EP2688720B1 - Mobiles robotermanipulatorsystem - Google Patents

Mobiles robotermanipulatorsystem Download PDF

Info

Publication number
EP2688720B1
EP2688720B1 EP12760628.3A EP12760628A EP2688720B1 EP 2688720 B1 EP2688720 B1 EP 2688720B1 EP 12760628 A EP12760628 A EP 12760628A EP 2688720 B1 EP2688720 B1 EP 2688720B1
Authority
EP
European Patent Office
Prior art keywords
finger
joints
joint
assembly
electrolaminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12760628.3A
Other languages
English (en)
French (fr)
Other versions
EP2688720A4 (de
EP2688720A2 (de
Inventor
Pablo E. Garcia
Thomas P. Low
Harsha Prahlad
Daniel AUKES
Susan Kim
Roy D. Kornbluh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SRI International Inc
Original Assignee
SRI International Inc
Stanford Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SRI International Inc, Stanford Research Institute filed Critical SRI International Inc
Priority to EP21198553.6A priority Critical patent/EP3954512A3/de
Publication of EP2688720A2 publication Critical patent/EP2688720A2/de
Publication of EP2688720A4 publication Critical patent/EP2688720A4/de
Application granted granted Critical
Publication of EP2688720B1 publication Critical patent/EP2688720B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0009Gripping heads and other end effectors comprising multi-articulated fingers, e.g. resembling a human hand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0028Gripping heads and other end effectors with movable, e.g. pivoting gripping jaw surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0085Gripping heads and other end effectors with means for applying an electrostatic force on the object to be gripped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members
    • B25J15/083Gripping heads and other end effectors having finger members with means for locking the fingers in an open or closed position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/10Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
    • F16H21/40Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane for interconverting rotary motion and oscillating motion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S294/00Handling: hand and hoist-line implements
    • Y10S294/907Sensor controlled device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/30End effector
    • Y10S901/31Gripping jaw
    • Y10S901/39Jaw structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20305Robotic arm
    • Y10T74/20323Robotic arm including flaccid drive element

Definitions

  • the invention relates generally to robotic manipulator systems. More specifically, the invention relates to robotic appendages.
  • the finger assembly further comprises a brake subsystem, in communication with each of the joints, adapted to selectively lock and unlock the joints individually.
  • the brake subsystem includes a multilayer electrolaminate composite structure that is integrated into each joint, the multilayer electrolaminate composite structure stiffening the joint in response to an electrical signal.
  • Embodiments of robotic manipulators employ selective underactuation, compliant force control, and multimodal tactile, position, and force sensing.
  • Underactuation when applied a mechanical device, signifies that the device has fewer actuators than degrees of freedom.
  • Controllable selective underactuation as described below, enable a robotic hand to grasp unknown objects using a power grasp, and then to switch to a precision grasp in order to perform operations requiring fine control of fingertip position and force.
  • a power grasp involves the palm and fingers in combination to secure an object firmly in the hand, whereas a precision grasp involves the fingertip regions to control the pose of an object precisely.
  • a robotic hand can employ a combination of power and precision grasps to hold, manipulate, and reposition an object, a process referred to as re-grasping.
  • each underactuated finger can lock and unlock independently in response to an electrical signal. This selective locking of joints allows a single actuator to multiplex the flexing of the finger joints.
  • each underactuated finger can passively wrap around an object of unknown shape to cooperate in a power grasp, and then selected joints of the fingers can be locked so the fingers can cooperate in a pincer to perform a precision grasp.
  • a transmission integrated into each underactuated finger is backdriveable and has built-in elasticity, making the robotic hand resistant to shock and overload.
  • Grasping surfaces i.e., skin
  • the skin is abrasion-resistant and controllably compliant; the finger can be "soft" when making contact with objects of unknown shape and structure, and firm to control its precision precisely after making contact.
  • Sensor assemblies integrated in the skin can sense contact pressure, slippage, and vibration. Fingers can detect contact points, grasping and pinching forces, the stability of the object, and slippage. These abilities enable manipulation and re-grasping of objects by rolling and sliding objects between fingertips.
  • Other sensor devices can be incorporated into the finger to sense other types of parameters, for example, temperature and pressure.
  • Each finger 16 can flex forward or backward at any of the joints and has three degrees of freedom (DOF); although the finger can have fewer or more DOFs, depending upon the particular application.
  • DOF degrees of freedom
  • a single actuator controls all three degrees of a finger, with selective locking of the joints allowing the single actuator to multiplex the flexing of the joints, individually, or in groups. By locking and unlocking the joints in rapid succession, the joints can appear to move and be controlled simultaneously.
  • the finger modules 12-1, 12-2 are movably coupled to one side of the palm assembly 14, and the other finger modules 12-3, 12-4 are fixed in position to the opposite side of the palm assembly 14.
  • the finger modules 12-1, 12-2 can move together or apart. Fixing the location of the other finger modules 12-3, 12-4, makes their locations known and predictable, which is advantageous for precision grasps involving pinching by opposing finger modules (e.g. 12-1 and 12-4).
  • FIG. 2 and FIG. 3 show a side view and front view, respectively, of one embodiment of the robotic hand 10 extending from a forearm 30.
  • Each finger 16 has a protective fingernail 32 at its fingertip. The fingernails of opposing fingers can be used to grasp small edges.
  • FIG. 4, FIG. 5, and FIG. 6 show the robotic hand 10 in three different configurations.
  • the fingers 16-1, 16-2 are directly opposed to the fingers 16-3, 16-4 (finger 16-1 being directly opposite finger 16-4; finger 16-2 being directly opposite to finger 16-3).
  • the finger modules 12-1, 12-2 are together, adjacent to each other, approximately midway along the side of the palm assembly 14.
  • the fingers 16 are bent so that the distal phalanges 20-3 and intermediate phalanges 20-2 of the fingers 16-1 and 16-4 are parallel to each other; as are the distal 20-3 and intermediate phalanges 20-2 of the fingers 16-2 and 16-3.
  • the finger modules 12-1, 12-2 are disposed in a track 40 along which the finger modules 12-1, 12-2 can travel laterally along the side of the palm assembly 14. This lateral movement capability of the finger modules 12-1, 12-2 makes the anatomy of the robotic hand 10 dynamically reconfigurable.
  • the fingers 16-1, 16-2 are spatially apart from each other and arched toward the other fingers 16-3, 16-4, which arch back toward the fingers 16-1, 16-2.
  • the arrangement produces a spherical pose among the fingers 16.
  • the fingers 16-1, 16-2 are spatially apart from each other at opposite ends of the track 40 and bent forward.
  • the other fingers 16-3 and 16-4, fixed in their positions on the opposite side of the palm assembly 14, are also bent forward, extending in the opposite direction of and coming in between the bent fingers 16-1 and 16-2, producing an interlaced arrangement among the fingers 16.
  • FIGS. 7 through FIG. 11 show different grasps of which the robotic hand 10 is capable.
  • the different grasps presented are merely illustrative examples; many other types of grasps are possible.
  • the underactuated fingers are executing a power grasp of an irregularly shaped object 50.
  • FIG. 8 shows the underactuated fingers in an interlaced configuration grasping a flashlight 52.
  • FIG. 9 shows the fingers in a spherical configuration grasping a sphere 54. Two of the fingers use a power grasp to pinch a key 56 in FIG. 10 , whereas, in FIG. 11 , two fingers use a precision grasp to pinch a pencil 58.
  • FIG. 12A and FIG. 12B show the use of selective locking of the joints of two opposing fingers 16-1 and 16-4 to alter a grasp of an object 60.
  • the fingers conform to the shape of the object 60, and the robotic hand 10 performs a power grasp.
  • the fingers 16 can close about the object until a finger detects light contact with the object.
  • its proximal joint 18-3 can be locked, while the remaining intermediate and distal joints of the finger remain unlocked.
  • the intermediate and distal joints can continue to flex without increasing the contact force applied to the object. Accordingly, the contact with the object causes minimal disturbance of the object.
  • the intermediate joint 18-2 can be locked, for example, after contact is detected on the intermediate phalange 20-2, while the distal joint 18-3 remains unlocked.
  • force can be transferred force to distal joint 18-3, and the finger 16 has thus progressed from being underactuated with three degrees of freedom to having a single degree of freedom.
  • all joints can be locked to stiffen the grasp, as shown in FIG. 12B .
  • FIG. 13 shows the use of selective locking of the joints of two opposing fingers 16-1 and 16-4 to perform a precision grasp on a spherical object 62, which is held between the fingertips.
  • the proximal joints 18-1 of both fingers are unlocked, while the intermediate joints 18-2 and distal joints 18-3 of both fingers 16-1, 16-4 are locked, which effectively locks their distal phalanges 20-3.
  • FIG. 14 shows the use of selective locking of the joints of two opposing fingers 16-1 and 16-4 to perform a precision grasp on a flat object 64.
  • the distal phalanges 20-3 of the opposing fingers can hyperextend to form a flat gripper, which provides a simple way of grasping small objects. To hold the object, all of the joints can be unlocked.
  • FIG. 15A and FIG. 15B show the use of selective locking of the joints of two opposing fingers 16-1 and 16-4 to hold, manipulate, and re-grasp an object 66.
  • the robotic hand has the object in a precision grasp, with the proximal joints 18-1 and intermediate joints 18-2 of both fingers being unlocked, while the distal joints 18-3 of both fingers are locked.
  • the distal phalange 20-3 of the finger 16-1 pushes upwards against the object 66 and then locks its intermediate joint 18-2, momentarily holding the finger 16-1 in this present position so that the other finger 16-4 can make the next move to further the rotation.
  • the fingers can cooperate to manipulate and re-grasp objects held by the fingers 16 of the hand 10.
  • FIG. 15A and FIG. 15B are just one example of how the robotic hand 10 can re-grasp an object. Numerous other techniques are possible, for instance, using three fingers to hold an object in a power grasp, while a fourth finger moves the object held in the power grasp.
  • the robotic hand 10 can use three fingers to hold a flashlight in a power grasp, and a fourth finger to rotate the flashlight to find and press its on/off button.
  • FIG. 16 shows an exploded view of one embodiment of the robotic hand 10 including the four finger modules 12-1, 12-2, 12-3, 12-4 and the palm assembly 14. All finger modules 12 are modular in construction; they are interchangeable, and can either be fixed or movably coupled to the palm assembly 14.
  • the palm assembly 14 includes a palm 68, a motor-and-hand controller PCB (printed circuit board) stack 70, a divider 72, a finger-spreader motor 74, a finger-spreader actuator 76, two finger-spreader blocks 78, a finger-module mount 80, high-voltage electronics 82, a base housing 84, and an arm adapter 86.
  • PCB printed circuit board
  • the arm adapter 86 couples the robotic hand 10 to a robotic forearm, for example, a GFE Barrett Arm (not shown).
  • the base housing 84 attaches to the raised surface of the arm adapter 86.
  • the high-voltage electronics 82 are housed within the base housing 84 and distribute power to the finger modules 12, motor-and-hand controller stack 70, and finger-spreader motor 74.
  • the high-voltage electronics 82 include multiple switchable channels of high voltage ( ⁇ 1kV) used to selectively lock and unlock joints 18, as described in more detail below.
  • the finger-spreader actuator 76 mounts to the open side of the finger module mount 80, and the finger module mount 80 connects to the top surface of the base housing 84.
  • the finger-spreader motor 74 resides within a compartment defined by the side wall of the finger module mount 80 and the finger-spreader actuator 76.
  • the finger-spreader motor 74 is operably coupled to move the finger-spreader actuator 76.
  • the finger modules 12-3, 12-4 attach to the exterior of the side wall of finger module mount 80.
  • Each finger-spreader block 78 couples one of the other finger modules 12-1, 12-2 to the finger-spreader actuator 76.
  • the palm 68 houses the motor-and-hand controller stack 70 and attaches to the top of the finger-module mount 80, the divider 72 serving as a gasket between the palm 68 and finger-module mount 80.
  • the motor-and-hand controller stack 70 controls operation of the finger-spreader motor 74 in response to control commands, and interfaces with the finger modules 12 and the high-voltage electronics 82.
  • Control signals sent from the motor-and-hand controller stack 70 to the high-voltage electronics 82 control the use of electroadhesion in the skin of the fingers and switch high voltage (e.g., +1kV; -1kV) among the electrolaminate brakes used to selectively lock and unlock the finger joints 18.
  • high voltage e.g., +1kV; -1kV
  • FIG. 17 shows an embodiment of a finger module 12 including the finger assembly 16 mounted to an actuator module 90.
  • the actuator module 90 provides a backdriveable, twisted-string transmission with built-in compliance and low backlash. Although shown to be integrated into the finger module 12, in other embodiments, the twisted-string transmission of the actuator module 90 can be implemented in or mounted on a forearm connected to the robotic hand 10.
  • the actuator module 90 houses a motor 92, a machined spring 94, a motor encoder 96, a twisted string 98, a Hall Effect sensor 100, and a sensor circuit board 102 with a controller (e.g., 80 MIPS DSP).
  • the motor 92 is, in one embodiment, a brushless DC motor (e.g., 15W) with a high gear ratio (i.e., greater than 50:1).
  • the motor encoder 96 tracks the position of the motor 92.
  • the twisted string 98 is coupled by the finger mount 24 (FIG. to the drive tendon 130.
  • the twisted string 98 can be a KEVLAR, Spectra, or Vectran cable.
  • the Hall Effect sensor 100 measures compression of the twisted string 98 to provide a force feedback signal, and the controller and sensor board 102 includes a force/current sensor that can measure actuator torque.
  • the actuator module 90 translates rotary motion of the motor 92 to linear motion of a tendon 130 ( FIG. 22 ) within the finger 16.
  • the motor 92 twists the twisted string 98. Twisting motion in one direction causes the length of the twisted string 98 to shorten, which causes a pull of the tendon 130 through the finger, causing the finger to actuate.
  • the finger 16 flexes accordingly depending on which joints are locked and unlocked. Twisting in the other direction releases compression on the twisted string 98; and the spring return 140 ( FIG. 24 ) urges the finger 16 to extend in a manner depending on which joints are presently locked and unlocked.
  • the actuator module 90 can be responsive to external disturbances and maintain the force exerted on the finger below a certain level. If active force control is used to backdrive the transmission, sensors measure external forces exerted on the finger 16, and provide feedback. In response to this feedback, the actuator module 90 actively causes the motor 92 to move the finger in a manner as though the external forces were pushing the finger. Thus, the finger does not wholly resist the external forces, but moves with them.
  • the transmission can be passively backdriveable without a sensor or a closed feedback loop buy using a low gear ratio (below 1:50) and having high efficiency.
  • FIG. 19 shows an exploded view of one embodiment of a finger module 12 including the finger assembly 16 and the actuator module 90 (exploded into three pieces: a plastic housing 90A, a palm assembly mount 90B with the notch 106, and a cover 90C). Also shown are the motor 92, the machined spring 94, the motor encoder 96, the sensor board 102, a forced-sensor assembly 110, and a twisted string assembly 112 with the twisted string 98. In addition, a flat flex electrical circuit 114 extends from the actuator module 90 to the proximal joint 18-1. The flex circuit 114 contains the communication bus for the position and tactile sensors in the fingers.
  • FIG. 20 and FIG. 21 show examples of mechanical compliance provided by the finger mount 24 used to join the finger assembly 16 to the actuator module 90.
  • FIG. 20 shows to what degree the finger assembly 16 can be twisted relative to the actuator module 90.
  • the finger module 20 is designed for ⁇ 15 degrees of twisting with respect to axis 120.
  • FIG. 21 shows a measure of lateral compliance of the finger assembly 16 relative to the actuator module 90. Measured with respect to the axis 122, the finger assembly can tilt ⁇ 15 degrees.
  • a flexure feature in the proximal joint 18-1 in the finger mount 24 at the base of the finger assembly 16 provides the rotational compliance. When an object is grasped with multiple fingers, the rotational and lateral compliance of the fingers can ensure that the fingers passively align and balance the normal forces exerted on the object.
  • the brake subsystem 158 provides the ability to lock and unlock joints.
  • the brake subsystem 158 is shown here as a pre-assembled unit. Alternatively, the brake subsystem 158 can be assembled on the skeleton.
  • the hollow pins 162 extend through openings in the brake subsystem 158, the pulleys 154, and skeleton 150. The ends of the hollow pins 162 are flared to secure the assembly.
  • the rivets 166 secure the skeleton 160 to the brake subsystem 158.
  • FIG. 28 shows an example of the finger assembly 16 according to the invention, with its distal joint 18-3 shown in detail.
  • the distal joint 18-3 includes the cable pulley 154-3 and a multilayered composite structure 180 made of electrolaminate materials.
  • electrolaminates change from compliant and spring-like to essentially rigid, using electrostatic clamping to control the connectivity between different materials in the layered composite structure.
  • the electrolaminate structure can withstand slip under pressure.
  • the maximum force that the composite electrolaminate structure 180 can withstand is a function of the properties of the clamping surfaces, the applied voltage, and the total clamping area. Typical maximum clamping pressures are about 0.4 Mpa (70 psi).
  • the multilayered composite electrolaminate structure 180 can be fabricated as a monolithic sheet 190 ( FIG. 31A ) with individual attachment points to each joint (or set of joints) that can be locked.
  • the multilayered composite electrolaminate structure 180 includes passive (voltage-off) compliant elements that operate to oppose the actuator tendon 130 and provide an extensional force for each joint 18.
  • the multilayered composite electrolaminate structure 180 can be shielded by locating the ground planes on the outermost electrodes, or by encircling the electrolaminate structure 180 in a conductive elastomeric sheath.
  • the electroadhesive (EA) layer 224 is an electrically controllable skin layer capable of adhering to many materials surfaces, producing the effect of variable skin friction. This friction can assist in gripping objects to overcome slippage and enhance grasping capability.
  • the EA layer 224 enables grasping objects of various sizes, with lower grasping forces, by controlling traction and sliding.
  • the EA layer 224 can clamp on many types of materials, including, but not limited to, glass, wood, metal, concrete, drywall, brick, and granite. The clamping forces vary with the material.
  • the EA layer 224 consumes almost no power (e.g., 0.02 mW/N of weight supported).
  • the EA layer 224 can be detachable without affecting the mechanical grasping capabilities of the finger. The detachability enables use of the EA layer 224 whenever the EA layer 224 is appropriate for the task.
  • the flex circuit board 152' can further include a position sensor 248 having a sensor array 250 and built-in shield 252.
  • the sensor 248 provides the position of each joint.
  • the sliding component 264 is eliminated and, in its place, a fixed pin 270 or pulley is used.
  • the distance between the rotating input shaft (of the motor) and the pin 270 is constant and fixed by the designer.
  • the actuator input (motor) 260 is rotated, the cords 262 between the actuator input 260 and the fixed pin 270 twist, shortening and pulling additional untwisted string past the fixed pin or pulley into the twisted region. In this manner, the length of the string that is twisted is no longer fixed, but increases as the actuator input shaft rotates.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manipulator (AREA)

Claims (7)

  1. Unteraktuierte Roboterfingeranordnung (16), die Folgendes umfasst:
    ein Fingerskelett (150; 160) mit mehreren Gelenken (18-1; 18-2; 18-3) einschließlich eines distalen Gelenks (18-3), eines mittleren Gelenks (18-2) und eines proximalen Gelenks (18-1); und
    ein Bremsteilsystem (158), das mit jedem der Gelenke (18-1; 18-2; 18-3) in Verbindung steht, das angepasst ist, um die Gelenke individuell wahlweise zu verriegeln und zu entriegeln;
    dadurch gekennzeichnet, dass das Bremsteilsystem (158) eine mehrschichtige Elektrolaminatverbundstruktur (180) einschließt, die in jedes Gelenk (18-1; 18-2; 18-2) integriert ist, wobei die mehrschichtige Elektrolaminatverbundstruktur (180) das Gelenk (18-1; 18-2; 18-3) als Reaktion auf ein elektrisches Signal versteift.
  2. Anordnung nach Anspruch 1 und beliebiges Folgendes:
    a) wobei das Bremsteilsystem (158) Segmente von mehrschichtigen Elektrolaminatverbundstrukturen (180) einschließt und wobei sich die Schichten der mehrschichtigen Elektrolaminatverbundstrukturen (180) von angrenzenden Segmenten an jedem Gelenk (18-1; 18-2; 18-2) überlappen; oder
    b) wobei das Bremsteilsystem (158) zwei oder mehr Gelenke (18-1; 18-2; 18-2) als eine Gruppe verriegeln und entriegeln kann.
  3. Anordnung nach Anspruch 1, die ferner ein Spannglied (130) umfasst, das durch das Fingerskelett (160) um jedes der Gelenke (18-1; 18-2; 18-3) herum geführt ist, um einen Aktuator bereitzustellen, der die Gelenke (18-1; 18-2; 18-3) biegt, wobei sie in diesem Fall optional ferner einen Federrückzug (140) umfasst, der mit jedem der Gelenke (18-1; 18-2; 18-3) gekoppelt ist, um die Gelenke (18-1; 18-2; 18-3) zu drängen, zu expandieren.
  4. Roboterfingermodul (12), das Folgendes umfasst:
    ein Aktuatormodul (90); und
    eine unteraktuierte Fingeranordnung (16), die an dem Aktuatormodul (90) montiert ist, wobei die Fingeranordnung (16) Folgendes umfasst:
    ein Fingerskelett (150; 160) mit mehreren Gelenken (18-1; 18-2; 18-3) einschließlich eines distalen Gelenks (18-3), eines mittleren Gelenks (18-2) und eines proximalen Gelenks (18-1); und
    ein Bremsteilsystem (158), das mit jedem der Gelenke (18-1; 18-2; 18-3) in Verbindung steht, das angepasst ist, um die Gelenke (18-1; 18-2; 18-3) individuell wahlweise zu verriegeln und zu entriegeln;
    dadurch gekennzeichnet, dass das Bremsteilsystem (158) eine mehrschichtige Elektrolaminatverbundstruktur einschließt, die in jedes Gelenk (18-1; 18-2; 18-3) integriert ist, wobei die mehrschichtige Elektrolaminatverbundstruktur das Gelenk (18-1; 18-2; 18-3) als Reaktion auf ein elektrisches Signal versteift.
  5. System nach Anspruch 4 und beliebiges Folgendes:
    a) wobei das Bremsteilsystem (158) Segmente von mehrschichtigen Elektrolaminatverbundstrukturen (180) einschließt und wobei sich die Schichten der mehrschichtigen Elektrolaminatverbundstrukturen (180) von angrenzenden Segmenten an jedem Gelenk (18-1; 18-2; 18-3) überlappen; oder
    b) wobei das Bremsteilsystem (158) zwei oder mehr Gelenke (18-1; 18-2; 18-3) als eine Gruppe verriegeln und entriegeln kann.
  6. Robotermanipulatorsystem, das Folgendes umfasst:
    eine Handflächenanordnung (14);
    ein oder mehrere Fingermodule (12), die mit der Handflächenanordnung (14) gekoppelt sind, wobei jedes Fingermodul (12) Folgendes umfasst:
    ein Aktuatormodul (90); und
    eine unteraktuierte Fingeranordnung (16), die an dem Aktuatormodul (90) montiert ist, wobei die Fingeranordnung (16) Folgendes umfasst:
    ein Fingerskelett (150; 160) mit mehreren Gelenken (18-1; 18-2; 18-3) einschließlich eines distalen Gelenks (18-3), eines mittleren Gelenks (18-2) und eines proximalen Gelenks (18-1); und
    ein Bremsteilsystem (158), das mit jedem der Gelenke (18-1; 18-2; 18-3) in Verbindung steht, das angepasst ist, um die Gelenke (18-1; 18-2; 18-3) individuell wahlweise zu verriegeln und zu entriegeln;
    dadurch gekennzeichnet, dass das Bremsteilsystem (158) eine mehrschichtige Elektrolaminatverbundstruktur (180) einschließt, die in jedes Gelenk (18-1; 18-2; 18-3) integriert ist, wobei die mehrschichtige Elektrolaminatverbundstruktur (180) das Gelenk (18-1; 18-2; 18-3) als Reaktion auf ein elektrisches Signal versteift.
  7. Robotermanipulatorsystem nach Anspruch 6, wobei das eine oder die mehreren Fingermodule (12) zwei Fingermodule (12) einschließen, die einander von gegenüberliegenden Seiten der Handflächenanordnung (14) gegenüberliegen, wobei in diesem Fall optional eines der Fingermodule (12) an einer der gegenüberliegenden Seiten der Handflächenanordnung (14) befestigt ist und das andere der beiden Module (12) mit der anderen der gegenüberliegenden Seiten der Handflächenanordnung (14) bewegbar gekoppelt ist.
EP12760628.3A 2011-03-21 2012-03-21 Mobiles robotermanipulatorsystem Active EP2688720B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21198553.6A EP3954512A3 (de) 2011-03-21 2012-03-21 Mobiles robotermanipulatorsystem

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161454948P 2011-03-21 2011-03-21
US201161454945P 2011-03-21 2011-03-21
US201161466902P 2011-03-23 2011-03-23
US201161466900P 2011-03-23 2011-03-23
PCT/US2012/029860 WO2012129254A2 (en) 2011-03-21 2012-03-21 Mobile robotic manipulator system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP21198553.6A Division EP3954512A3 (de) 2011-03-21 2012-03-21 Mobiles robotermanipulatorsystem

Publications (3)

Publication Number Publication Date
EP2688720A2 EP2688720A2 (de) 2014-01-29
EP2688720A4 EP2688720A4 (de) 2015-04-15
EP2688720B1 true EP2688720B1 (de) 2021-10-13

Family

ID=46880007

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12760628.3A Active EP2688720B1 (de) 2011-03-21 2012-03-21 Mobiles robotermanipulatorsystem
EP21198553.6A Pending EP3954512A3 (de) 2011-03-21 2012-03-21 Mobiles robotermanipulatorsystem

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP21198553.6A Pending EP3954512A3 (de) 2011-03-21 2012-03-21 Mobiles robotermanipulatorsystem

Country Status (4)

Country Link
US (3) US8833826B2 (de)
EP (2) EP2688720B1 (de)
JP (2) JP6092183B2 (de)
WO (1) WO2012129254A2 (de)

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012129254A2 (en) * 2011-03-21 2012-09-27 Sri International Mobile robotic manipulator system
JP2014508658A (ja) * 2011-03-23 2014-04-10 エスアールアイ インターナショナル 高機能遠隔マニピュレーターシステム
JP5588392B2 (ja) * 2011-04-27 2014-09-10 株式会社日立製作所 マニプレータ装置
US9574646B1 (en) * 2012-10-25 2017-02-21 Redwood Robotics Inc. Twisted string transmission
US9089977B2 (en) * 2012-11-09 2015-07-28 Irobot Corporation Compliant underactuated grasper
US8991885B2 (en) * 2012-11-09 2015-03-31 Irobot Corporation Compliant underactuated grasper
CN107756425B (zh) * 2012-11-09 2021-08-31 艾罗伯特公司 顺从欠促动抓紧器
US9004559B2 (en) * 2012-11-09 2015-04-14 Irobot Corporation Compliant underactuated grasper
US9149936B2 (en) 2013-01-18 2015-10-06 Persimmon Technologies, Corp. Robot having arm with unequal link lengths
WO2014113364A1 (en) * 2013-01-18 2014-07-24 Persimmon Technologies, Corp. Robot having arm with unequal link lengths
US10224232B2 (en) 2013-01-18 2019-03-05 Persimmon Technologies Corporation Robot having two arms with unequal link lengths
AU2014233662B2 (en) 2013-03-15 2019-01-17 Sri International Hyperdexterous surgical system
EP3158228A4 (de) * 2014-06-23 2018-12-12 SRI International Riemenwellenantriebe
US9446513B2 (en) * 2014-08-25 2016-09-20 Paul Ekas Robotic grippers including finger webbing for improved grasping
US10355624B2 (en) 2014-10-09 2019-07-16 Carnegie Mellon University Electrostatic clutch
CN107530217A (zh) * 2015-02-11 2018-01-02 韩国技术教育大学校 身体佩戴式上肢运动装置
CN107408526B (zh) 2015-03-12 2022-03-15 柿子技术公司 具有从动末端执行器运动的机器人
CN107708939A (zh) * 2015-03-23 2018-02-16 软机器人公司 对软机器人致动器的改进及其制造方法
CN107405250A (zh) 2015-04-06 2017-11-28 埃克苏仿生公司 外骨骼绳索环式致动器
CN104802180B (zh) * 2015-04-09 2017-06-06 上海大学 欠驱动拟人三指机械手
WO2016187211A1 (en) * 2015-05-19 2016-11-24 The Regents Of The University Of California Dna structured linear actuator
US9844886B2 (en) 2015-06-09 2017-12-19 Timothy R. Beevers Tendon systems for robots
KR102094439B1 (ko) * 2015-08-25 2020-03-27 카와사키 주코교 카부시키 카이샤 산업용 원격조작 로봇시스템
CN105150231B (zh) * 2015-09-08 2021-02-26 清华大学 七连杆并联捏握复合自适应机器人手指装置
WO2017065476A1 (ko) * 2015-10-12 2017-04-20 한국기술교육대학교 산학협력단 액추에이터 및 이를 포함하는 구조물
US9545727B1 (en) 2015-11-05 2017-01-17 Irobot Corporation Robotic fingers and end effectors including same
EP3383599A4 (de) * 2015-12-03 2019-10-30 SRI International Inc. Robotergreifer
US9914214B1 (en) * 2016-02-22 2018-03-13 X Development Llc Preshaping for underactuated fingers
CN105798934B (zh) * 2016-03-11 2018-07-06 清华大学 凸轮同步锁定弹性自适应机器人手指装置
CN105773607B (zh) * 2016-03-17 2017-12-29 清华大学 表面二维可动机器人手指单元装置
ITUA20162979A1 (it) 2016-04-28 2017-10-28 Illinois Tool Works Teste per placcatura a nastro aventi limiti di pressione del nastro e sistemi di placcatura a nastro con teste per placcatura a nastro aventi limiti di pressione del nastro
ITUA20162977A1 (it) * 2016-04-28 2017-10-28 Illinois Tool Works Alimentatori di nastro per placcatura aventi supporti di guida regolabili per il nastro e sistemi di placcatura a nastro con alimentatori di nastro per placcatura aventi supporti di guida regolabili per il nastro
ITUA20162975A1 (it) 2016-04-28 2017-10-28 Illinois Tool Works Alimentatori di nastro per placcatura aventi rulli di pressione indipendenti e sistemi di placcatura a nastro con alimentatori di nastro per placcatura aventi rulli di pressione indipendenti
JP6632487B2 (ja) * 2016-07-13 2020-01-22 キヤノン株式会社 連続体ロボット、その運動学の補正方法、および連続体ロボットの制御方法
CN106363657A (zh) * 2016-09-13 2017-02-01 苏州驱指自动化科技有限公司 V型夹功能连接件
WO2018076303A1 (zh) * 2016-10-28 2018-05-03 深圳蓝胖子机器人有限公司 机械手及机器人
EP3321043A3 (de) * 2016-11-10 2018-10-10 Canon Kabushiki Kaisha Verfahren zur steuerung einer haltvorrichtung, haltevorrichtung und robotervorrichtung
US11036295B2 (en) 2016-11-23 2021-06-15 Microsoft Technology Licensing, Llc Electrostatic slide clutch
CN108284453B (zh) * 2017-01-09 2023-10-10 江苏亚太霍夫曼金属打印科技有限公司 一种用于搬运铝棒的夹具
CN106926266A (zh) * 2017-02-27 2017-07-07 哈尔滨工业大学深圳研究生院 一种绳驱联动的机械夹持装置
US10967524B1 (en) * 2017-06-15 2021-04-06 James P. Morgan System and method for conversion of rotational motion into linear actuation by mechanical stacking or unstacking of connected links
CN107234608B (zh) * 2017-06-15 2023-04-07 华东理工大学 一种欠驱动弹复性机器人模块
JP6988199B2 (ja) * 2017-06-28 2022-01-05 日本精工株式会社 多関節一指ハンド、及びピッキング装置
JP2019025551A (ja) * 2017-07-26 2019-02-21 株式会社日立製作所 エンドエフェクタと、エンドエフェクタを用いた物体把持システム
JP6815295B2 (ja) 2017-09-14 2021-01-20 株式会社東芝 保持装置、およびハンドリング装置
US10875191B2 (en) * 2017-11-08 2020-12-29 Dawoofa Co., Ltd Shape compliant electroadhesive gripper
KR102017984B1 (ko) * 2017-11-08 2019-09-04 주식회사 다우에프에이 형상적응형 전기접착 그리퍼
JP6564991B2 (ja) * 2017-12-07 2019-08-28 アダマンド並木精密宝石株式会社 ロボットハンド
US10759062B2 (en) 2017-12-08 2020-09-01 Dishcraft Robotics, Inc. Article of dishware gripping systems
US10759063B1 (en) * 2017-12-15 2020-09-01 X Development Llc Reusable mechanically fused dovetail retainer mechanisms
WO2019156361A1 (ko) * 2018-02-07 2019-08-15 한국기술교육대학교 산학협력단 동력전달장치
US11023047B2 (en) * 2018-05-01 2021-06-01 Microsoft Technology Licensing, Llc Electrostatic slide clutch with bidirectional drive circuit
KR102154391B1 (ko) * 2018-05-16 2020-09-09 한국기술교육대학교 산학협력단 그리퍼 장치
US11305420B2 (en) * 2018-05-31 2022-04-19 Virginia Tech Intellectual Properties, Inc. Articulated multi-link robotic tail systems and methods
KR102600256B1 (ko) * 2018-06-08 2023-11-08 피에이치디, 인크. 자율적 캡슐화 그리퍼 툴링
US20210273583A1 (en) * 2018-06-28 2021-09-02 3M Innovative Properties Company Low Voltage Electrostatic Jamming Device
KR102129960B1 (ko) * 2018-07-20 2020-07-03 주식회사 다우에프에이 형상적응형 전기접착 그리퍼
CN109079828B (zh) * 2018-08-24 2023-05-23 南京航空航天大学 一种压电驱动铰接机械手指及其驱动方法
US10852825B2 (en) 2018-09-06 2020-12-01 Microsoft Technology Licensing, Llc Selective restriction of skeletal joint motion
GB2577680B (en) * 2018-09-25 2021-05-05 Covvi Ltd A mechanical hand
CN109176568B (zh) * 2018-09-28 2021-10-01 北京邮电大学 一种腱绳-电磁力联合驱动的刚软耦合多指灵巧手
CN109278032A (zh) * 2018-10-15 2019-01-29 享奕自动化科技(上海)有限公司 欠驱动绳驱机械臂
CN109483102A (zh) * 2018-11-19 2019-03-19 重庆长安汽车股份有限公司 一种机器人工具包的安装装置及机器人
US11691301B2 (en) * 2018-11-29 2023-07-04 Ocado Innovation Limited Detection and measurement of wear of robotic manipulator touch points
CN111376287B (zh) * 2018-12-29 2021-10-29 深圳市优必选科技有限公司 机器人及其手指
JP6989542B2 (ja) * 2019-01-31 2022-01-05 ファナック株式会社 ロボット制御装置
CN109839088A (zh) * 2019-02-26 2019-06-04 中北大学 一种便携式刚柔复合的机构与机器人性能测试装置
CN109839087B (zh) * 2019-02-26 2020-11-10 中北大学 一种便携式刚柔复合的机构与机器人性能测试方法
JP6829738B2 (ja) 2019-03-15 2021-02-10 Thk株式会社 把持システムおよび把持方法
CN113597542A (zh) * 2019-03-20 2021-11-02 纬湃技术有限公司 角度检测装置
WO2020208463A1 (en) * 2019-04-10 2020-10-15 Qbrobotics S.R.L. A robotic hand
IT201900005564A1 (it) * 2019-04-10 2020-10-10 Qbrobotics S R L Mano robotica
US10860102B2 (en) 2019-05-08 2020-12-08 Microsoft Technology Licensing, Llc Guide for supporting flexible articulating structure
US11061476B2 (en) 2019-05-24 2021-07-13 Microsoft Technology Licensing, Llc Haptic feedback apparatus
US11054905B2 (en) 2019-05-24 2021-07-06 Microsoft Technology Licensing, Llc Motion-restricting apparatus with common base electrode
CN113950396B (zh) * 2019-06-05 2024-04-02 索尼集团公司 控制装置、控制方法及程序
KR102220191B1 (ko) * 2019-08-01 2021-02-25 엘지전자 주식회사 로봇 핸드 및 그 제어방법
WO2021089646A1 (en) * 2019-11-04 2021-05-14 F&P Robotics Ag Tactile sensor
CN110640775B (zh) * 2019-11-04 2024-03-15 深圳蓝胖子机器智能有限公司 一种力感知结构、灵巧手手指及多指灵巧手
EP3900884B1 (de) * 2020-04-20 2022-08-10 C.R.F. Società Consortile per Azioni Greifvorrichtung zum handhaben von gegenständen oder bauteilen unterschiedlicher form und grösse
CN111643315B (zh) * 2020-04-27 2021-09-03 东南大学 一种基于绳索驱动的柔性手部功能康复装置
US12091981B2 (en) 2020-06-11 2024-09-17 General Electric Company Insertion tool and method
CN212919403U (zh) * 2020-06-15 2021-04-09 深圳蓝胖子机器人有限公司 一种灵巧手嵌入式系统
KR102181949B1 (ko) * 2020-09-15 2020-11-24 유진호 트위스트 처리된 의료용 실의 제조 방법
KR102444977B1 (ko) * 2021-05-18 2022-09-21 중앙대학교 산학협력단 줄꼬임 구동기의 스트링 교환 카트리지, 그 카트리지를 이용한 줄꼬임 구동기
KR20230020291A (ko) 2021-08-03 2023-02-10 현대자동차주식회사 로봇 핸드 모듈
KR20230020288A (ko) 2021-08-03 2023-02-10 현대자동차주식회사 로봇 핸드 모듈
DE112021008207T5 (de) 2021-09-08 2024-07-11 Mitsubishi Electric Corporation Roboterhand
CN113715053B (zh) * 2021-09-28 2024-04-30 哈尔滨工业大学(深圳) 自适应夹取结构及机器人
DE102021134454B3 (de) 2021-12-23 2023-05-25 Kuka Deutschland Gmbh Greifer
KR102593474B1 (ko) * 2021-12-29 2023-10-23 한양대학교 에리카산학협력단 로봇 핸드
CN114619471B (zh) * 2022-04-15 2024-08-06 深圳鹏行智能研究有限公司 机械手
WO2023240294A2 (en) * 2022-06-10 2023-12-14 Atom Limbs Inc. Prosthetic limb apparatus and methods
WO2024079513A1 (en) * 2022-10-10 2024-04-18 Bhivraj Suthar An actuator-driven bi-directional robotic finger for enhancing grasping force for end effectors and method thereof

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081527A (ja) * 1983-10-07 1985-05-09 Hitachi Ltd 制動装置
JP2663144B2 (ja) * 1988-06-11 1997-10-15 株式会社ワコー ロボット用グリッパ
US5062855A (en) * 1987-09-28 1991-11-05 Rincoe Richard G Artifical limb with movement controlled by reversing electromagnet polarity
US4843921A (en) 1988-04-18 1989-07-04 Kremer Stephen R Twisted cord actuator
US5108140A (en) 1988-04-18 1992-04-28 Odetics, Inc. Reconfigurable end effector
US4955918A (en) * 1989-05-30 1990-09-11 University Of Southern California Artificial dexterous hand
JPH06126661A (ja) * 1992-10-12 1994-05-10 Mitsubishi Cable Ind Ltd マイクロ部品ハンドリング装置
JP3272513B2 (ja) * 1993-09-29 2002-04-08 三菱重工業株式会社 ワイヤー駆動多関節マニピュレータ
US5570920A (en) 1994-02-16 1996-11-05 Northeastern University Robot arm end effector
JPH09131687A (ja) * 1995-11-08 1997-05-20 Fujitsu Ltd ロボットアーム
JP3442993B2 (ja) * 1998-03-23 2003-09-02 三菱重工業株式会社 関節機構
JP4344965B2 (ja) * 1999-08-18 2009-10-14 ソニー株式会社 伸縮性膜とその制御方法、伸縮性膜を用いた触覚呈示装置、人工皮膚装置、マニピュレータ並びにこれらの制御方法
JP4323056B2 (ja) * 2000-04-04 2009-09-02 本田技研工業株式会社 多指ハンド装置の制御装置
JP2003305681A (ja) * 2002-04-15 2003-10-28 Mitsubishi Heavy Ind Ltd ロボットハンド
WO2004000508A1 (ja) 2002-06-24 2003-12-31 Matsushita Electric Industrial Co., Ltd. 多関節駆動機構及びその製造方法、それを用いた把持ハンドとロボット
AU2003278994A1 (en) * 2002-09-26 2004-04-19 Barrett Technology, Inc. Intelligent, self-contained robotic hand
US6966882B2 (en) * 2002-11-25 2005-11-22 Tibion Corporation Active muscle assistance device and method
MXPA06002193A (es) 2003-08-27 2006-05-22 Biosphere Ind Corp Composicion para su uso en articulos biodegradables, y metodo de uso de la misma.
AU2004284613B2 (en) 2003-10-27 2008-11-20 Technion Research & Development Foundation Ltd. Twisting wire actuator
US7370896B2 (en) * 2003-12-30 2008-05-13 Strider Labs, Inc. Robotic hand with extendable palm
EP1737564B1 (de) 2004-03-12 2019-09-11 SRI International Mechanische metamaterialien
US7361197B2 (en) * 2005-04-01 2008-04-22 Rex Clayton Winfrey Prosthetic hand having a conformal, compliant grip and opposable, functional thumb
US7296835B2 (en) * 2005-08-11 2007-11-20 Anybots, Inc. Robotic hand and arm apparatus
US7551419B2 (en) 2006-06-05 2009-06-23 Sri International Electroadhesion
JP4395180B2 (ja) * 2006-09-05 2010-01-06 イヴァン ゴドレール 運動変換装置
US20080066574A1 (en) 2006-09-19 2008-03-20 Nidec Corporation Actuator
EP2093027B1 (de) * 2006-12-07 2011-02-09 Panasonic Corporation Gelenkmechanismus
US8388519B2 (en) 2007-07-26 2013-03-05 Sri International Controllable dexterous endoscopic device
JP5003336B2 (ja) * 2007-07-31 2012-08-15 ソニー株式会社 検出装置、ロボット装置、および入力装置
KR20100030879A (ko) * 2008-09-11 2010-03-19 삼성전자주식회사 로봇핸드 및 이를 갖춘 인간형 로봇
US8720964B2 (en) * 2009-01-20 2014-05-13 Polyvalor, Limited Partnership Self-adaptive mechanical finger and method
US8052185B2 (en) * 2009-04-09 2011-11-08 Disney Enterprises, Inc. Robot hand with humanoid fingers
US8470051B2 (en) * 2009-12-14 2013-06-25 Hdt Robotics, Inc. One motor finger mechanism
US8325458B2 (en) 2010-02-10 2012-12-04 Sri International Electroadhesive gripping
US8662552B2 (en) * 2010-02-23 2014-03-04 Massachusetts Institute Of Technology Dexterous and compliant robotic finger
JP5883430B2 (ja) 2010-03-19 2016-03-15 エスアールアイ インターナショナルSRI International 静電付着及び静電積層のための材料
WO2011118646A1 (ja) * 2010-03-24 2011-09-29 株式会社安川電機 ロボットハンド及びロボット装置
WO2012039479A1 (ja) * 2010-09-24 2012-03-29 国立大学法人岐阜大学 人間型電動ハンド
WO2012129254A2 (en) * 2011-03-21 2012-09-27 Sri International Mobile robotic manipulator system
WO2013008310A1 (ja) 2011-07-12 2013-01-17 株式会社安川電機 ロボットハンドおよびロボット
US9427876B2 (en) 2011-12-19 2016-08-30 Irobot Corporation Inflatable robots, robotic components and assemblies and methods including same
US9566173B2 (en) 2012-08-02 2017-02-14 Korea University Of Technology And Education Industry-University Cooperation Foundation Motion control device based on winding string
BR112015022187A2 (pt) 2013-03-14 2017-07-18 Stanford Res Inst Int ferramentas cirúrgicas minimamente invasivas

Also Published As

Publication number Publication date
US8833826B2 (en) 2014-09-16
US9272427B2 (en) 2016-03-01
US20150190932A1 (en) 2015-07-09
EP3954512A3 (de) 2022-03-02
JP2014508659A (ja) 2014-04-10
EP2688720A4 (de) 2015-04-15
WO2012129254A3 (en) 2013-01-03
US9272425B2 (en) 2016-03-01
JP6092183B2 (ja) 2017-03-08
EP3954512A2 (de) 2022-02-16
US20150343647A1 (en) 2015-12-03
EP2688720A2 (de) 2014-01-29
WO2012129254A2 (en) 2012-09-27
US20140035306A1 (en) 2014-02-06
JP2017035780A (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
EP2688720B1 (de) Mobiles robotermanipulatorsystem
Bridgwater et al. The robonaut 2 hand-designed to do work with tools
JP5388966B2 (ja) 手首関節アセンブリ、及び人間型ロボット
US8662552B2 (en) Dexterous and compliant robotic finger
JP5777673B2 (ja) ロボット親指アセンブリ
JP5265635B2 (ja) 腱駆動型指作動システム
US9505134B2 (en) Lower robotic arm assembly having a plurality of tendon driven digits
US7950710B2 (en) Robot
EP1876504B1 (de) Aktiver Greifer für haptische Vorrichtungen
US11986033B2 (en) Robotic exoskeleton glove system
CN111496830B (zh) 一种具有机械柔性的多自由度仿人灵巧机械手
US20150151439A1 (en) Jointed limb for robot or haptic interface and robot and haptic interface comprising such a jointed limb
Yoon et al. Elongatable gripper fingers with integrated stretchable tactile sensors for underactuated grasping and dexterous manipulation
US11246787B2 (en) Bi-directional underactuated exoskeleton
Diftler et al. RoboGlove-A grasp assist device for earth and space
Wang et al. Design, analysis and experiment of a passively adaptive underactuated robotic hand with linkage-slider and rack-pinion mechanisms
CN111356562B (zh) 把持系统以及把持方法
US11325264B1 (en) Tendon-driven robotic hand
JPH02256489A (ja) 多関節ハンド
Ma et al. Tendon transmission efficiency of a two-finger haptic glove
De Benedictis et al. Hand rehabilitation device actuated by a pneumatic muscle
Kim et al. The switchable cable-driven mechanism to control multiple cables individually using a single motor
WO2021141024A1 (ja) ロボットハンド
US20230029226A1 (en) Spherical Dexterous Hand for Object Grasping and Within-Hand Manipulation
KR20240140376A (ko) 그리퍼

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20130918

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: B25J 15/00 20060101AFI20141117BHEP

Ipc: B25J 15/08 20060101ALI20141117BHEP

A4 Supplementary search report drawn up and despatched

Effective date: 20150318

RIC1 Information provided on ipc code assigned before grant

Ipc: B25J 15/00 20060101AFI20150312BHEP

Ipc: B25J 15/08 20060101ALI20150312BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210503

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012076910

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1437854

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211013

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1437854

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220113

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220213

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220214

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220113

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220114

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012076910

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220321

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220321

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220321

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230329

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013