EP2725657A1 - Architecture de réseau actif à commande de phase et faisceaux multiples - Google Patents

Architecture de réseau actif à commande de phase et faisceaux multiples Download PDF

Info

Publication number
EP2725657A1
EP2725657A1 EP13193382.2A EP13193382A EP2725657A1 EP 2725657 A1 EP2725657 A1 EP 2725657A1 EP 13193382 A EP13193382 A EP 13193382A EP 2725657 A1 EP2725657 A1 EP 2725657A1
Authority
EP
European Patent Office
Prior art keywords
signal
polarization
exemplary embodiment
signals
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13193382.2A
Other languages
German (de)
English (en)
Other versions
EP2725657B1 (fr
Inventor
David W. Corman
Rob Zienkewicz
David R. Saunders
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Viasat Inc
Original Assignee
Viasat Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Viasat Inc filed Critical Viasat Inc
Publication of EP2725657A1 publication Critical patent/EP2725657A1/fr
Application granted granted Critical
Publication of EP2725657B1 publication Critical patent/EP2725657B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/12Arrangements for performing computing operations, e.g. operational amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • H01Q15/242Polarisation converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/36Networks for connecting several sources or loads, working on the same frequency band, to a common load or source

Definitions

  • a phased array antenna uses multiple radiating elements to transmit, receive, or transmit and receive radio frequency (RF) signals.
  • Phased array antennas are used in various capacities, including communications on the move (COTM) antennas, satellite communication (SATCOM) airborne terminals, SATCOM mobile communications, and SATCOM earth terminals.
  • COTM move
  • SATCOM satellite communication
  • SATCOM mobile communications SATCOM earth terminals.
  • the application of mobile terminals typically requires the use of automatic tracking antennas that are able to track the beam in azimuth, elevation, and polarization to follow the satellite position while the vehicle is in motion.
  • the antenna should be "low-profile", small and lightweight, thereby fulfilling the stringent aerodynamic and mass constraints encountered in the typical mounting.
  • phased array antenna is an electronically steerable phased array antenna.
  • the electronically steerable phased array antenna has full electronic steering capability and is more compact and lower profile than a comparable mechanical phased array antenna.
  • the main drawback of fully electronic steering is that the antenna usually requires the integration of a lot of expensive analog RF electronic components which may prohibitively raise the cost for commercial applications.
  • a typical electronically steerable phased array antenna comprises an assembly of phase shifters, power splitters, power combiners, and quadrature hybrids. Additionally, a typical electronically steerable phased array requires at least a few of these components at every element in the phased array, which increases the cost and complexity of the architecture.
  • a phased array antenna 100 comprises a radiating element 101 that communicates dual linear signals to a hybrid coupler 102 (either 90° or 180°) and then through low noise amplifiers 103, 104. Furthermore, the dual orthogonal signals are individually phase adjusted by phase shifters 105, 106 before passing through a power combiner 107.
  • the typical components in a phased array antenna are distributed components that are frequency sensitive and designed for specific frequency bands.
  • Phase shifters are used in a phased array antenna in order to steer the beam of the signals by controlling the respective phases of the RF signals communicated through the phase shifters.
  • a typical digital phase shifter uses switched delay lines, is physically large, and operates over a narrow band of frequencies due to its distributed nature.
  • Another typical digital phase shifter implements a switched high-pass low-pass filter architecture which has better operating bandwidth compared to a switched delay line but is still physically large.
  • the phase shifter is often made on gallium arsenide (GaAs). Though other materials may be used, GaAs is a higher quality material designed and controlled to provide good performance of electronic devices. However, in addition to being a higher quality material than the other possible materials, GaAs is also more expensive and more difficult to manufacture. The typical phased array components take up a lot of area on the GaAs, and result in higher costs. Furthermore, a standard phase shifter has high RF loss, which is typically about n + 1 dB of loss, where n is the number of phase bits in the phase shifter. Another prior art embodiment uses RF MEMS switches and has lower loss but still consumes similar space and is generally incompatible with monolithic solutions.
  • GaAs gallium arsenide
  • Quadrature hybrids or other differential phase generating hybrids are used in a variety of RF applications.
  • quadrature hybrids are used for generating circular polarization signals, power combining, or power splitting.
  • the outputs of a quadrature hybrid have equal amplitude and a nominally 90° phase difference.
  • the quadrature hybrid is implemented as a distributed structure, such as a Lange coupler, a branchline coupler, and/or the like.
  • a 180° hybrid such as a magic tee or a ring hybrid, results in a nominally 180° phase shift.
  • quadrature hybrids and 180° hybrids are limited in frequency band and require significant physical space.
  • the quadrature hybrids and 180° hybrids are typically made of GaAs and have associated RF power loss on the order of 3-4 dB per hybrid when used as a power splitter, and an associated power loss of about 1 dB when used as a power combiner.
  • In-phase power combiners and in-phase power splitters are also used in a variety of RF applications.
  • the outputs of an in-phase hybrid have equal amplitude and a substantially zero differential phase difference.
  • the inputs of an in-phase hybrid configured as a power combiner encounter substantially zero differential phase and amplitude shift.
  • the in-phase hybrid is implemented as a distributed structure such as a Wilkinson coupler.
  • an in-phase hybrid is limited in frequency band and requires significant physical space. Additionally, since the structure is distributed in nature, the physical size increases with decreasing frequency.
  • the in-phase hybrid is typically made of GaAs.
  • the in-phase hybrid generally has associated RF power loss on the order of 3-4 dB per hybrid when used as a power splitter and an associated RF power loss of about 1 dB when used as a power combiner.
  • an antenna signal can have different polarizations, namely linear, elliptical, or circular.
  • Linear polarization consists of vertical polarization and horizontal polarization
  • circular polarization consists of left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP).
  • LHCP left-hand circular polarization
  • RHCP right-hand circular polarization
  • Elliptical polarization is similar to circular polarization but occurs with different values for the vertical and horizontal component magnitudes or if the phase difference between the vertical and horizontal components is a value other than 90°.
  • Conventional antennas utilize a fixed polarization that is hardware dependant.
  • the basis polarization is generally set during installation of the satellite terminal, at which point the manual configuration of the polarizer hardware is fixed.
  • a polarizer is generally set for LHCP or RHCP and fastened into position. To change polarization would require unfastening the polarizer, rotating it 90° to the opposite circular polarization, and then refastening the polarizer.
  • This could not be done with much frequency and only a limited number (on the order of 10 or maybe 20) of transceivers could be switched per technician in a given day.
  • a prior embodiment is the use of "baseball” switches to provide electronically commandable switching between polarizations.
  • the rotation of the "baseball” switches causes a change in polarization by connecting one signal path to a waveguide while terminating the other signal path.
  • each "baseball” switch is physically large and requires a separate rotational actuator with independent control circuitry, which increases the cost of the device such that this configuration is typically not used in consumer broadband terminals.
  • a system may implement solid state diode or FET-based switches. The use of these electronic components may lead to high loss and limited power handling in microwave and mm-wave applications. These alternatives are size, power, and cost prohibitive for most applications, including phased arrays and low cost commercial applications.
  • phased array antennas only form a single beam at a time and are often not capable of switching polarization.
  • additional phase shifting and power splitting or combining components are required at every radiating element.
  • additional components are typically distributed in nature, require significant physical space, are lossy, and only operate over relatively narrow frequency bands. For these reasons, polarization agile, multiple beam phased array antennas that can operate over multiple frequency bands are difficult to realize in practice.
  • An active phased array architecture may replace traditional distributed and GaAs implementations for the necessary functions required to operate electronically steerable phased array antennas.
  • the architecture combines active versions of vector generators, power splitters, power combiners, and/or RF hybrids in a novel fashion to realize a fully or substantially monolithic solution for a wide range of antenna applications that can be realized with radiating elements having dual-polarized feeds.
  • an active antenna polarizer is a digitally controlled active implementation for processing an RF signal.
  • the polarization and amplitude of the RF signal communicated through a phased array radiating element is adjustable by operating two vector generators in parallel and feeding one or both output signals of the two vector generators to the radiating element in spatially orthogonal fashion.
  • the phased array antenna is configured to electrically change between polarizations and/or support beam steering.
  • the phased array antenna may alternate between linear polarization, elliptical polarization, and circular polarization.
  • vector generators control the relative phase of the antenna signal.
  • the basic transmit embodiment and receive embodiment are used in any frequency band and with different polarizations.
  • an active antenna polarizer is part of a phased array antenna that may be configured to transmit or receive an RF signal.
  • the active antenna polarizer communicates a signal with linear polarization.
  • the active antenna polarizer communicates a signal with dual polarization.
  • a differential signal may be communicated using either linear polarization or dual polarization.
  • the implementation of dual-polarized feeds facilitates the operation of phased arrays where the polarization can be statically or dynamically controlled on a subarray or element basis.
  • a phased array antenna comprises multiple subcircuits in communication with multiple radiating elements.
  • the radio frequency signals are adjusted for both polarization control and beam steering.
  • multiple RF signals are received and combined into at least one receive beam output.
  • at least one transmit beam input is divided and transmitted through multiple radiating elements.
  • the phased array antenna provides multi-beam formation over multiple operating frequency bands.
  • the phased array antenna replaces traditional distributed components and GaAs functions with active components to operate an electronically steerable multiple beam phased array antenna.
  • the wideband nature of the active components allows for operation over multiple frequency bands simultaneously.
  • the antenna polarization may be static or dynamically controlled at the subarray or radiating element level.
  • Advantages of the exemplary phased array antenna include increased system capacity and flexibility. Furthermore, an antenna that can operate over multiple frequency bands optimizes system availability. This system may be implemented in mobile applications, or fixed position applications where multiple systems are desired. Also, a single antenna can communicate with multiple systems and/or users, allowing for increased capacity and availability.
  • phased array antenna may be used in various scenarios.
  • the phased array antenna may be implemented in COTM antennas, SATCOM airborne terminals, SATCOM mobile communications, and SATCOM earth terminals.
  • a phased array antenna comprises a layout of various active component building blocks, such as baluns, power splitters, power combiners, hybrids, and vector generators.
  • active power splitters, vector generators, and active power combiners are used in various exemplary embodiments, only one or more of those devices may be used in various embodiments, as opposed to all three devices.
  • a phased array antenna generally comprises multiple radiating elements, with each radiating element having a polarization component.
  • the radiating element has spatially orthogonal linear polarizations, spatially and electrically orthogonal circular polarizations, or spatially orthogonal and electrically non-orthogonal elliptical polarizations.
  • a phased array antenna comprises various components. The various components may include a vector generator, an active power splitter, an active power combiner, or the like.
  • the phased array antenna comprises a patch antenna. Though a patch antenna is illustrated in the figures and described herein, other types of radiating elements may be implemented. Such radiating elements include a fragmented radiator, a feed horn antenna, a slot antenna, and the like.
  • each radiating element has two feed ports and results in an unbalanced feed system. In yet another exemplary embodiment, each radiating element has three feed ports and results in a partially balanced feed system. In another exemplary embodiment, each radiating element has four feed ports and results in a fully balanced feed system.
  • a phased array antenna with two feed ports is configured to generate and control different polarizations.
  • Exemplary polarization states include a single circular polarization state, a single elliptical polarization state, a single linear polarization state, and two orthogonal linear polarization states.
  • the radiating elements may be in communication with an RF integrated circuit (RFIC).
  • RFIC RF integrated circuit
  • the RFIC is configured to divide, alter, and recombine the basis polarizations to other orthogonal polarization states.
  • the RF signal corresponding to the net polarization state in the RFIC may additionally be combined in a beam-forming network of the array.
  • an active power splitter 300 comprises a differential input subcircuit 310, a first differential output subcircuit 320, and a second differential output subcircuit 330.
  • the differential input subcircuit 310 has paired transistors 311, 312 with a common emitter node and is constant current biased, as is typical in a differential amplifier.
  • An input signal is communicated to the base of paired transistors 311, 312 in the differential input subcircuit 310.
  • Both the first and second differential output subcircuits 320, 330 comprise a pair of transistors with a common base node and each common base is connected to ground.
  • the first differential output subcircuit 320 has a first transistor 321 emitter connected to the collector of one of the input subcircuit transistors 312.
  • the emitter of the second output subcircuit transistor 322 is connected to the collector of the other input subcircuit transistor 311.
  • the first output is drawn from the collectors of transistors 321, 322 of the first differential output subcircuit 320.
  • the second differential output subcircuit 330 is similarly connected, except the transistor 331, 332 emitters are inversely connected to the input subcircuit transistor 311, 312 collectors with respect to transistors 321, 322.
  • the first output and the second output are approximately 180° out of phase with each other.
  • transistor 331, 332 emitters are non-inversely connected to input subcircuit transistor 311, 312 collectors, causing the first output and the second output to be approximately in phase with each other.
  • the absolute phase shift of the output signals through the power splitter is not as important as the relative phasing between the first and second output signals.
  • active power splitter 300 converts an input RF signal into two output signals.
  • the output signal levels may be equal in amplitude, though this is not required.
  • each output signal would be about 3 dB lower in power than the input signal.
  • an exemplary active splitter such as active power splitter 300, can provide gain and the relative power level between the input signal and output signal is adjustable and can be selectively designed.
  • the output signal is configured to achieve a substantially neutral or positive power gain over the input signal.
  • the output signal may achieve a 3 dB signal power gain over the input signal.
  • the output signal may achieve a power gain in the 0 dB to 5 dB range.
  • the output signal may be configured to achieve any suitable power gain.
  • active power splitter 300 produces output signals with a differential phase between the two signals that is zero or substantially zero.
  • the absolute phase shift of output signals through the active power splitter may not be as important as the differential phasing between the output signals.
  • active power splitter 300 additionally provides matched impedances at the input and output ports.
  • the matched impedances may be 50 ohms, 75 ohms, or other suitable impedances.
  • active splitter 300 provides isolation between the output ports of the active power splitter.
  • active power splitter 300 is manufactured as a radio frequency integrated circuit (RFIC) with a compact size that is independent of the operating frequency due to a lack of distributed components.
  • RFIC radio frequency integrated circuit
  • an active power combiner 400 comprises a first differential input subcircuit 410, a second differential input subcircuit 420, a single ended output subcircuit 430, and a differential output subcircuit 440.
  • Each differential input subcircuit 410, 420 includes two pairs of transistors, with each transistor of each differential input subcircuit 410, 420 having a common emitter node with constant current biasing, as is typical in a differential amplifier.
  • a first input signal is communicated to the bases of the transistors in first differential input subcircuit 410.
  • a first line of input signal In1 is provided to one transistor of each transistor pair in first differential input subcircuit 410
  • a second line of input signal In1 is provided to the other transistor of each transistor pair.
  • a second input signal is communicated to the bases of the transistors in second differential input subcircuit 420.
  • a first line of input signal In2 is provided to one transistor of each transistor pair in first differential input subcircuit 420
  • a second line of input signal In2 is provided to the other transistor of each transistor pair.
  • a differential output signal is formed by a combination of signals from collectors of transistors in first and second differential input subcircuits 410, 420.
  • active power combiner 400 converts two input RF signals into a single output signal.
  • the output signal can either be a single ended output at single ended output subcircuit 430, or a differential output at differential output subcircuit 440.
  • active power combiner 400 performs a function that is the inverse of active power splitter 300.
  • the input signal levels can be of arbitrary amplitude and phase. Similar to an active power splitter, active power combiner 400 can provide gain and the relative power level between the inputs and output is also adjustable and can be selectively designed.
  • the output signal achieves a substantially neutral or positive signal power gain over the input signal.
  • the output signal may achieve a 3 dB power gain over the sum of the input signals.
  • the output signal may achieve a power gain in the 0 dB to 5 dB range.
  • the output signal may achieve any suitable power gain.
  • active power combiner 400 additionally provides matched impedances at the input and output ports.
  • the matched impedances may be 50 ohms, 75 ohms, or other suitable impedances.
  • active power combiner 400 provides isolation between the input ports of the power combiner.
  • active power combiner 400 is manufactured as a RFIC with a compact size that is independent of the operating frequency due to a lack of distributed components.
  • a vector generator converts an RF input signal into an output signal (sometimes referred to as an output vector) that is shifted in phase and/or amplitude to a desired level. This replaces the function of a typical phase shifter and adds the capability of amplitude control.
  • a vector generator is a magnitude and phase control circuit.
  • the vector generator accomplishes this function by feeding the RF input signal into a quadrature network resulting in two output signals that differ in phase by about 90°. The two output signals are fed into parallel quadrant select circuits, and then through parallel variable gain amplifiers (VGAs).
  • VGAs parallel variable gain amplifiers
  • the quadrant select circuits receive commands and may be configured to either pass the output signals with no additional relative phase shift between them or invert either or both of the output signals by an additional 180°. In this fashion, all four possible quadrants of the 360° continuum are available to both orthogonal signals.
  • the resulting composite output signals from the current summer are modulated in at least one of amplitude and phase.
  • a vector generator 500 comprises a passive I/Q generator 510, a first VGA 520 and a second VGA 521, a first quadrant select 530 and a second quadrant select 531 each configured for phase inversion switching, and a current summer 540.
  • the first quadrant select 530 is in communication with I/Q generator 510 and first VGA 520.
  • the second quadrant select 531 is in communication with I/Q generator 510 and second VGA 521.
  • vector generator 500 comprises a digital controller 550 that controls a first digital-to-analog converter (DAC) 560 and a second DAC 561.
  • the first and second DACs 560, 561 control first and second VGAs 521, 520, respectively.
  • digital controller 550 controls first and second quadrant selects 530, 531.
  • vector generator 500 controls the phase and amplitude of an RF signal by splitting the RF signal into two separate vectors, the in-phase (I) vector and the quadrature-phase (Q) vector.
  • the RF signal is communicated differentially.
  • the differential RF signal communication may be throughout vector generator 500 or limited to various portions of vector generator 500.
  • the RF signals are communicated non-differentially.
  • the I vector and Q vector are processed in parallel, each passing through the phase inverting switching performed by first and second quadrant selects 530, 531.
  • the resultant outputs of the phase inverting switches comprise four possible signals: a non-inverted I, an inverted I, a non-inverted Q, and an inverted Q.
  • all four quadrants of a phasor diagram are available for further processing by VGAs 520, 521.
  • two of the four possible signals non-inverted I, inverted I, non-inverted Q, and inverted Q are processed respectively through VGAs 520, 521, until the two selected signals are combined in current summer 540 to form a composite RF signal.
  • the current summer 540 outputs the composite RF signal with phase and amplitude adjustments.
  • the composite RF signal is in differential signal form.
  • the composite RF signals are in single-ended form.
  • control for the quadrant shifting and VGA functions is provided by a pair of DACs.
  • reconfiguration of digital controller 550 allows the number of phase bits to be digitally controlled after vector generator 500 is fabricated if adequate DAC resolution and automatic gain control (AGC) dynamic range exists.
  • AGC automatic gain control
  • any desired vector phase and amplitude can be produced with selectable fine quantization steps using digital control.
  • reconfiguration of DACs 560, 561 can be made after vector generator 500 is fabricated in order to facilitate adjustment of the vector amplitudes.
  • an active RF hybrid 600 comprises a first active power splitter 610, a second active power splitter 611, a first vector generator 620, a second vector generator 621, a first active power combiner 630, a second active power combiner 631, a first digital-to-analog converter (DAC) 640 and a second DAC 641.
  • first active power splitter 610 receives an input at Port 1 and communicates the input to first vector generator 620 and second active power combiner 631.
  • second active power splitter 611 receives an input at Port 2 and communicates the input to second vector generator 621 and first active power combiner 630.
  • Vector generators 620, 621 are controlled in part by respective DACs 640, 641.
  • a 4-bit DAC is used but any number of bits many be used.
  • first active power combiner 630 receives input from first vector generator 620 and second active power splitter 611, and outputs a signal to Port 3.
  • second active power combiner 631 receives input from second vector generator 621 and first active power splitter 610, and outputs a signal to Port 4.
  • Active RF hybrid 600 may be used to replace various distributed components, such as a branchline coupler, Lange coupler, directional coupler, or 180° hybrid.
  • an active RF hybrid provides similar functionality in comparison to a traditional distributed hybrid.
  • active RF hybrid 600 may be dynamically configured to have variable phase differences between the output ports, which could be 90°, 180°, or some other phase difference.
  • active RF hybrid 600 provides port-to-port isolation and matched impedances at the input/output ports. Additional information regarding active RF hybrids is disclosed in the U.S. Patent Application entitled “ACTIVE RF HYBRIDS", Applicant docket number 36956.7200, filed the same day as this application, which is hereby incorporated by reference.
  • the active RF hybrid 600 has various advantages over a traditional passive distributed hybrid.
  • the active RF hybrid 600 does not result in a loss of power, but instead has a gain or is at least gain neutral.
  • the active RF hybrid 600 does not rely on distributed elements and is capable of operating over very wide bandwidths.
  • the active RF hybrid 600 implements identical building block components as used in an exemplary active phased array architecture.
  • the active RF hybrid 600 is manufactured as a MMIC with a compact size that is independent of the operating frequency due to a lack of distributed components.
  • phased array antenna embodiments include variations on transmit or receive embodiments, number of beams, different polarizations including linear, circular, and elliptical, and the use of single ended signals or differentially fed signals.
  • an electronically steerable phased array antenna comprises a radiating element array, an active vector generator, and a DAC.
  • the DAC is reconfigurable to operate the phased array antenna in numerous configurations.
  • the phased array antenna can support multiple frequency bands and be reprogrammed to change between different polarization types. The reconfiguration can be made after the antenna architecture is fabricated.
  • a phased array antenna comprises active components manufactured on silicon germanium (SiGe) in a monolithic solution.
  • Other materials may be used, such as GaAs, silicon, or other suitable materials now known or hereinafter devised.
  • a monolithic SiGe embodiment using active components results in certain advantages over the distributed/passive network in the prior art, including lower cost, smaller physical size, wider operating bandwidths, and the ability to provide power gain rather than a power loss.
  • phased array architecture advantages include extensive system flexibility and very compact antenna systems because no distributed structures are required.
  • the size of the control function components of the phased array architecture is compact and independent of operating frequency.
  • some embodiments employ differential signaling to improve signal isolation when the RF signal is in analog form.
  • the antenna system is not band limited. In other words, the antenna system is applicable to all frequency bands, including X, K, Ku, Ka, and Q bands. Furthermore, in an exemplary embodiment, the antenna system is configured to operate, after manufacture or installation, at a first frequency range and subsequently operate at a second frequency range not equal to the first frequency range. In another exemplary embodiment, the antenna system is configured to operate at the first frequency range and the second frequency range simultaneously. In an exemplary embodiment, multi-band antennas are a practical option as a product.
  • Reconfigurability of the antenna system is also an advantage. This includes the ability to reconfigure the number of phase bits over full product life, being able to reconfigure the amplitude taper of the system over full product life, and being able to reconfigure the system polarization over full product life.
  • phased array antenna system embodiments vary in terms of polarization, transmit or receive modes, and whether differential signaling is implemented.
  • an active antenna polarizer is a digitally controlled active implementation for processing an RF signal.
  • the polarization and amplitude of a phased array radiating element is adjustable by operating two vector generators in parallel and feeding both output signals of the two vector generators to the radiating element in a spatially orthogonal fashion.
  • the phased array antenna is configured to electrically change between polarizations.
  • the phased array antenna may alternate between linear polarization and circular polarization.
  • the system achieves linear polarization by using a single vector generator to drive the radiating element.
  • the system achieves circular polarization by using two vector generators to drive the radiating element in a spatially orthogonal fashion with two vectors that are electrically 90° out of phase from each other.
  • the system achieves elliptical polarization by using two vector generators to drive the radiating element in a spatially orthogonal fashion with two vectors that are electrically out of phase by a value other than 90° with each other.
  • the active antenna polarizer comprises discrete active components.
  • an active polarizer comprises a monolithic solution of active components.
  • the active antenna polarizer comprises a combination of discrete components and a monolithic solution.
  • a transmit active antenna polarizer 700 comprises an active power splitter 710, two vector generators 720, 721, and two DACs 730, 731.
  • An RF input signal is actively split and transmitted through two vector generators 720, 721 in parallel.
  • the vector generators 720, 721 are controlled by DACs 730, 731 respectively, and each vector generator produces a linear output signal. These two linear outputs can be used to energize/drive the spatially orthogonal feed ports of a radiating element (not shown).
  • the transmit active antenna polarizer 700 may be considered a basic transmit embodiment, which is configured to be implemented in a variety of different phased array antenna architectures.
  • the basic transmit embodiment is used in any frequency band and with different polarizations.
  • the basic transmit embodiment may be used as the basis for at least one of beam steering and the phased array antenna transmitting in linear polarization, circular polarization, or elliptical polarization.
  • vector generators 720, 721 control the phase of the antenna signal.
  • vector generators 720, 721 are configured for beam steering in conjunction with polarization control.
  • reconfiguration of DACs 730, 731 allows the number of phase bits to be digitally controlled after transmit active antenna polarizer 700 is fabricated if adequate DAC resolution and AGC dynamic range exists. In an exemplary embodiment with adequate DAC resolution and AGC dynamic range, any desired vector phase and amplitude can be produced with selectable fine quantization steps using digital control. In another exemplary embodiment, reconfiguration of DACs 730, 731 can be made after transmit active antenna polarizer 700 is fabricated in order to facilitate adjustment of the signal amplitudes.
  • the antenna system includes the ability to reconfigure the number of phase bits in a DAC over full product life.
  • the antenna system is able to reconfigure the amplitude taper of the system over full product life.
  • the antenna system is able to reconfigure the system polarization over full product life.
  • any desired vector phase and amplitude can be produced with selectable fine quantization steps using digital control.
  • the vector generators are controlled by software and digital hardware, and the antenna polarization is software definable.
  • software may be implemented to control the antenna polarization by modifying the operating parameters of the vector generators via the DACs or other digital control.
  • the operating parameters may include the relative phase between the outputs of the vector generators.
  • software controls the phase change by programming the DACs to achieve the desired phase relationship.
  • the polarization of the energy radiated from the antenna is controlled in real-time. This results in a completely electronic technique where software allows continuous dynamic adjustment of the polarization of dual polarization feed antennas.
  • a receive active antenna is similar to a transmit active antenna as already described.
  • two RF input signals are communicated from a radiating element.
  • the two RF input signals are processed in parallel through two vector generators before being combined by an active combiner.
  • a receive active antenna polarizer may be considered a basic receive embodiment which is configured to be implemented in a variety of different phased array antenna architectures.
  • the basic receive embodiment is used in any frequency band and with different polarizations.
  • the basic receive embodiment may be used as the basis for at least one of beam steering and the phased array antenna receiving in linear polarization, circular polarization, or elliptical polarization.
  • the vector generators control the phase of the antenna signal as described herein.
  • an active antenna polarizer is configured to dynamically change the polarization of an antenna using radiating elements with dual-polarized feeds.
  • an antenna is configured to statically or dynamically control the polarization of the antenna on a subarray or individual element basis in order to optimize a performance characteristic associated with polarization. Examples of such polarization associated characteristics include polarization loss factors and polarization efficiency.
  • the use of dual-polarized feeds facilitates the performance optimization. For example, in an exemplary embodiment, a maximum signal level may be obtained by varying the polarization around an expected value until the optimal level is set. The difference between the expected value and the optimal value may occur due to various factors.
  • an exemplary antenna is configured to adjust the polarization in order to compensate for manufacturing tolerances, weather, inferring objects, and the like.
  • a polarization sweep is performed in order to receive different signals which can be used for signal identification.
  • Phased array antenna 800 configured to transmit a signal with linear polarization.
  • Phased array antenna 800 comprises an active power splitter 810, a first vector generator 820, a second vector generator 821, a first DAC 830, and a second DAC 831.
  • Phased array antenna 800 is a basic transmit embodiment with an output signal of first vector generator 820 energizing a radiating element 801 and with second vector generator 821 not in communication with radiating element 801.
  • second vector generator 821 energizes radiating element 801 with first vector generator 820 not in communication with radiating element 801.
  • radiating element 801 can have a "horizontal" orientation or a "vertical" orientation.
  • the basic transmit embodiment with two vector generators 820, 821 is implemented in order to demonstrate that a standard architecture may used in numerous antenna types. This enables cost benefits because the same underlying component is used instead of different, more customized components.
  • a phased array antenna configured to transmit a signal with linear polarization, comprises only one vector generator and a controlling DAC.
  • the embodiments described herein that manipulate only one vector generator output can comprise only a single vector generator.
  • phased array antenna 800 comprises first vector generator 820 but not second vector generator 821 or active power splitter 810.
  • a dual linear polarization antenna communicates two signals to a radiating element.
  • a phased array antenna 900 is configured to transmit a signal with dual linear polarization.
  • Phased array antenna 900 comprises an active power splitter 910, a first vector generator 920, a second vector generator 921, a first DAC 930, and a second DAC 931.
  • Phased array antenna 900 is a basic transmit embodiment with the two vector generator output signals energizing a radiating element 901, in both the horizontal and vertical orientations.
  • the output signals of vector generators 920, 921 can have any relative phase between the two signals.
  • the output signal of vector generator 920 has a +/- 90° relative phase difference with the output signal of vector generator 921 when energizing radiating element 901.
  • the output signal of vector generator 920 has a relative phase difference other than +/- 90° with the output signal of vector generator 921 when energizing radiating element 901.
  • Phased array antenna 1000 shows an exemplary embodiment of a phased array antenna 1000 configured to receive a signal with linear polarization.
  • Phased array antenna 1000 comprises an active power combiner 1010, a first vector generator 1020, a second vector generator 1021, a first DAC 1030 and a second DAC 1031.
  • Phased array antenna 1000 is a basic receive embodiment with one of vector generators 1020, 1021 communicating a signal from a radiating element 1001 to active power combiner 1010 and the other of vector generators 1020, 1021 not being in communication with radiating element 1001. Additionally, radiating element 1001 can have a horizontal or vertical orientation.
  • phased array antenna is configured to receive a signal with linear polarization and comprises only one vector generator and corresponding controlling DAC.
  • various embodiments described herein that manipulate only one vector generator output may comprise only one vector generator.
  • phased array antenna 1000 comprises first vector generator 1020 but not second vector generator 1021 or active combiner 1010.
  • a dual linear polarization antenna communicates two signals from a radiating element.
  • a phased array antenna 1100 is configured to receive a signal with dual linear polarization.
  • Phased array antenna 1100 comprises an active power combiner 1110, a first vector generator 1120, a second vector generator 1121, a first DAC 1130, and a second DAC 1131.
  • Phased array antenna 1100 is a basic receive embodiment with vector generators 1120, 1121 receiving individual polarized signals from radiating element 1101 as input signals.
  • the individual polarized signals may be a horizontal oriented signal and a vertical oriented signal.
  • the input signals of vector generators 1120, 1121 can have any relative phase between the two signals.
  • the input signal of vector generator 1120 has a +/- 90° relative phase difference with the input signal of vector generator 1121 when received from radiating element 1101.
  • the input signal of vector generator 1120 has a relative phase difference other than +/- 90° with the input signal of vector generator 1121 when received from radiating element 1101.
  • Phased array antenna 1200 configured to transmit a signal with differentially fed linear polarization.
  • Phased array antenna 1200 comprises an active power splitter 1210, a first vector generator 1220, a second vector generator 1221, a first DAC 1230 and a second DAC 1231.
  • Phased array antenna 1200 is a basic transmit embodiment with a differential output signal from one of vector generators 1220, 1221 energizing a radiating element 1201.
  • a differential signal has two signals are 180° out of phase from each other.
  • the differential signal may be fed into the "horizontal" portions of radiating element 1201 or into the "vertical" portions of radiating element 1201.
  • the embodiments described herein that manipulate only one vector generator output can comprise only a single vector generator.
  • phased array antenna 1200 comprises first vector generator 1220 but not second vector generator 1221 or active power splitter 1210.
  • a dual linear polarization antenna communicates two differentially fed signals to a radiating element.
  • a phased array antenna 1300 is configured to transmit differential signals with dual linear polarization.
  • Phased array antenna 1300 comprises an active power splitter 1310, a first vector generator 1320, a second vector generator 1321, a first DAC 1330, and a second DAC 1331.
  • Phased array antenna 1300 is a basic transmit embodiment with a first differentially fed output signal of vector generator 1320 and a second differentially fed output signal of vector generator 1321 energizing a radiating element 1301.
  • the first differentially fed output signal is fed into radiating element 1301 in a vertical orientation.
  • the second differentially fed output signal is fed into radiating element 1301 in a horizontal orientation.
  • the first differentially fed output signal of vector generator 1320 and the second differentially fed output signal of vector generator 1321 can have any relative phase between the two signals.
  • the first differentially fed output signal of vector generators 1320 has a +/- 90° relative phase difference with the second differentially fed output signal of vector generator 1321 when energizing radiating element 1301.
  • the first differentially fed output signal of vector generator 1320 has a relative phase difference other than +/- 90° with the second differentially fed output signal of vector generator 1321 when energizing radiating element 1301.
  • Phased array antenna 1400 configured to receive a signal with differentially fed horizontal linear polarization.
  • Phased array antenna 1400 comprises an active power combiner 1410, a first vector generator 1420, a second vector generator 1421, a first DAC 1430 and a second DAC 1431.
  • Phased array antenna 1400 is a basic receive embodiment with one of vector generators 1420, 1421 receiving a differential input signal from a radiating element 1401 and communicating an output signal to active power combiner 1410.
  • the other of vector generators 1420, 1421 is not in communication with radiating element 1401.
  • the differential signal may be received from the "horizontal" portions of radiating element 1401 or from the "vertical" portions of radiating element 1401.
  • phased array antenna is configured to receive a signal with differentially fed horizontal linear polarization and comprises only one vector generator and corresponding controlling DAC.
  • various embodiments described herein that manipulate only one vector generator input may comprise only one vector generator.
  • phased array antenna 1400 comprises first vector generator 1420 but not second vector generator 1421 or active combiner 1410.
  • a dual linear polarization antenna communicates two differentially fed signals from a radiating element.
  • a phased array antenna 1500 is configured to receive differential signals with dual linear polarization.
  • Phased array antenna 1500 comprises an active power combiner 1510, a first vector generator 1520, a second vector generator 1521, a first DAC 1530, and a second DAC 1531.
  • Phased array antenna 1500 is a basic receive embodiment with vector generator 1520 receiving a first differentially fed input signal and vector generator 1521 receiving a second differentially fed input signal from a radiating element 1501.
  • the first differentially fed input signal is received from radiating element 1501 in a vertical orientation.
  • the second differentially fed input signal is received from radiating element 1501 in a horizontal orientation.
  • the first and second differentially fed input signals of vector generators 1520, 1521 can have any relative phase between the two signals.
  • the first differentially fed input signal of vector generator 1520 has a +/- 90° relative phase difference with the second differentially fed input signal of vector generator 1521 when received from radiating element 1501.
  • the first differentially fed output signal of vector generator 1520 has a relative phase difference other than +/- 90° with the second differentially fed output signal of vector generator 1521 when energizing radiating element 1501.
  • the various phased array antenna embodiments described above may be implemented into a multiple radiating element architecture.
  • the multiple radiating elements are scalable in terms of both radiating elements and beam forming.
  • An embodiment with vector generators in communication with individual radiating elements facilitates additional beams while using the same radiating aperture.
  • the radiating element transmitter/receiver may comprise various numbers of radiating elements.
  • the antenna architecture could comprise multiple radiating elements in the range of 2-20.
  • a phased array integrated circuit (“IC") 1600 is configured as a 4-radiating element transmitter.
  • the phased array IC 1600 comprises a first subcircuit 1610 in communication with a first radiating element 1611, a second subcircuit 1620 in communication with a second radiating element 1621, a third subcircuit 1630 in communication with a third radiating element 1631, and a fourth subcircuit 1640 in communication with a fourth radiating element 1641.
  • Each subcircuit 1610, 1620, 1630, 1640 receives an input signal and transmits the signal to the spatially orthogonal ports of the respective radiating element 1611, 1621, 1631, 1641.
  • an RF input signal is provided to phased array IC 1600.
  • multiple splitters are used to divide the RF input signal that is communicated to each of four subcircuits 1610, 1620, 1630, 1640 as input signals.
  • a balun may be implemented to convert the RF input signal into a differential RF input signal. Differential signaling may improve signal isolation and interference rejection if the RF signal is in analog form.
  • An active splitter 1653 is configured to divide the differential RF input signal into two separate signals that are communicated to an active splitter 1651 and an active splitter 1652, respectively.
  • active splitter 1651 is configured to divide the communicated signal and communicate the divided signals to first subcircuit 1610 and second subcircuit 1620.
  • active splitter 1652 is configured to divide the communicated signals and communicate the divided signals to third subcircuit 1630 and fourth subcircuit 1640.
  • first subcircuit 1610 comprises a first vector generator 1612 controlled by a first DAC (not shown), a second vector generator 1613 controlled by a second DAC (not shown), and an active splitter 1615.
  • first vector generator 1612 controlled by a first DAC (not shown)
  • second vector generator 1613 controlled by a second DAC (not shown)
  • active splitter 1615 receives a differential signal from active splitter 1651, and divides the differential signal once again.
  • vector generators 1612, 1613 individually receive a differential signal from active splitter 1615. Furthermore, vector generators 1612, 1613 are configured to adjust the phase and polarization of the signals to be transmitted so that individual beam steering and polarization control may be achieved. Vector generators 1612, 1613 afford two degrees of freedom to polarization track and beam steer. For circular or elliptical polarization and single beam steering, one of the vector generators can provide the beam steering while the other vector generator can provide an offset phase to track the polarization.
  • polarized signals are then communicated from vector generators 1612, 1613 to the spatially orthogonal ports of radiating element 1611 for transmission.
  • a digital control 1601 communicates polarization and beam steering commands to vector generators 1612, 1613 via the respective DACs.
  • a phased array integrated circuit 1700 is configured as a 1-beam, 4-radiating element receiver.
  • the phased array IC 1700 comprises a first subcircuit 1710 in communication with a first radiating element 1711, a second subcircuit 1720 in communication with a second radiating element 1721, a third subcircuit 1730 in communication with a third radiating element 1731, and a fourth subcircuit 1740 in communication with a fourth radiating element 1741.
  • Each subcircuit 1710, 1720, 1730, 1740 receives a pair of spatially orthogonal RF signals from the respectively coupled radiating element 1711, 1721, 1731, 1741 and generates a single output signal.
  • first subcircuit 1710 has a polarization tracking and single beam steering portion comprising two vector generators 1712, 1713.
  • the two vector generators 1712, 1713 are configured to receive the RF input signal from radiating element 1711, provide beam steering, track the polarization of the signals, and communicate the vector generator output signals to an active power combiner 1715.
  • Vector generators 1712, 1713 afford two degrees of freedom to polarization track and beam steer.
  • one of the vector generators can provide the beam steering while the other vector generator can provide an offset phase to track the polarization.
  • the active power combiner 1715 combines the two vector generator output signals and generates a composite output signal.
  • a digital control 1701 communicates polarization and beam steering commands to vector generators 1712, 1713, for example, via corresponding DACs.
  • a receive beam output is generated by combining the single output signal from each of four subcircuits 1710, 1720, 1730, 1740.
  • multiple combiners are used to combine the subcircuit output signals into a receive beam.
  • an active combiner 1751 is configured to combine the single outputs from first and second subcircuits 1710, 1720.
  • an active combiner 1752 is configured to combine the single outputs from third and fourth subcircuits 1730, 1740.
  • an active combiner 1753 is configured to combine the combined outputs of active combiners 1751, 1752 to form a receive beam output.
  • a phased array integrated circuit 1800 is configured as a 2-beam, 4-radiating element receiver.
  • the phased array IC 1800 comprises a first subcircuit 1810 in communication with a first radiating element 1811, a second subcircuit 1820 in communication with a second radiating element 1821, a third subcircuit 1830 in communication with a third radiating element 1831, and a fourth subcircuit 1840 in communication with a fourth radiating element 1841.
  • Each subcircuit 1810, 1820, 1830, 1840 receives a pair of spatially orthogonal RF signals from the respectively coupled radiating element 1811, 1821, 1831, 1841 and generates two output signals, one for each beam to be formed.
  • first subcircuit 1810 has a polarization forming portion comprising two vector generators 1812, 1813.
  • the two vector generators 1812, 1813 are configured to receive the RF input signals from radiating element 1811, polarization track the signals, and transmit the vector generator output signals to an active power combiner 1815.
  • the active power combiner 1815 combines the two vector generator output signals and generates a composite intermediate signal.
  • the composite intermediate signal is communicated from active power combiner 1815 to an active power splitter 1816.
  • the active power splitter 1816 divides the intermediate signal into two signals, one for each beam, with each of the two output signals passing through a beam forming portion of subcircuit 1810.
  • the beam forming portion comprises two vector generators 1818, 1819, whose outputs represent independently steered beam components to be combined in the respective beam forming network.
  • a digital control 1801 communicates polarization and beam steering commands to vector generators 1812, 1813, 1818, 1819.
  • a first receive beam output is generated by combining one of the two output signals from each of four subcircuits 1810, 1820, 1830, 1840.
  • a second receive beam output is generated by combining the second of the two output signals from each of four subcircuits 1810, 1820, 1830, 1840.
  • multiple combiners are used to combine the subcircuit output signals into a first receive beam output and a second receive beam output.
  • an active combiner 1851 is configured to combine the first of the two outputs from first and second subcircuits 1810, 1820. Furthermore, an active combiner 1861 is configured to combine the second of the two outputs from first and second subcircuits 1810, 1820. Also in the exemplary embodiment, an active combiner 1852 is configured to combine the first of the two outputs from third and fourth subcircuits 1830, 1840. An active combiner 1862 is configured to combine the second of the two outputs from third and fourth subcircuits 1830, 1840.
  • an active combiner 1853 is configured to combine the combined outputs of active combiners 1851 and 1852 to form a first receive beam output. Furthermore, an active combiner 1863 is configured to combine the combined outputs of active combiners 1861 and 1862 to form a second receive beam output.
  • a phased array integrated circuit 1900 is configured as a 2-beam, 4-radiating element transmitter.
  • the phased array IC 1900 comprises a first subcircuit 1910 in communication with a first radiating element 1911, a second subcircuit 1920 in communication with a second radiating element 1921, a third subcircuit 1930 in communication with a third radiating element 1931, and a fourth subcircuit 1940 in communication with a fourth radiating element 1941.
  • Each subcircuit 1910, 1920, 1930, 1940 receives two input signals and transmits signals to the spatially orthogonal ports of the respectively coupled radiating element 1911, 1921, 1931, 1941.
  • a first transmit beam and a second transmit beam are provided to phased array IC 1900.
  • multiple splitters are used to divide the first and second transmit beams that are communicated to each of four subcircuits 1910, 1920, 1930, 1940 as input signals.
  • an active splitter 1953 is configured to divide the first transmit beam input into two separate signals that are communicated to an active splitter 1951 and an active splitter 1952, respectively.
  • an active splitter 1963 is configured to divide the second transmit beam input into two separate signals that are communicated to an active splitter 1961 and an active splitter 1962, respectively.
  • active splitters 1951, 1961 are configured to divide the communicated signals and communicate the divided signals to first subcircuit 1910 and second subcircuit 1920.
  • the active splitters 1952, 1962 are configured to divide the communicated signals and communicate the divided signals to third subcircuit 1930 and fourth subcircuit 1940.
  • first subcircuit 1910 has a beam forming portion comprising two vector generators 1918, 1919.
  • the two vector generators 1918, 1919 are configured to individually receive an input signal from active splitters 1951, 1961, respectively and adjust the phase according to beam steering commands.
  • An active power combiner 1915 combines the two phase-adjusted signals and generates a composite phase-adjusted intermediate signal.
  • the composite phase-adjusted intermediate signal is communicated from active power combiner 1915 to an active power splitter 1916.
  • the active power splitter 1916 divides the intermediate signal into two splitter output signals, with each of the two splitter output signals passing through a polarization modifying portion of first subcircuit 1910.
  • the polarization modifying portion comprises vector generators 1912, 1913, and is configured to polarize the output signals to the desired polarization.
  • the polarized signals are then communicated to the spatially orthogonal ports of radiating element 1911 for transmission.
  • a digital control 1901 communicates polarization and beam steering commands to vector generators 1912, 1913, 1918, 1919.
  • a phased array integrated circuit 2000 is configured as a 4-beam, 4-radiating element receiver.
  • the phased array IC 2000 comprises a first subcircuit 2010 in communication with a first radiating element 2011, a second subcircuit 2020 in communication with a second radiating element 2021, a third subcircuit 2030 in communication with a third radiating element 2031, and a fourth subcircuit 2040 in communication with a fourth radiating element 2041.
  • Each subcircuit 2010, 2020, 2030, 2040 receives a pair of spatially orthogonal RF signals from the respectively coupled radiating element 2011, 2021, 2031, 2041 and generates four output signals, one for each beam to be formed.
  • first subcircuit 2010 has a polarization tracking portion comprising two vector generators 2012, 2013.
  • the two vector generators 2012, 2013 are configured to receive the RF input signal from radiating element 2011, track the polarization of the signals, and transmit vector generator signal outputs to an active power combiner 2014.
  • the active power combiner 2014 combines the two vector generator signal outputs and generates a composite intermediate signal.
  • the composite intermediate signal is communicated from active power combiner 2014 to an active power splitter 2015.
  • the active power splitter 2015 divides the intermediate signal into four signals, with each of the four output signals passing through a beam forming portion of subcircuit 2010.
  • the beam forming portion comprises four vector generators 2016, 2017, 2018 2019, whose outputs represent independently steered beam components to be combined in the respective beam forming network.
  • a digital control 2001 communicates polarization and beam steering commands to vector generators 2012, 2013, 2016, 2017, 2018, 2019.
  • a first receive beam output is generated by combining one of the four output signals from each of four subcircuits 2010, 2020, 2030, 2040.
  • a second receive beam output is generated by combining a second of the four output signals from each of four subcircuits 2010, 2020, 2030, 2040.
  • a third receive beam output is generated by combining a third of the four output signals from each of four subcircuits 2010, 2020, 2030, 2040.
  • a fourth receive beam output is generated by combining a fourth of the four output signals from each of four subcircuits 2010, 2020, 2030, 2040.
  • multiple combiners are used to combine the subcircuit output signals into the four receive beam outputs.
  • an active combiner 2051 is configured to combine the first of the four outputs from first and second subcircuits 2010, 2020. Furthermore, an active combiner 2061 is configured to combine the second of the four outputs from first and second subcircuits 2010, 2020. Likewise, an active combiner 2071 is configured to combine the third of the four outputs from first and second subcircuits 2010, 2020. An active combiner 2081 is configured to combine the fourth of the four outputs from first and second subcircuits 2010, 2020.
  • an active combiner 2052 is configured to combine the first of the two outputs from third and fourth subcircuits 2030, 2040.
  • An active combiner 2062 is configured to combine the second of the four outputs from third and fourth subcircuits 2030, 2040.
  • an active combiner 2072 is configured to combine the third of the four outputs from third and fourth subcircuits 2030, 2040.
  • An active combiner 2082 is configured to combine the fourth of the four outputs from third and fourth subcircuits 2030, 2040.
  • an active combiner 2053 is configured to combine the combined outputs of active combiners 2051, 2052 to form a first receive beam output.
  • An active combiner 2063 is configured to combine the combined outputs of active combiners 2061, 2062 to form a second receive beam output.
  • an active combiner 2073 is configured to combine the combined outputs of active combiners 2071, 2072 to form a third receive beam output.
  • An active combiner 2083 is configured to combine the combined outputs of active combiners 2081, 2082 to form a fourth receive beam output.
  • a phased array integrated circuit 2100 is configured as a 4-beam, 4-radiating element transmitter.
  • the phased array IC 2100 comprises a first subcircuit 2110 in communication with a first radiating element 2111, a second subcircuit 2120 in communication with a second radiating element 2121, a third subcircuit 2130 in communication with a third radiating element 2131, and a fourth subcircuit 2140 in communication with a fourth radiating element 2141.
  • Each subcircuit 2110, 2120, 2130, 2140 receives four input signals and transmits RF signals to the spatially orthogonal ports of the respectively coupled radiating element 2111, 2121, 2131, 2141.
  • a first, second, third, and fourth transmit beam are provided to phased array IC 2100.
  • multiple splitters are used to divide the first, second, third, and fourth transmit beams that are communicated to each of four subcircuits 2110, 2120, 2130, 2140 as input signals.
  • an active splitter 2153 is configured to divide the first transmit beam input into two separate signals that are communicated to an active splitter 2151 and an active splitter 2152, respectively.
  • an active splitter 2163 is configured to divide the second transmit beam input into two separate signals that are communicated to an active splitter 2161 and an active splitter 2162, respectively.
  • an active splitter 2173 is configured to divide the third transmit beam input into two separate signals that are communicated to an active splitter 2171 and an active splitter 2172, respectively.
  • an active splitter 2183 is configured to divide the fourth transmit beam input into two separate signals that are communicated to an active splitter 2181 and an active splitter 2182, respectively.
  • active splitters 2151, 2161, 2171, 2181 are configured to divide the communicated signals and communicate the divided signals to first subcircuit 2110 and second subcircuit 2120.
  • the active splitters 2152, 2162, 2172, 2182 are configured to divide the communicated signals and communicate the divided signals to third subcircuit 2130 and fourth subcircuit 2140.
  • first subcircuit 2110 has a beam forming portion comprising four vector generators 2116, 2117, 2118, 2119.
  • the four vector generators 2116, 2117, 2118, 2119 are configured to individually receive an input signal from active splitters 2151, 2161, 2171, 2181, respectively and adjust the phase according to beam steering commands.
  • An active power combiner 2114 combines the four phase-adjusted signals and generates a composite phase-adjusted intermediate signal.
  • the composite phase-adjusted intermediate signal is communicated from active power combiner 2114 to an active power splitter 2115.
  • the active power splitter 2115 divides the intermediate signal into two signals, with each of the two output signals passing through a polarization modifying portion of first subcircuit 2110.
  • the polarization modifying portion comprises vector generators 2112, 2113, and is configured to polarize the output signals to the desired polarization.
  • the polarized signals are then communicated to the spatially orthogonal ports of radiating element 2111 for transmission.
  • a digital control 2101 communicates polarization and beam steering commands to vector generators 2112, 2113, 2116, 2117, 2118, 2119, for example, via DACs.
  • a phased array integrated circuit 2200 is configured as a 2-beam, 4-radiating element receiver for circular or elliptical polarizations.
  • a first subcircuit 2210 of phased array IC 2200 the difference between phased array IC 1810 is that only one vector generator 2212 is present in the polarization forming portion.
  • a single vector generator 2212 is sufficient for polarization tracking of circular or elliptical polarizations.
  • vector generator 2212 tracks the polarizations by providing the 90° offset (or non-90° phase offset if elliptical) to the phase of the signal appearing at the alternate spatially orthogonal port of radiating element 2211.
  • the rest of phased array IC 2200 is similar to phased array IC 1810, and will not be described in detail though various components are similarly referenced. Similar variations are possible in the embodiments illustrated in Figures 19-21 , with circular or elliptical polarization embodiments using only a single vector generator for polarization tracking.
  • a multi-beam architecture 2300 comprises multiple radiating elements (RE 1 , RE 2 ,...RE N ) with each radiating element being in communication with an active polarization control (PC 1 , PC 2 ,...PC N ).
  • the multi-beam architecture 2300 further comprises at least one beam forming network (BFN 1 , BFN 2 ,...BFN M ) and at least one phase shifter connected to the active polarization control (PC 1 , PC 2 ,...PC N ) per beam forming network (BFN 1 , BFN 2 ,...BFN M ).
  • each radiating element is in communication with M phase shifters, and each phase shifter is in communication with one of M beam forming networks so that each beam forming network receives a signal from each of the N radiating elements.
  • phase shifters may be active vector generators or any other component suitable to phase shift the signals.
  • the beam forming networks and summing junctions can be passive or active.
  • a multi-beam architecture may similarly be implemented for transmission of RF signals.
  • the active polarization control functions can be any of the embodiments previously listed herein.
  • a power splitter for receive applications
  • power combiner for transmit applications
  • the power splitter or power combiner can be implemented as a passive or active structure as described previously herein.
  • In communication with the power splitter/combiner is a set of vector generators where each vector generator provides a phase shift in support of a particular beam.
  • the set of vector generators is in communication with a power combiner (for receive applications) or power splitter (for transmit applications) to complete the beam formation process.
  • the power splitter or power combiner can be implemented as a passive or active structure as described previously herein.
  • a multi-beam multi-band architecture with a beam forming network in communication with a single radiating element is configured for forming and detecting circular polarized signals.
  • dual-polarization multi-beam receive architecture 2400 comprises active power splitters, vector generators, and active power combiners in communication with a radiating element 2401 to form multiple beams.
  • receive architecture 2400 forms at least one right-hand circular polarized (RHCP) beam and forms at least one left-hand circular polarized (LHCP) beam. More specifically, in an exemplary embodiment, receive architecture 2400 forms N RHCP beams and forms M LHCP beams.
  • RHCP right-hand circular polarized
  • LHCP left-hand circular polarized
  • Each beam, whether right-hand polarized or left-hand polarized, is formed using a similar component configuration.
  • a signal is received at radiating element 2401, having a horizontal polarization and a vertical polarization.
  • the vertical polarized signal is communicated to a first active power splitter 2410 and the horizontal polarized signal is communicated to a second active power splitter 2411.
  • first active power splitter 2410 may refer to multiple active power splitters
  • second active power splitter 2411 may refer to the same number of multiple active power splitters.
  • active power splitters 2410, 2411 individually divide the signal into two or more signals, such that the vertical signal polarization and horizontal signal polarization are divided into a certain number of signals.
  • each beam is formed using a first vector generator 2420, a second vector generator 2421, and an active power combiner 2430.
  • the first vector generator 2420 receives a vertical polarized signal from first active power splitter 2410.
  • First vector generator 2420 is configured to adjust at least one of the phase and amplitude of the vertical polarized signal for beam steering.
  • second vector generator 2421 receives a horizontal polarized signal from second active power splitter 2411.
  • Second vector generator 2421 is configured to adjust at least one of the phase and amplitude of the horizontal polarized signal for polarization tracking.
  • the vertical polarized signal is adjusted for polarization tracking and the horizontal polarized signal is adjusted for beam steering.
  • active power combiner 2430 receives two output signals, one signal from first vector generator 2420 and another signal from second vector generator 2421. Active power combiner 2430 combines the two signals into a beam.
  • the beam may be RHCP or LHCP, depending on the parameters of vector generators 2420, 2421.
  • receive architecture 2400 is configured to provide complete polarization flexibility on a beam by beam basis. However, receive architecture 2400 uses 2*( M + N ) vector generators to accomplish this complete flexibility.
  • a dual-polarization multi-beam receive architecture 2500 with circular polarization comprises active power splitters and vector generators in communication with a radiating element 2501 to form multiple beams.
  • receive architecture 2500 forms at least one RHCP beam and forms at least one LHCP beam. As with the complete polarization embodiment, receive architecture 2500 may form up to N RHCP beams and M LHCP beams. Each beam, whether right-hand polarized or left-hand polarized, is formed using a similar component configuration.
  • a signal is received at radiating element 2501, having a horizontal polarization component and a vertical polarization component. The vertical polarized signal is communicated to a first active power splitter 2510 and the horizontal polarized signal is communicated to a second active power splitter 2511.
  • first active power splitter 2510 may refer to multiple active power splitters
  • second active power splitter 2511 may refer to the same number of multiple active power splitters.
  • active power splitters 2510, 2511 individually divide the signal into two or more signals, such that the vertical signal polarization and horizontal signal polarization are divided into a certain number of signals.
  • each beam is formed using a vector generator 2520 and a quadrature allpass filter (QAF) 2540.
  • QAF 2540 receives a vertical polarized signal from first active power splitter 2510 and a horizontal polarized signal from second active power splitter 2511.
  • QAF 2540 combines the vertical and horizontal polarized signals while injecting a nominally 90° relative phase shift between the two signals.
  • the combined output signal is communicated from QAF 2540 to vector generator 2520.
  • Vector generator 2520 is configured to provide beam steering by adjusting at least one of the phase and amplitude of the combined signal.
  • the beam may be RHCP or LHCP, depending on the signal input connections with QAF 2540.
  • a vertical polarized signal is connected to an I vector input of QAF 2540 and a horizontal polarized signal is connected to a Q vector input of QAF 2540.
  • a vertical polarized signal is connected to the Q vector input of QAF 2540 and a horizontal polarized signal is connected to the I vector input of QAF 2540.
  • receive architecture 2500 provides circular polarization on each beam using ( M + N ) vector generators.
  • a simpler component configuration of a dual-polarization multi-beam receive architecture with circular polarization is possible.
  • a receive architecture comprises a first active power splitter, a second active power splitter and a modified vector generator in communication with a radiating element.
  • no quadrature allpass filters are used.
  • QAF 2540 is eliminated in conjunction with eliminating the QAF at the input of vector generator 2520, resulting in a modified vector generator.
  • QAF 2540 receives two input vectors, referred to as a Q vector and an I vector for convenience.
  • vector generator 2520 also comprises a QAF that is separate and reversed from QAF 2540.
  • the QAF receives a single signal and generates a Q vector and an I vector.
  • the cascade of two reversed QAFs performs a redundant function and may be eliminated.
  • the vertical and horizontal polarized signals from the radiating element are connected to the phase inversion switches of a modified vector generator.
  • the elimination of QAFs is possible if the QAFs are originally reversed of each other. In other words, reversed back-to-back QAFs injecting opposite phase shifts counteract each other and become expendable.
  • Eliminating the two QAFs achieves system advantages, such as eliminating the ohmic loss associated with each QAF, which may be about 3 dB.
  • Another advantage is that the QAF is a bandwidth limiting element of the vector generator, resulting in the modified vector generator being capable of an expanded bandwidth.
  • dual-polarization multi-beam transmit architecture 2600 comprises active power splitters, vector generators, and active power combiners in communication with a radiating element 2601 to form a dual polarized transmit signal from multiple input beams.
  • transmit architecture 2600 generates a dual polarized transmit signal from at least one RHCP beam and from at least one LHCP beam. More specifically, in an exemplary embodiment, transmit architecture 2600 inputs include N RHCP beams and M LHCP beams.
  • an active power splitter 2610 receives a beam having either right-hand or left-hand circular polarization and divides the beam into two divided signals.
  • a first vector generator 2620 receives one of the two divided signals at the input.
  • a second vector generator 2621 receives the other of the two divided signals at the input.
  • First vector generator 2620 is configured to adjust at least one of the phase and amplitude of the divided signal for beam steering.
  • Second vector generator 2621 is configured to adjust at least one of the phase and amplitude of the divided signal for polarization tracking.
  • first vector generator 2620 performs polarization tracking and second vector generator 2621 performs beam steering.
  • first vector generator 2620 generates a vertically polarized signal that is combined with other vertically polarized signals in a first active power combiner 2630.
  • the combined output signal of first active power combiner 2630 is transmitted to radiating element 2601 as a vertical polarization signal.
  • second vector generator 2621 generates a horizontally polarized signal that is combined with other horizontally polarized signals in a second active power combiner 2631.
  • the combined output signal of second active power combiner 2631 is transmitted to radiating element 2601 as a horizontal polarization signal.
  • Active power combiner 2630 may refer to multiple active power combiners, and second active power combiner 2631 may refer to the same number of multiple active power combiners.
  • transmit architecture 2600 is configured to provide complete polarization flexibility on a beam by beam basis. However, transmit architecture 2600 uses 2*( M + N ) vector generators to accomplish this complete flexibility.
  • a dual-polarization multi-beam transmit architecture 2700 with circular polarization comprises vector generators and active power combiners in communication with a radiating element 2701 to form a dual polarized transmit signal from multiple input beams.
  • transmit architecture 2700 generates a dual polarized transmit signal from at least one RHCP beam and from at least one LHCP beam.
  • transmit architecture 2700 inputs include N RHCP beams and M LHCP beams.
  • a vector generator 2720 receives an input beam.
  • Vector generator 2720 is configured to adjust at least one of the phase and amplitude of the input beam.
  • the output signal of vector generator 2720 is communicated to a QAF 2740.
  • QAF 2740 divides output signal into a vertical signal and a horizontal signal while injecting a nominally 90° relative phase shift between the two signals to generate vertical and horizontal polarizations.
  • QAF 2740 generates a vertically polarized signal that is combined with other vertically polarized signals in a first active power combiner 2730.
  • the combined output signal of first active power combiner 2730 is transmitted to radiating element 2701 as a vertical polarization signal.
  • QAF 2740 also generates a horizontally polarized signal that is combined with other horizontally polarized signals in a second active power combiner 2731.
  • the combined output signal of second active power combiner 2731 is transmitted to radiating element 2701 as a horizontal polarization signal.
  • Active power combiner 2730 may refer to multiple active power combiners, and second active power combiner 2731 may refer to the same number of multiple active power combiners.
  • transmit architecture 2700 adjusts for the input beam having either RHCP or LHCP by alternating which output signal of QAF 2740 is communicated to each active power combiner. For example, and as illustrated in Figure 27 , for a RHCP beam, a vertical polarized signal is connected to an I vector output of QAF 2740. In contrast, for a LHCP, a vertical polarized signal is connected to a Q vector output of QAF 2740. In an exemplary embodiment, transmit architecture 2700 forms a dual polarized output signal from circular polarized input beams using ( M + N ) vector generators.
  • FIGS 24-27 illustrate a one dimensional phased array
  • a two dimensional phased array is also contemplated and would be understood by one skilled in the art.
  • phased array antenna In an exemplary embodiment, software reconfiguration of the vector generators occurs in real-time as the system is operating, which enables a phased array antenna to have the capabilities previously described. Additionally, in the exemplary embodiment, there are no hardware changes that require physical and/or manual operations for polarization changing or system alterations. In other words, in an exemplary embodiment, the phased array antenna is fully electronically adjusted, which results in greater degrees of freedom compared to typical systems. Furthermore, the dynamic control of signal polarization of a phased array antenna has numerous applications.
  • dynamic control of signal polarization is implemented for secure communications by utilizing polarization hopping.
  • Communication security can be enhanced by changing the polarization of a communications signal at a rate known to other authorized users.
  • An unauthorized user will not know the correct polarization for any given instant and if using a constant polarization, the unauthorized user would only have the correct polarization for brief instances in time.
  • a similar application to polarization hopping for secure communications is to use polarization hopping for signal scanning. In other words, the polarization of the antenna can be continuously adjusted to monitor for signal detection.
  • dynamic control of signal polarization facilitates radar target identification using a single antenna.
  • Radar target identification systems use information from multiple polarizations to provide increased target identification information. Additionally, a reflected signal's polarization and signal strength can be changed by the object off which it reflects.
  • a single antenna is configured to receive multiple polarizations and produce better identification due to acquiring more information about the target.
  • a satellite will typically transmit and/or receive data (e.g., movies and other television programming, internet data, and/or the like) to consumers who have personal satellite dishes at their home. More recently, the satellites may transmit/receive data from more mobile platforms (such as, transceivers attached to airplanes, trains, and/or automobiles). It is anticipated that increased use of handheld or portable satellite transceivers will be the norm in the future. Although sometimes described in this document in connection with home satellite transceivers, the prior art limitations now discussed may be applicable to any personal consumer terrestrial transceivers (or transmitters or receivers) that communicate with a satellite.
  • data e.g., movies and other television programming, internet data, and/or the like
  • a propagating radio frequency (RF) signal can have different polarizations, namely linear, elliptical, or circular.
  • Linear polarization consists of vertical polarization and horizontal polarization
  • circular polarization consists of left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP).
  • An antenna is typically configured to pass one polarization, such as LHCP, and reject the other polarization, such as RHCP.
  • VSAT antennas utilize a fixed polarization that is hardware dependant.
  • the basis polarization is generally set during installation of the satellite terminal, at which point the manual configuration of the polarizer hardware is fixed.
  • a polarizer is generally set for LHCP or RHCP and fastened into position.
  • To change polarization in a conventional VSAT antenna might require unfastening the polarizer, rotating it 90° to the opposite circular polarization, and then refastening the polarizer.
  • this could not be done with much frequency and only a limited number (on the order of 5 or maybe 10) of transceivers could be switched per technician in a given day.
  • a prior embodiment is the use of "baseball” switches to provide electronically commandable switching between polarizations.
  • the rotation of the “baseball” switches causes a change in polarization by connecting one signal path and terminating the other signal path.
  • each "baseball” switch requires a separate rotational actuator with independent control circuitry, which increases the cost of device such that this configuration is not used (if at all) in consumer broadband or VSAT terminals, but is instead used for large ground stations with a limited number of terminals.
  • Another approach is to have a system with duplicate hardware for each polarization.
  • the polarization selection is achieved by completing or enabling the path of the desired signal and deselecting the undesired signal.
  • This approach is often used in receive-only terminals, for example satellite television receivers having low-cost hardware.
  • receive-only terminals for example satellite television receivers having low-cost hardware.
  • VSAT or broadband terminals doubling the hardware greatly increases the cost of the terminal.
  • Satellites may communicate with the terrestrial based transceivers via radio frequency signals at a particular frequency band and a particular polarization.
  • Each combination of a frequency band and polarization is known as a "color”.
  • the satellite will transmit to a local geographic area with signals in a "beam” and the geographic area that can access signals on that beam may be represented by “spots" on a map.
  • Each beam/spot will have an associated "color.”
  • beams of different colors will not have the same frequency, the same polarization, or both.
  • Adjacent spots will typically have different "colors” to reduce noise/interference from adjacent beams.
  • broadband consumer satellite transceivers are typically set to one color and left at that setting for the life of the transceiver. Should the color of the signal transmitted from the satellite be changed, all of the terrestrial transceivers that were communicating with that satellite on that color would be immediately stranded or cut off. Typically, a technician would have to visit the consumer's home and manually change out (or possibly physically disassemble and re-assemble) the transceiver or polarizer to make the consumer's terrestrial transceiver once again be able to communicate with the satellite on the new "color" signal. The practical effect of this is that in the prior art, no changes are made to the signal color transmitted from the satellite.
  • a second practical limitation is that terrestrial transceivers are typically not changed from one color to another (i.e. if they are changed, it is a manual process).
  • a new low cost method and device to remotely change the frequency and/or polarization of an antenna system.
  • a method and device may be changed nearly instantaneously and often.
  • both frequency and polarization diversity are utilized to reduce interference from adjacent spot beams.
  • both frequencies and polarizations are re-used in other beams that are geographically separated to maximize communications traffic capacity.
  • the spot beam patterns are generally identified on a map using different colors to identify the combination of frequency and polarity used in that spot beam.
  • the frequency and polarity re-use pattern is then defined by how many different combinations (or "colors") are used.
  • an antenna system is configured for frequency and polarization switching.
  • the frequency and polarization switching comprises switching between two frequency ranges and between two different polarizations. This may be known as four color switching.
  • the frequency and polarization switching comprises switching between three frequency ranges and between two different polarizations, for a total of six separate colors.
  • the frequency and polarization switching may comprise switching between two polarizations with any suitable number of frequency ranges.
  • the frequency and polarization switching may comprise switching between more than two polarizations with any suitable number of frequency ranges.
  • Terrestrial microwave communications terminals in one exemplary embodiment, comprise point to point terminals.
  • terrestrial microwave communications terminals comprise ground terminals for use in communication with any satellite, such as a satellite configured to switch frequency range and/or polarity of a RF signal broadcasted. These terrestrial microwave communications terminals are spot beam based systems.
  • a satellite configured to communicate one or more RF signal beams each associated with a spot and/or color has many benefits in microwave communications systems. For example, similar to what was stated above for exemplary terminals in accordance with various embodiments, doing so may facilitate increased bandwidth, load shifting, roaming, increased data rate/download speeds, improved overall efficiency of a group of users on the system, or improved individual data communication rates.
  • the satellite is configured to remotely switch frequency range and/or polarity of a RF signal broadcasted by the satellite. This has many benefits in microwave communications systems.
  • satellites are in communications with any suitable terrestrial microwave communications terminal, such as a terminal having the ability to perform frequency and/or polarization switching.
  • Prior art spot beam based systems use frequency and polarization diversity to reduce or eliminate interference from adjacent spot beams. This allows frequency reuse in non-adjacent beams resulting in increased satellite capacity and throughput.
  • installers of such systems must be able to set the correct polarity at installation or carry different polarity versions of the terminal. For example, at an installation site, an installer might carry a first terminal configured for left hand polarization and a second terminal configured for right hand polarization and use the first terminal in one geographic area and the second terminal in another geographic area. Alternatively, the installer might be able to disassemble and reassemble a terminal to switch it from one polarization to another polarization.
  • a low cost system and method for electronically or electro-mechanically switching frequency ranges and/or polarity is provided.
  • the frequency range and/or polarization of a terminal can be changed without a human touching the terminal. Stated another way, the frequency range and/or polarization of a terminal can be changed without a service call.
  • the system is configured to remotely cause the frequency range and/or polarity of the terminal to change.
  • the system and method facilitate installing a single type of terminal that is capable of being electronically set to a desired frequency range from among two or more frequency ranges.
  • Some exemplary frequency ranges include receiving 10.7 GHz to 12.75 GHz, transmitting 13.75 GHz to 14.5 GHz, receiving 18.3 GHz to 20.2 GHz, and transmitting 28.1 GHz to 30.0 GHz.
  • other desired frequency ranges of a point-to-point system fall within 15 GHz to 38 GHz.
  • the system and method facilitate installing a single type of terminal that is capable of being electronically set to a desired polarity from among two or more polarities.
  • the polarities may comprise, for example, left hand circular, right hand circular, vertical linear, horizontal linear, or any other orthogonal polarization.
  • a single type of terminal may be installed that is capable of electronically selecting both the frequency range and the polarity of the terminal from among choices of frequency range and polarity, respectively.
  • transmit and receive signals are paired so that a common switching mechanism switches both signals simultaneously.
  • one "color” may be a receive signal in the frequency range of 19.7 GHz to 20.2 GHz using RHCP, and a transmit signal in the frequency range of 29.5 GHz to 30.0 GHz using LHCP.
  • Another "color” may use the same frequency ranges but transmit using RHCP and receive using LHCP.
  • transmit and receive signals are operated at opposite polarizations. However, in some exemplary embodiments, transmit and receive signals are operated on the same polarization which increases the signal isolation requirements for self-interference free operation.
  • a single terminal type may be installed that can be configured in a first manner for a first geographical area and in a second manner for a second geographical area that is different from the first area, where the first geographical area uses a first color and the second geographical area uses a second color different from the first color.
  • a terminal such as a terrestrial microwave communications terminal, may be configured to facilitate load balancing.
  • a satellite may be configured to facilitate load balancing. Load balancing involves moving some of the load on a particular satellite, or point-to-point system, from one polarity/frequency range "color” or "beam” to another.
  • the load balancing is enabled by the ability to remotely switch frequency range and/or polarity of either the terminal or the satellite.
  • a method of load balancing comprises the steps of remotely switching frequency range and/or polarity of one or more terrestrial microwave communications terminals.
  • system operators or load monitoring computers may determine that dynamic changes in system bandwidth resources has created a situation where it would be advantageous to move certain users to adjacent beams that may be less congested. In one example, those users may be moved back at a later time as the loading changes again.
  • this signal switching and therefore this satellite capacity "load balancing" can be performed periodically.
  • load balancing can be performed on many terminals (e.g., hundreds or thousands of terminals) simultaneously or substantially simultaneously.
  • load balancing can be performed on many terminals without the need for thousands of user terminals to be manually reconfigured.
  • dynamic control of signal polarization is implemented for secure communications by utilizing polarization hopping.
  • Communication security can be enhanced by changing the polarization of a communications signal at a rate known to other authorized users.
  • An unauthorized user will not know the correct polarization for any given instant and if using a constant polarization, the unauthorized user would only have the correct polarization for brief instances in time.
  • a similar application to polarization hopping for secure communications is to use polarization hopping for signal scanning. In other words, the polarization of the antenna can be continuously adjusted to monitor for signal detection.
  • the load balancing is performed as frequently as necessary based on system loading.
  • load balancing could be done on a seasonal basis.
  • loads may change significantly when schools, colleges, and the like start and end their sessions.
  • vacation seasons may give rise to significant load variations.
  • a particular geographic area may have a very high load of data traffic. This may be due to a higher than average population density in that area, a higher than average number of transceivers in that area, or a higher than average usage of data transmission in that area.
  • load balancing is performed on an hourly basis.
  • load balancing could be performed at any suitable time.
  • load balancing may be performed between home and office terminals.
  • a particular area may have increased localized signal transmission traffic, such as related to high traffic within businesses, scientific research activities, graphic/video intensive entertainment data transmissions, a sporting event or a convention.
  • load balancing may be performed by switching the color of any subgroup(s) of a group of transceivers.
  • the consumer broadband terrestrial terminal is configured to determine, based on preprogrammed instructions, what colors are available and switch to another color of operation.
  • the terrestrial terminal may have visibility to two or more beams (each of a different color).
  • the terrestrial terminal may determine which of the two or more beams is better to connect to. This determination may be made based on any suitable factor.
  • the determination of which color to use is based on the data rate, the download speed, and/or the capacity on the beam associated with that color. In other exemplary embodiments, the determination is made randomly, or in any other suitable way.
  • the broadband terrestrial terminal is configured to switch to another color of operation based on signal strength.
  • the color distribution is based on capacity in the channel.
  • the determination of which color to use may be made to optimize communication speed as the terminal moves from one spot to another.
  • a color signal broadcast by the satellite may change or the spot beam may be moved and still, the broadband terrestrial terminal may be configured to automatically adjust to communicate on a different color (based, for example, on channel capacity).
  • a satellite is configured to communicate one or more RF signal beams each associated with a spot and/or color.
  • the satellite is configured to remotely switch frequency range and/or polarity of a RF signal broadcasted by the satellite.
  • a satellite may be configured to broadcast additional colors. For example, an area and/or a satellite might only have 4 colors at a first time, but two additional colors, (making 6 total colors) might be dynamically added at a second time. In this event, it may be desirable to change the color of a particular spot to one of the new colors. With reference to Figure 29A , spot 4 changes from "red” to then new color "yellow".
  • the ability to add colors may be a function of the system's ability to operate, both transmit and/or receive over a wide bandwidth within one device and to tune the frequency of that device over that wide bandwidth.
  • a satellite may have a downlink, an uplink, and a coverage area.
  • the coverage area may be comprised of smaller regions each corresponding to a spot beam to illuminate the respective region.
  • Spot beams may be adjacent to one another and have overlapping regions.
  • a satellite communications system has many parameters to work: (1) number of orthogonal time or frequency slots (defined as color patterns hereafter); (2) beam spacing (characterized by the beam roll-off at the cross-over point); (3) frequency re-use patterns (the re-use patterns can be regular in structures, where a uniformly distributed capacity is required); and (4) numbers of beams (a satellite with more beams will provide more system flexibility and better bandwidth efficiency).
  • the spot beams may comprise a first spot beam and a second spot beam.
  • the first spot beam may illuminate a first region within a geographic area, in order to send information to a first plurality of subscriber terminals.
  • the second spot beam may illuminate a second region within the geographic area and adjacent to the first region, in order to send information to a second plurality of subscriber terminals.
  • the first and second regions may overlap.
  • the first spot beam may have a first characteristic polarization.
  • the second spot beam may have a second characteristic polarization that is orthogonal to the first polarization.
  • the polarization orthogonality serves to provide an isolation quantity between adjacent beams.
  • Polarization may be combined with frequency slots to achieve a higher degree of isolation between adjacent beams and their respective coverage areas.
  • the subscriber terminals in the first beam may have a polarization that matches the first characteristic polarization.
  • the subscriber terminals in the second beam may have a polarization that matches the second characteristic polarization.
  • the subscriber terminals in the overlap region of the adjacent beams may be optionally assigned to the first beam or to the second beam. This optional assignment is a flexibility within the satellite system and may be altered through reassignment following the start of service for any subscriber terminals within the overlapping region.
  • the ability to remotely change the polarization of a subscriber terminal in an overlapping region illuminated by adjacent spot beams is an important improvement in the operation and optimization of the use of the satellite resources for changing subscriber distributions and quantities. For example it may be an efficient use of satellite resources and improvement to the individual subscriber service to reassign a user or a group of users from a first beam to a second beam or from a second beam to a first beam.
  • Satellite systems using polarization as a quantity to provide isolation between adjacent beams may thus be configured to change the polarization remotely by sending a signal containing a command to switch or change the polarization from a first polarization state to a second orthogonal polarization state.
  • the intentional changing of the polarization may facilitate reassignment to an adjacent beam in a spot beam satellite system using polarization for increasing a beam isolation quantity.
  • the down link may comprise multiple "colors" based on combinations of selected frequency and/or polarizations. Although other frequencies and frequency ranges may be used, and other polarizations as well, an example is provided of one multicolor embodiment.
  • colors U1, U3, and U5 are Left-Hand Circular Polarized ("LHCP") and colors U2, U4, and U6 are Right-Hand Circular Polarized (“RHCP”).
  • LHCP Left-Hand Circular Polarized
  • RHCP Right-Hand Circular Polarized
  • colors U3 and U4 are from 18.3 - 18.8 GHz
  • U5 and U6 are from 18.8 - 19.3 GHz
  • U1 and U2 are from 19.7 - 20.2 GHz.
  • each color represents a 500 MHz frequency range. Other frequency ranges may be used in other exemplary embodiments.
  • selecting one of LHCP or RHCP and designating a frequency band from among the options available will specify a color.
  • the uplink comprises frequency / polarization combinations that can be each designated as a color. Often, the LHCP and RHCP are reversed as illustrated, providing increased signal isolation, but this is not necessary.
  • colors U1, U3, and U5 are RHCP and colors U2, U4, and U6 are LHCP.
  • colors U3 and U4 are from 28.1 - 28.6 GHz; U5 and U6 are from 28.6-29.1 GHz; and U1 and U2 are from 29.5 - 30.0 GHz. It will be noted that in this exemplary embodiment, each color similarly represents a 500 MHz frequency range.
  • the satellite may broadcast one or more RF signal beam (spot beam) associated with a spot and a color.
  • spot beam is further configured to change the color of the spot from a first color to a second, different, color.
  • spot 1 is changed from “red” to "blue”.
  • the map shows a group of spot colors at a first point in time, where this group at this time is designated 9110, and a copy of the map shows a group of spot colors at a second point in time, designated 9120.
  • Some or all of the colors may change between the first point in time and the second point in time. For example spot 1 changes from red to blue and spot 2 changes from blue to red. Spot 3, however, stays the same. In this manner, in an exemplary embodiment, adjacent spots are not identical colors.
  • the spot beams are of one color and others are of a different color.
  • the spot beams of similar color are typically not located adjacent to each other.
  • the distribution pattern illustrated provides one exemplary layout pattern for four color spot beam frequency re-use. It should be recognized that with this pattern, color U1 will not be next to another color U1, etc. It should be noted, however, that typically the spot beams will over lap and that the spot beams may be better represented with circular areas of coverage. Furthermore, it should be appreciated that the strength of the signal may decrease with distance from the center of the circle, so that the circle is only an approximation of the coverage of the particular spot beam. The circular areas of coverage may be overlaid on a map to determine what spot beam(s) are available in a particular area.
  • the satellite is configured to shift one or more spots from a first geographic location to a second geographic location. This may be described as shifting the center of the spot from a first location to a second location. This might also be described as changing the effective size (e.g. diameter) of the spot.
  • the satellite is configured to shift the center of the spot from a first location to a second location and/or change the effective size of one or more spots.
  • it would be unthinkable to shift a spot because such an action would strand terrestrial transceivers.
  • the terrestrial transceivers would be stranded because the shifting of one or more spots would leave some terrestrial terminals unable to communicate with a new spot of a different color.
  • the transceivers are configured to easily switch colors.
  • the geographic location of one or more spots is shifted and the color of the terrestrial transceivers may be adjusted as needed.
  • the spots are shifted such that a high load geographic region is covered by two or more overlapping spots.
  • a particular geographic area 9210 may have a very high load of data traffic.
  • area 9210 is only served by spot 1 at a first point in time illustrated by Figure 29B .
  • the spots have been shifted such that area 9210 is now served or covered by spots 1, 2, and 3.
  • terrestrial transceivers in area 9210 may be adjusted such that some of the transceivers are served by spot 1, others by spot 2, and yet others by spot 3.
  • transceivers in area 9210 may be selectively assigned one of three colors. In this manner, the load in this area can be shared or load-balanced.
  • the switching of the satellites and/or terminals may occur with any regularity.
  • the polarization may be switched during the evening hours, and then switched back during business hours to reflect transmission load variations that occur over time.
  • the polarization may be switched thousands of times during the life of elements in the system.
  • the color of the terminal is not determined or assigned until installation of the terrestrial transceiver. This is in contrast to units shipped from the factory set as one particular color. The ability to ship a terrestrial transceiver without concern for its "color" facilitates simpler inventory processes, as only one unit (as opposed to two or four or more) need be stored.
  • the terminal is installed, and then the color is set in an automated manner (i.e. the technician can't make a human error) either manually or electronically.
  • the color is set remotely such as being assigned by a remote central control center.
  • the unit itself determines the best color and operates at that color.
  • the determination of what color to use for a particular terminal may be based on any number of factors.
  • the color may based on what signal is strongest, based on relative bandwidth available between available colors, randomly assigned among available colors, based on geographic considerations, based on temporal considerations (such as weather, bandwidth usage, events, work patterns, days of the week, sporting events, and/or the like), and or the like.
  • a terrestrial consumer broadband terminal was not capable of determining what color to use based on conditions at the moment of install or quickly, remotely varied during use.
  • the system is configured to facilitate remote addressability of subscriber terminals.
  • the system is configured to remotely address a specific terminal.
  • the system may be configured to address each subscriber terminal.
  • a group of subscriber terminals may be addressable. This may occur using any number of methods now known, or hereafter invented, to communicate instructions with a specific transceiver and/or group of subscriber terminals.
  • a remote signal may command a terminal or group of terminals to switch from one color to another color.
  • the terminals may be addressable in any suitable manner.
  • an IP address is associated with each terminal.
  • the terminals may be addressable through the modems or set top boxes (e.g.
  • the system is configured for remotely changing a characteristic polarization of a subscriber terminal by sending a command addressed to a particular terminal.
  • This may facilitate load balancing and the like.
  • the sub-group could be a geographic sub group within a larger geographic area, or any other group formed on any suitable basis
  • an individual unit may be controlled on a one to one basis.
  • all of the units in a sub-group may be commanded to change colors at the same time.
  • a group is broken into small sub-groups (e.g., 100 sub groups each comprising 1% of the terminals in the larger grouping).
  • Other sub-groups might comprise 5%, 10%, 20%, 35%, 50% of the terminals, and the like.
  • the granularity of the subgroups may facilitate more fine tuning in the load balancing.
  • an individual with a four color switchable transceiver that is located at location A on the map would have available to them colors U1, U2, and U3.
  • the transceiver could be switched to operate on one of those three colors as best suits the needs at the time.
  • location B on the map would have colors U1 and U3 available.
  • location C on the map would have color U1 available.
  • a transceiver will have two or three color options available in a particular area.
  • colors U5 and U6 might also be used and further increase the options of colors to use in a spot beam pattern. This may also further increase the options available to a particular transceiver in a particular location. Although described as a four or six color embodiment, any suitable number of colors may be used for color switching as described herein. Also, although described herein as a satellite, it is intended that the description is valid for other similar remote communication systems that are configured to communicate with the transceiver.
  • the frequency range/polarization of the terminal may be selected at least one of remotely, locally, manually, or some combination thereof.
  • the terminal is configured to be remotely controlled to switch from one frequency range/polarization to another.
  • the terminal may receive a signal from a central system that controls switching the frequency range/polarization.
  • the central system may determine that load changes have significantly slowed down the left hand polarized channel, but that the right hand polarized channel has available bandwidth.
  • the central system could then remotely switch the polarization of a number of terminals. This would improve channel availability for switched and non-switched users alike.
  • the units to switch may be selected based on geography, weather, use characteristics, individual bandwidth requirements, and/or other considerations.
  • the switching of frequency range/polarization could be in response to the customer calling the company about poor transmission quality.
  • the frequency range switching described herein may be performed in any number of ways.
  • the frequency range switching is performed electronically.
  • the frequency range switching may be implemented by adjusting phase shifters in a phased array, switching between fixed frequency oscillators or converters, and/or using a tunable dual conversion transmitter comprising a tunable oscillator signal. Additional aspects of frequency switching for use with the present invention are disclosed in U.S. Application No. 12/614,293 entitled "DUAL CONVERSION TRANSMITTER WITH SINGLE LOCAL OSCILLATOR" which was filed on November 6, 2009; the contents of which are hereby incorporated by reference in their entirety.
  • the polarization switching described herein may be performed in any number of ways.
  • the polarization switching is performed electronically by adjusting the relative phase of signals at orthogonal antenna ports.
  • the polarization switching is performed mechanically.
  • the polarization switching may be implemented by use of a trumpet switch.
  • the trumpet switch may be actuated electronically.
  • the trumpet switch may be actuated by electronic magnet, servo, an inductor, a solenoid, a spring, a motor, an electro-mechanical device, or any combination thereof.
  • the switching mechanism can be any mechanism configured to move and maintain the position of trumpet switch.
  • trumpet switch is held in position by a latching mechanism.
  • the latching mechanism for example, may be fixed magnets. The latching mechanism keeps trumpet switch in place until the antenna is switched to another polarization.
  • the terminal may be configured to receive a signal causing switching and the signal may be from a remote source.
  • the remote source may be a central office.
  • an installer or customer can switch the polarization using a local computer connected to the terminal which sends commands to the switch.
  • an installer or customer can switch the polarization using the television set-top box which in turn sends signals to the switch.
  • the polarization switching may occur during installation, as a means to increase performance, or as another option for troubleshooting poor performance.
  • manual methods may be used to change a terminal from one polarization to another. This can be accomplished by physically moving a switch within the housing of the system or by extending the switch outside the housing to make it easier to manually switch the polarization. This could be done by either an installer or customer.
  • a low cost consumer broadband terrestrial terminal antenna system may include an antenna, a transceiver in signal communication with the antenna, and a polarity switch configured to cause the antenna system to switch between a first polarity and a second polarity.
  • the antenna system may be configured to operate at the first polarity and/or the second polarity.
  • a method of system resource load balancing may include the steps of: (1) determining that load on a first spotbeam is higher than a desired level and that load on a second spotbeam is low enough to accommodate additional load; (2) identifying, as available for switching, consumer broadband terrestrial terminals on the first spot beam that are in view of the second spotbeam; (3) sending a remote command to the available for switching terminals; and (4) switching color in said terminals from the first beam to the second beam based on the remote command.
  • the first and second spot beams are each a different color.
  • a satellite communication system may include: a satellite configured to broadcast multiple spotbeams; a plurality of user terminal antenna systems in various geographic locations; and a remote system controller configured to command at least some of the subset of the plurality of user terminal antenna systems to switch at least one of a polarity and a frequency to switch from the first spot beam to the second spotbeam.
  • the multiple spot beams may include at least a first spotbeam of a first color and a second spotbeam of a second color.
  • at least a subset of the plurality of user terminal antenna systems may be located within view of both the first and second spotbeams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Amplifiers (AREA)
  • Networks Using Active Elements (AREA)
  • Radio Transmission System (AREA)
  • Control Of Ac Motors In General (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Transceivers (AREA)
EP13193382.2A 2009-04-13 2010-04-13 Architecture de réseau actif à commande de phase et faisceaux multiples Active EP2725657B1 (fr)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US16891309P 2009-04-13 2009-04-13
US22235409P 2009-07-01 2009-07-01
US22236309P 2009-07-01 2009-07-01
US23452109P 2009-08-17 2009-08-17
US23451309P 2009-08-17 2009-08-17
US23796709P 2009-08-28 2009-08-28
US25904909P 2009-11-06 2009-11-06
US25937509P 2009-11-09 2009-11-09
US26560509P 2009-12-01 2009-12-01
PCT/US2010/030881 WO2010120770A1 (fr) 2009-04-13 2010-04-13 Architecture réseau à commande de phase active à multiples faisceaux
EP10713546.9A EP2419963B1 (fr) 2009-04-13 2010-04-13 Architecture réseau à commande de phase active à multiples faisceaux

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP10713546.9A Division EP2419963B1 (fr) 2009-04-13 2010-04-13 Architecture réseau à commande de phase active à multiples faisceaux

Publications (2)

Publication Number Publication Date
EP2725657A1 true EP2725657A1 (fr) 2014-04-30
EP2725657B1 EP2725657B1 (fr) 2021-03-03

Family

ID=42288959

Family Applications (3)

Application Number Title Priority Date Filing Date
EP10713546.9A Active EP2419963B1 (fr) 2009-04-13 2010-04-13 Architecture réseau à commande de phase active à multiples faisceaux
EP13193382.2A Active EP2725657B1 (fr) 2009-04-13 2010-04-13 Architecture de réseau actif à commande de phase et faisceaux multiples
EP10716940.1A Active EP2419964B1 (fr) 2009-04-13 2010-04-13 Architecture réseau à commande de phase active

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10713546.9A Active EP2419963B1 (fr) 2009-04-13 2010-04-13 Architecture réseau à commande de phase active à multiples faisceaux

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10716940.1A Active EP2419964B1 (fr) 2009-04-13 2010-04-13 Architecture réseau à commande de phase active

Country Status (5)

Country Link
US (12) US8228232B2 (fr)
EP (3) EP2419963B1 (fr)
JP (3) JP5603927B2 (fr)
TW (8) TWI535194B (fr)
WO (8) WO2010120768A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10305199B2 (en) 2009-04-13 2019-05-28 Viasat, Inc. Multi-beam active phased array architecture with independent polarization control
US10516219B2 (en) 2009-04-13 2019-12-24 Viasat, Inc. Multi-beam active phased array architecture with independent polarization control
EP3859986A1 (fr) * 2020-01-29 2021-08-04 ThinKom Solutions, Inc. Réalisation et application de polarisation circulaire simultanée dans des systèmes de polarisation uniques commutables
IT202000023230A1 (it) * 2020-10-01 2022-04-01 Teko Telecom S R L Beamformer riconfigurabile, in particolare per 5g nr
US11715875B2 (en) 2020-11-06 2023-08-01 Electronics And Telecommunications Research Institute Individual rotating radiating element and array antenna using the same

Families Citing this family (277)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0422529D0 (en) * 2004-10-11 2004-11-10 Invacom Ltd Apparatus for selected provision of linear and/or circular polarity signals
WO2008156800A1 (fr) * 2007-06-19 2008-12-24 Parkervision, Inc. Amplification à entrées multiples et à sortie unique (miso) sans combinateur avec contrôle mélangé
CN101868923B (zh) 2007-09-24 2015-04-01 松下航空电子公司 用于在旅行期间在移动平台上接收广播内容的系统和方法
US8917207B2 (en) * 2007-10-16 2014-12-23 Livetv, Llc Aircraft in-flight entertainment system having a multi-beam phased array antenna and associated methods
EP2417805B1 (fr) * 2009-04-09 2017-09-06 Telefonaktiebolaget LM Ericsson (publ) Filtre pour un système cellulaire intérieur
TWI535194B (zh) 2009-04-13 2016-05-21 凡爾賽特公司 前置選擇器放大器
WO2010120790A2 (fr) 2009-04-13 2010-10-21 Viasat, Inc. Système d'antenne réseau à commande de phase en semi-duplex
CA2708114C (fr) * 2009-06-18 2017-11-14 Lin-ping SHEN Matrice buttler et antenne a mise en forme des faisceaux ainsi constituee
US9584199B2 (en) * 2009-09-21 2017-02-28 Kathrein-Werke Kg User group specific beam forming in a mobile network
US8977309B2 (en) * 2009-09-21 2015-03-10 Kathrein-Werke Kg Antenna array, network planning system, communication network and method for relaying radio signals with independently configurable beam pattern shapes using a local knowledge
US8503965B2 (en) * 2009-11-03 2013-08-06 Viasat, Inc. Programmable RF array
US9379438B1 (en) * 2009-12-01 2016-06-28 Viasat, Inc. Fragmented aperture for the Ka/K/Ku frequency bands
US8879995B2 (en) * 2009-12-23 2014-11-04 Viconics Electronics Inc. Wireless power transmission using phased array antennae
KR101665158B1 (ko) 2010-02-08 2016-10-11 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 조정가능한 빔 특성들을 갖는 안테나
JPWO2011145264A1 (ja) * 2010-05-21 2013-07-22 日本電気株式会社 アンテナ装置、アンテナシステム、及びその調整方法
US8862050B2 (en) * 2010-07-30 2014-10-14 Spatial Digital Systems, Inc. Polarization diversity with portable devices via wavefront muxing techniques
US8699784B2 (en) * 2010-08-10 2014-04-15 Camtek Ltd. Inspection recipe generation and inspection based on an inspection recipe
US20120105205A1 (en) * 2010-10-29 2012-05-03 Ncr Corporation Item checkout device with weigh plate antenna
US9112551B2 (en) * 2010-11-15 2015-08-18 Telefonaktiebolaget L M Ericsson (Publ) Antenna architecture for maintaining beam shape in a reconfigurable antenna
FR2970817B1 (fr) 2011-01-24 2013-11-15 St Microelectronics Sa Separateur radiofrequence
FR2970816B1 (fr) * 2011-01-24 2013-11-15 St Microelectronics Sa Combineur radiofrequence
KR20120086201A (ko) * 2011-01-25 2012-08-02 한국전자통신연구원 복편파 안테나 및 이를 이용한 신호 송수신 방법
CN102647213B (zh) * 2011-02-21 2015-03-11 华为技术有限公司 一种无线通信系统及方法
WO2012118874A2 (fr) * 2011-03-03 2012-09-07 Thomson Licensing Appareil et procédé pour traiter un signal radiofréquence
US20140225805A1 (en) * 2011-03-15 2014-08-14 Helen K. Pan Conformal phased array antenna with integrated transceiver
US9013360B1 (en) 2011-05-13 2015-04-21 AMI Research & Development, LLC Continuous band antenna (CBA) with switchable quadrant beams and selectable polarization
US20120294338A1 (en) * 2011-05-18 2012-11-22 Jing-Hong Conan Zhan Phase-arrayed transceiver
US8970427B2 (en) 2011-05-18 2015-03-03 Mediatek Singapore Pte. Ltd. Phase-arrayed device and method for calibrating the phase-arrayed device
US9431702B2 (en) * 2011-05-24 2016-08-30 Xirrus, Inc. MIMO antenna system having beamforming networks
KR101800221B1 (ko) 2011-08-11 2017-11-22 삼성전자주식회사 무선통신 시스템에서 빔 추적 방법 및 장치
US9124361B2 (en) * 2011-10-06 2015-09-01 Raytheon Company Scalable, analog monopulse network
US8737531B2 (en) 2011-11-29 2014-05-27 Viasat, Inc. Vector generator using octant symmetry
US8699626B2 (en) 2011-11-29 2014-04-15 Viasat, Inc. General purpose hybrid
US9490886B2 (en) * 2012-02-27 2016-11-08 Qualcomm Incorporated RF beamforming in phased array application
US9316723B2 (en) 2012-05-24 2016-04-19 Raytheon Company Differential high power amplifier for a low profile, wide band transmit array
CN104428293B (zh) 2012-06-11 2018-06-08 Ucb生物制药私人有限公司 调节TNFα的苯并咪唑类
TWI467973B (zh) * 2012-06-19 2015-01-01 Univ Nat Cheng Kung 射頻訊號多模態分配裝置
KR102062158B1 (ko) 2012-06-21 2020-01-03 삼성전자주식회사 통신장치 및 지향성 제어 방법
US10534189B2 (en) * 2012-11-27 2020-01-14 The Board Of Trustees Of The Leland Stanford Junior University Universal linear components
RU2525120C2 (ru) * 2012-11-30 2014-08-10 Открытое акционерное общество "Омский научно-исследовательский институт приборостроения" (ОАО "ОНИИП") Многоканальный блок фильтрации
EP3787110A1 (fr) * 2012-12-03 2021-03-03 ViaSat Inc. Architecture de réseau actif à commande de phase et faisceaux multiples avec commande de polarisation indépendante
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9160064B2 (en) * 2012-12-28 2015-10-13 Kopin Corporation Spatially diverse antennas for a headset computer
WO2014142885A1 (fr) * 2013-03-14 2014-09-18 Viasat, Inc. Circuits de retard de temps réel à large bande pour des architectures d'antenne
CA2841685C (fr) 2013-03-15 2021-05-18 Panasonic Avionics Corporation Systeme et procede permettant d'assurer une distribution de donnees sans fil a modes multiples
US9042809B2 (en) * 2013-03-19 2015-05-26 Delphi Technologies, Inc. Satellite communication having distinct low priority information broadcast into adjacent sub-regions
US10031210B2 (en) * 2013-03-21 2018-07-24 Nxp Usa, Inc. Radar device and method of operating a radar device
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9350444B2 (en) * 2013-08-22 2016-05-24 Broadcom Corporation Wireless communication device with switched polarization and methods for use therewith
US9806422B2 (en) 2013-09-11 2017-10-31 International Business Machines Corporation Antenna-in-package structures with broadside and end-fire radiations
US9819098B2 (en) 2013-09-11 2017-11-14 International Business Machines Corporation Antenna-in-package structures with broadside and end-fire radiations
JP2015076708A (ja) * 2013-10-08 2015-04-20 住友電気工業株式会社 増幅回路
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9543662B2 (en) * 2014-03-06 2017-01-10 Raytheon Company Electronic Rotman lens
US10073812B2 (en) 2014-04-25 2018-09-11 The University Of North Carolina At Charlotte Digital discrete-time non-foster circuits and elements
CN104022743A (zh) * 2014-05-30 2014-09-03 桐城运城制版有限公司 一种多波段变频功放
US9735469B1 (en) 2014-06-09 2017-08-15 Rockwell Collins, Inc. Integrated time delay unit system and method for a feed manifold
US9923269B1 (en) * 2015-06-30 2018-03-20 Rockwell Collins, Inc. Phase position verification system and method for an array antenna
US9653820B1 (en) 2014-06-09 2017-05-16 Rockwell Collins, Inc. Active manifold system and method for an array antenna
US9673846B2 (en) 2014-06-06 2017-06-06 Rockwell Collins, Inc. Temperature compensation system and method for an array antenna system
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10170833B1 (en) 2014-12-19 2019-01-01 L-3 Communications Corp. Electronically controlled polarization and beam steering
US10263329B1 (en) * 2015-01-12 2019-04-16 Raytheon Company Dynamic azimuth scanning for rotating active electronic scanned array radar
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9848370B1 (en) * 2015-03-16 2017-12-19 Rkf Engineering Solutions Llc Satellite beamforming
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US10128939B2 (en) 2015-04-10 2018-11-13 Viasat, Inc. Beamformer for end-to-end beamforming communications system
BR122019006888B1 (pt) 2015-04-10 2020-10-13 Viasat, Inc método para fornecer um serviço de comunicação a terminais de usuário
US10263692B2 (en) 2015-04-10 2019-04-16 Viasat, Inc. Satellite for end-to-end beamforming
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
CN104767501B (zh) * 2015-05-06 2017-09-29 中国科学技术大学 一种基于超高频rfid应用的6位360°有源移相器
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
WO2017078851A2 (fr) 2015-09-18 2017-05-11 Corman David W Antenne réseau à commande de phase laminaire
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US9979447B2 (en) * 2016-01-04 2018-05-22 Futurewei Technologies, Inc. Radio frequency distribution network for a split beam user specific tilt antenna
US10700444B2 (en) 2016-07-06 2020-06-30 Industrial Technology Research Institute Multi-beam phased antenna structure and controlling method thereof
US9923712B2 (en) * 2016-08-01 2018-03-20 Movandi Corporation Wireless receiver with axial ratio and cross-polarization calibration
US10323943B2 (en) * 2016-08-01 2019-06-18 Movandi Corporation Wireless receiver with tracking using location, heading, and motion sensors and adaptive power detection
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291296B2 (en) 2016-09-02 2019-05-14 Movandi Corporation Transceiver for multi-beam and relay with 5G application
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
EP3529917B1 (fr) * 2016-10-21 2020-12-30 Viasat, Inc. Communications à formation de faisceau basées au sol utilisant des liaisons de connexion spatialement multiplexées synchronisées mutuellement
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10199717B2 (en) 2016-11-18 2019-02-05 Movandi Corporation Phased array antenna panel having reduced passive loss of received signals
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
SG11201907651UA (en) 2017-03-02 2019-09-27 Viasat Inc Dynamic satellite beam assignment
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10379198B2 (en) 2017-04-06 2019-08-13 International Business Machines Corporation Determining positions of transducers for receiving and/or transmitting wave signals
TWI633712B (zh) 2017-05-16 2018-08-21 財團法人工業技術研究院 三維巴特勒矩陣
US10484078B2 (en) 2017-07-11 2019-11-19 Movandi Corporation Reconfigurable and modular active repeater device
KR101865612B1 (ko) * 2017-09-05 2018-06-11 한국과학기술원 가변 이득 위상 변위기
CN111133631B (zh) 2017-09-05 2021-07-30 韩国科学技术院 可变增益移相器
KR101869241B1 (ko) * 2017-09-05 2018-06-21 한국과학기술원 가변 이득 위상 변위기
US11171418B2 (en) * 2017-09-18 2021-11-09 Integrated Device Technology, Inc. Method to utilize bias current control in vertical or horizontal channels for polarization rotation with less power consumption
WO2019126826A1 (fr) 2017-12-24 2019-06-27 Anokiwave, Inc. Circuit intégré de formation de faisceau, système et procédé d'aesa
US10193512B1 (en) * 2018-01-05 2019-01-29 Werlatone, Inc. Phase-shifting power divider/combiner assemblies and systems
US10777894B2 (en) 2018-02-15 2020-09-15 The Mitre Corporation Mechanically reconfigurable patch antenna
US10700420B2 (en) * 2018-03-05 2020-06-30 Commscope Technologies Llc Compact multiband feed for small cell base station antennas
US10998640B2 (en) 2018-05-15 2021-05-04 Anokiwave, Inc. Cross-polarized time division duplexed antenna
US10972191B2 (en) * 2018-05-22 2021-04-06 Asia Satellite Telecommunications Company Limited Uplink interference geolocation method and system for high throughput satellite
US11121465B2 (en) * 2018-06-08 2021-09-14 Sierra Nevada Corporation Steerable beam antenna with controllably variable polarization
CN112513666A (zh) 2018-07-20 2021-03-16 京瓷株式会社 电子设备、电子设备的控制方法以及电子设备的控制程序
US10432308B1 (en) * 2018-08-23 2019-10-01 Space Systems/Loral, Llc Satellite system using an RF GBBF feeder uplink beam from a gateway to a satellite, and using an optical ISL from the satellite to another satellite
US11336237B2 (en) * 2018-09-24 2022-05-17 Metawave Corporation Vector modulator for millimeter wave applications
US11219140B2 (en) * 2018-10-04 2022-01-04 Andrew Wireless Systems Gmbh Flexible heat pipe cooled assembly
CN109286080B (zh) * 2018-10-23 2021-01-12 北京无线电测量研究所 一种极化装置
US11542040B1 (en) * 2018-11-06 2023-01-03 Meta Platforms, Inc. Low earth orbit satellite communication system employing beam-hopping
US11228116B1 (en) * 2018-11-06 2022-01-18 Lockhead Martin Corporation Multi-band circularly polarized waveguide feed network
US10931033B2 (en) * 2019-01-23 2021-02-23 Qorvo Us, Inc. Multi-polarization millimeter wave (mmWave) transmitter/receiver architecture with shared power amplifiers
US11171682B2 (en) * 2019-01-30 2021-11-09 Swiftlink Technologies Inc. Dual polarization millimeter-wave frontend integrated circuit
TWI696345B (zh) * 2019-03-11 2020-06-11 立積電子股份有限公司 信號處理裝置
CN111710961B (zh) * 2019-03-18 2023-03-17 Oppo广东移动通信有限公司 毫米波天线模组和电子设备
US11057011B2 (en) 2019-04-05 2021-07-06 Semiconductor Components Industries, Llc Amplifiers suitable for mm-wave signal splitting and combining
RU2729889C1 (ru) * 2019-05-29 2020-08-13 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Антенная система и способ ее работы
US11545950B2 (en) 2019-06-03 2023-01-03 Analog Devices, Inc. Apparatus and methods for vector modulator phase shifters
CN112152696B (zh) * 2019-06-29 2022-10-28 亚洲卫星有限公司 用于高通量卫星的上行干扰地理定位方法及系统
US11171416B2 (en) * 2019-07-31 2021-11-09 Honeywell International Inc. Multi-element antenna array with integral comparison circuit for phase and amplitude calibration
WO2021038965A1 (fr) * 2019-08-27 2021-03-04 株式会社村田製作所 Module d'antenne et dispositif de communication doté de celui-ci
CN110646784B (zh) * 2019-09-29 2021-07-30 航天南湖电子信息技术股份有限公司 一种基于dac的雷达数字t/r组件发射波形产生方法
CN114586238A (zh) * 2019-10-18 2022-06-03 盖尔创尼克斯美国股份有限公司 减轻多波束形成网络中的波束偏斜
US11950585B2 (en) 2020-01-09 2024-04-09 International Business Machines Corporation Imaging with wireless communication signals
CN111864385B (zh) * 2020-08-28 2021-03-23 西安电子科技大学 基于超表面的双波束双圆极化谐振腔天线
US11929556B2 (en) * 2020-09-08 2024-03-12 Raytheon Company Multi-beam passively-switched patch antenna array
CN112290223B (zh) * 2020-09-27 2021-06-18 南京大学 一种极化可编程超构表面及宽带动态波束调控方法
US11916641B2 (en) 2021-04-14 2024-02-27 Samsung Electronics Co., Ltd. Method of synchronizing the H and V phase in a dual-polarized phased array system
US11714330B2 (en) * 2021-04-30 2023-08-01 The Regents Of The University Of Michigan Phase-combining waveguide doubler for optical phased array in solid-state lidar applications
US11894619B2 (en) 2021-07-23 2024-02-06 Raytheon Company Passive vector modulator
CN113922839B (zh) * 2021-12-14 2022-03-01 成都雷电微力科技股份有限公司 一种收发单元、收发组件及相控阵天线结构
US11689393B1 (en) * 2022-01-27 2023-06-27 The Boeing Company Near-zero latency analog bi-quad infinite impulse response filter
CN116526098B (zh) * 2023-05-08 2024-02-23 宁波华瓷通信技术股份有限公司 一种多频合路器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038147A (en) * 1988-11-03 1991-08-06 Alcatel Espace Electronically scanned antenna
WO1998056123A1 (fr) * 1997-06-02 1998-12-10 Motorola, Inc. Systeme et procede faisant appel a des signaux amdc polarises
US20030162566A1 (en) * 2000-05-05 2003-08-28 Joseph Shapira System and method for improving polarization matching on a cellular communication forward link
US7180447B1 (en) * 2005-04-29 2007-02-20 Lockhead Martin Corporation Shared phased array beamformer

Family Cites Families (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3119965A (en) * 1960-08-08 1964-01-28 Electronic Communications System for splitting ultra-high-frequency power for divided transmission
US3842362A (en) * 1972-12-20 1974-10-15 Hallicrafters Co Adjustable parallel-t network
AU531239B2 (en) * 1978-06-15 1983-08-18 Plessey Overseas Ltd. Directional arrays
JPS5617536A (en) * 1979-07-24 1981-02-19 Fumio Ikegami Radio receiving device
US4907003A (en) 1986-12-22 1990-03-06 Microdyne Corporation Satellite receiver and acquisiton system
US4857777A (en) 1987-03-16 1989-08-15 General Electric Company Monolithic microwave phase shifting network
US4857778A (en) * 1988-01-28 1989-08-15 Maxim Integrated Products Programmable universal active filter
JP2580713B2 (ja) * 1988-06-03 1997-02-12 日本電気株式会社 円偏波アンテナ
US4994773A (en) * 1988-10-13 1991-02-19 Chen Tzu H Digitally controlled monolithic active phase shifter apparatus having a cascode configuration
US4896374A (en) * 1988-12-09 1990-01-23 Siemens Aktiengesellschaft Broadband monolithic balanced mixer apparatus
US4965602A (en) 1989-10-17 1990-10-23 Hughes Aircraft Company Digital beamforming for multiple independent transmit beams
US5045822A (en) * 1990-04-10 1991-09-03 Pacific Monolithics Active power splitter
US5128687A (en) * 1990-05-09 1992-07-07 The Mitre Corporation Shared aperture antenna for independently steered, multiple simultaneous beams
US5086302A (en) * 1991-04-10 1992-02-04 Allied-Signal Inc. Fault isolation in a Butler matrix fed circular phased array antenna
DE9113444U1 (fr) 1991-10-29 1992-01-09 Siemens Ag, 8000 Muenchen, De
US5351053A (en) * 1993-07-30 1994-09-27 The United States Of America As Represented By The Secretary Of The Air Force Ultra wideband radar signal processor for electronically scanned arrays
US5619503A (en) 1994-01-11 1997-04-08 Ericsson Inc. Cellular/satellite communications system with improved frequency re-use
US5539413A (en) 1994-09-06 1996-07-23 Northrop Grumman Integrated circuit for remote beam control in a phased array antenna system
US5760740A (en) 1995-08-08 1998-06-02 Lucent Technologies, Inc. Apparatus and method for electronic polarization correction
US5907815A (en) 1995-12-07 1999-05-25 Texas Instruments Incorporated Portable computer stored removable mobile telephone
JP3279180B2 (ja) * 1996-06-07 2002-04-30 三菱電機株式会社 アレイアンテナ装置
JP3526196B2 (ja) 1997-01-07 2004-05-10 株式会社東芝 アダプティブアンテナ
US5942929A (en) 1997-05-22 1999-08-24 Qualcomm Incorporated Active phase splitter
GB2331193B (en) * 1997-11-07 2001-07-11 Plessey Semiconductors Ltd Image reject mixer arrangements
US6011512A (en) * 1998-02-25 2000-01-04 Space Systems/Loral, Inc. Thinned multiple beam phased array antenna
US6275187B1 (en) * 1998-03-03 2001-08-14 General Electric Company System and method for directing an adaptive antenna array
US6377558B1 (en) 1998-04-06 2002-04-23 Ericsson Inc. Multi-signal transmit array with low intermodulation
US6411824B1 (en) 1998-06-24 2002-06-25 Conexant Systems, Inc. Polarization-adaptive antenna transmit diversity system
CN100413147C (zh) 1998-07-13 2008-08-20 Ntt移动通信网株式会社 自适应阵列天线
US6295035B1 (en) * 1998-11-30 2001-09-25 Raytheon Company Circular direction finding antenna
US5966049A (en) 1998-12-01 1999-10-12 Space Systems/Loral, Inc. Broadband linearizer for power amplifiers
US6326845B1 (en) * 1999-02-16 2001-12-04 Matsushita Electric Industrial Co., Ltd. Feedforward amplifier
US6005515A (en) 1999-04-09 1999-12-21 Trw Inc. Multiple scanning beam direct radiating array and method for its use
KR100323584B1 (ko) 1999-05-14 2002-02-19 오길록 적응형 피드포워드 선형증폭기 최적 제어방법
US6430393B1 (en) * 1999-08-23 2002-08-06 Hughes Electronics Corporation Satellite communication system using linear cell tracking
JP4634557B2 (ja) * 1999-11-30 2011-02-16 富士通株式会社 信号キャンセル方法及びその装置
JP3947865B2 (ja) 2000-03-06 2007-07-25 富士通株式会社 前置増幅器
EP1279046B1 (fr) * 2000-04-07 2007-04-04 The Chief Controller, Research and Development, Defence Research and Development Organisation of Ministry of Defence Module d'emission/reception pour antenne active a balayage
US6538603B1 (en) 2000-07-21 2003-03-25 Paratek Microwave, Inc. Phased array antennas incorporating voltage-tunable phase shifters
JP2002057515A (ja) * 2000-08-11 2002-02-22 Nippon Telegr & Teleph Corp <Ntt> マトリクス回路及びその回路を用いたフェーズドアレイアンテナ
EP1193861B1 (fr) 2000-09-22 2006-11-15 Matsushita Electric Industrial Co., Ltd. Amplificateur à contre-réaction de type aval
JP3576478B2 (ja) * 2000-11-01 2004-10-13 三菱電機株式会社 移動体衛星通信装置及び移動体衛星通信方法
SE517748C2 (sv) 2000-11-20 2002-07-09 Totalfoersvarets Forskningsins Rekonfigurerbar bredbandig aktiv effektdelare, dito effektkombinerare och dito dubbelriktad effektdelare/ effektkombinerare samt kretsar uppbyggda av dessa
US6611230B2 (en) 2000-12-11 2003-08-26 Harris Corporation Phased array antenna having phase shifters with laterally spaced phase shift bodies
US6677908B2 (en) * 2000-12-21 2004-01-13 Ems Technologies Canada, Ltd Multimedia aircraft antenna
US20030030895A1 (en) * 2001-06-27 2003-02-13 Vincent So Optical amplifiers and optical amplifying method for improved noise figure
US7027790B2 (en) * 2001-08-10 2006-04-11 Broadcom Corporation Transceiver front-end
GB0125349D0 (en) * 2001-10-22 2001-12-12 Qinetiq Ltd Antenna system
US6806768B2 (en) 2001-10-31 2004-10-19 Qualcomm Incorporated Balanced power amplifier with a bypass structure
US6657589B2 (en) * 2001-11-01 2003-12-02 Tia, Mobile Inc. Easy set-up, low profile, vehicle mounted, in-motion tracking, satellite antenna
JP2003168938A (ja) 2001-11-29 2003-06-13 Sanyo Electric Co Ltd 可変利得型差動増幅回路および乗算回路
US6750709B2 (en) * 2001-11-30 2004-06-15 The Boeing Company Bipolar transistor-based linearizer with programmable gain and phase response system
JP2003229738A (ja) * 2002-01-31 2003-08-15 Mitsubishi Electric Corp アナログ形移相器
US6794938B2 (en) * 2002-03-19 2004-09-21 The University Of North Carolina At Charlotte Method and apparatus for cancellation of third order intermodulation distortion and other nonlinearities
US7233624B2 (en) * 2002-06-11 2007-06-19 Interdigital Technology Corporation Method and system for all digital gain control
US6784817B2 (en) 2002-06-13 2004-08-31 Matsushita Electric Industrial Co., Ltd. Data generating method, data generator, and transmitter using the same
JP2004040367A (ja) * 2002-07-02 2004-02-05 Pioneer Electronic Corp 隣接妨害波除去機能付き受信機
US7248625B2 (en) * 2002-09-05 2007-07-24 Silicon Storage Technology, Inc. Compensation of I-Q imbalance in digital transceivers
US7126541B2 (en) 2002-11-19 2006-10-24 Farrokh Mohamadi Beam forming phased array system in a transparent substrate
US6759977B1 (en) * 2002-12-20 2004-07-06 Saab Marine Electronics Ab Method and apparatus for radar-based level gauging
US7684776B2 (en) * 2002-12-24 2010-03-23 Intel Corporation Wireless communication device having variable gain device and method therefor
US6828932B1 (en) 2003-01-17 2004-12-07 Itt Manufacutring Enterprises, Inc. System for receiving multiple independent RF signals having different polarizations and scan angles
JP2004241972A (ja) * 2003-02-05 2004-08-26 Japan Radio Co Ltd アレイアンテナ装置
US7460623B1 (en) * 2003-02-06 2008-12-02 Broadlogic Network Technologies Inc. Digital two-stage automatic gain control
US7003263B2 (en) 2003-05-12 2006-02-21 Lucent Technologies Inc. Telecommunications receiver and a transmitter
US7336939B2 (en) * 2003-05-21 2008-02-26 Broadcom Corporation Integrated tracking filters for direct conversion and low-IF single conversion broadband filters
US6946990B2 (en) 2003-07-23 2005-09-20 The Boeing Company Apparatus and methods for radome depolarization compensation
US7089859B2 (en) 2003-09-17 2006-08-15 Rx Label Corp. Document with integrated coating
US7098859B2 (en) 2003-10-30 2006-08-29 Mitsubishi Denki Kabushiki Kaisha Antenna unit
US7173484B2 (en) 2003-11-25 2007-02-06 Powerwave Technologies, Inc. System and method of carrier reinjection in a feedforward amplifier
US7142060B1 (en) * 2003-12-31 2006-11-28 Conexant Systems, Inc. Active splitter for multiple reception units
KR100613903B1 (ko) * 2004-05-13 2006-08-17 한국전자통신연구원 유전자 알고리즘을 이용한 배열 안테나의 배열 간격 결정방법 및 이를 이용한 소파형 부등간격 배열 안테나
JP2005328260A (ja) * 2004-05-13 2005-11-24 Mitsubishi Electric Corp バンドパスフィルタ
US7319345B2 (en) 2004-05-18 2008-01-15 Rambus Inc. Wide-range multi-phase clock generator
US20060045038A1 (en) 2004-08-27 2006-03-02 Stanley Kay Method and apparatus for transmitting and receiving multiple services utilizing a single receiver in a broadband satellite system
TWI284464B (en) * 2004-09-23 2007-07-21 Interdigital Tech Corp Blind signal separation using polarized antenna elements
US7327803B2 (en) * 2004-10-22 2008-02-05 Parkervision, Inc. Systems and methods for vector power amplification
US7746764B2 (en) * 2004-10-22 2010-06-29 Parkervision, Inc. Orthogonal signal generation using vector spreading and combining
US7355470B2 (en) 2006-04-24 2008-04-08 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including embodiments for amplifier class transitioning
US9147943B2 (en) * 2004-12-30 2015-09-29 Telefonaktiebolaget L M Ericsson (Publ) Antenna device for a radio base station in a cellular telephony system
US7148749B2 (en) * 2005-01-31 2006-12-12 Freescale Semiconductor, Inc. Closed loop power control with high dynamic range
TWI264883B (en) * 2005-02-04 2006-10-21 Rdc Semiconductor Co Ltd Active hybrid circuit of full duplex channel
US7408507B1 (en) 2005-03-15 2008-08-05 The United States Of America As Represented By The Secretary Of The Navy Antenna calibration method and system
US7728784B2 (en) * 2005-05-31 2010-06-01 Tialinx, Inc. Analog phase shifter
KR100717993B1 (ko) * 2005-09-27 2007-05-14 한국전자통신연구원 능동 바룬기
US7436370B2 (en) 2005-10-14 2008-10-14 L-3 Communications Titan Corporation Device and method for polarization control for a phased array antenna
US8334722B2 (en) 2007-06-28 2012-12-18 Parkervision, Inc. Systems and methods of RF power transmission, modulation and amplification
US7511665B2 (en) * 2005-12-20 2009-03-31 The United States Of America As Represented By The Secretary Of The Air Force Method and apparatus for a frequency diverse array
US7714581B2 (en) 2006-04-19 2010-05-11 Wisconsin Alumni Research Foundation RF coil assembly for magnetic resonance imaging and spectroscopy systems
US8031804B2 (en) * 2006-04-24 2011-10-04 Parkervision, Inc. Systems and methods of RF tower transmission, modulation, and amplification, including embodiments for compensating for waveform distortion
US7937106B2 (en) * 2006-04-24 2011-05-03 ParkerVision, Inc, Systems and methods of RF power transmission, modulation, and amplification, including architectural embodiments of same
US7817757B2 (en) 2006-05-30 2010-10-19 Fujitsu Limited System and method for independently adjusting multiple offset compensations applied to a signal
US7400193B2 (en) * 2006-06-29 2008-07-15 Itt Manufacturing Enterprises, Inc. Ultra wide band, differential input/output, high frequency active splitter in an integrated circuit
US20080051053A1 (en) * 2006-08-24 2008-02-28 Orest Fedan Dynamic, low if, image interference avoidance receiver
WO2008027974A2 (fr) 2006-08-29 2008-03-06 Wildblue Communications, Inc. système de communication par satellite d'accès réseau
EP2089966A4 (fr) * 2006-10-24 2014-12-03 Andrew M Teetzel Linéarisateur de système radiofréquence utilisant des générateurs de distorsion non linéaires complexes commandés
JP4648292B2 (ja) 2006-11-30 2011-03-09 日立オートモティブシステムズ株式会社 ミリ波帯送受信機及びそれを用いた車載レーダ
US20080129634A1 (en) 2006-11-30 2008-06-05 Pera Robert J Multi-polarization antenna feeds for mimo applications
US7620129B2 (en) 2007-01-16 2009-11-17 Parkervision, Inc. RF power transmission, modulation, and amplification, including embodiments for generating vector modulation control signals
US7672653B2 (en) * 2007-03-20 2010-03-02 Intel Corporation Removing interfering signals in a broadband radio frequency receiver
US7706787B2 (en) 2007-03-21 2010-04-27 Com Dev International Ltd. Multi-beam communication system and method
WO2008126985A1 (fr) 2007-04-11 2008-10-23 Electronics And Telecommunications Research Institute Antenne multi-mode et procédé de régulation du mode de l'antenne
US7869554B2 (en) 2007-06-06 2011-01-11 Honeywell International Inc. Phase/frequency estimator-based phase locked loop
US8085877B2 (en) 2007-09-28 2011-12-27 Broadcom Corporation Method and system for quadrature local oscillator generator utilizing a DDFS for extremely high frequencies
FR2922051A1 (fr) 2007-10-04 2009-04-10 Axess Europ S A Systeme d'antenne embarque de poursuite de satellite avec controle de polarisation
US8848824B2 (en) 2008-03-07 2014-09-30 Andrew M. Teetzel High efficiency RF system linearizer using controlled complex nonlinear distortion generators
JP2009260929A (ja) * 2008-03-28 2009-11-05 Nec Electronics Corp スプリッタ回路
DE102008047937A1 (de) * 2008-09-18 2010-03-25 Delphi Delco Electronics Europe Gmbh Rundfunk-Empfangssystem
US8013784B2 (en) 2009-03-03 2011-09-06 Toyota Motor Engineering & Manufacturing North America, Inc. Butler matrix for 3D integrated RF front-ends
WO2010120790A2 (fr) 2009-04-13 2010-10-21 Viasat, Inc. Système d'antenne réseau à commande de phase en semi-duplex
TWI535194B (zh) * 2009-04-13 2016-05-21 凡爾賽特公司 前置選擇器放大器
US8693970B2 (en) 2009-04-13 2014-04-08 Viasat, Inc. Multi-beam active phased array architecture with independant polarization control
WO2010120763A2 (fr) 2009-04-13 2010-10-21 Viasat, Inc. Ouverture d'antenne de guidage d'ondes entrelacée, bidirectionnelle simultanée, à bandes multiples et à double polarisation
US8026762B2 (en) * 2009-06-18 2011-09-27 Alcatel Lucent High efficiency transmitter for wireless communication
JP5617536B2 (ja) 2010-09-09 2014-11-05 株式会社リコー 保護剤供給部材、並びに、保護層形成装置、画像形成方法、画像形成装置、及びプロセスカートリッジ
US8378870B1 (en) 2011-09-07 2013-02-19 Panasonic Corporation Mismatch shaping for DAC
US8737531B2 (en) 2011-11-29 2014-05-27 Viasat, Inc. Vector generator using octant symmetry
US8699626B2 (en) 2011-11-29 2014-04-15 Viasat, Inc. General purpose hybrid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038147A (en) * 1988-11-03 1991-08-06 Alcatel Espace Electronically scanned antenna
WO1998056123A1 (fr) * 1997-06-02 1998-12-10 Motorola, Inc. Systeme et procede faisant appel a des signaux amdc polarises
US20030162566A1 (en) * 2000-05-05 2003-08-28 Joseph Shapira System and method for improving polarization matching on a cellular communication forward link
US7180447B1 (en) * 2005-04-29 2007-02-20 Lockhead Martin Corporation Shared phased array beamformer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10305199B2 (en) 2009-04-13 2019-05-28 Viasat, Inc. Multi-beam active phased array architecture with independent polarization control
US10516219B2 (en) 2009-04-13 2019-12-24 Viasat, Inc. Multi-beam active phased array architecture with independent polarization control
US10797406B2 (en) 2009-04-13 2020-10-06 Viasat, Inc. Multi-beam active phased array architecture with independent polarization control
US11038285B2 (en) 2009-04-13 2021-06-15 Viasat, Inc. Multi-beam active phased array architecture with independent polarization control
US11509070B2 (en) 2009-04-13 2022-11-22 Viasat, Inc. Multi-beam active phased array architecture with independent polarization control
US11791567B2 (en) 2009-04-13 2023-10-17 Viasat, Inc. Multi-beam active phased array architecture with independent polarization control
EP3859986A1 (fr) * 2020-01-29 2021-08-04 ThinKom Solutions, Inc. Réalisation et application de polarisation circulaire simultanée dans des systèmes de polarisation uniques commutables
US11088463B1 (en) 2020-01-29 2021-08-10 Thinkom Solutions, Inc. Realization and application of simultaneous circular polarization in switchable single polarization systems
IT202000023230A1 (it) * 2020-10-01 2022-04-01 Teko Telecom S R L Beamformer riconfigurabile, in particolare per 5g nr
WO2022070063A1 (fr) * 2020-10-01 2022-04-07 Teko Telecom S.R.L. Formateur de faisceaux reconfigurable, en particulier pour le 5g nr
US11715875B2 (en) 2020-11-06 2023-08-01 Electronics And Telecommunications Research Institute Individual rotating radiating element and array antenna using the same

Also Published As

Publication number Publication date
EP2725657B1 (fr) 2021-03-03
TWI504056B (zh) 2015-10-11
US8160530B2 (en) 2012-04-17
US8289209B2 (en) 2012-10-16
US8773219B2 (en) 2014-07-08
WO2010120767A2 (fr) 2010-10-21
EP2419963B1 (fr) 2013-11-20
US8289083B2 (en) 2012-10-16
TW201131888A (en) 2011-09-16
WO2010120767A3 (fr) 2011-01-20
JP5603927B2 (ja) 2014-10-08
US20100259325A1 (en) 2010-10-14
US8639204B2 (en) 2014-01-28
US9537214B2 (en) 2017-01-03
WO2010120779A3 (fr) 2011-01-20
EP2419963A1 (fr) 2012-02-22
TWI515970B (zh) 2016-01-01
TWI524593B (zh) 2016-03-01
JP5798675B2 (ja) 2015-10-21
US8228232B2 (en) 2012-07-24
TWI505633B (zh) 2015-10-21
US8400235B2 (en) 2013-03-19
TW201136027A (en) 2011-10-16
TWI504061B (zh) 2015-10-11
WO2010120762A3 (fr) 2011-01-13
US20130162319A1 (en) 2013-06-27
US20100260285A1 (en) 2010-10-14
TWI517499B (zh) 2016-01-11
US20100259445A1 (en) 2010-10-14
TW201103253A (en) 2011-01-16
TW201115907A (en) 2011-05-01
TWI535194B (zh) 2016-05-21
US20140104106A1 (en) 2014-04-17
WO2010120756A1 (fr) 2010-10-21
US8452251B2 (en) 2013-05-28
US8410980B2 (en) 2013-04-02
US20100261440A1 (en) 2010-10-14
US20100259312A1 (en) 2010-10-14
TW201131893A (en) 2011-09-16
WO2010120760A2 (fr) 2010-10-21
WO2010120768A3 (fr) 2011-01-13
JP2012523802A (ja) 2012-10-04
WO2010120770A1 (fr) 2010-10-21
EP2419964B1 (fr) 2020-07-08
WO2010120762A2 (fr) 2010-10-21
US20120299775A1 (en) 2012-11-29
US8030998B2 (en) 2011-10-04
JP2015005994A (ja) 2015-01-08
WO2010120779A2 (fr) 2010-10-21
WO2010120758A2 (fr) 2010-10-21
US20100259339A1 (en) 2010-10-14
WO2010120768A2 (fr) 2010-10-21
WO2010120760A3 (fr) 2011-01-13
TW201115830A (en) 2011-05-01
US20100259446A1 (en) 2010-10-14
WO2010120758A3 (fr) 2011-01-20
US8416882B2 (en) 2013-04-09
JP5677697B2 (ja) 2015-02-25
US20100259326A1 (en) 2010-10-14
US20120184229A1 (en) 2012-07-19
TWI543435B (zh) 2016-07-21
JP2012523801A (ja) 2012-10-04
TW201136026A (en) 2011-10-16
EP2419964A1 (fr) 2012-02-22
TW201130191A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
US11791567B2 (en) Multi-beam active phased array architecture with independent polarization control
US10305199B2 (en) Multi-beam active phased array architecture with independent polarization control
US9537214B2 (en) Multi-beam active phased array architecture
US9094102B2 (en) Half-duplex phased array antenna system
US8587492B2 (en) Dual-polarized multi-band, full duplex, interleaved waveguide antenna aperture
EP2738870B1 (fr) Architecture de réseau actif à commande de phase et faisceaux multiples avec commande de polarisation indépendante

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131118

AC Divisional application: reference to earlier application

Ref document number: 2419963

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

17P Request for examination filed

Effective date: 20141029

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

17Q First examination report despatched

Effective date: 20160701

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200928

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2419963

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1368231

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010066545

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210604

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210303

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1368231

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210703

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210705

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010066545

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210413

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

26N No opposition filed

Effective date: 20211206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100413

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230419

Year of fee payment: 14

Ref country code: IE

Payment date: 20230427

Year of fee payment: 14

Ref country code: FR

Payment date: 20230425

Year of fee payment: 14

Ref country code: DE

Payment date: 20230427

Year of fee payment: 14

Ref country code: CH

Payment date: 20230502

Year of fee payment: 14

Ref country code: BG

Payment date: 20230418

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230427

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303