999-12-13 | 2001-06-19 | Osaka Gas Co Ltd | 副室式エンジンとその運転方法 |
CA2406267C (fr) * | 2002-10-02 | 2013-01-08 | Westport Research Inc. | Methodes de recirculation des gaz d'echappement et reducteur des emissions d'oxydes d'azote des moteurs a combustion interne |
CA2406137C (fr) * | 2002-10-02 | 2004-12-28 | Westport Research Inc. | Appareil et methode de regulation pour moteur a combustion interne alimente au carburant gazeux |
DE102005012757A1 (de) * | 2005-03-19 | 2006-09-21 | Man B & W Diesel Ag | Brennkraftmaschine und Einspritzeinrichtung |
JP4483752B2 (ja) * | 2005-09-20 | 2010-06-16 | マツダ株式会社 | デュアルフューエルエンジンの制御装置 |
JP2008309145A (ja) * | 2007-06-15 | 2008-12-25 | Shuichi Kitamura | 酸素噴射式2サイクルディーゼル機関 |
JP5051086B2 (ja) * | 2008-09-30 | 2012-10-17 | マツダ株式会社 | 火花点火式エンジンの制御装置 |
WO2012057310A1 (fr) * | 2010-10-28 | 2012-05-03 | 株式会社Ihi | Moteur à deux temps |
-
2011
- 2011-07-08 EP EP11770825.5A patent/EP2729682A2/fr not_active Withdrawn
- 2011-07-08 KR KR1020147000466A patent/KR101931840B1/ko active IP Right Review Request
- 2011-07-08 CN CN201180072136.8A patent/CN103748334B/zh active Active
- 2011-07-08 EP EP14182313.8A patent/EP2826978A1/fr not_active Withdrawn
- 2011-07-08 JP JP2014519589A patent/JP6080224B2/ja active Active
- 2011-07-08 BR BR112014000342A patent/BR112014000342A2/pt not_active IP Right Cessation
- 2011-07-08 WO PCT/FI2011/050643 patent/WO2013007863A2/fr active Application Filing
- 2011-07-08 RU RU2014104497/06A patent/RU2014104497A/ru not_active Application Discontinuation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4404899A1 (de) * | 1994-02-16 | 1995-08-17 | Avl Verbrennungskraft Messtech | Zweistoff-Brennkraftmaschine |
WO2009114264A1 (fr) * | 2008-03-12 | 2009-09-17 | Cameron International Corporation | Préchambre |
Also Published As
Publication number | Publication date |
---|---|
KR101931840B9 (ko) | 2023-09-27 |
KR101931840B1 (ko) | 2019-03-13 |
EP2826978A1 (fr) | 2015-01-21 |
JP6080224B2 (ja) | 2017-02-15 |
WO2013007863A2 (fr) | 2013-01-17 |
CN103748334B (zh) | 2017-07-14 |
BR112014000342A2 (pt) | 2017-02-14 |
CN103748334A (zh) | 2014-04-23 |
RU2014104497A (ru) | 2015-08-20 |
JP2014522941A (ja) | 2014-09-08 |
KR20140043113A (ko) | 2014-04-08 |
WO2013007863A3 (fr) | 2013-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2826978A1 (fr) | Moteur à combustion interne à deux temps, procédé de fonctionnement d'un moteur à combustion interne à deux temps et procédé de conversion d'un moteur à deux temps | |
US11002177B2 (en) | System and method for staged pre-chamber purging | |
EP2948667B1 (fr) | Procédé de fonctionnement de moteur à piston et moteur à piston | |
JP3676964B2 (ja) | デュアルフューエルエンジン | |
KR20220021441A (ko) | 암모니아 연료를 왕복 엔진 내로 분사하는 방법 | |
US10087817B2 (en) | Reciprocating piston internal combustion engine having an ancillary chamber containing a piston, and method for operating the same | |
US20120160213A1 (en) | Stratified Charge Port Injection Engine And Method | |
CN109026412B (zh) | 一种双燃料发动机稀薄燃烧组织方法 | |
US20130263820A1 (en) | Integrated lean burn stabilizers | |
US11719173B2 (en) | Method and gas fuel injection unit for operating an internal combustion engine | |
KR20220009355A (ko) | 내연 엔진 | |
EP1373694B1 (fr) | Procede permettant de commander l'injection d'un fluide dans un moteur a combustion interne | |
JP2017155735A (ja) | クロスヘッド式内燃機関 | |
JPH03134262A (ja) | 筒内噴射式内燃機関 | |
JP2871317B2 (ja) | ガスエンジンにおける燃料供給装置 | |
EP3037646B1 (fr) | Procédé pour faire fonctionner des moteurs à combustion interne | |
US20070266978A1 (en) | Self-Igniting Petrol Internal Combustion Engine | |
EP4424981A1 (fr) | Procédé de fonctionnement d'un système de moteur à combustion interne utilisant de l'hydrogène combustible | |
JP2004092574A (ja) | 副室掃気装置を備えたガスエンジン | |
US20070221180A1 (en) | Fuel system for internal combustion engine | |
CA3229627A1 (fr) | Moteur a combustion interne et procede permettant de faire fonctionner un moteur a combustion interne | |
RU2573062C1 (ru) | Способ работы шеститактного двигателя внутреннего сгорания | |
CN113915037A (zh) | 一种具有双喷射系统的二冲程发动机 | |
WO2016053127A1 (fr) | Procédé de fonctionnement d'un moteur à combustion interne à six temps | |
KR20120018546A (ko) | 프리챔버를 구비한 저압가스 공급 방식의 2행정 대형 엔진 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140210 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20150401 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F02B 43/10 20060101ALI20180611BHEP Ipc: F02B 19/14 20060101ALI20180611BHEP Ipc: F02B 19/10 20060101ALI20180611BHEP Ipc: F02B 7/06 20060101AFI20180611BHEP Ipc: F02B 19/12 20060101ALI20180611BHEP Ipc: F02B 75/02 20060101ALI20180611BHEP Ipc: F02B 25/04 20060101ALI20180611BHEP |
|
INTG | Intention to grant announced |
Effective date: 20180711 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20181122 |