EP2723916B1 - Casting component, and method for the application of an anticorrosive layer - Google Patents

Casting component, and method for the application of an anticorrosive layer Download PDF

Info

Publication number
EP2723916B1
EP2723916B1 EP12729600.2A EP12729600A EP2723916B1 EP 2723916 B1 EP2723916 B1 EP 2723916B1 EP 12729600 A EP12729600 A EP 12729600A EP 2723916 B1 EP2723916 B1 EP 2723916B1
Authority
EP
European Patent Office
Prior art keywords
casting
layer
sol
nanoparticles
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12729600.2A
Other languages
German (de)
French (fr)
Other versions
EP2723916A2 (en
Inventor
Norbert Erhard
Helmar Dannenmann
Jürgen KURZ
Andreas Sydlo
Daniel Gerner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oskar Frech GmbH and Co KG
Original Assignee
Oskar Frech GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oskar Frech GmbH and Co KG filed Critical Oskar Frech GmbH and Co KG
Priority to PL12729600T priority Critical patent/PL2723916T3/en
Publication of EP2723916A2 publication Critical patent/EP2723916A2/en
Application granted granted Critical
Publication of EP2723916B1 publication Critical patent/EP2723916B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof

Definitions

  • the invention relates to a casting component for a device for casting or handling a molten metal, wherein the component has a metallic base body and a surface area which is exposed in the casting operation of the molten metal, and to a method for applying a corrosion protection layer on the casting component.
  • Such casting components are in the metal casting in many forms in use, for example, as G cardgarnituren, casting containers, melting furnaces, melt delivery units and molds and parts of these Metallg discernkomponenten.
  • a steel material is used for the base body, since such components have a good cost / benefit ratio.
  • casting components made of steel in areas where they are in the casting operation with the hot molten metal come in contact are chemically attacked by the liquid molten metal, ie subject to corrosion.
  • a noticeable corrosion attack by aluminum melts during aluminum die casting is observed on steel surfaces of casting components coming into contact with it.
  • a permanent, adherent release layer formed by applying a size and curing the applied size by baking at an elevated temperature
  • Suspension of particulate matter comprising 67 to 95% by weight of silicon nitride and 5 to 33% by weight of a SiO 2 -based high-temperature binder, wherein the SiO 2 -based high-temperature binder is derived from SiO 2 precursors and by thermal treatment in a range from 300 to 1300 ° C has been pretreated and this can be obtained by the reaction of a suitable silane compound by the sol-gel method.
  • the separating layer preferably has a thickness of 80 ⁇ m to 3,000 ⁇ m and may be formed as a multilayer in which an outermost layer has a total oxygen content of at most 21% by weight, while an underlying inner layer has a lower total oxygen content.
  • the publication DE 10 2006 040 385 A1 discloses a size for producing a high temperature resistant coating comprising a nanoscale inorganic binder system, boron nitride and a solvent.
  • the boron nitride is contained in the form of hexagonal graphite-like boron nitride particles having a primary particle size between 50 nm and 50 ⁇ m.
  • the coating can be used, for example, as a mold release layer in die casting.
  • the publication US 2004/0249039 A1 discloses a method for coating eg casting components, wherein the coating is formed from a precursor layer comprising a silicone resin, a mineral filler and an organic solvent.
  • the filler may be, for example, Al 2 O 3 , ZrO 2 , TiO 2 , TiB 2 , ZrB 2 or boron nitride.
  • the filler can be present in the form of particles in a size between 0.05 .mu.m and 50 .mu.m.
  • the patent US 5,053,251 discloses a method of repairing a damaged portion of a glass layer of a steel member provided with such a glass layer by a sol-gel process.
  • a first repair agent containing a metal alkoxide is applied and heated to form a first glass layer adhering to the steel substrate.
  • a second repair agent containing a metal alkoxide and an inorganic filler is applied and heated to form a second glass layer.
  • the filler used is preferably a glass or ceramic powder or monocrystalline or multi-crystalline inorganic fiber materials.
  • a first liquid-impregnating agent containing a metal alkoxide is applied and heated to fill cavities in the second glass layer. This should fill cavities caused by the filler material.
  • the invention is based on the technical problem of providing a casting component of the type mentioned above and a method for applying a corrosion layer to a substrate for obtaining a corresponding casting component, wherein the casting component can be produced with relatively little effort and a high corrosion resistance to liquid metal casting melts shows and with the method, a corrosion protection layer with high corrosion resistance, especially against hot molten metal can be applied comparatively easily and with good layer homogeneity even in hard to reach places.
  • the invention solves this problem by providing a casting component having the features of claim 1 and a corrosion protection layer application method having the features of claim 9.
  • the metallic base body in the melt-contact surface region in which it is exposed to the molten metal in the casting operation is provided with a corrosion-resistant layer which is resistant to the molten metal and characteristically using micro- and / or nanoparticles having an average particle size between 50 nm and 50 ⁇ m of one or more substances is formed as a filler of a group of substances consisting of borides and carbides of the transition metals and their alloys as well as of boron and silicon. Investigations have shown that a casting component equipped with this special anticorrosive coating exhibits unexpectedly good corrosion resistance to contact with hot, reactive molten metal, especially with respect to aluminum melts.
  • the presence of the one or more anti-corrosive substances in the form of micro- and / or nanoparticles in the layer is primarily assumed.
  • studies have shown that casting components coated in this way have very high corrosion resistance to aluminum melts and correspondingly long service life, which may be superior to similar components made entirely of a steel material or a ceramic material, or those in a conventional manner with a corrosion protection layer without micro - And / or nanoparticles are provided in the layer structure, even if the same substances are used for the anti-corrosion layer.
  • a common steel material including present also Stainless steel material is to be understood. This allows a simple manufacture of the component compared to the use of ceramic materials.
  • existing components with such a body made of steel material can be easily retrofitted with the corrosion protection layer. The well-known good mechanical properties of steel for the casting-technical component are retained.
  • the anticorrosion layer according to the invention is a sol-gel layer, i. a layer applied by a sol-gel process, wherein the micro- and / or nanoparticles act as a filler, with which the sol is loaded in the sol-gel process.
  • the sol-gel layer has a zirconium-based or silicon-based gelling agent.
  • Such anticorrosive coatings can be applied very evenly and with homogeneous layer properties even on relatively difficult to access surface areas of the casting component, which in turn promotes overall corrosion resistance and longevity of the casting component.
  • the sol-gel corrosion protection layer is formed as a multiple layer of several gel layer layers, of which at least one last layer layer is applied without filler.
  • the filler-free layer layer without micro- and / or nanoparticles forms an outer layer layer of the sol-gel layer.
  • the micro- and / or nanoparticles then remain embedded in the underlying layer or layers.
  • a filler-free outer layer layer can act as a cover layer layer of, for example, silicon oxide or zirconium oxide.
  • all gel layer layers can be subjected to a burn-in process together. With such a multi-layer structure, the properties of the corrosion protection layer can be further optimized with regard to corrosion resistance to hot metal melts.
  • the micro- and / or nanoparticles have an average particle size between 100 nm and 30 ⁇ m and more particularly between 150 nm and 30 ⁇ m. These particles prove to be very advantageous for the anticorrosion layer designed for resistance to hot, reactive molten metals.
  • the corrosion protection layer contains at least microparticles and / or nanoparticles of TiB 2 . Based on these TiB 2 particles built corrosion protection layers, which may optionally contain additional micro- and / or nanoparticles of one or more other substances, show a very high corrosion resistance to corrosion by hot Al melts.
  • the sol-gel corrosion protection layer contains an additionally added alkali metal or alkaline earth metal salt and / or an additionally added, viscosity-adjusting polymer. This contributes to the achievement of the desired good layer properties for the corrosion protection layer on corresponding melt contact surface areas of the casting component.
  • the casting-technical component is one for a device for casting an aluminum melt. Due to the mentioned, outstanding corrosion resistance against hot aluminum melts, the casting component according to the invention is outstandingly suitable for this purpose.
  • the casting component is one for a metal die casting machine. In particular, it may be a casting assembly, a casting vessel, a melt furnace component, a melt delivery component, a casting component, or a portion of these melt-contacting components of the metal die casting machine.
  • a corrosion protection layer is applied to a metallic main body of a casting component according to the invention in a melt contact surface area thereof by a sol-gel process using micro- and / or nanoparticles with an average particle size between 50 nm and 50 ⁇ m as filler.
  • a plurality of gel layer layers are formed, wherein at least for a last layer layer a filler-free sol material is used.
  • This layer layer then forms a filler-free cover layer layer according to a vitrification baking step common to all layer layers, while the micro- and / or nanoparticles remain embedded in the inner layer layer (s).
  • a plurality of gel layer layers are formed with micro- and / or nanoparticles of the same or different substances before the layer layers are subjected together to a curing, vitrification baking step.
  • a vitrification baking process for the one or more gel layer layers is carried out at a temperature between about 500 ° C and about 650 ° C. It has been found that a sol-gel corrosion protection layer formed in this way, when using micro- and / or nanoparticles of suitable substances, has a very high corrosion resistance to chemically-reactive influence of hot metal melts.
  • An in Fig. 1 shown casting container 1 is of a conventional type, as used by the applicant in hot chamber die casting machines, for example, to pour aluminum, magnesium and zinc melts. He has a metallic body 2, which preferably consists of a steel material or stainless steel material as usual and in which various openings or holes are introduced, in particular a piston rod through hole 4, which merges at its lower end in a cylindrical melt chamber bore 5, in which at inlet bore holes 6, is sucked through the melt from a melting furnace or crucible into the melt chamber bore 5, a riser 7, is pressed through the melt from the melt chamber bore 5 to a mold, and access holes 8a, 8b, which serve to introduce the riser channel bore 7 and are closed with sealing plugs, not shown.
  • a metallic body 2 which preferably consists of a steel material or stainless steel material as usual and in which various openings or holes are introduced, in particular a piston rod through hole 4, which merges at its lower end in a cylindrical melt chamber bore 5, in which at inlet bore holes 6, is sucked through the
  • the casting container 1 is in the illustrated vertical position up to one in Fig. 1 marked height H used in a melt crucible of the melting furnace of the die-casting machine. This has the consequence that potentially all inner and outer surfaces of the casting container 1 can come into contact with the molten metal to be poured up to this height H. In addition, this melt contact also exists for the surface of the section H of the riser channel 7 above the height H. All of these surface regions which may come into contact with the molten casting in the casting operation are referred to herein as melt-contact surface regions 9 and are described in US Pat Fig. 1 highlighted with thicker drawn lines.
  • these are in particular the surfaces of the melt chamber bore 5 and a subsequent portion of the piston rod passage bore 4 to at least said height H, the inlet holes 3, the riser 7, the access holes 8a, 8b and the outside of the body 2 to the height H.
  • the base body 2 of the casting container 1 is provided with a characteristic, anti-molten metal corrosion protection layer 3, which is formed using micro- and / or nanoparticles of one or more selected substances.
  • These substances are selected from a group of substances consisting of borides and carbides of the transition metals and their alloys as well as of boron and silicon.
  • the micro- and / or nanoparticles have an average particle size between 50 nm and 50 ⁇ m, preferably an average particle size between 100 nm and 30 ⁇ m and more preferably between 150 nm and 30 ⁇ m.
  • micro and / or nanoparticles of TiB 2 prove to be advantageous.
  • the corrosion protection layer 3 is applied in an advantageous realization by a sol-gel process on the melt-contact surface regions 9 as a substrate, wherein it is said that the substrate is preferably a steel material of the casting container base body 2 as stated.
  • the sol-gel corrosion protection layer can be realized as a single layer or multiple layer.
  • the anti-corrosive layer 3 for example made of steel or stainless steel applied on the base body 2, in this example as a multilayer with one or more layers forming an outer, filler-free layer part 3b, and one or more layer layers, which covered one of the outer layer part 3b Layer part 3a form, which contains the mentioned micro and / or nanoparticles as a filler of the sol-gel process.
  • the micro- and / or nanoparticles embedded in the inner layer part 3a of the corrosion protection layer 3 which is covered by the outer layer part as a cover layer layer 3b.
  • Typical preferred layer thicknesses for the anticorrosive layer 3 are in the range between about 1 ⁇ m and 500 ⁇ m, the mean particle size of the micro- and / or nanoparticles adapted to the desired layer thickness being chosen to be smaller, so that the micro- and / or nanoparticles are not on the surface protrude the corrosion protection layer 3.
  • Fig. 3 exemplifies a possible advantageous method for applying a corrosion protection layer by a sol-gel process.
  • the anticorrosive layer applied thereby may be the anticorrosion layer 3 of the casting container 1 or, alternatively, any other component used in the casting industry or otherwise having a surface which in use is to be protected from the reactive influence of a liquid molten metal.
  • first a gel former with a solvent and secondly water with the solvent are mixed in two separate mixing steps 10, 11 on the one hand.
  • the gelling agent used is a zirconium-based or silicon-based gelling agent, for example zirconium propoxide, tetramethoxysilane or tetramethylorthosilicate (TMOS), tetraethoxysilane or tetraethylorthosilicate (TEOS), aminopropyltrimethoxysilane (APS (M)) or aminopropyltriethoxysilane (APS (E)).
  • TMOS tetramethoxysilane or tetramethylorthosilicate
  • TEOS tetraethoxysilane or tetraethylorthosilicate
  • APS (M) aminopropyltrimethoxysilane
  • APS (E) aminopropyltriethoxysilane
  • solvent for example, acetic acid or glacial acetic acid or tetrahydrofuran (THF) can be used.
  • Gelling agent and solvent are typically mixed in
  • the two mixtures are mixed together, resulting in an exothermic hydrolysis to form the sol as the starting material, see the mixing step 12 in Fig. 3 .
  • the sol is mixed with the micro- and / or nanoparticles of one or more of the abovementioned particle substances, ie loaded.
  • Average particle sizes are, as stated, in the range of 50 nm to 50 ⁇ m and in particular between 100 nm and 30 ⁇ m or 150 nm and 30 ⁇ m.
  • the micro- and / or nanoparticles are preferably admixed in a proportion by weight which is less than or at most equal to the weight fraction of sol.
  • the loaded sol material is ready for use, the processing time typically being at most about 1 hour.
  • the component to be coated such as the casting container shown in the melt-contact surface region 3
  • the applied layer layer is then dried for gel formation at a suitable temperature of up to about 100 ° C, see step 16.
  • the steps 15 and 16 for applying a layer of prepared sol material and conversion to a gel layer layer can be repeated once or several times as needed to prepare the sol-gel layer as a multilayer, with loaded with micro- and / or nanoparticles as needed Sol material or filler-free sol material without these micro- and / or nanoparticles can be used for a respective layer position.
  • Fig. 3 shows a last, outer layer layer of unloaded, filler-free sol material, as obtained in the mixing step 12.
  • the unloaded sol is applied and dried to gel formation at up to 100 ° C.
  • any desired combinations of layer layers with unloaded, filler-free sol material and layer layers with loaded sol material can be realized, wherein in the loaded sol material the mentioned micro- and / or nanoparticles of the indicated substance group are contained as filler.
  • micro-and / or nanoparticles of exclusively the same substance or alternatively different substances can be contained as needed in the same loaded layer layer and that also in different loaded layer layers as needed micro- and / or nanoparticles of the same substance or may be contained in different substances.
  • micro and / or nanoparticles of TiB 2 , Mo 2 B 5 , ZrB 2 and mixtures of these substances have proven to be particularly suitable.
  • this layer structure is cured in a final stoving step 19 of the sol-gel process and thus compacted to a glassy material.
  • the baking step 19 is preferably carried out at a temperature between 500 ° C and 650 ° C.
  • a protective atmosphere is e.g. from argon gas used for the baking process.
  • an unloaded silicon-based gelling agent is used, it can from the filler-free outer layer layer 3b according to Fig. 2 For example, be realized as a silicon oxide layer.
  • the invention includes other embodiments besides the exemplary embodiments shown and explained above.
  • the casting container 1 can also be provided with the anticorrosion layer or another surface layer on further surface regions which are not subject to melt contact.
  • any other casting components may be provided with the anticorrosive layer, at least in their melt contact surface area, in particular cast sets, melt furnace components, melt delivery components and mold components or parts thereof of hot-chamber or cold-chamber die casting machines and other devices for casting a molten metal.
  • any other components may be provided by the method of the invention with a corrosion protection layer in surface areas which, in use, may come in contact with molten metals, e.g. Components or equipment such as those used to handle molten metals in soldering processes, in the manufacture of metal alloys, in the cleaning of molten metals, and in the recovery of solid metals from the melt.
  • the special corrosion protection layer has a very high corrosion resistance, in particular also with respect to hot aluminum melts.
  • the corrosion protection layer is formed by means of a sol-gel process, the layer can be applied very evenly and homogeneously even in hard to reach surface areas of the casting component to be coated with relatively little effort.
  • an alkali or alkaline earth metal salt and / or a viscosity-adjusting polymer may be additionally added to the sol material for the sol-gel layer.
  • the corrosion protection layer can also be applied by laser cladding, flame spraying or plasma spraying.
  • FIG. 1 For embodiments of the invention, a multilayer anticorrosion layer, of which at least one, preferably an outer, layer layer is formed by the sol-gel coating method according to the invention and at least one other layer layer by another application method, which is in particular laser cladding, flame spraying or plasma spraying can act.
  • a layer structure adapted optimally to the intended use can be achieved with minimized production outlay.
  • any component can be provided, on different surface areas, with in each case one anticorrosive layer which is provided with two different of the four mentioned application methods, i.e. Sol-gel process, laser cladding, flame spraying and plasma spraying are applied.
  • Sol-gel process, laser cladding, flame spraying and plasma spraying are applied.
  • the sol-gel process for coating hard-to-reach areas and one of the other three methods mentioned for coating more accessible, flat areas of the component are used. Furthermore, the mentioned variants of the "vertical" or “lateral” combination of layers applied with different methods can also be combined with one another in a corresponding component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Mold Materials And Core Materials (AREA)

Description

Die Erfindung bezieht sich auf ein gießtechnisches Bauteil für eine Vorrichtung zum Gießen oder Handhaben einer Metallschmelze, wobei das Bauteil einen metallischen Grundkörper und einen Oberflächenbereich aufweist, der im Gießbetrieb der Metallschmelze ausgesetzt ist, sowie auf ein Verfahren zum Aufbringen einer Korrosionsschutzschicht auf das gießtechnische Bauteil.The invention relates to a casting component for a device for casting or handling a molten metal, wherein the component has a metallic base body and a surface area which is exposed in the casting operation of the molten metal, and to a method for applying a corrosion protection layer on the casting component.

Derartige gießtechnische Bauteile sind in der Metallgießtechnik in vielerlei Formen in Gebrauch, beispielsweise als Gießgarnituren, Gießbehälter, Schmelzeöfen, Schmelzefördereinheiten und Gießformen sowie Teilen dieser Metallgießkomponenten. Meist wird für den Grundkörper ein Stahlmaterial verwendet, da derartige Bauteile ein gutes Kosten/Nutzen-Verhältnis besitzen.
Es hat sich jedoch herausgestellt, dass gießtechnische Bauteile aus Stahl in Bereichen, in denen sie im Gießbetrieb mit der heißen Metallschmelze in Kontakt kommen, von der flüssigen Metallschmelze chemisch angegriffen werden, d.h. einer Korrosion unterliegen. So wird beispielsweise ein merklicher Korrosionsangriff durch Aluminiumschmelzen beim Aluminiumdruckguss auf damit in Kontakt kommende Stahloberflächen gießtechnischer Bauteile beobachtet. Als eine Abhilfe ist es für Gießkolben/Gießzylinder-Einheiten von Metalldruckgussmaschinen bekannt, den Gießkolben und den Gießzylinder ganz aus einem keramischen Material oder aus einem Sintermaterial, z.B. aus gesintertem Titandiborid (TiB2), zu fertigen. Die mechanische Festigkeit, Wärmewiderstandsfähigkeit und Stoßfestigkeit blieben jedoch unbefriedigend. Als Abhilfe wird in der Offenlegungsschrift DE 2 364 809 vorgeschlagen, den Gießkolben und den Gießzylinder als zusammengesetztes gesintertes Bauteil aus einer Mischung von zwei oder mehr Stoffen aus der Stoffgruppe zu fertigen, welche aus den Karbiden, Boriden und Nitriden besteht. Insbesondere wird eine spezielle Mischung von Borkarbid (B4C) mit einem oder mehreren von TiB2, Zirkondiborid (ZiB2) und Bornitrid (BN) angegeben.
Such casting components are in the metal casting in many forms in use, for example, as Gießgarnituren, casting containers, melting furnaces, melt delivery units and molds and parts of these Metallgießkomponenten. Usually, a steel material is used for the base body, since such components have a good cost / benefit ratio.
However, it has been found that casting components made of steel in areas where they are in the casting operation with the hot molten metal come in contact, are chemically attacked by the liquid molten metal, ie subject to corrosion. Thus, for example, a noticeable corrosion attack by aluminum melts during aluminum die casting is observed on steel surfaces of casting components coming into contact with it. As a remedy, it is known for casting-piston / casting-cylinder units of metal die-casting machines to manufacture the casting piston and the casting cylinder completely from a ceramic material or from a sintered material, eg from sintered titanium diboride (TiB 2 ). However, the mechanical strength, heat resistance and impact resistance remained unsatisfactory. As a remedy in the published patent application DE 2 364 809 proposed to manufacture the casting piston and the casting cylinder as a composite sintered component from a mixture of two or more substances from the group of substances, which consists of the carbides, borides and nitrides. In particular, a specific mixture of boron carbide (B 4 C) with one or more of TiB 2 , zirconium diboride (ZiB 2 ) and boron nitride (BN) is given.

In der Patentschrift US 4.556.098 werden dieses und andere untersuchte Sintermaterialien weiterhin als unbefriedigend bezeichnet, und es wird alternativ ein heißgepresstes, ultrahartes Siliziumnitrid- oder Sialon-Material hoher Dichte für den Gießzylinder und den Gießkolben vorgeschlagen. Für einen Tiegel aus Gusseisen wird eine Schutzbeschichtung gegen Korrosion und Oxidation aus Ca, Al2O3 oder anderen Oxiden wie Al2O3-TiO2 oder aus TiB2, ZaB2, CaB2 oder anderen reinen oder gemischten Boriden oder aus AIN, Si3N4, BN, Sialonen oder anderen Nitriden angegeben, die z.B. aus einer Emulsion oder durch Flammspritzen aufgebracht wird. Für konische Stopfen zum Verschließen von Zugänglichkeitsbohrungen für den Steigkanal und anderen Teilen einer Gießgarnitur wird die Fertigung aus ebenfalls solchen korrosions- und erosionsfesten Materialien vorgeschlagen. Für Teile der Gießform, die der Metallschmelze nur noch bei niedrigeren Temperaturen ausgesetzt sind, wird eine Beschichtung aus einem dichten Material aus Si3N4, AIN, Sialon, BN, Graphit oder pyrolytischem Kohlenstoff oder Legierungen hiervon vorgeschlagen.In the patent US 4,556,098 For example, this and other sintered materials under investigation are still said to be unsatisfactory and, alternatively, a hot-pressed, high-density, ultra-hard silicon nitride or sialon material is proposed for the casting cylinder and the casting piston. For a crucible made of cast iron, a protective coating against corrosion and oxidation of Ca, Al 2 O 3 or other oxides such as Al 2 O 3 -TiO 2 or TiB 2 , ZaB 2 , CaB 2 or other pure or mixed borides or AIN, Si 3 N 4 , BN, sialons or other nitrides indicated, for example, is applied from an emulsion or by flame spraying. For conical plugs for closing accessibility holes for the riser and other parts of a casting, the production of such corrosion and erosion resistant materials is also proposed. For parts of the mold that are exposed to molten metal only at lower temperatures, For example, a coating of a dense material of Si 3 N 4 , AlN, sialon, BN, graphite or pyrolytic carbon or alloys thereof is proposed.

In der Offenlegungsschrift DE 10 2007 053 284 A1 wird für einen Formkörper, bei dem es sich beispielsweise um ein Steigrohr für Aluminium-Niederdruckguss handeln kann, eine dauerhafte, festhaftende Trennschicht vorgeschlagen, die durch Auftragen einer Schlichte und Härten der aufgetragenen Schlichte mittels Einbrennen bei einer erhöhten Temperatur gebildet wird, wobei die Schlichte eine Suspension von Feststoffteilchen, die 67 bis 95 Gew.-% Siliziumnitrid und 5 bis 33 Gew.-% eines SiO2-basierten Hochtemperaturbindemittels beinhalten, umfasst, wobei das SiO2-basierte Hochtemperaturbindemittel aus SiO2-Vorstufen abgeleitet und durch Temperaturbehandlung in einem Bereich von 300 bis 1.300 °C vorbehandelt worden ist und hierbei nach dem Sol-Gel-Verfahren durch Umsetzung einer geeigneten Silanverbindung erhalten sein kann. Die Trennschicht weist vorzugsweise eine Dicke von 80 µm bis 3.000 µm auf und kann als Mehrfachschicht ausgebildet sein, bei der eine äußerste Schicht einen Gesamtsauerstoffgehalt von maximal 21 Gew.-% aufweist, während eine darunterliegende, innere Schicht einen geringeren Gesamtsauerstoffgehalt besitzt.In the published patent application DE 10 2007 053 284 A1 For example, for a molded article, which may be, for example, a riser for low pressure aluminum casting, there is proposed a permanent, adherent release layer formed by applying a size and curing the applied size by baking at an elevated temperature Suspension of particulate matter comprising 67 to 95% by weight of silicon nitride and 5 to 33% by weight of a SiO 2 -based high-temperature binder, wherein the SiO 2 -based high-temperature binder is derived from SiO 2 precursors and by thermal treatment in a range from 300 to 1300 ° C has been pretreated and this can be obtained by the reaction of a suitable silane compound by the sol-gel method. The separating layer preferably has a thickness of 80 μm to 3,000 μm and may be formed as a multilayer in which an outermost layer has a total oxygen content of at most 21% by weight, while an underlying inner layer has a lower total oxygen content.

Die Offenlegungsschrift DE 10 2006 040 385 A1 offenbart eine Schlichte zur Herstellung einer hochtemperaturbeständigen Beschichtung mit einem nanoskaligen anorganischen Bindersystem, Bornitrid und einem Lösemittel. Das Bornitrid ist in Form von hexagonalen, graphit-ähnlichen Bornitrid-Partikeln mit einer Primärteilchengröße zwischen 50 nm und 50 µm enthalten. Die Beschichtung ist z.B. als Formtrennschicht beim Druckguss verwendbar.The publication DE 10 2006 040 385 A1 discloses a size for producing a high temperature resistant coating comprising a nanoscale inorganic binder system, boron nitride and a solvent. The boron nitride is contained in the form of hexagonal graphite-like boron nitride particles having a primary particle size between 50 nm and 50 μm. The coating can be used, for example, as a mold release layer in die casting.

Die Offenlegungsschrift US 2004/0249039 A1 offenbart ein Verfahren zum Beschichten z.B. von gießtechnischen Bauteilen, wobei die Beschichtung aus einer Vorläuferschicht gebildet wird, die ein Silikonharz, einen mineralischen Füllstoff und ein organisches Lösungsmittel umfasst. Bei dem Füllstoff kann es sich z.B. um Al2O3, ZrO2, TiO2, TiB2, ZrB2 oder Bornitrid handeln. Der Füllstoff kann in Form von Partikeln in einer Größe zwischen 0,05 µm und 50 µm enthalten sein.The publication US 2004/0249039 A1 discloses a method for coating eg casting components, wherein the coating is formed from a precursor layer comprising a silicone resin, a mineral filler and an organic solvent. The filler may be, for example, Al 2 O 3 , ZrO 2 , TiO 2 , TiB 2 , ZrB 2 or boron nitride. The filler can be present in the form of particles in a size between 0.05 .mu.m and 50 .mu.m.

Die Patentschrift US 5.053.251 offenbart ein Verfahren zur Reparatur eines beschädigten Bereichs einer Glasschicht eines mit einer solchen Glasschicht versehenen Stahlelements mittels eines Sol-Gel-Prozesses. Dazu wird ein erstes Reparaturagens, das ein Metallalkoxid enthält, aufgetragen und aufgeheizt, um eine am Stahlsubstrat haftende erste Glasschicht zu bilden. Darauf wird ein zweites Reparaturagens, das ein Metallalkoxid und einen anorganischen Füllstoff enthält, aufgebracht und aufgeheizt, um eine zweite Glasschicht zu bilden. Als Füllstoff dienen vorzugsweise ein Glas- oder Keramikpulver oder ein- oder mehrkristalline anorganische Fasermaterialien. Auf die zweite Glasschicht wird ein erstes flüssig imprägnierendes Agens, das ein Metallalkoxid enthält, aufgebracht und aufgeheizt, um Hohlräume in der zweiten Glasschicht zu füllen. Damit sollen Hohlräume gefüllt werden, die vom Füllstoffmaterial verursacht sind.The patent US 5,053,251 discloses a method of repairing a damaged portion of a glass layer of a steel member provided with such a glass layer by a sol-gel process. For this purpose, a first repair agent containing a metal alkoxide is applied and heated to form a first glass layer adhering to the steel substrate. Then, a second repair agent containing a metal alkoxide and an inorganic filler is applied and heated to form a second glass layer. The filler used is preferably a glass or ceramic powder or monocrystalline or multi-crystalline inorganic fiber materials. On the second glass layer, a first liquid-impregnating agent containing a metal alkoxide is applied and heated to fill cavities in the second glass layer. This should fill cavities caused by the filler material.

Der Erfindung liegt als technisches Problem die Bereitstellung eines gießtechnischen Bauteils der eingangs genannten Art sowie eines Verfahrens zum Aufbringen einer Korrosionsschicht auf ein Substrat zur Gewinnung eines entsprechenden gießtechnischen Bauteils zugrunde, wobei das gießtechnische Bauteil mit relativ geringem Aufwand herstellbar ist und eine hohe Korrosionsbeständigkeit gegen flüssige Metallgießschmelzen zeigt und mit dem Verfahren eine Korrosionsschutzschicht mit hoher Korrosionsbeständigkeit insbesondere gegenüber heißen Metallschmelzen vergleichsweise einfach und mit guter Schichthomogenität auch an schwer zugänglichen Stellen aufgebracht werden kann.The invention is based on the technical problem of providing a casting component of the type mentioned above and a method for applying a corrosion layer to a substrate for obtaining a corresponding casting component, wherein the casting component can be produced with relatively little effort and a high corrosion resistance to liquid metal casting melts shows and with the method, a corrosion protection layer with high corrosion resistance, especially against hot molten metal can be applied comparatively easily and with good layer homogeneity even in hard to reach places.

Die Erfindung löst dieses Problem durch die Bereitstellung eines gießtechnischen Bauteils mit den Merkmalen des Anspruchs 1 und eines Korrosionsschutzschicht-Aufbringverfahrens mit den Merkmalen des Anspruchs 9.The invention solves this problem by providing a casting component having the features of claim 1 and a corrosion protection layer application method having the features of claim 9.

Beim erfindungsgemäßen gießtechnischen Bauteil ist der metallische Grundkörper in dem Schmelzekontakt-Oberflächenbereich, in welchem er im Gießbetrieb der Metallschmelze ausgesetzt ist, mit einer gegenüber der Metallschmelze beständigen Korrosionsschutzschicht versehen, die charakteristischerweise unter Verwendung von Mikro- und/oder Nanopartikeln mit einer mittleren Partikelgröße zwischen 50nm und 50µm einer oder mehrerer Substanzen als Füllstoff aus einer Substanzgruppe gebildet ist, die aus Boriden und Karbiden der Übergangsmetalle und deren Legierungen sowie von Bor und Silizium besteht. Untersuchungen haben gezeigt, dass ein mit dieser speziellen Korrosionsschutzschicht ausgerüstetes gießtechnisches Bauteil eine unerwartet gute Korrosionsfestigkeit gegenüber dem Kontakt mit heißer, reaktiver Metallschmelze zeigt, gerade auch gegenüber Aluminiumschmelzen. Als Erklärung wird primär das Vorhandensein der einen oder mehreren korrosionsschützenden Substanzen in Form von Mikro- und/oder Nanopartikeln in der Schicht angenommen. Insbesondere haben Untersuchungen ergeben, dass dergestalt beschichtete gießtechnische Bauteile eine sehr hohe Korrosionsfestigkeit gegenüber Aluminiumschmelzen und entsprechend lange Gebrauchsdauer aufweisen, die derjenigen gleichartiger Bauteile überlegen sein kann, die ganz aus einem Stahlmaterial oder einem Keramikmaterial bestehen oder die in einer herkömmlichen Weise mit einer Korrosionsschutzschicht ohne Mikro- und/oder Nanopartikel im Schichtaufbau versehen sind, selbst wenn für die Korrosionsschutzschicht die gleichen Substanzen verwendet werden.In the casting-technical component according to the invention, the metallic base body in the melt-contact surface region in which it is exposed to the molten metal in the casting operation is provided with a corrosion-resistant layer which is resistant to the molten metal and characteristically using micro- and / or nanoparticles having an average particle size between 50 nm and 50μm of one or more substances is formed as a filler of a group of substances consisting of borides and carbides of the transition metals and their alloys as well as of boron and silicon. Investigations have shown that a casting component equipped with this special anticorrosive coating exhibits unexpectedly good corrosion resistance to contact with hot, reactive molten metal, especially with respect to aluminum melts. As an explanation, the presence of the one or more anti-corrosive substances in the form of micro- and / or nanoparticles in the layer is primarily assumed. In particular, studies have shown that casting components coated in this way have very high corrosion resistance to aluminum melts and correspondingly long service life, which may be superior to similar components made entirely of a steel material or a ceramic material, or those in a conventional manner with a corrosion protection layer without micro - And / or nanoparticles are provided in the layer structure, even if the same substances are used for the anti-corrosion layer.

Durch die spezielle Korrosionsschutzschicht kann für den Grundkörper des gießtechnischen Bauteils gemäß einer Weiterbildung der Erfindung ein übliches Stahlmaterial verwendet werden, worunter vorliegend auch Edelstahlmaterial zu verstehen ist. Dies ermöglicht eine im Vergleich zur Verwendung von Keramikmaterialien einfache Herstellung des Bauteils. Zudem können bereits bestehende Bauteile mit einem solchen Grundkörper aus Stahlmaterial leicht nachträglich mit der Korrosionsschutzschicht versehen werden. Dabei bleiben die bekannt guten mechanischen Eigenschaften von Stahl für das gießtechnische Bauteil erhalten.Due to the special corrosion protection layer can be used for the main body of the casting component according to a development of the invention, a common steel material, including present also Stainless steel material is to be understood. This allows a simple manufacture of the component compared to the use of ceramic materials. In addition, existing components with such a body made of steel material can be easily retrofitted with the corrosion protection layer. The well-known good mechanical properties of steel for the casting-technical component are retained.

Die Korrosionsschutzschicht ist erfindungsgemäß eine Sol-Gel-Schicht, d.h. eine durch einen Sol-Gel-Prozess aufgebrachte Schicht, wobei die Mikro- und/oder Nanopartikel als Füllstoff fungieren, mit dem das Sol im Sol-Gel-Prozess beladen wird. Die Sol-Gel-Schicht weist einen zirkonbasierten oder siliziumbasierten Gelbildner auf. Derartige Korrosionsschutzschichten lassen sich sehr gleichmäßig und mit homogenen Schichteigenschaften auch an relativ schwer zugänglichen Oberflächenbereichen des gießtechnischen Bauteils aufbringen, was wiederum insgesamt die Korrosionsfestigkeit und Langlebigkeit des gießtechnischen Bauteils fördert.The anticorrosion layer according to the invention is a sol-gel layer, i. a layer applied by a sol-gel process, wherein the micro- and / or nanoparticles act as a filler, with which the sol is loaded in the sol-gel process. The sol-gel layer has a zirconium-based or silicon-based gelling agent. Such anticorrosive coatings can be applied very evenly and with homogeneous layer properties even on relatively difficult to access surface areas of the casting component, which in turn promotes overall corrosion resistance and longevity of the casting component.

Weiter erfindungsgemäß ist die Sol-Gel-Korrosionsschutzschicht als Mehrfachschicht aus mehreren Gel-Schichtlagen gebildet, von denen mindestens eine letzte Schichtlage ohne Füllstoff aufgetragen wird. Die füllstofffreie Schichtlage ohne Mikro- und/oder Nanopartikel bildet eine äußere Schichtlage der Sol-Gel-Schicht. Die Mikro- und/oder Nanopartikel bleiben dann in der oder den darunterliegenden Schichtlagen eingebettet. So kann beispielsweise eine füllstofffreie äußere Schichtlage als Deckschichtlage aus z.B. Siliziumoxid oder Zirkonoxid fungieren. Im Sol-Gel-Prozess können alle Gel-Schichtlagen zusammen einem Einbrennprozess unterworfen werden. Mit einem derartigen Mehrlagenaufbau lassen sich die Eigenschaften der Korrosionsschutzschicht hinsichtlich Korrosionsbeständigkeit gegen heiße Metallschmelzen weiter optimieren.Further according to the invention, the sol-gel corrosion protection layer is formed as a multiple layer of several gel layer layers, of which at least one last layer layer is applied without filler. The filler-free layer layer without micro- and / or nanoparticles forms an outer layer layer of the sol-gel layer. The micro- and / or nanoparticles then remain embedded in the underlying layer or layers. Thus, for example, a filler-free outer layer layer can act as a cover layer layer of, for example, silicon oxide or zirconium oxide. In the sol-gel process, all gel layer layers can be subjected to a burn-in process together. With such a multi-layer structure, the properties of the corrosion protection layer can be further optimized with regard to corrosion resistance to hot metal melts.

In einer Weiterbildung der Erfindung besitzen die Mikro- und/oder Nanopartikel eine mittlere Partikelgröße zwischen 100nm und 30µm und spezieller zwischen 150nm und 30µm. Diese Partikel erweisen sich als sehr vorteilhaft für die auf Beständigkeit gegenüber heißen, reaktiven Metallschmelzen ausgelegte Korrosionsschutzschicht.In one development of the invention, the micro- and / or nanoparticles have an average particle size between 100 nm and 30 μm and more particularly between 150 nm and 30 μm. These particles prove to be very advantageous for the anticorrosion layer designed for resistance to hot, reactive molten metals.

In einer Weiterbildung der Erfindung beinhaltet die Korrosionsschutzschicht wenigstens Mikro- und/oder Nanopartikel aus TiB2. Auf Basis dieser TiB2-Partikel aufgebaute Korrosionsschutzschichten, die optional Mikro- und/oder Nanopartikel einer oder mehrerer anderer Substanzen zusätzlich enthalten können, zeigen eine sehr hohe Korrosionsfestigkeit gegenüber Korrosion durch heiße Al-Schmelzen.In one development of the invention, the corrosion protection layer contains at least microparticles and / or nanoparticles of TiB 2 . Based on these TiB 2 particles built corrosion protection layers, which may optionally contain additional micro- and / or nanoparticles of one or more other substances, show a very high corrosion resistance to corrosion by hot Al melts.

In weiterer Ausgestaltung enthält die Sol-Gel-Korrosionsschutzschicht ein zusätzlich zugesetztes Alkali- oder Erdalkalimetallsalz und/oder ein zusätzlich zugesetztes, viskositätseinstellendes Polymer. Dies trägt unterstützend zur Erzielung der gewünschten guten Schichteigenschaften für die Korrosionsschutzschicht auf entsprechenden Schmelzekontakt-Ober-flächenbereichen des gießtechnischen Bauteils bei.In a further embodiment, the sol-gel corrosion protection layer contains an additionally added alkali metal or alkaline earth metal salt and / or an additionally added, viscosity-adjusting polymer. This contributes to the achievement of the desired good layer properties for the corrosion protection layer on corresponding melt contact surface areas of the casting component.

In einer Weiterbildung der Erfindung sind mindestens zwei der Schichtlagen der Sol-Gel-Schicht mit Mikro- und/oder Nanopartikeln gleicher oder unterschiedlicher Substanzen als Füllstoff beladen.
In einer Weiterbildung der Erfindung ist das gießtechnische Bauteil ein solches für eine Vorrichtung zum Gießen einer Aluminiumschmelze. Durch die erwähnte, herausragende Korrosionsbeständigkeit gegenüber heißen Aluminiumschmelzen ist das erfindungsgemäße gießtechnische Bauteil für diesen Einsatzzweck hervorragend geeignet.
In einer Weiterbildung der Erfindung ist das gießtechnische Bauteil ein solches für eine Metalldruckgussmaschine. Insbesondere kann es eine Gießgarnitur, ein Gießbehälter, eine Schmelzeofenkomponente, eine Schmelzeförderkomponente, eine Gießformkomponente oder ein Teil dieser mit der Schmelze in Kontakt kommenden Komponenten der Metalldruckgussmaschine sein. Durch seine spezifische Korrosionsschutzschicht besitzt das gießtechnische Bauteil auch für diese Einsatzzwecke eine hervorragende Eignung und vergleichsweise lange Gebrauchsdauer. Mit dem erfindungsgemäßen Verfahren wird eine Korrosionsschutzschicht auf einen metallischen Grundkörper eines erfindungsgemäßen gießtechnischen Bauteils in einem Schmelzekontakt-Oberflächenbereich desselben durch einen Sol-Gel-Prozess unter Verwendung von Mikro- und/oder Nanopartikeln mit einer mittleren Partikelgröße zwischen 50nm und 50µm als Füllstoff aufgebracht.
In one development of the invention, at least two of the layer layers of the sol-gel layer are loaded with micro- and / or nanoparticles of identical or different substances as filler.
In a development of the invention, the casting-technical component is one for a device for casting an aluminum melt. Due to the mentioned, outstanding corrosion resistance against hot aluminum melts, the casting component according to the invention is outstandingly suitable for this purpose.
In a development of the invention, the casting component is one for a metal die casting machine. In particular, it may be a casting assembly, a casting vessel, a melt furnace component, a melt delivery component, a casting component, or a portion of these melt-contacting components of the metal die casting machine. Due to its specific corrosion protection layer, the casting component also has excellent suitability and comparatively long service life for these applications. With the method according to the invention, a corrosion protection layer is applied to a metallic main body of a casting component according to the invention in a melt contact surface area thereof by a sol-gel process using micro- and / or nanoparticles with an average particle size between 50 nm and 50 μm as filler.

Verfahrensgemäß werden mehrere Gel-Schichtlagen gebildet, wobei wenigstens für eine letzte Schichtlage ein füllstofffreies Solmaterial verwendet wird. Diese Schichtlage bildet dann nach einem für alle Schichtlagen gemeinsamen, verglasenden Einbrennschritt eine füllstofffreie Deckschichtlage, während die Mikro- und/oder Nanopartikel in der oder den inneren Schichtlagen eingebettet bleiben.According to the method, a plurality of gel layer layers are formed, wherein at least for a last layer layer a filler-free sol material is used. This layer layer then forms a filler-free cover layer layer according to a vitrification baking step common to all layer layers, while the micro- and / or nanoparticles remain embedded in the inner layer layer (s).

In einer Weiterbildung des Verfahrens werden mehrere Gel-Schichtlagen mit Mikro- und/oder Nanopartikeln gleicher oder unterschiedlicher Substanzen gebildet, bevor die Schichtlagen zusammen einem aushärtenden, verglasenden Einbrennschritt unterzogen werden.In one development of the method, a plurality of gel layer layers are formed with micro- and / or nanoparticles of the same or different substances before the layer layers are subjected together to a curing, vitrification baking step.

In einer Weiterbildung des Verfahrens wird ein verglasender Einbrennprozess für die eine oder mehreren Gel-Schichtlagen bei einer Temperatur zwischen etwa 500°C und etwa 650°C durchgeführt. Es zeigt sich, dass eine derart gebildete Sol-Gel-Korrosionsschutzschicht bei Verwendung von Mikro- und/oder Nanopartikeln geeigneter Substanzen eine sehr hohe Korrosionsbeständigkeit gegenüber chemisch-reaktivem Einfluss von heißen Metallschmelzen aufweist.In a further development of the method, a vitrification baking process for the one or more gel layer layers is carried out at a temperature between about 500 ° C and about 650 ° C. It has been found that a sol-gel corrosion protection layer formed in this way, when using micro- and / or nanoparticles of suitable substances, has a very high corrosion resistance to chemically-reactive influence of hot metal melts.

Vorteilhafte Ausführungsformen der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend beschrieben. Hierbei zeigen:

Fig. 1
eine Längsschnittansicht durch einen Gießbehälter mit Korrosionsschutzschicht für eine Warmkammer-Druckgussmaschine,
Fig. 2
eine schematische Schnittansicht eines mit der Korrosionsschutzschicht versehenen Bereichs des Gießbehälters und
Fig. 3
ein Flussdiagramm zur Veranschaulichung eines Verfahrens zum Aufbringen einer Korrosionsschutzschicht z.B. für den Gießbehälter von Fig. 1.
Advantageous embodiments of the invention are illustrated in the drawings and will be described below. Hereby show:
Fig. 1
a longitudinal sectional view through a casting container with corrosion protection layer for a hot chamber die-casting machine,
Fig. 2
a schematic sectional view of a provided with the anticorrosion layer portion of the casting container and
Fig. 3
a flow diagram illustrating a method for applying a corrosion protection layer, for example for the casting container of Fig. 1 ,

Ein in Fig. 1 gezeigter Gießbehälter 1 ist von einer an sich üblichen Bauart, wie er von der Anmelderin in Warmkammer-Druckgussmaschinen eingesetzt wird, um z.B. Aluminium-, Magnesium- und Zinkschmelzen zu gießen. Er besitzt einen metallischen Grundkörper 2, der vorzugsweise wie üblich aus einem Stahlmaterial bzw. Edelstahlmaterial besteht und in dem diverse Öffnungen bzw. Bohrungen eingebracht sind, insbesondere eine Kolbenstangendurchführungsbohrung 4, die an ihrem unteren Ende in eine zylindrische Schmelzekammerbohrung 5 übergeht, in der sich bei eingesetzter Gießkolbenstange ein axial beweglicher Gießkolben befindet, Einlaufbohrungen 6, über die Schmelze aus einem Schmelzeofen bzw. Schmelzetiegel in die Schmelzekammerbohrung 5 angesaugt wird, einen Steigkanal 7, über den Schmelze aus der Schmelzekammerbohrung 5 zu einer Gießform gedrückt wird, sowie Zugangsbohrungen 8a, 8b, die zum Einbringen der Steigkanalbohrung 7 dienen und mit nicht gezeigten Verschlussstopfen verschlossen werden.An in Fig. 1 shown casting container 1 is of a conventional type, as used by the applicant in hot chamber die casting machines, for example, to pour aluminum, magnesium and zinc melts. He has a metallic body 2, which preferably consists of a steel material or stainless steel material as usual and in which various openings or holes are introduced, in particular a piston rod through hole 4, which merges at its lower end in a cylindrical melt chamber bore 5, in which at inlet bore holes 6, is sucked through the melt from a melting furnace or crucible into the melt chamber bore 5, a riser 7, is pressed through the melt from the melt chamber bore 5 to a mold, and access holes 8a, 8b, which serve to introduce the riser channel bore 7 and are closed with sealing plugs, not shown.

Im Gebrauch ist der Gießbehälter 1 in der gezeigten, vertikalen Stellung bis zu einer in Fig. 1 markierten Höhe H in einen Schmelzetiegel des Schmelzeofens der Druckgussmaschine eingesetzt. Dies hat zur Folge, dass potentiell alle inneren und äußeren Oberflächen des Gießbehälters 1 bis zu dieser Höhe H mit der zu gießenden Metallschmelze in Kontakt kommen können. Zusätzlich besteht dieser Schmelzekontakt auch für die Oberfläche des über der Höhe H liegenden Abschnitts des Steigkanals 7. Alle diese Oberflächenbereiche, die im Gießbetrieb mit der metallischen Gießschmelze in Kontakt kommen können, werden vorliegend als Schmelzekontakt-Oberflächenbereiche 9 bezeichnet und sind in Fig. 1 mit dicker gezeichneten Linien hervorgehoben. Im gezeigten Beispiel sind dies insbesondere die Oberflächen der Schmelzekammerbohrung 5 und eines anschließenden Abschnitts der Kolbenstangendurchführungsbohrung 4 bis mindestens zur besagten Höhe H, der Einlaufbohrungen 3, des Steigkanals 7, der Zugangsbohrungen 8a, 8b und der Außenseite des Grundkörpers 2 bis zur Höhe H.
In diesen Schmelzekontakt-Oberflächenbereichen 9 ist der Grundkörper 2 des Gießbehälters 1 mit einer charakteristischen, gegenüber der Metallschmelze beständigen Korrosionsschutzschicht 3 versehen, die unter Verwendung von Mikro- und/oder Nanopartikeln einer oder mehrerer ausgewählter Substanzen gebildet ist. Diese Substanzen sind aus einer Substanzgruppe ausgewählt, die aus Boriden und Karbiden der Übergangsmetalle und deren Legierungen sowie von Bor und Silizium besteht. Die Mikro- und/oder Nanopartikel weisen eine mittlere Partikelgröße zwischen 50nm und 50µm auf, vorzugsweise eine mittlere Partikelgröße zwischen 100nm und 30µm und bevorzugter zwischen 150nm und 30µm. Als vorteilhaft erweisen sich unter anderem Mikro- und/oder Nanopartikel aus TiB2.
Die Korrosionsschutzschicht 3 wird in einer vorteilhaften Realisierung durch einen Sol-Gel-Prozess auf die Schmelzekontakt-Oberflächenbereiche 9 als Substrat aufgebracht, wobei es sich bei dem Substrat wie gesagt vorzugsweise um ein Stahlmaterial des Gießbehälter-Grundkörpers 2 handelt. Dabei kann die Sol-Gel-Korrosionsschutzschicht als Einfachschicht oder Mehrfachschicht realisiert sein.
Fig. 2 veranschaulicht schematisch die auf den Grundkörper 2 z.B. aus Stahl bzw. Edelstahl aufgebrachte Korrosionsschutzschicht 3, in diesem Beispiel als Mehrfachschicht mit einer oder mehreren Schichtlagen, die einen äußeren, füllstofffreien Schichtteil 3b bilden, und einer oder mehreren Schichtlagen, die einen vom äußeren Schichtteil 3b abgedeckten Schichtteil 3a bilden, der die erwähnten Mikro- und/oder Nanopartikel als Füllstoff des Sol-Gel-Prozesses enthält. Dadurch sind die Mikro- und/oder Nanopartikel im inneren Schichtteil 3a der Korrosionsschutzschicht 3 eingebettet, der vom äußeren Schichtteil als Deckschichtlage 3b abgedeckt wird. Typische bevorzugte Schichtdicken für die Korrosionsschutzschicht 3 liegen im Bereich zwischen etwa 1µm und 500µm, wobei die mittlere Partikelgröße der Mikro- und/oder Nanopartikel angepasst an die gewünschte Schichtdicke demgegenüber kleiner gewählt ist, so dass die Mikro- und/oder Nanopartikel nicht an der Oberfläche der Korrosionsschutzschicht 3 vorstehen.
In use, the casting container 1 is in the illustrated vertical position up to one in Fig. 1 marked height H used in a melt crucible of the melting furnace of the die-casting machine. This has the consequence that potentially all inner and outer surfaces of the casting container 1 can come into contact with the molten metal to be poured up to this height H. In addition, this melt contact also exists for the surface of the section H of the riser channel 7 above the height H. All of these surface regions which may come into contact with the molten casting in the casting operation are referred to herein as melt-contact surface regions 9 and are described in US Pat Fig. 1 highlighted with thicker drawn lines. In the example shown, these are in particular the surfaces of the melt chamber bore 5 and a subsequent portion of the piston rod passage bore 4 to at least said height H, the inlet holes 3, the riser 7, the access holes 8a, 8b and the outside of the body 2 to the height H.
In these melt-contact surface areas 9, the base body 2 of the casting container 1 is provided with a characteristic, anti-molten metal corrosion protection layer 3, which is formed using micro- and / or nanoparticles of one or more selected substances. These substances are selected from a group of substances consisting of borides and carbides of the transition metals and their alloys as well as of boron and silicon. The micro- and / or nanoparticles have an average particle size between 50 nm and 50 μm, preferably an average particle size between 100 nm and 30 μm and more preferably between 150 nm and 30 μm. Among other things, micro and / or nanoparticles of TiB 2 prove to be advantageous.
The corrosion protection layer 3 is applied in an advantageous realization by a sol-gel process on the melt-contact surface regions 9 as a substrate, wherein it is said that the substrate is preferably a steel material of the casting container base body 2 as stated. In this case, the sol-gel corrosion protection layer can be realized as a single layer or multiple layer.
Fig. 2 schematically illustrates the anti-corrosive layer 3, for example made of steel or stainless steel applied on the base body 2, in this example as a multilayer with one or more layers forming an outer, filler-free layer part 3b, and one or more layer layers, which covered one of the outer layer part 3b Layer part 3a form, which contains the mentioned micro and / or nanoparticles as a filler of the sol-gel process. As a result, the micro- and / or nanoparticles embedded in the inner layer part 3a of the corrosion protection layer 3, which is covered by the outer layer part as a cover layer layer 3b. Typical preferred layer thicknesses for the anticorrosive layer 3 are in the range between about 1 μm and 500 μm, the mean particle size of the micro- and / or nanoparticles adapted to the desired layer thickness being chosen to be smaller, so that the micro- and / or nanoparticles are not on the surface protrude the corrosion protection layer 3.

Fig. 3 veranschaulicht exemplarisch ein mögliches vorteilhaftes Verfahren zum Aufbringen einer Korrosionsschutzschicht durch einen Sol-Gel-Prozess. Bei der dadurch aufgebrachten Korrosionsschutzschicht kann es sich um die Korrosionsschutzschicht 3 des Gießbehälters 1 oder alternativ um eine solche irgendeines anderen in der Gießindustrie oder anderweitig verwendeten Bauteils handeln, das eine Oberfläche aufweist, die im Gebrauch vor dem reaktiven Einfluss einer flüssigen Metallschmelze zu schützen ist. Wie gezeigt, werden dafür zunächst in zwei getrennten Mischungsschritten 10, 11 einerseits ein Gelbildner mit einem Lösemittel und andererseits Wasser mit dem Lösemittel gemischt. Als Gelbildner wird ein zirkonbasierter oder siliziumbasierter Gelbildner eingesetzt, beispielsweise Zirkonpropoxid, Tetramethoxysilan bzw. Tetramethylorthosilikat (TMOS), Tetraethoxysilan bzw. Tetraethylorthosilikat (TEOS), Aminopropyltrimethoxysilan (APS(M)) oder Aminopropyltriethoxysilan (APS(E)). Als Lösemittel ist z.B. Essigsäure bzw. Eisessig oder Tetrahydrofuran (THF) verwendbar. Gelbildner und Lösemittel werden typischerweise in etwa gleichen Gewichtsanteilen gemischt, das Mischungsverhältnis von Lösemittel und Wasser beträgt 1:n Mol, wobei n die Menge an Gelbildner in Mol multipliziert mit der Anzahl der Liganden des Gelbildners bezeichnet. Fig. 3 exemplifies a possible advantageous method for applying a corrosion protection layer by a sol-gel process. The anticorrosive layer applied thereby may be the anticorrosion layer 3 of the casting container 1 or, alternatively, any other component used in the casting industry or otherwise having a surface which in use is to be protected from the reactive influence of a liquid molten metal. As shown, first a gel former with a solvent and secondly water with the solvent are mixed in two separate mixing steps 10, 11 on the one hand. The gelling agent used is a zirconium-based or silicon-based gelling agent, for example zirconium propoxide, tetramethoxysilane or tetramethylorthosilicate (TMOS), tetraethoxysilane or tetraethylorthosilicate (TEOS), aminopropyltrimethoxysilane (APS (M)) or aminopropyltriethoxysilane (APS (E)). As the solvent, for example, acetic acid or glacial acetic acid or tetrahydrofuran (THF) can be used. Gelling agent and solvent are typically mixed in approximately equal proportions by weight, the mixing ratio of solvent and water is 1: n mol, where n denotes the amount of gelling agent in moles multiplied by the number of ligands of the gelling agent.

Anschließend werden die beiden Mischungen zusammengemischt, wodurch es zu einer exothermen Hydrolyse zur Bildung des Sols als Ausgangsstoff kommt, siehe den Mischungsschritt 12 in Fig. 3.
Zur Bereitstellung von mit Füllstoff beladenem Sol wird in einem weiteren Mischungsschritt 13 das Sol mit den Mikro- und/oder Nanopartikeln einer oder mehrerer der oben genannten Partikelsubstanzen gemischt, d.h. beladen. Mittlere Partikelgrößen liegen, wie gesagt, im Bereich von 50nm bis 50µm und insbesondere zwischen 100nm und 30µm bzw. 150nm und 30µm. Bevorzugt werden die Mikro- und/oder Nanopartikel in einem Gewichtsanteil beigemischt, der kleiner als oder höchstens gleich groß ist wie der Gewichtsanteil an Sol. Nach einem anschließenden Abkühlschritt ist das beladene Solmaterial zur Anwendung bereit, wobei die Verarbeitungszeit typischerweise höchstens ca. 1h beträgt. In dieser Zeit wird das zu beschichtende Bauteil, wie der gezeigte Gießbehälter im Schmelzekontakt-Oberflächenbereich 3, mit einer Schichtlage des beladenen Solmaterials beschichtet, siehe Schritt 15 in Fig. 3. Die aufgebrachte Schichtlage wird dann zur Gel-Bildung bei geeigneter Temperatur von bis zu ca. 100°C getrocknet, siehe Schritt 16.
Die Schritte 15 und 16 zum Aufbringen einer Schichtlage aus vorbereitetem Solmaterial und Umwandlung in eine Gel-Schichtlage können bei Bedarf zur Herstellung der Sol-Gel-Schicht als Mehrfachschicht einmal oder mehrmals wiederholt werden, wobei je nach Bedarf mit Mikro- und/oder Nanopartikel beladenes Solmaterial oder füllstofffreies Solmaterial ohne diese Mikro- und/oder Nanopartikel für eine jeweilige Schichtlage verwendet werden kann.
So zeigt Fig. 3 als ein exemplarisches Beispiel das Herstellen einer letzten, äußeren Schichtlage aus unbeladenem, füllstofffreiem Solmaterial, wie es im Mischungsschritt 12 erhalten wurde. Durch eine entsprechende Abfolge von Beschichtungsschritt 17 und Trocknungsschritt 18 wird das unbeladene Sol aufgebracht und zur Gel-Bildung bei bis zu 100°C getrocknet.
Subsequently, the two mixtures are mixed together, resulting in an exothermic hydrolysis to form the sol as the starting material, see the mixing step 12 in Fig. 3 ,
In order to provide sol laden with filler, in a further mixing step 13, the sol is mixed with the micro- and / or nanoparticles of one or more of the abovementioned particle substances, ie loaded. Average particle sizes are, as stated, in the range of 50 nm to 50 μm and in particular between 100 nm and 30 μm or 150 nm and 30 μm. The micro- and / or nanoparticles are preferably admixed in a proportion by weight which is less than or at most equal to the weight fraction of sol. After a subsequent cooling step, the loaded sol material is ready for use, the processing time typically being at most about 1 hour. During this time, the component to be coated, such as the casting container shown in the melt-contact surface region 3, is coated with a layer layer of the loaded sol material, see step 15 in FIG Fig. 3 , The applied layer layer is then dried for gel formation at a suitable temperature of up to about 100 ° C, see step 16.
The steps 15 and 16 for applying a layer of prepared sol material and conversion to a gel layer layer can be repeated once or several times as needed to prepare the sol-gel layer as a multilayer, with loaded with micro- and / or nanoparticles as needed Sol material or filler-free sol material without these micro- and / or nanoparticles can be used for a respective layer position.
So shows Fig. 3 as an exemplary example, the production of a last, outer layer layer of unloaded, filler-free sol material, as obtained in the mixing step 12. By an appropriate Following coating step 17 and drying step 18, the unloaded sol is applied and dried to gel formation at up to 100 ° C.

Es versteht sich, dass in alternativen Ausführungsformen beliebige Kombinationen von Schichtlagen mit unbeladenem, füllstofffreiem Solmaterial und Schichtlagen mit beladenem Solmaterial realisiert werden können, wobei im beladenen Solmaterial die erwähnten Mikro- und/oder Nanopartikel der angegebenen Substanzgruppe als Füllstoff enthalten sind. Weiter versteht sich, dass je nach Bedarf in der gleichen beladenen Schichtlage Mikro- und/oder Nanopartikel ausschließlich der gleichen Substanz oder alternativ unterschiedlicher Substanzen enthalten sein können und dass ebenso in verschiedenen beladenen Schichtlagen je nach Bedarf Mikro- und/oder Nanopartikel der gleichen Substanz oder unterschiedlicher Substanzen enthalten sein können. Als besonders geeignet haben sich unter anderem Mikro- und/oder Nanopartikel aus TiB2, Mo2B5, ZrB2 und Mischungen dieser Substanzen erwiesen.It is understood that, in alternative embodiments, any desired combinations of layer layers with unloaded, filler-free sol material and layer layers with loaded sol material can be realized, wherein in the loaded sol material the mentioned micro- and / or nanoparticles of the indicated substance group are contained as filler. Furthermore, it is understood that micro-and / or nanoparticles of exclusively the same substance or alternatively different substances can be contained as needed in the same loaded layer layer and that also in different loaded layer layers as needed micro- and / or nanoparticles of the same substance or may be contained in different substances. Among others, micro and / or nanoparticles of TiB 2 , Mo 2 B 5 , ZrB 2 and mixtures of these substances have proven to be particularly suitable.

Nachdem auf diese Weise ein gewünschter einlagiger oder mehrlagiger Schichtaufbau aus einer oder mehreren Gel-Schichtlagen hergestellt wurde, wird dieser Schichtaufbau in einem abschließenden Einbrennschritt 19 des Sol-Gel-Prozesses ausgehärtet und damit zu einem glasartigen Material verdichtet. Der Einbrennschritt 19 erfolgt vorzugsweise bei einer Temperatur zwischen 500°C und 650°C. Vorzugsweise wird eine Schutzatmosphäre z.B. aus Argongas für den Einbrennprozess benutzt.After a desired single-layer or multi-layer layer structure of one or more gel layer layers has been produced in this way, this layer structure is cured in a final stoving step 19 of the sol-gel process and thus compacted to a glassy material. The baking step 19 is preferably carried out at a temperature between 500 ° C and 650 ° C. Preferably, a protective atmosphere is e.g. from argon gas used for the baking process.

Wenn zum Aufbringen der letzten Schichtlage gemäß den Schritten 17 und 18 von Fig. 3 ein unbeladener siliziumbasierter Gelbildner verwendet wird, kann daraus die füllstofffreie Deckschichtlage 3b gemäß Fig. 2 z.B. als Siliziumoxidschicht realisiert werden.If for applying the last layer layer according to the steps 17 and 18 of Fig. 3 an unloaded silicon-based gelling agent is used, it can from the filler-free outer layer layer 3b according to Fig. 2 For example, be realized as a silicon oxide layer.

Es versteht sich, dass die Erfindung außer den exemplarisch gezeigten und oben erläuterten Ausführungsbeispielen weitere Ausführungsformen umfasst. So kann der Gießbehälter 1 bei Bedarf auch noch an weiteren Oberflächenbereichen, die keinem Schmelzekontakt unterliegen, mit der Korrosionsschutzschicht oder einer anderen Oberflächenschicht versehen sein. Weiter können beliebige andere gießtechnische Bauteile mindestens in ihrem Schmelzekontakt-Oberflächenbereich erfindungsgemäß mit der Korrosionsschutzschicht versehen sein, insbesondere Gießgarnituren, Schmelzeofenkomponenten, Schmelzeförderkomponenten und Gießformkomponenten oder deren Teile von Druckgussmaschinen des Warmkammer- oder Kaltkammertyps und anderen Vorrichtungen zum Gießen einer Metallschmelze. In gleicher Weise können beliebige andere Bauteile durch das erfindungsgemäße Verfahren mit einer Korrosionsschutzschicht in Oberflächenbereichen versehen werden, die im Gebrauch mit Metallschmelzen in Kontakt kommen können, z.B. Bauteile oder Gerätschaften, wie sie zum Handhaben von Metallschmelzen bei Lötprozessen, beim Herstellen von Metalllegierungen, beim Reinigen von Metallschmelzen und bei der Gewinnung fester Metalle aus der Schmelze verwendet werden.It is understood that the invention includes other embodiments besides the exemplary embodiments shown and explained above. If necessary, the casting container 1 can also be provided with the anticorrosion layer or another surface layer on further surface regions which are not subject to melt contact. In addition, any other casting components may be provided with the anticorrosive layer, at least in their melt contact surface area, in particular cast sets, melt furnace components, melt delivery components and mold components or parts thereof of hot-chamber or cold-chamber die casting machines and other devices for casting a molten metal. Likewise, any other components may be provided by the method of the invention with a corrosion protection layer in surface areas which, in use, may come in contact with molten metals, e.g. Components or equipment such as those used to handle molten metals in soldering processes, in the manufacture of metal alloys, in the cleaning of molten metals, and in the recovery of solid metals from the melt.

Es zeigt sich, dass die spezielle Korrosionsschutzschicht eine sehr hohe Korrosionsbeständigkeit insbesondere auch gegenüber heißen Aluminiumschmelzen aufweist. Bei Bildung der Korrosionsschutzschicht mittels eines Sol-Gel-Prozesses kann die Schicht mit relativ geringem Aufwand sehr gleichmäßig und homogen auch in schwer zugänglichen Oberflächenbereichen des zu beschichtenden gießtechnischen Bauteils angebracht werden. Bei Bedarf kann dem Solmaterial für die Sol-Gel-Schicht zusätzlich ein Alkali- oder Erdalkalimetallsalz und/oder ein viskositätseinstellendes Polymer zugesetzt werden. In alternativen Ausführungsformen der Erfindung kann die Korrosionsschutzschicht auch durch Laserauftragschweißen, Flammspritzen oder Plasmaspritzen aufgebracht werden.It turns out that the special corrosion protection layer has a very high corrosion resistance, in particular also with respect to hot aluminum melts. When the corrosion protection layer is formed by means of a sol-gel process, the layer can be applied very evenly and homogeneously even in hard to reach surface areas of the casting component to be coated with relatively little effort. If necessary, an alkali or alkaline earth metal salt and / or a viscosity-adjusting polymer may be additionally added to the sol material for the sol-gel layer. In alternative embodiments of the invention, the corrosion protection layer can also be applied by laser cladding, flame spraying or plasma spraying.

Weitere Ausführungsformen der Erfindung umfassen das Aufbringen einer mehrlagigen Korrosionsschutzschicht, von der mindestens eine, vorzugsweise eine äußere, Schichtlage durch das erfindungsgemäße Sol-Gel-Auftragverfahren und mindestens eine andere Schichtlage durch ein anderes Auftragverfahren gebildet wird, bei dem es sich insbesondere um Laserauftragschweißen, Flammspritzen oder Plasmaspritzen handeln kann. Dadurch kann in entsprechenden Anwendungsfällen ein optimal an den Einsatzzweck angepasster Schichtaufbau mit minimiertem Herstellungsaufwand erzielt werden. In gleicher Weise kann ein beliebiges Bauteil erfindungsgemäß an unterschiedlichen Oberflächenbereichen mit je einer Korrosionsschutzschicht versehen werden, die mit zwei verschiedenen der vier genannten Auftragverfahren, i.e. Sol-Gel-Verfahren, Laserauftragschweißen, Flammspritzen und Plasmaspritzen, aufgebracht werden. So kann z.B. der Sol-Gel-Prozess zum Beschichten schwer zugänglicher Bereiche und eines der drei anderen genannten Verfahren zum Beschichten leichter zugänglicher, flächiger Bereiche des Bauteils eingesetzt werden. Weiter können die erwähnten Varianten der "vertikalen" bzw. "lateralen" Kombination von mit unterschiedlichen Verfahren aufgebrachten Schichten auch miteinander bei einem entsprechenden Bauteil kombiniert sein.Further embodiments of the invention include the application of a multilayer anticorrosion layer, of which at least one, preferably an outer, layer layer is formed by the sol-gel coating method according to the invention and at least one other layer layer by another application method, which is in particular laser cladding, flame spraying or plasma spraying can act. In this way, in appropriate applications, a layer structure adapted optimally to the intended use can be achieved with minimized production outlay. In the same way, according to the invention, any component can be provided, on different surface areas, with in each case one anticorrosive layer which is provided with two different of the four mentioned application methods, i.e. Sol-gel process, laser cladding, flame spraying and plasma spraying are applied. Thus, e.g. the sol-gel process for coating hard-to-reach areas and one of the other three methods mentioned for coating more accessible, flat areas of the component are used. Furthermore, the mentioned variants of the "vertical" or "lateral" combination of layers applied with different methods can also be combined with one another in a corresponding component.

Claims (11)

  1. Casting component for a device for casting or handling a metal melt, the component having a metallic basic body (2) and a melt contact surface region (9) which is exposed to the molten metal during a casting operation,
    characterized in that
    the metallic basic body (2) is provided in the melt contact surface region (9) with an anticorrosive layer (3) which is resistant to the metal melt, and which is formed as a sol/gel layer using microparticles and/or nanoparticles as a filler having an average particle size of between 50 nm and 50 µm of one or more substances, which are selected from the group consisting of borides and carbides of the transition metals and their alloys and of boron and silicon, wherein the sol/gel layer has a zirconium-based or silicon-based gel former and is formed by a plurality of gel layer plies, at least one layer ply thereof being formed without microparticles and/or nanoparticles and forming an outer layer ply of the sol/gel layer.
  2. Casting component according to claim 1, further characterized in that the microparticles and/or nanoparticles have an average particle size of between 100 nm and 30 µm.
  3. Casting component according to claim 1 or 2, further characterized in that the anticorrosive layer is formed using microparticles and/or nanoparticles composed of TiB2.
  4. Casting component according to any one of claims 1 to 3, further characterized in that the sol/gel layer comprises an additionally administered alkali metal salt or alkaline earth metal salt and/or an additionally administered viscosity-setting polymer.
  5. Casting component according to any one of claims 1 to 4, further characterized in that at least two layer plies of the sol/gel layer include microparticles and/or nanoparticles of identical or different substances.
  6. Casting component according to any one of claims 1 to 5, further characterized in that the basic body is formed from a steel material.
  7. Casting component according to any one of claims 1 to 6, further characterized in that the casting component is one for a device for casting an aluminum melt.
  8. Casting component according to any one of claims 1 to 7, further characterized in that the casting component is one for a metal die-casting machine, preferably a casting fitting, a casting vessel, a melt furnace constituent, a melt conveying constituent, a casting mold constituent or a part of one of these die-casting machine constituents.
  9. Method for applying the anticorrosive layer (3) to the metallic basic body (2) of a casting component according to any one of claims 1 to 8 in a melt contact surface region (9) thereof by means of a sol/gel process using microparticles and/or nanoparticles with an average particle size of between 50 nm and 50 µm as a filler, wherein during the sol/gel process a plurality of gel layer plies are formed, at least a last one thereof being applied filler-free without the microparticles and/or nanoparticles.
  10. Method according to claim 9, further characterized in that during the sol/gel process a plurality of gel layer plies are formed, at least two thereof being loaded with the microparticles and/or nanoparticles of identical or different substances as a filler.
  11. Method according to claim 9 or 10, further characterized in that, after the formation of one or more gel layer plies, a vitrifying baking step is carried out at a temperature of between 500 °C and 650 °C.
EP12729600.2A 2011-06-24 2012-06-22 Casting component, and method for the application of an anticorrosive layer Active EP2723916B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL12729600T PL2723916T3 (en) 2011-06-24 2012-06-22 Casting component, and method for the application of an anticorrosive layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011078066A DE102011078066A1 (en) 2011-06-24 2011-06-24 Casting component and method for applying a corrosion protection layer
PCT/EP2012/062082 WO2012175668A2 (en) 2011-06-24 2012-06-22 Casting component, and method for the application of an anticorrosive layer

Publications (2)

Publication Number Publication Date
EP2723916A2 EP2723916A2 (en) 2014-04-30
EP2723916B1 true EP2723916B1 (en) 2019-01-16

Family

ID=46354335

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12729600.2A Active EP2723916B1 (en) 2011-06-24 2012-06-22 Casting component, and method for the application of an anticorrosive layer

Country Status (13)

Country Link
US (1) US10766064B2 (en)
EP (1) EP2723916B1 (en)
JP (1) JP6073305B2 (en)
KR (1) KR102019176B1 (en)
CN (1) CN103930597B (en)
BR (1) BR112013032678B1 (en)
DE (1) DE102011078066A1 (en)
ES (1) ES2719125T3 (en)
MX (1) MX2013014924A (en)
PL (1) PL2723916T3 (en)
RU (1) RU2578301C2 (en)
TR (1) TR201905070T4 (en)
WO (1) WO2012175668A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR20190100321A (en) * 2019-07-26 2021-02-15 Oskar Frech Gmbh & Co. Kg Casting accessory and method for the application of an anticorrosion layer
DE102020210913A1 (en) 2020-08-28 2022-03-03 Oskar Frech Gmbh + Co. Kg Casting component with anti-corrosion layer structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3027033B1 (en) * 2014-10-10 2019-05-03 Rbnano METHOD FOR COATING THE SURFACE OF A METAL SUBSTRATE
CN117753928B (en) * 2024-02-22 2024-04-26 潍坊卓安重工科技有限公司 Lost foam casting method for manufacturing ball mill end cover by utilizing spheroidal graphite cast iron

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053251A (en) * 1989-05-26 1991-10-01 Shinko Pantec Co., Ltd. Method for repairing glass-lined equipment by sol-gel process

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2364809B2 (en) 1972-12-28 1978-11-30 Denki Kagaku Kogyo K.K. Material mixture for the cylinder and piston of an injection pump for hot chamber or cold chamber die casting machines
US4556098A (en) 1978-08-18 1985-12-03 Laboratoire Suisse De Recherches Horlogeres Hot chamber die casting of aluminum and its alloys
JPS5855109B2 (en) 1980-10-20 1983-12-08 大竹碍子株式会社 Corrosion resistant for low melting point molten metals
US4595545A (en) 1982-12-30 1986-06-17 Eltech Systems Corporation Refractory metal borides and composites containing them
DE3513882A1 (en) 1985-04-17 1986-10-23 Plasmainvent AG, Zug PROTECTIVE LAYER
US4921731A (en) * 1986-02-25 1990-05-01 University Of Florida Deposition of ceramic coatings using sol-gel processing with application of a thermal gradient
DE4224078A1 (en) * 1992-07-21 1994-01-27 Hagen Batterie Ag Lattice mold for casting accumulator lead grids and process for their production
US6284682B1 (en) * 1999-08-26 2001-09-04 The University Of British Columbia Process for making chemically bonded sol-gel ceramics
DE102006040385A1 (en) * 2001-06-09 2007-01-18 Esk Ceramics Gmbh & Co. Kg Sizing liquids, useful for the production of a high temperature-stable coating, comprises at least a nanoscale inorganic binder system, boron nitride and at least a solvent
FR2830857B1 (en) * 2001-10-15 2004-07-30 Pechiney Aluminium COATING PRECURSOR AND METHOD FOR COATING A SUBSTRATE WITH A REFRACTORY LAYER
WO2004083830A1 (en) * 2003-03-13 2004-09-30 Elisha Holding Llc Method for testing the effectiveness of a silica containing coating
WO2004087351A1 (en) 2003-03-27 2004-10-14 Kubota Corporation Heat insulation plunger sleeve for die casting machine
DE10326769B3 (en) * 2003-06-13 2004-11-11 Esk Ceramics Gmbh & Co. Kg Slip for producing long-lasting mold release layer, useful on mold for casting nonferrous metal under pressure, comprises boron nitride suspension in silanized silica in organic solvent or aqueous colloidal zirconia, alumina or boehmite
DE102005045666A1 (en) 2005-09-14 2007-03-15 Itn Nanovation Gmbh Layer or coating and composition for its production
DE102005050593A1 (en) 2005-10-21 2007-04-26 Esk Ceramics Gmbh & Co. Kg Skim coat for making a durable hard coating on substrates, e.g. crucibles for melt-processing silicon, comprises silicon nitride particles and a binder consisting of solid nano-particles made by a sol-gel process
DE102006041047A1 (en) * 2006-09-01 2008-03-20 Esk Ceramics Gmbh & Co. Kg Sizing for the preparation of a BN-containing coating, process for its preparation, coated body, its preparation and its use
RU2006134247A (en) * 2006-09-26 2008-04-10 Дробышевский Павел Александрович (RU) HEAT RESISTANT CERAMIC COMPOSITE
US8463300B2 (en) 2007-06-18 2013-06-11 Lg Electronics Inc. Paging information transmission method for effective call setup
DE102007029668A1 (en) * 2007-06-27 2009-01-08 Epg (Engineered Nanoproducts Germany) Ag Ultra-hard composite coatings on metal surfaces and process for their preparation
DE102007053284A1 (en) 2007-11-08 2009-05-20 Esk Ceramics Gmbh & Co. Kg Firmly adhering silicon nitride-containing separating layer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053251A (en) * 1989-05-26 1991-10-01 Shinko Pantec Co., Ltd. Method for repairing glass-lined equipment by sol-gel process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
U.C. NWAOGU ET AL: "New sol-gel refractory coatings on chemically-bonded sand cores for foundry applications to improve casting surface quality", SURFACE AND COATINGS TECHNOLOGY, vol. 205, no. 16, 1 May 2011 (2011-05-01), AMSTERDAM, NL, pages 4035 - 4044, XP055307494, ISSN: 0257-8972, DOI: 10.1016/j.surfcoat.2011.02.042 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR20190100321A (en) * 2019-07-26 2021-02-15 Oskar Frech Gmbh & Co. Kg Casting accessory and method for the application of an anticorrosion layer
GR1009951B (en) * 2019-07-26 2021-03-09 Oskar Frech Gmbh & Co. Kg Casting accessory and method for the application of an anticorrosion layer
DE102020210913A1 (en) 2020-08-28 2022-03-03 Oskar Frech Gmbh + Co. Kg Casting component with anti-corrosion layer structure

Also Published As

Publication number Publication date
EP2723916A2 (en) 2014-04-30
BR112013032678A2 (en) 2017-01-24
DE102011078066A1 (en) 2012-12-27
CN103930597B (en) 2016-09-14
ES2719125T3 (en) 2019-07-08
KR102019176B1 (en) 2019-09-09
JP6073305B2 (en) 2017-02-01
WO2012175668A2 (en) 2012-12-27
PL2723916T3 (en) 2019-07-31
US10766064B2 (en) 2020-09-08
RU2578301C2 (en) 2016-03-27
TR201905070T4 (en) 2019-05-21
US20140193635A1 (en) 2014-07-10
MX2013014924A (en) 2014-05-09
RU2014101456A (en) 2015-07-27
CN103930597A (en) 2014-07-16
BR112013032678B1 (en) 2020-11-10
JP2014519985A (en) 2014-08-21
KR20140043112A (en) 2014-04-08
WO2012175668A3 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
DE602004004832T2 (en) Coating for silicon-containing substrate
DE102005031101B3 (en) Producing a ceramic layer by spraying polymer ceramic precursor particles onto a surface comprises using a cold gas spray nozzle
DE10326769B3 (en) Slip for producing long-lasting mold release layer, useful on mold for casting nonferrous metal under pressure, comprises boron nitride suspension in silanized silica in organic solvent or aqueous colloidal zirconia, alumina or boehmite
EP1273817B1 (en) Process for the manufacture of a fibre reinforced material consisting at least on the peripheral area of a metal-ceramic composite material
EP1924537B1 (en) Use of a composition for the production of a mould release layer
DE102006040385A1 (en) Sizing liquids, useful for the production of a high temperature-stable coating, comprises at least a nanoscale inorganic binder system, boron nitride and at least a solvent
DE102007053284A1 (en) Firmly adhering silicon nitride-containing separating layer
EP3030528B1 (en) Enamel powder, metal component having a surface portion provided with an enamel coating and method for producing such a metal component
EP2723916B1 (en) Casting component, and method for the application of an anticorrosive layer
EP1794342B1 (en) Production of a gas-tight, crystalline mullite layer by using a thermal spraying method
DE102005042475A1 (en) Mold release layer for casting non-ferrous metals
WO2009129783A2 (en) Method for protecting a metal from corrosion
EP3097298B1 (en) Cast part and insert for such a cast part
DE102016100810A1 (en) Refractory material and its use
EP1486473B1 (en) Durable mould release coatings for die casting of nonferrous metals comprising boron nitride
EP1993755A1 (en) Mold release layer for casting nonferrous metals
DE102004002303B4 (en) A method of making a coated carbon / carbon composite and coated carbon / carbon composite produced thereafter
DE112014002622T5 (en) Investment casting core, method for producing a investment casting core, and investment casting tool
DE102005029039B4 (en) Production process for mold with non-stick coating
WO2006005416A1 (en) Method for producing a nonstick ingot mold
DE102004002304B4 (en) Process for producing a coated carbon / carbon composite and composite material produced therefrom
EP1496034B1 (en) High temperature resistant component and method of manufacturing
EP3568441A1 (en) Coating material for a self-cleaning coating, and method for producing same
DE102011077021A1 (en) Method for producing electrically-insulated ceramic coating on piston or bearing component i.e. rolling body, of needle cage, involves applying mixture on component, and drying mixture with temperature between specific degrees Celsius
WO2008086930A1 (en) Ceramic preform for the production of metal-ceramic composite materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131223

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

R17D Deferred search report published (corrected)

Effective date: 20140403

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1191382

Country of ref document: HK

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161024

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180720

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012014182

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1089760

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. LUSUARDI AG, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190116

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2719125

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190516

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190516

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190416

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012014182

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

26N No opposition filed

Effective date: 20191017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230619

Year of fee payment: 12

Ref country code: DE

Payment date: 20230623

Year of fee payment: 12

Ref country code: CZ

Payment date: 20230609

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230616

Year of fee payment: 12

Ref country code: SK

Payment date: 20230616

Year of fee payment: 12

Ref country code: SE

Payment date: 20230622

Year of fee payment: 12

Ref country code: PL

Payment date: 20230522

Year of fee payment: 12

Ref country code: AT

Payment date: 20230616

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230630

Year of fee payment: 12

Ref country code: GB

Payment date: 20230622

Year of fee payment: 12

Ref country code: ES

Payment date: 20230719

Year of fee payment: 12

Ref country code: CH

Payment date: 20230702

Year of fee payment: 12