EP2723916B1 - Giesstechnisches bauteil und verfahren zum aufbringen einer korrosionsschutzschicht - Google Patents
Giesstechnisches bauteil und verfahren zum aufbringen einer korrosionsschutzschicht Download PDFInfo
- Publication number
- EP2723916B1 EP2723916B1 EP12729600.2A EP12729600A EP2723916B1 EP 2723916 B1 EP2723916 B1 EP 2723916B1 EP 12729600 A EP12729600 A EP 12729600A EP 2723916 B1 EP2723916 B1 EP 2723916B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- casting
- layer
- sol
- nanoparticles
- gel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005266 casting Methods 0.000 title claims description 72
- 238000000034 method Methods 0.000 title claims description 28
- 239000011859 microparticle Substances 0.000 claims description 37
- 239000002105 nanoparticle Substances 0.000 claims description 37
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- 239000000463 material Substances 0.000 claims description 28
- 239000000155 melt Substances 0.000 claims description 26
- 239000000126 substance Substances 0.000 claims description 22
- 239000000945 filler Substances 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 15
- 229910000831 Steel Inorganic materials 0.000 claims description 13
- 239000010959 steel Substances 0.000 claims description 13
- 238000004512 die casting Methods 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- -1 alkali metal salt Chemical class 0.000 claims description 6
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 150000001247 metal acetylides Chemical class 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- 229910052723 transition metal Inorganic materials 0.000 claims description 3
- 150000003624 transition metals Chemical class 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 claims description 2
- 229910033181 TiB2 Inorganic materials 0.000 claims description 2
- 229910052783 alkali metal Inorganic materials 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims 4
- 239000010410 layer Substances 0.000 description 149
- 238000005260 corrosion Methods 0.000 description 45
- 230000007797 corrosion Effects 0.000 description 44
- 238000003980 solgel method Methods 0.000 description 13
- 238000000576 coating method Methods 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 9
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 7
- 239000003349 gelling agent Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 229910052582 BN Inorganic materials 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 238000010285 flame spraying Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- 150000004703 alkoxides Chemical class 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000004372 laser cladding Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000007750 plasma spraying Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 3
- 238000004017 vitrification Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 229960000583 acetic acid Drugs 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005058 metal casting Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910007948 ZrB2 Inorganic materials 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- VWZIXVXBCBBRGP-UHFFFAOYSA-N boron;zirconium Chemical compound B#[Zr]#B VWZIXVXBCBBRGP-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000012764 mineral filler Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- XPGAWFIWCWKDDL-UHFFFAOYSA-N propan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCC[O-].CCC[O-].CCC[O-].CCC[O-] XPGAWFIWCWKDDL-UHFFFAOYSA-N 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
- B22D17/20—Accessories: Details
- B22D17/2015—Means for forcing the molten metal into the die
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/08—Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1216—Metal oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/122—Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1225—Deposition of multilayers of inorganic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1229—Composition of the substrate
- C23C18/1241—Metallic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/125—Process of deposition of the inorganic material
- C23C18/1254—Sol or sol-gel processing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/125—Process of deposition of the inorganic material
- C23C18/1262—Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
- C23C18/127—Preformed particles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D15/00—Handling or treating discharged material; Supports or receiving chambers therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/256—Heavy metal or aluminum or compound thereof
Definitions
- the invention relates to a casting component for a device for casting or handling a molten metal, wherein the component has a metallic base body and a surface area which is exposed in the casting operation of the molten metal, and to a method for applying a corrosion protection layer on the casting component.
- Such casting components are in the metal casting in many forms in use, for example, as G cardgarnituren, casting containers, melting furnaces, melt delivery units and molds and parts of these Metallg discernkomponenten.
- a steel material is used for the base body, since such components have a good cost / benefit ratio.
- casting components made of steel in areas where they are in the casting operation with the hot molten metal come in contact are chemically attacked by the liquid molten metal, ie subject to corrosion.
- a noticeable corrosion attack by aluminum melts during aluminum die casting is observed on steel surfaces of casting components coming into contact with it.
- a permanent, adherent release layer formed by applying a size and curing the applied size by baking at an elevated temperature
- Suspension of particulate matter comprising 67 to 95% by weight of silicon nitride and 5 to 33% by weight of a SiO 2 -based high-temperature binder, wherein the SiO 2 -based high-temperature binder is derived from SiO 2 precursors and by thermal treatment in a range from 300 to 1300 ° C has been pretreated and this can be obtained by the reaction of a suitable silane compound by the sol-gel method.
- the separating layer preferably has a thickness of 80 ⁇ m to 3,000 ⁇ m and may be formed as a multilayer in which an outermost layer has a total oxygen content of at most 21% by weight, while an underlying inner layer has a lower total oxygen content.
- the publication DE 10 2006 040 385 A1 discloses a size for producing a high temperature resistant coating comprising a nanoscale inorganic binder system, boron nitride and a solvent.
- the boron nitride is contained in the form of hexagonal graphite-like boron nitride particles having a primary particle size between 50 nm and 50 ⁇ m.
- the coating can be used, for example, as a mold release layer in die casting.
- the publication US 2004/0249039 A1 discloses a method for coating eg casting components, wherein the coating is formed from a precursor layer comprising a silicone resin, a mineral filler and an organic solvent.
- the filler may be, for example, Al 2 O 3 , ZrO 2 , TiO 2 , TiB 2 , ZrB 2 or boron nitride.
- the filler can be present in the form of particles in a size between 0.05 .mu.m and 50 .mu.m.
- the patent US 5,053,251 discloses a method of repairing a damaged portion of a glass layer of a steel member provided with such a glass layer by a sol-gel process.
- a first repair agent containing a metal alkoxide is applied and heated to form a first glass layer adhering to the steel substrate.
- a second repair agent containing a metal alkoxide and an inorganic filler is applied and heated to form a second glass layer.
- the filler used is preferably a glass or ceramic powder or monocrystalline or multi-crystalline inorganic fiber materials.
- a first liquid-impregnating agent containing a metal alkoxide is applied and heated to fill cavities in the second glass layer. This should fill cavities caused by the filler material.
- the invention is based on the technical problem of providing a casting component of the type mentioned above and a method for applying a corrosion layer to a substrate for obtaining a corresponding casting component, wherein the casting component can be produced with relatively little effort and a high corrosion resistance to liquid metal casting melts shows and with the method, a corrosion protection layer with high corrosion resistance, especially against hot molten metal can be applied comparatively easily and with good layer homogeneity even in hard to reach places.
- the invention solves this problem by providing a casting component having the features of claim 1 and a corrosion protection layer application method having the features of claim 9.
- the metallic base body in the melt-contact surface region in which it is exposed to the molten metal in the casting operation is provided with a corrosion-resistant layer which is resistant to the molten metal and characteristically using micro- and / or nanoparticles having an average particle size between 50 nm and 50 ⁇ m of one or more substances is formed as a filler of a group of substances consisting of borides and carbides of the transition metals and their alloys as well as of boron and silicon. Investigations have shown that a casting component equipped with this special anticorrosive coating exhibits unexpectedly good corrosion resistance to contact with hot, reactive molten metal, especially with respect to aluminum melts.
- the presence of the one or more anti-corrosive substances in the form of micro- and / or nanoparticles in the layer is primarily assumed.
- studies have shown that casting components coated in this way have very high corrosion resistance to aluminum melts and correspondingly long service life, which may be superior to similar components made entirely of a steel material or a ceramic material, or those in a conventional manner with a corrosion protection layer without micro - And / or nanoparticles are provided in the layer structure, even if the same substances are used for the anti-corrosion layer.
- a common steel material including present also Stainless steel material is to be understood. This allows a simple manufacture of the component compared to the use of ceramic materials.
- existing components with such a body made of steel material can be easily retrofitted with the corrosion protection layer. The well-known good mechanical properties of steel for the casting-technical component are retained.
- the anticorrosion layer according to the invention is a sol-gel layer, i. a layer applied by a sol-gel process, wherein the micro- and / or nanoparticles act as a filler, with which the sol is loaded in the sol-gel process.
- the sol-gel layer has a zirconium-based or silicon-based gelling agent.
- Such anticorrosive coatings can be applied very evenly and with homogeneous layer properties even on relatively difficult to access surface areas of the casting component, which in turn promotes overall corrosion resistance and longevity of the casting component.
- the sol-gel corrosion protection layer is formed as a multiple layer of several gel layer layers, of which at least one last layer layer is applied without filler.
- the filler-free layer layer without micro- and / or nanoparticles forms an outer layer layer of the sol-gel layer.
- the micro- and / or nanoparticles then remain embedded in the underlying layer or layers.
- a filler-free outer layer layer can act as a cover layer layer of, for example, silicon oxide or zirconium oxide.
- all gel layer layers can be subjected to a burn-in process together. With such a multi-layer structure, the properties of the corrosion protection layer can be further optimized with regard to corrosion resistance to hot metal melts.
- the micro- and / or nanoparticles have an average particle size between 100 nm and 30 ⁇ m and more particularly between 150 nm and 30 ⁇ m. These particles prove to be very advantageous for the anticorrosion layer designed for resistance to hot, reactive molten metals.
- the corrosion protection layer contains at least microparticles and / or nanoparticles of TiB 2 . Based on these TiB 2 particles built corrosion protection layers, which may optionally contain additional micro- and / or nanoparticles of one or more other substances, show a very high corrosion resistance to corrosion by hot Al melts.
- the sol-gel corrosion protection layer contains an additionally added alkali metal or alkaline earth metal salt and / or an additionally added, viscosity-adjusting polymer. This contributes to the achievement of the desired good layer properties for the corrosion protection layer on corresponding melt contact surface areas of the casting component.
- the casting-technical component is one for a device for casting an aluminum melt. Due to the mentioned, outstanding corrosion resistance against hot aluminum melts, the casting component according to the invention is outstandingly suitable for this purpose.
- the casting component is one for a metal die casting machine. In particular, it may be a casting assembly, a casting vessel, a melt furnace component, a melt delivery component, a casting component, or a portion of these melt-contacting components of the metal die casting machine.
- a corrosion protection layer is applied to a metallic main body of a casting component according to the invention in a melt contact surface area thereof by a sol-gel process using micro- and / or nanoparticles with an average particle size between 50 nm and 50 ⁇ m as filler.
- a plurality of gel layer layers are formed, wherein at least for a last layer layer a filler-free sol material is used.
- This layer layer then forms a filler-free cover layer layer according to a vitrification baking step common to all layer layers, while the micro- and / or nanoparticles remain embedded in the inner layer layer (s).
- a plurality of gel layer layers are formed with micro- and / or nanoparticles of the same or different substances before the layer layers are subjected together to a curing, vitrification baking step.
- a vitrification baking process for the one or more gel layer layers is carried out at a temperature between about 500 ° C and about 650 ° C. It has been found that a sol-gel corrosion protection layer formed in this way, when using micro- and / or nanoparticles of suitable substances, has a very high corrosion resistance to chemically-reactive influence of hot metal melts.
- An in Fig. 1 shown casting container 1 is of a conventional type, as used by the applicant in hot chamber die casting machines, for example, to pour aluminum, magnesium and zinc melts. He has a metallic body 2, which preferably consists of a steel material or stainless steel material as usual and in which various openings or holes are introduced, in particular a piston rod through hole 4, which merges at its lower end in a cylindrical melt chamber bore 5, in which at inlet bore holes 6, is sucked through the melt from a melting furnace or crucible into the melt chamber bore 5, a riser 7, is pressed through the melt from the melt chamber bore 5 to a mold, and access holes 8a, 8b, which serve to introduce the riser channel bore 7 and are closed with sealing plugs, not shown.
- a metallic body 2 which preferably consists of a steel material or stainless steel material as usual and in which various openings or holes are introduced, in particular a piston rod through hole 4, which merges at its lower end in a cylindrical melt chamber bore 5, in which at inlet bore holes 6, is sucked through the
- the casting container 1 is in the illustrated vertical position up to one in Fig. 1 marked height H used in a melt crucible of the melting furnace of the die-casting machine. This has the consequence that potentially all inner and outer surfaces of the casting container 1 can come into contact with the molten metal to be poured up to this height H. In addition, this melt contact also exists for the surface of the section H of the riser channel 7 above the height H. All of these surface regions which may come into contact with the molten casting in the casting operation are referred to herein as melt-contact surface regions 9 and are described in US Pat Fig. 1 highlighted with thicker drawn lines.
- these are in particular the surfaces of the melt chamber bore 5 and a subsequent portion of the piston rod passage bore 4 to at least said height H, the inlet holes 3, the riser 7, the access holes 8a, 8b and the outside of the body 2 to the height H.
- the base body 2 of the casting container 1 is provided with a characteristic, anti-molten metal corrosion protection layer 3, which is formed using micro- and / or nanoparticles of one or more selected substances.
- These substances are selected from a group of substances consisting of borides and carbides of the transition metals and their alloys as well as of boron and silicon.
- the micro- and / or nanoparticles have an average particle size between 50 nm and 50 ⁇ m, preferably an average particle size between 100 nm and 30 ⁇ m and more preferably between 150 nm and 30 ⁇ m.
- micro and / or nanoparticles of TiB 2 prove to be advantageous.
- the corrosion protection layer 3 is applied in an advantageous realization by a sol-gel process on the melt-contact surface regions 9 as a substrate, wherein it is said that the substrate is preferably a steel material of the casting container base body 2 as stated.
- the sol-gel corrosion protection layer can be realized as a single layer or multiple layer.
- the anti-corrosive layer 3 for example made of steel or stainless steel applied on the base body 2, in this example as a multilayer with one or more layers forming an outer, filler-free layer part 3b, and one or more layer layers, which covered one of the outer layer part 3b Layer part 3a form, which contains the mentioned micro and / or nanoparticles as a filler of the sol-gel process.
- the micro- and / or nanoparticles embedded in the inner layer part 3a of the corrosion protection layer 3 which is covered by the outer layer part as a cover layer layer 3b.
- Typical preferred layer thicknesses for the anticorrosive layer 3 are in the range between about 1 ⁇ m and 500 ⁇ m, the mean particle size of the micro- and / or nanoparticles adapted to the desired layer thickness being chosen to be smaller, so that the micro- and / or nanoparticles are not on the surface protrude the corrosion protection layer 3.
- Fig. 3 exemplifies a possible advantageous method for applying a corrosion protection layer by a sol-gel process.
- the anticorrosive layer applied thereby may be the anticorrosion layer 3 of the casting container 1 or, alternatively, any other component used in the casting industry or otherwise having a surface which in use is to be protected from the reactive influence of a liquid molten metal.
- first a gel former with a solvent and secondly water with the solvent are mixed in two separate mixing steps 10, 11 on the one hand.
- the gelling agent used is a zirconium-based or silicon-based gelling agent, for example zirconium propoxide, tetramethoxysilane or tetramethylorthosilicate (TMOS), tetraethoxysilane or tetraethylorthosilicate (TEOS), aminopropyltrimethoxysilane (APS (M)) or aminopropyltriethoxysilane (APS (E)).
- TMOS tetramethoxysilane or tetramethylorthosilicate
- TEOS tetraethoxysilane or tetraethylorthosilicate
- APS (M) aminopropyltrimethoxysilane
- APS (E) aminopropyltriethoxysilane
- solvent for example, acetic acid or glacial acetic acid or tetrahydrofuran (THF) can be used.
- Gelling agent and solvent are typically mixed in
- the two mixtures are mixed together, resulting in an exothermic hydrolysis to form the sol as the starting material, see the mixing step 12 in Fig. 3 .
- the sol is mixed with the micro- and / or nanoparticles of one or more of the abovementioned particle substances, ie loaded.
- Average particle sizes are, as stated, in the range of 50 nm to 50 ⁇ m and in particular between 100 nm and 30 ⁇ m or 150 nm and 30 ⁇ m.
- the micro- and / or nanoparticles are preferably admixed in a proportion by weight which is less than or at most equal to the weight fraction of sol.
- the loaded sol material is ready for use, the processing time typically being at most about 1 hour.
- the component to be coated such as the casting container shown in the melt-contact surface region 3
- the applied layer layer is then dried for gel formation at a suitable temperature of up to about 100 ° C, see step 16.
- the steps 15 and 16 for applying a layer of prepared sol material and conversion to a gel layer layer can be repeated once or several times as needed to prepare the sol-gel layer as a multilayer, with loaded with micro- and / or nanoparticles as needed Sol material or filler-free sol material without these micro- and / or nanoparticles can be used for a respective layer position.
- Fig. 3 shows a last, outer layer layer of unloaded, filler-free sol material, as obtained in the mixing step 12.
- the unloaded sol is applied and dried to gel formation at up to 100 ° C.
- any desired combinations of layer layers with unloaded, filler-free sol material and layer layers with loaded sol material can be realized, wherein in the loaded sol material the mentioned micro- and / or nanoparticles of the indicated substance group are contained as filler.
- micro-and / or nanoparticles of exclusively the same substance or alternatively different substances can be contained as needed in the same loaded layer layer and that also in different loaded layer layers as needed micro- and / or nanoparticles of the same substance or may be contained in different substances.
- micro and / or nanoparticles of TiB 2 , Mo 2 B 5 , ZrB 2 and mixtures of these substances have proven to be particularly suitable.
- this layer structure is cured in a final stoving step 19 of the sol-gel process and thus compacted to a glassy material.
- the baking step 19 is preferably carried out at a temperature between 500 ° C and 650 ° C.
- a protective atmosphere is e.g. from argon gas used for the baking process.
- an unloaded silicon-based gelling agent is used, it can from the filler-free outer layer layer 3b according to Fig. 2 For example, be realized as a silicon oxide layer.
- the invention includes other embodiments besides the exemplary embodiments shown and explained above.
- the casting container 1 can also be provided with the anticorrosion layer or another surface layer on further surface regions which are not subject to melt contact.
- any other casting components may be provided with the anticorrosive layer, at least in their melt contact surface area, in particular cast sets, melt furnace components, melt delivery components and mold components or parts thereof of hot-chamber or cold-chamber die casting machines and other devices for casting a molten metal.
- any other components may be provided by the method of the invention with a corrosion protection layer in surface areas which, in use, may come in contact with molten metals, e.g. Components or equipment such as those used to handle molten metals in soldering processes, in the manufacture of metal alloys, in the cleaning of molten metals, and in the recovery of solid metals from the melt.
- the special corrosion protection layer has a very high corrosion resistance, in particular also with respect to hot aluminum melts.
- the corrosion protection layer is formed by means of a sol-gel process, the layer can be applied very evenly and homogeneously even in hard to reach surface areas of the casting component to be coated with relatively little effort.
- an alkali or alkaline earth metal salt and / or a viscosity-adjusting polymer may be additionally added to the sol material for the sol-gel layer.
- the corrosion protection layer can also be applied by laser cladding, flame spraying or plasma spraying.
- FIG. 1 For embodiments of the invention, a multilayer anticorrosion layer, of which at least one, preferably an outer, layer layer is formed by the sol-gel coating method according to the invention and at least one other layer layer by another application method, which is in particular laser cladding, flame spraying or plasma spraying can act.
- a layer structure adapted optimally to the intended use can be achieved with minimized production outlay.
- any component can be provided, on different surface areas, with in each case one anticorrosive layer which is provided with two different of the four mentioned application methods, i.e. Sol-gel process, laser cladding, flame spraying and plasma spraying are applied.
- Sol-gel process, laser cladding, flame spraying and plasma spraying are applied.
- the sol-gel process for coating hard-to-reach areas and one of the other three methods mentioned for coating more accessible, flat areas of the component are used. Furthermore, the mentioned variants of the "vertical" or “lateral” combination of layers applied with different methods can also be combined with one another in a corresponding component.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Ceramic Engineering (AREA)
- Nanotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Laminated Bodies (AREA)
- Mold Materials And Core Materials (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL12729600T PL2723916T3 (pl) | 2011-06-24 | 2012-06-22 | Element konstrukcyjny techniki odlewniczej i sposób nakładania warstwy antykorozyjnej |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011078066A DE102011078066A1 (de) | 2011-06-24 | 2011-06-24 | Gießtechnisches Bauteil und Verfahren zum Aufbringen einer Korrosionsschutzschicht |
PCT/EP2012/062082 WO2012175668A2 (de) | 2011-06-24 | 2012-06-22 | Giesstechnisches bauteil und verfahren zum aufbringen einer korrosionsschutzschicht |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2723916A2 EP2723916A2 (de) | 2014-04-30 |
EP2723916B1 true EP2723916B1 (de) | 2019-01-16 |
Family
ID=46354335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12729600.2A Active EP2723916B1 (de) | 2011-06-24 | 2012-06-22 | Giesstechnisches bauteil und verfahren zum aufbringen einer korrosionsschutzschicht |
Country Status (13)
Country | Link |
---|---|
US (1) | US10766064B2 (ja) |
EP (1) | EP2723916B1 (ja) |
JP (1) | JP6073305B2 (ja) |
KR (1) | KR102019176B1 (ja) |
CN (1) | CN103930597B (ja) |
BR (1) | BR112013032678B1 (ja) |
DE (1) | DE102011078066A1 (ja) |
ES (1) | ES2719125T3 (ja) |
MX (1) | MX2013014924A (ja) |
PL (1) | PL2723916T3 (ja) |
RU (1) | RU2578301C2 (ja) |
TR (1) | TR201905070T4 (ja) |
WO (1) | WO2012175668A2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GR20190100321A (el) * | 2019-07-26 | 2021-02-15 | Oskar Frech Gmbh & Co. Kg | Εξαρτημα χυτευσης και μεθοδος για εφαρμογη αντιδιαβρωτικου στρωματος |
EP3960329A1 (de) | 2020-08-28 | 2022-03-02 | Oskar Frech GmbH + Co. KG | Giesstechnisches bauteil mit korrosionsschutzschichtaufbau |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3027033B1 (fr) * | 2014-10-10 | 2019-05-03 | Rbnano | Procede de revetement de la surface d'un substrat metallique |
CN117753928B (zh) * | 2024-02-22 | 2024-04-26 | 潍坊卓安重工科技有限公司 | 利用球墨铸铁制造球磨机端盖的消失模铸造方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5053251A (en) * | 1989-05-26 | 1991-10-01 | Shinko Pantec Co., Ltd. | Method for repairing glass-lined equipment by sol-gel process |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2364809B2 (de) | 1972-12-28 | 1978-11-30 | Denki Kagaku Kogyo K.K. | Werkstoffmischung für Zylinder und Kolben einer Einspritzpumpe für Warmkammeroder Kaltkammer-Druckgießmaschinen |
US4556098A (en) | 1978-08-18 | 1985-12-03 | Laboratoire Suisse De Recherches Horlogeres | Hot chamber die casting of aluminum and its alloys |
JPS5855109B2 (ja) | 1980-10-20 | 1983-12-08 | 大竹碍子株式会社 | 低融点溶融金属用耐食材 |
US4595545A (en) | 1982-12-30 | 1986-06-17 | Eltech Systems Corporation | Refractory metal borides and composites containing them |
DE3513882A1 (de) * | 1985-04-17 | 1986-10-23 | Plasmainvent AG, Zug | Schutzschicht |
US4921731A (en) * | 1986-02-25 | 1990-05-01 | University Of Florida | Deposition of ceramic coatings using sol-gel processing with application of a thermal gradient |
DE4224078A1 (de) * | 1992-07-21 | 1994-01-27 | Hagen Batterie Ag | Gittergießform zum Gießen von Akkumulatoren-Bleigittern und Verfahren zu deren Herstellung |
US6284682B1 (en) * | 1999-08-26 | 2001-09-04 | The University Of British Columbia | Process for making chemically bonded sol-gel ceramics |
DE102006040385A1 (de) * | 2001-06-09 | 2007-01-18 | Esk Ceramics Gmbh & Co. Kg | Dauerhafte temperaturstabile BN-Formtrennschichten auf Basis von keramischen und glasartigen Bindern |
FR2830857B1 (fr) | 2001-10-15 | 2004-07-30 | Pechiney Aluminium | Precurseur de revetement et procede pour revetir un substrat d'une couche refractaire |
US20040208986A1 (en) * | 2003-03-13 | 2004-10-21 | Flint Bruce Wayne | Testing methods for silica containing films and layers |
CN1758971A (zh) | 2003-03-27 | 2006-04-12 | 株式会社久保田 | 压铸机用绝热柱塞套筒 |
DE10326769B3 (de) * | 2003-06-13 | 2004-11-11 | Esk Ceramics Gmbh & Co. Kg | Dauerhafte BN-Formtrennschichten für das Druckgießen von Nichteisenmetallen |
DE102005045666A1 (de) | 2005-09-14 | 2007-03-15 | Itn Nanovation Gmbh | Schicht oder Beschichtung sowie Zusammensetzung zu ihrer Herstellung |
DE102005050593A1 (de) | 2005-10-21 | 2007-04-26 | Esk Ceramics Gmbh & Co. Kg | Dauerhafte siliciumnitridhaltige Hartbeschichtung |
DE102006041047A1 (de) * | 2006-09-01 | 2008-03-20 | Esk Ceramics Gmbh & Co. Kg | Schlichte zur Herstellung einer BN-haltigen Beschichtung, Verfahren zu deren Herstellung, beschichteter Körper, dessen Herstellung und dessen Verwendung |
RU2006134247A (ru) * | 2006-09-26 | 2008-04-10 | Дробышевский Павел Александрович (RU) | Термостойкий керамический композит |
WO2008156308A2 (en) | 2007-06-18 | 2008-12-24 | Lg Electronics Inc. | Paging information transmission method for effective call setup |
DE102007029668A1 (de) | 2007-06-27 | 2009-01-08 | Epg (Engineered Nanoproducts Germany) Ag | Ultraharte Kompositschichten auf Metalloberflächen und Verfahren zu ihrer Herstellung |
DE102007053284A1 (de) * | 2007-11-08 | 2009-05-20 | Esk Ceramics Gmbh & Co. Kg | Fest haftende siliciumnitridhaltige Trennschicht |
-
2011
- 2011-06-24 DE DE102011078066A patent/DE102011078066A1/de not_active Ceased
-
2012
- 2012-06-22 EP EP12729600.2A patent/EP2723916B1/de active Active
- 2012-06-22 TR TR2019/05070T patent/TR201905070T4/tr unknown
- 2012-06-22 KR KR1020147000440A patent/KR102019176B1/ko active IP Right Grant
- 2012-06-22 JP JP2014516364A patent/JP6073305B2/ja active Active
- 2012-06-22 WO PCT/EP2012/062082 patent/WO2012175668A2/de active Application Filing
- 2012-06-22 PL PL12729600T patent/PL2723916T3/pl unknown
- 2012-06-22 MX MX2013014924A patent/MX2013014924A/es active IP Right Grant
- 2012-06-22 CN CN201280031011.5A patent/CN103930597B/zh active Active
- 2012-06-22 US US14/128,939 patent/US10766064B2/en active Active
- 2012-06-22 RU RU2014101456/02A patent/RU2578301C2/ru active
- 2012-06-22 ES ES12729600T patent/ES2719125T3/es active Active
- 2012-06-22 BR BR112013032678-6A patent/BR112013032678B1/pt active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5053251A (en) * | 1989-05-26 | 1991-10-01 | Shinko Pantec Co., Ltd. | Method for repairing glass-lined equipment by sol-gel process |
Non-Patent Citations (1)
Title |
---|
U.C. NWAOGU ET AL: "New sol-gel refractory coatings on chemically-bonded sand cores for foundry applications to improve casting surface quality", SURFACE AND COATINGS TECHNOLOGY, vol. 205, no. 16, 1 May 2011 (2011-05-01), AMSTERDAM, NL, pages 4035 - 4044, XP055307494, ISSN: 0257-8972, DOI: 10.1016/j.surfcoat.2011.02.042 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GR20190100321A (el) * | 2019-07-26 | 2021-02-15 | Oskar Frech Gmbh & Co. Kg | Εξαρτημα χυτευσης και μεθοδος για εφαρμογη αντιδιαβρωτικου στρωματος |
GR1009951B (el) * | 2019-07-26 | 2021-03-09 | Oskar Frech Gmbh & Co. Kg | Εξαρτημα χυτευσης και μεθοδος για εφαρμογη αντιδιαβρωτικου στρωματος |
EP3960329A1 (de) | 2020-08-28 | 2022-03-02 | Oskar Frech GmbH + Co. KG | Giesstechnisches bauteil mit korrosionsschutzschichtaufbau |
DE102020210913A1 (de) | 2020-08-28 | 2022-03-03 | Oskar Frech Gmbh + Co. Kg | Gießtechnisches Bauteil mit Korrosionsschutzschichtaufbau |
Also Published As
Publication number | Publication date |
---|---|
ES2719125T3 (es) | 2019-07-08 |
CN103930597A (zh) | 2014-07-16 |
WO2012175668A3 (de) | 2014-04-03 |
MX2013014924A (es) | 2014-05-09 |
EP2723916A2 (de) | 2014-04-30 |
WO2012175668A2 (de) | 2012-12-27 |
JP2014519985A (ja) | 2014-08-21 |
RU2014101456A (ru) | 2015-07-27 |
BR112013032678B1 (pt) | 2020-11-10 |
TR201905070T4 (tr) | 2019-05-21 |
CN103930597B (zh) | 2016-09-14 |
RU2578301C2 (ru) | 2016-03-27 |
PL2723916T3 (pl) | 2019-07-31 |
KR20140043112A (ko) | 2014-04-08 |
BR112013032678A2 (pt) | 2017-01-24 |
US10766064B2 (en) | 2020-09-08 |
KR102019176B1 (ko) | 2019-09-09 |
JP6073305B2 (ja) | 2017-02-01 |
DE102011078066A1 (de) | 2012-12-27 |
US20140193635A1 (en) | 2014-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE602004004832T2 (de) | Beschichtung für siliziumhaltiges Substrat | |
DE102005031101B3 (de) | Verfahren zum Herstellen von keramischen Schichten | |
EP1273817B1 (de) | Verfahren zur Herstellung eines faserverstärkten, wenigstens im Randbereich aus einer Metall-Verbundkeramik bestehenden Werkstoffs | |
WO2004110680A2 (de) | Dauerhafte bn-formtrennschichten für das druckgiessen von nichteisenmetallen | |
EP1924537B1 (de) | Verwendung einer zusammensetzung zur herstellung einer formtrennschicht | |
DE102006040385A1 (de) | Dauerhafte temperaturstabile BN-Formtrennschichten auf Basis von keramischen und glasartigen Bindern | |
DE102005050593A1 (de) | Dauerhafte siliciumnitridhaltige Hartbeschichtung | |
DE102007053284A1 (de) | Fest haftende siliciumnitridhaltige Trennschicht | |
EP3030528B1 (de) | Emaillepulver, metallbauteil mit einem mit einer emaillebeschichtung versehenen flächenabschnitt und verfahren zum herstellen eines solchen metallbauteils | |
EP2723916B1 (de) | Giesstechnisches bauteil und verfahren zum aufbringen einer korrosionsschutzschicht | |
WO2009129783A2 (de) | Verfahren zum schützen eines metalls vor korrosion | |
EP3097298B1 (de) | Gussteil und einsatz für ein solches gussteil | |
WO2006034674A1 (de) | Herstellung einer gasdichten, kristallinen mullit schicht mit hilfe eines thermischen spritzverfahrens | |
DE102016100810A1 (de) | Feuerfestwerkstoff und dessen Verwendung | |
EP1486473B1 (de) | Dauerhafte Bornitrid-Formtrennschichten für das Druckgiessen von Nichteisenmetallen | |
DE102006010876A1 (de) | Formtrennschicht für das Gießen von Nichteisenmetallen | |
DE112014002622T5 (de) | Feingusskern, Verfahren zur Herstellung eines Feingusskerns, und Feingussformwerkzeug | |
DE102006054723A1 (de) | Wärmetauscher, insbesondere Abgaswärmetauscher | |
DE102005029039B4 (de) | Herstellungsverfahren für Kokille mit Antihaftbeschichtung | |
DE102006011224B4 (de) | Schlicker sowie damit hergestellter keramischer Verbundwerkstoff | |
WO2006005416A1 (de) | Herstellungsverfahren für kokille mit antihaftbeschichtung | |
DE102004002304B4 (de) | Verfahren zur Herstellung eines beschichteten Kohlenstoff/Kohlenstoff-Verbundwerkstoffes und danach hergestellter Verbundwerkstoff | |
EP1496034B1 (de) | Hochtemperaturbeständiges Bauteil und Verfahren zu dessen Herstellung | |
EP3568441A1 (de) | Beschichtungsmaterial für selbstreinigende beschichtung und verfahren zur herstellung | |
DE102011077021A1 (de) | Beschichtungsverfahren für ein Kolben- oder Lager-Bauteil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20131223 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
R17D | Deferred search report published (corrected) |
Effective date: 20140403 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1191382 Country of ref document: HK |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20161024 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180720 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012014182 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1089760 Country of ref document: AT Kind code of ref document: T Effective date: 20190215 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: DR. LUSUARDI AG, CH |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190116 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2719125 Country of ref document: ES Kind code of ref document: T3 Effective date: 20190708 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190516 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190416 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190516 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190416 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012014182 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 |
|
26N | No opposition filed |
Effective date: 20191017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190630 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20230719 Year of fee payment: 12 Ref country code: CH Payment date: 20230702 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240620 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240619 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240607 Year of fee payment: 13 Ref country code: AT Payment date: 20240617 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20240612 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240624 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240524 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240612 Year of fee payment: 13 Ref country code: SE Payment date: 20240620 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240628 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240701 Year of fee payment: 13 Ref country code: ES Payment date: 20240718 Year of fee payment: 13 |