EP2643510B1 - Verfahren und vorrichtung zur steuerung einer düsenwebmaschine - Google Patents

Verfahren und vorrichtung zur steuerung einer düsenwebmaschine Download PDF

Info

Publication number
EP2643510B1
EP2643510B1 EP11791419.2A EP11791419A EP2643510B1 EP 2643510 B1 EP2643510 B1 EP 2643510B1 EP 11791419 A EP11791419 A EP 11791419A EP 2643510 B1 EP2643510 B1 EP 2643510B1
Authority
EP
European Patent Office
Prior art keywords
yarn
weft yarn
weft
feed conduit
intrinsic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11791419.2A
Other languages
English (en)
French (fr)
Other versions
EP2643510A2 (de
Inventor
Mark John Albrecht
Carsten Meder
Peter Pirani
Rafael Storz
Toru Suzuki
Takahiro Inamura
Taijiro Okuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uster Technologies AG
Toyota Industries Corp
Original Assignee
Uster Technologies AG
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uster Technologies AG, Toyota Industries Corp filed Critical Uster Technologies AG
Publication of EP2643510A2 publication Critical patent/EP2643510A2/de
Application granted granted Critical
Publication of EP2643510B1 publication Critical patent/EP2643510B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D47/00Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
    • D03D47/28Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed
    • D03D47/30Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed by gas jet
    • D03D47/3026Air supply systems
    • D03D47/3033Controlling the air supply
    • D03D47/304Controlling of the air supply to the auxiliary nozzles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D47/00Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
    • D03D47/34Handling the weft between bulk storage and weft-inserting means
    • D03D47/36Measuring and cutting the weft

Definitions

  • the present invention relates to a method and apparatus for controlling a jet loom, according to the preamble of the independent claims.
  • So-called yarn clearers are used in spinning or cone winding machines for ensuring the yarn quality.
  • Such an apparatus is known for example from EP-0'439'767 A2 . It contains a measuring head with at least one sensor which scans the moving yarn. Frequently used sensor principles are the capacitive one (see EP-0'924'513 A1 for example) or the optical one (see WO-93/13407 A1 for example).
  • US-6,798,506 B2 teaches to arrange two sensors one after the other along the yarn path.
  • a first of the sensors measures the optical reflection from the yarn;
  • a second of the sensors measures capacitively or optically the mass or the diameter, respectively, of the yarn.
  • the output signals of the two sensors are evaluated according to certain evaluation criteria. Based on the evaluation, at least two kinds of foreign matters are distinguished from each other.
  • a yarn sensor is provided upstream of the weft storage unit of a loom.
  • the weaving operation of the loom is interrupted when the sensor detects a yarn defect.
  • the flawed yarn section is deflected from its normal passage.
  • WO-2006/133833 A1 discloses a similar arrangement of a yarn sensor on a loom. When the yarn sensor detects any unevenness in the yarn, the weft yarn is inserted at a lower speed into the shed than the normal speed for the respective yarn. Thus, the risk of breaking of the weft thread is minimized.
  • EP-2'175'058 A1 discloses a loom in which a yarn sensor is arranged between the weft feed and the shed.
  • the yarn sensor arranged in such a way can also detect yarn defects which originate only in the loom. Better quality monitoring is thus achieved.
  • US-2008/0185066 A1 discloses at least one yarn sensor in an air-jet loom which measures the speed and/or the covered path of the weft yarn during the weft insertion. The measured values of the at least one yarn sensor are used for controlling the weft insertion.
  • US-7,654,290 B2 teaches controlling a jet of an air-jet loom as a function of the axial velocity of the weft yarn.
  • an electrode array registers in a contactless manner electrostatic induction charges generated by the natural thread charges arranged irregularly on the weft yarn.
  • the changing total charge on the electrode array is determined as a narrow-band frequency spectrum concentrated around a main component.
  • Said main component's frequency is proportional to the velocity of the weft yarn.
  • US-4,450,876 A1 aims at compensating the influence of a yarn-package change on the weft time interval in a jet loom.
  • a detection device detects the yarn-package change.
  • As a reaction to the detection signal a temporary change of the feed pressure of the blowing nozzle is caused.
  • the feed pressure depends on the yarn to be used.
  • the flying characteristic of a weft yarn for each picking is monitored by an arrival angle detector arranged downstream of the shed. At least a lower limit value of jet pressure is automatically set on the basis thereof to thereby realize a continuation of stable picking operation without the occurrence of picking defects.
  • EP-0'573'656 A1 proposes a neural network for controlling an air-jet loom.
  • Input parameters of the neural network include weft-yarn parameters such as the kind (staple or filament yarn) and the count (average linear mass density, measured in denier) of the weft yarn.
  • the weft-yarn parameters are input manually, but a sensor can be used for measuring the yarn count. Based on the output of the neural network, weaving conditions are changed or a warning signal is output.
  • the relay nozzles of an air-jet loom which are arranged behind one another are actuated successively in a pulse-like manner.
  • the pulse length of the actuating is controlled depending on the air effectiveness of the respectively processed yarn.
  • the ratio of the carrying area of the yarn in air in comparison to the yarn mass is defined as the parameter of air effectiveness.
  • the relevant yarn parameters such as yarn thickness, yarn hairiness or yarn mass can be detected with respective yarn sensors. The consideration of the air effectiveness of the yarn allows processing very different yarns with high quality in successive work cycles.
  • a method and apparatus for controlling a loom are known from EP-2'157'218 A1.
  • a weft yarn is drawn off a cone and a first sensor is used for detecting a quality feature of the drawn weft yarn, e.g. a change in diameter.
  • a loading variable of the weft yarn e.g. the speed as a function of time, is detected during the weft insertion several times by means of a second sensor.
  • the speed of the loom drive is controlled on the basis of the detected loading variable and as a result of the detected quality feature of the weft yarn.
  • the number of weft yarn breakages can be reduced with a suitable configuration of the control system.
  • the thickness of a weft yarn to be inserted through a warp shed in a jet loom is measured with a yarn-thickness detector prior to insertion.
  • the electrical signals fed from the yarn-thickness detector are averaged over the length of the weft yarn readied for insertion.
  • the pressure of ejection of a fluid, e.g., air, is controlled based on the average thickness so as to be optimum for inserting the weft yarn.
  • the invention proposes to dynamically control the jet loom based on at least two different individual, intrinsic characteristics within the weft-yarn section currently conveyed through the jet loom.
  • at least two different intrinsic characteristics of each individual weft-yarn section are determined before its insertion into a fluid feed conduit of the jet loom.
  • the control of the jet loom is continuously optimized for each individual weft-yarn section.
  • An "individual" characteristic of a yarn section is understood to be a characteristic specific to the corresponding yarn section, which section is a small part (e.g., 1 m to 5 m) of an entirety of a yarn (e.g., 50 km to 200 km).
  • the individual characteristic generally differs from the characteristic of the entirety of the yarn and from the characteristic of other yarn sections. Since the individual characteristics change with a position along the axis of the yarn, they may also be called “dynamic" characteristics. Thus, an individual characteristic of a yarn section has to be separately and specifically determined for the corresponding yarn section.
  • a characteristic related to the entirety of the yarn such as the kind (staple or filament yarn) or the count (average linear mass density, measured in denier) is not an individual characteristic of any section of said yarn, but can rather be called a "global” or “static” characteristic.
  • an "intrinsic" yarn characteristic is understood to be such a yarn characteristic which is given by the build-up or the structure of the yarn itself.
  • Examples of intrinsic yarn characteristics are the mass per length unit, diameter, density, surface structure, hairiness, material composition, presence of foreign matter, etc.
  • an extrinsic characteristic would be such a yarn characteristic which depends on the external influences or reference systems.
  • Examples of extrinsic yarn characteristics are a yarn velocity or acceleration relative to a certain reference system, a position of a yarn tip in a certain reference system, or a mechanical yarn tension dependent on an external tensile force.
  • a weft yarn is introduced into the fluid feed conduit.
  • the relay nozzles are actuated so as to eject time-staggered fluid pulses which produce a fluid flow in the fluid feed conduit.
  • the weft yarn is conveyed by the fluid flow through the fluid feed conduit.
  • At least two different individual, intrinsic characteristics of a weft yarn section to be introduced into the fluid feed conduit are determined.
  • the relay nozzles are actuated based on the previously determined at least two different individual, intrinsic characteristics of the respectively conveyed weft yarn section.
  • values of at least two different intrinsic yarn parameter of the weft yarn are measured along the length of the weft yarn before the insertion into the fluid feed conduit.
  • the measured intrinsic yarn parameter values are assigned to the respective locations on the weft yarn.
  • the relay nozzles are actuated based on the intrinsic yarn parameter values associated with the respectively conveyed weft yarn section.
  • At least one further nozzle for conveying the weft yarn can be provided upstream with respect to the fluid feed conduit and is also actuated based on the previously determined at least two different individual, intrinsic characteristics of the respectively conveyed weft yarn section.
  • the relay nozzles are preferably combined into several groups of nozzles and all relay nozzles combined into a group of nozzles are respectively actuated together.
  • At least one control parameter is calculated in the actuating of the nozzles, which control parameter is chosen from the following group: initial time of a nozzle opening, end time of a nozzle opening, duration of a nozzle opening and fluid pressure in a nozzle.
  • the at least two individual, intrinsic characteristics can be at least two different intrinsic yarn parameters chosen from the following group: yarn mass per length unit, yarn diameter, yarn density, yarn-surface structure, yarn hairiness, yarn-material composition, presence of foreign matter in the yarn.
  • the weft yarn section to be inserted into the fluid feed conduit is preferably modeled as consisting of an integer number of homogeneous subsections with equal lengths, each subsection being assigned a location on said yarn section and values of the at least two different intrinsic yarn parameters averaged over the respective subsection.
  • the integer number lies for instance between 1 and 50 and preferably between 20 and 30.
  • the measurement of the at least two different intrinsic yarn parameters advantageously occurs upstream with respect to a weft storage unit, from which the weft yarn is inserted into the fluid feed conduit.
  • the actuating of the nozzles preferably occurs in such a way that fluid consumption is minimized. Also the weaving process should not be interrupted and an arrival time of the weft yarn at the end of the fluid feed conduit should lie in a predetermined range.
  • the nozzles can be actuated based on additional intrinsic parameters of the processed yarn and/or parameters of the jet loom.
  • the fluid is preferably air or water
  • the jet loom is preferably an air-jet loom or a water-jet loom. It is particularly advantageous to apply the invention together with electronic shedding. Such a combination allows an even better adaptation of the weaving process to the individual characteristics of the weft-yarn section currently conveyed through the jet loom.
  • At least one of the at least two different individual, intrinsic characteristics can be used for assessing the quality of the weft yarn by assessing detected yarn faults according to predefined quality criteria. A weft yarn section of insufficient quality is then deflected from its regular path such that it is not inserted into the air feed conduit, and/or an alarm is given upon detection of such a weft yarn section. Thus, the quality of the fabric can be enhanced.
  • the relay nozzles are preferably actuated based on a previously determined local distribution of the at least two different individual, intrinsic characteristics within the respectively conveyed weft yarn section.
  • the invention also relates to an apparatus for controlling a jet loom which contains a plurality of relay nozzles arranged along a fluid feed conduit.
  • the apparatus comprises a control unit for actuating the relay nozzles so as to eject time-staggered fluid pulses which generate a fluid flow in the fluid feed conduit, by means of which a weft yarn is conveyable through the fluid feed conduit. Upstream with respect to the fluid feed conduit at least two yarn sensors for determining at least two different intrinsic characteristics of the weft yarn are provided.
  • the control unit is configured to actuate the relay nozzles based on the previously determined at least two different individual, intrinsic characteristics of the respectively conveyed weft yarn section.
  • the at least two yarn sensors are configured to measure values of at least two different intrinsic yarn parameters of the weft yarn along the length of the weft yarn.
  • the control unit is configured to assign the measured intrinsic yarn parameter values to the respective locations on the weft yarn, and to actuate the relay nozzles based on the intrinsic yarn parameter values associated with the respectively conveyed weft yarn section.
  • At least one further nozzle is preferably provided upstream with respect to the fluid feed conduit for conveying the weft yarn and the control unit is configured to actuate the at least one further nozzle also based on the previously determined individual, intrinsic characteristics of the respectively conveyed weft yarn section.
  • the relay nozzles can be combined into several groups of nozzles and all relay nozzles combined into a group of nozzles are jointly actuatable.
  • the at least two yarn sensors are preferably provided upstream with respect to a weft storage unit, from which the weft yarn is insertable into the fluid feed conduit.
  • the control unit can be configured to actuate the nozzles based on additional parameters of the processed yarn and/or parameters of the jet loom.
  • the at least two yarn sensors can be part of a yarn clearer.
  • Such yarn clearers are well known from the prior art. They are usually mounted on spinning or winding machines for monitoring the yarn quality.
  • each nozzle or group of nozzles can be associated with a control valve, e.g. an electromagnetic two-way valve, for the supply with compressed air, and the control valve is actuatable by the control unit.
  • a control valve e.g. an electromagnetic two-way valve
  • FIG. 1 schematically shows a jet loom 1 with a control apparatus in accordance with the invention.
  • the jet loom 1 is designed as an air-jet loom.
  • Yarn 91 destined as weft yarn is provided on a cone 21.
  • the yarn 91 is transferred from the cone 21 to a weft storage unit 22 which can be designed as a drum storage unit.
  • Weft yarn 92 that is drawn off from the weft storage unit 22 is accelerated by means of one or several acceleration nozzles 31, 32 (also called main nozzles) and supplied to an air feed conduit 8 which is disposed in a shed formed by means of a shed forming apparatus (not shown).
  • the specific weft yarn section 93 inserted into the air feed conduit 8 along its longitudinal direction x is called pick 93.
  • the pick 93 is conveyed by a plurality of relay nozzles 33 through the air feed conduit 8.
  • the acceleration nozzles 31, 32 and the groups 34.1, ..., 34.n of nozzles are respectively supplied with compressed air via a control valve 41, 42, 44.1, ..., 44.n such as an electromagnetic two-way valve.
  • the supply of compressed air to the control valves 41, 42, 44.1, ..., 44.n is not shown in Figure 1 for the sake of simplicity, as also further elements of the jet loom 1.
  • a sensor unit 5 for the continuous detection of at least two different intrinsic yarn parameter of the weft yarn 92 is arranged upstream with respect to the air feed conduit 8, and preferably between the cone 21 and the weft storage unit 22.
  • the sensor unit 5 can be designed substantially as a yarn clearer, as has been used until now for online monitoring of the yarn quality on spinning or winding machines and as is known from the state of the art. It comprises at least two yarn sensors 51, 52.
  • the yarn sensors 51, 52 preferably work according to different measurement principles.
  • a first yarn sensor 51 can, for instance, be a capacitive sensor, whereas a second yarn sensor 52 can be an optical sensor. Other measurement principles such as the triboelectric principle are possible as well.
  • At least two different intrinsic yarn parameters are measured by the sensors 51, 52.
  • the intrinsic yarn parameters can be the yarn mass per length unit, yarn diameter, yarn density, yarn-surface structure, yarn hairiness, yarn-material composition, presence of foreign matter in the yarn, or any other intrinsic yarn parameter.
  • a first weft break stop motion 61 for detecting the take-off of a pick 93 is disposed downstream with respect to the weft storage unit 22.
  • a second weft break stop motion 62 for detecting the arrival of the pick 93 is further arranged at the exit of the air feed conduit 8.
  • the control valves 41, 42, 44.1, 44.n are controlled by a control unit 7.
  • the control unit 7 can be an independent module or a part of a loom control unit. It receives signals and/or data from the sensor unit 5, from the first 61 and/or second weft break stop motion 62 and possibly from further sensors and/or from the jet loom 1 itself.
  • the control unit 7 calculates the optimal nozzle opening times for every single weft insertion on the basis of the yarn parameters detected by the yarn sensor 7.
  • the air effectiveness of the pick 93 can be included in the calculation.
  • the air effectiveness of a yarn is defined in WO-89/12122 A1 as the ratio of the carrying surface of the yarn in air in comparison to the yarn mass.
  • the block diagram of Figure 2 illustrates an embodiment of the control method in accordance with the invention.
  • a first control loop with a first controller 71 corresponds to the loom control loops known from the state of the art, whereas a second control loop with a second controller 72 is essential for the method according to the invention.
  • the representation in Figure 2 showing two separate blocks for the two controllers 71, 72, was chosen for didactic reasons. In practice, the two controllers 71, 72 may be physically separated, but alternatively may be incorporated in one single unit.
  • a first, closed control loop is slow or quasi-static in comparison with the rotational period of the jet loom 1. It controls the speed of the loom drive.
  • Input parameters of the first control loop are on the one hand the starting values 201 for global or static parameters 202 of the used weft yarn 91 such as a mean yarn count, a mean yarn diameter, a mean yarn density, statistically determined values for yarn unevenness with regard to yarn mass or yarn diameter and/or a distribution of yarn hairiness length.
  • the starting values 201 can originate for example from statistical examinations that were performed on the respective yarn 91 beforehand in a textile laboratory by means of a yarn testing apparatus, e.g. of type USTER ® TESTER 5 of the applicant, or simply received from the yarn supplier.
  • control parameters 204 are a rotational speed of the loom drive and/or an air pressure supplied to the nozzles 31-33. The air pressure influences the weft arrival time and/or the air consumption 205.
  • a second, open control loop is fast, i.e. its reaction time is of the magnitude of the rotation period of the jet loom 1 or less than that.
  • Its input parameters are the individual or dynamic yarn parameters 206 of the pick 93 provided for the next weft insertion as determined by the sensor unit 5.
  • the second controller 72 calculates by means of an algorithm from these current individual, dynamic yarn parameters 206 at least one control parameter 204 for the jet loom 1. Examples of control parameters 204 are individual opening times (see Figure 4 ) of the nozzles 31-33 for the next weft insertion.
  • the second control loop aims at minimizing the air consumption 205, yet keeping the arrival time 205 in an acceptable, predetermined range. An individual weft insertion control is thus realized by the second control loop.
  • the control parameters 204 calculated by the first controller 71 and second controller 72 must be adjusted to one another and/or linked in a suitable manner with each other.
  • the quasi-static control parameters 204 calculated by the first controller 71 are used as a basis for the calculation of the dynamic control parameters 204 of the second controller 72. If the first controller 71 and the second controller 72 calculate different control parameters 204, e.g. a nozzle air pressure or nozzle opening times, the control parameters 204 of the first controller 71 enter the algorithm running in the second controller 72 as predetermined parameters. If the first controller 71 and the second controller 72 calculate the same control parameters 204, the control parameters 204 of the second controller 72 are used as corrective values for the control parameters 204 of the first controller 71, which are used as basic values.
  • the individual or dynamic yarn parameters 206 determined by the sensor unit 5 can optionally also influence the starting values 201 of the weft yarn 91 which are used as input parameters for the first control loop. This has no effects on the next weft insertion because the first control loop reacts slowly. It rather concerns a correction of the starting values 201 which were previously entered in the control unit 7; such a correction has a later and long-term effect.
  • Synchronization 207 between the sensor unit 5 and the jet loom 1 is necessary for satisfactory functioning of the second control loop.
  • the synchronization 207 is needed for assigning yarn parameter values 206 measured by the sensor unit 5 to the respective locations on the pick 93.
  • the sensor unit 5 is preferably arranged upstream with respect to the weft storage unit 22. This leads to the advantage that the second controller 72 has sufficient time in order to calculate the control parameters 204 before the respective pick 93 is inserted.
  • the control parameters 204 thus calculated in advance are stored in a storage unit of the second controller 72 and retrieved from there when the associated pick 93 is ready for insertion.
  • Yarn 92 is stored in the weft storage unit 22 with a length which corresponds to several, e.g., four, picks 93.
  • the synchronization 207 is used for associating the respective dynamic yarn parameters 206 determined by the sensor unit 5 with each location along the stored yarn 92. Signals from the weft break stop motions 61, 62 or from the weft storage unit 22 can be used for synchronization 207.
  • Figure 3 relates to a modeling of the pick 93 for the reason of simplification of calculations in the second controller 72.
  • Figure 3(a) shows a longitudinal section through the pick 93.
  • the longitudinal direction of the pick 93 is designated with x, the radial direction with r.
  • the length of the pick 93 in the longitudinal direction x is L.
  • the yarn sensors 51, 52 scan the yarn parameters 206 with a high local resolution along the longitudinal direction x.
  • the pick 93 typically has a position-dependent mass that can be measured as a yarn parameter 206 by a first yarn sensor 51 of the sensor unit 5, and a position-dependent diameter D(x) that can be measured as a yarn parameter 206 by a second yarn sensor 52 of the sensor unit 5.
  • one or several other yarn parameters 206 such as the yarn density or hairiness can be measured by the sensor unit 5, and used for the model described in the following.
  • the calculation of the control parameters 204 in the second controller 72 can consider the location-dependent position of the yarn parameters 206 on the pick 93. It can be performed with the measured signal D(x). However, such a calculation involves a large amount of data. It can be simplified, without any noteworthy drawbacks, by modeling the pick 93 as shown in Figure 3(b) .
  • the pick 93 is virtually divided into an integer number m > 1 of idealized subsections 94.1, ..., 94.m with equal lengths L/m.
  • the averaging or sampling can be done by a processing unit associated with the sensor unit 5 or by the second controller 72.
  • the sensor unit 5 or the controller 72 receive appropriate synchronization signals 207 from the weft break stop motions 61, 62, from the weft storage unit 22 or from another component. This model reduces the amount of data and thus simplifies the calculations performed by the second controller 72.
  • FIG. 4 schematically shows the nozzle opening times for the nozzles 31-33 of the jet loom 1 (see Figure 1 ).
  • the angle of rotation of the jet loom 1 which substantially corresponds to the time, is drawn on the horizontal axis, and the various nozzles 31, 32 and groups 44.1, ..., 44.n of nozzles are drawn in the vertical direction.
  • the white parts symbolize the conditions in a jet loom according to the state of the art, whereas the black parts relate to a jet loom 1 according to the present invention.
  • the bars that are filled completely in black indicate that the nozzle opening times have not changed in relation to the state of the art.
  • Two control parameters 204 were changed in comparison with the state of the art in the embodiment of Figure 4 , which are the starting time of the nozzle opening and the duration of the nozzle opening (or the time of the nozzle closing). At least one of these control parameters 204 is influenced by the parameters 206 of the respective pick 93 which were determined by the sensor unit 5.
  • the state-of the-art conditions can be used as initial values and are then optimized according to the present invention.
  • An air-effective pick 93 i.e. a pick 93 of large diameter, many long hairs and small mass, requires shorter nozzle opening periods than a pick 93 with lower air effectiveness.
  • Efforts are made by the control method in accordance with the invention to optimize the nozzle opening times 204 to achieve the lowest possible air consumption 205.
  • An important boundary condition that needs to be observed in the optimization is that every pick 93 arrives and the weaving process is not interrupted.
  • the weft yarn arrival time 205 as measured by the second weft break stop motion 62 shall lie within a predetermined range.
  • the nozzle opening times 204 can be varied for optimization.
  • the control unit 7 calculates the expected arrival time and compares it with the measured arrival time 205. When the expected arrival time is shorter than the measured one, the nozzle opening times can be reduced in order to reduce air consumption 205.
  • the nozzle opening times are slightly extended in order to prevent the likelihood of a standstill of the loom 1.
  • the initial nozzle opening times can also be varied because they influence the weft insertion. Optimal initial nozzle opening times allow even shorter nozzle opening times and thus lower air consumption 205. As is illustrated in Figure 4 , the air consumption can be reduced relevantly by the method in accordance with the invention.
  • the yarn parameters measured by the sensor unit 5 can be used not only for actuating the nozzles 31-33, but also for assessing the quality of the weft yarn 91, in a similar way as a yarn clearer on a spinning or winding machine. Detected yarn faults such as thick places, thin places or foreign matter in the weft yarn are assessed according to certain quality criteria, which can be defined by means of a so-called clearing limit.
  • the sensor unit 5 detects an intolerable weft-yarn fault, the faulty pick 93 can be deflected from its regular path such that it is not inweaved into the fabric.
  • the weft-yarn supply from the cone from which the faulty yarn comes can be stopped.
  • an alarm can be given if the detected weft-yarn quality is insufficient.

Claims (20)

  1. Verfahren zur Steuerung einer Düsenwebmaschine (1),
    welche Düsenwebmaschine (1) eine Vielzahl von Staffettendüsen (33) umfasst, die entlang eines Fluid-Schusskanals (8) angeordnet sind,
    wobei
    ein Schussfaden (93) in den Fluid-Schusskanal (8) eingetragen wird,
    die Staffettendüsen (33) derart betätigt werden, dass sie zeitlich gestaffelte Fluidimpulse aussenden, die einen Fluidstrom in dem Fluid-Schusskanal (8) erzeugen, und
    der Schussfaden (93) mithilfe des Fluidstroms durch den Fluid-Schusskanal (8) befördert wird,
    dadurch gekennzeichnet, dass
    wenigstens zwei unterschiedliche individuelle intrinsische Merkmalen (206) eines in den Fluid-Schusskanal (8) einzuführenden Schussfadenabschnitts bestimmt werden und
    die Staffettendüsen (33) basierend auf den vorher bestimmten, wenigstens zwei unterschiedlichen individuellen intrinsischen Merkmalen (206) des jeweils beförderten Schussfadenabschnitts (93) betätigt werden.
  2. Verfahren nach Anspruch 1, wobei
    Werte von wenigstens zwei intrinsischen Garnparametern (206) des Schussfadens (92) entlang der Länge (x) des Schussfadens (92) gemessen werden, bevor dieser in den Fluid-Schusskanal (8) eingetragen wird,
    die gemessenen intrinsischen Garnparameterwerte (206) den jeweiligen Stellen (x) auf dem Schussfaden (92) zugeordnet werden, und
    die Staffettendüsen (33) basierend auf den intrinsischen Garnparameterwerten (206) betätigt werden, die mit dem jeweils beförderten Schussfadenabschnitt (93) verbunden sind.
  3. Verfahren nach einem der vorhergehenden Ansprüche, wobei wenigstens eine weitere Düse (31, 32) zur Beförderung des Schussfadens (93) stromaufwärts in Bezug auf den Fluid-Schusskanal (8) vorgesehen ist und ebenfalls basierend auf den vorher bestimmten, wenigstens zwei unterschiedlichen individuellen intrinsischen Merkmalen (206) des jeweils beförderten Schussfadenabschnitts (93) betätigt wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, wobei bei der betätigung der Düsen (31-33) wenigstens ein Regelparameter (204) berechnet wird, welcher Regelparameter (204) aus der folgenden Gruppe ausgewählt wird: Anfangszeit einer Düsenöffnung, Endzeit einer Düsenöffnung, Dauer einer Düsenöffnung und Fluiddruck in einer Düse (31-33).
  5. Verfahren nach einem der vorhergehenden Ansprüche, wobei es sich bei den wenigstens zwei unterschiedlichen individuellen intrinsischen Merkmalen (206) um wenigstens zwei unterschiedliche intrinsische Garnparameter handelt, die aus der folgenden Gruppe ausgewählt werden: Garnmasse pro Längeneinheit, Garndurchmesser, Garndichte, Garnoberflächenstruktur, Garnhaarigkeit, Garnmaterial.
  6. Verfahren nach einem der Ansprüche 2 bis 5, wobei der in den Fluid-Schusskanal (8) einzutragende Schussfadenabschnitt (93) so modelliert wird, dass er eine ganze Zahl (m) homogener Unterabschnitte (94.1, ..., 94.m) von gleicher Länge (L/m) umfasst, wobei jedem Unterabschnitt (94.i) eine Stelle (xi) auf dem Garnabschnitt (93) zugeordnet wird und die Werte (Di) der wenigstens zwei unterschiedlichen intrinsischen Garnparameter (206) über den jeweiligen Unterabschnitt (94.i) gemittelt werden.
  7. Verfahren nach Anspruch 6, wobei die ganze Zahl (m) zwischen 1 und 50 und vorzugsweise zwischen 20 und 30 liegt.
  8. Verfahren nach einem der Ansprüche 2 bis 7, wobei die Messung der wenigstens zwei unterschiedlichen intrinsischen Garnparameter (206) stromaufwärts in Bezug auf eine Schussspeichereinheit (22) erfolgt, von der aus der Schussfaden (92) in den Fluid-Schusskanal (8) eingetragen wird.
  9. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Betätigung der Düsen (31-33) derart erfolgt, dass der Fluidverbrauch (205) minimiert wird.
  10. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Betätigung der Düsen (31-33) derart erfolgt, dass der Webvorgang nicht unterbrochen wird und eine Ankunftszeit (205) des Schussfadens (93) am Ende des Fluid-Schusskanals (8) in einem vorbestimmten Bereich liegt.
  11. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Düsen (31-33) basierend auf zusätzlichen intrinsischen Parametern (202) des verarbeiteten Garns (91) und/oder Parametern (203) der Düsenwebmaschine (1) betätigt werden.
  12. Verfahren nach einem der vorhergehenden Ansprüche, wobei wenigstens eines der wenigstens zwei unterschiedlichen individuellen intrinsischen Merkmale (206) verwendet wird, um die Qualität des Schussfadens (92) zu beurteilen, indem erfasste Garnfehler anhand von vordefinierten Qualitätskriterien beurteilt werden.
  13. Verfahren nach Anspruch 12, wobei ein Schussfadenabschnitt (93) von ungenügender Qualität von seinem regulären Weg abgelenkt wird, so dass er nicht in den Luft-Schusskanal (8) eingetragen wird, und/oder wobei beim Nachweis eines solchen Schussfadenabschnitts (93) eine Warnmeldung ausgegeben wird.
  14. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Staffettendüsen (33) basierend auf einer vorher bestimmten lokalen Verteilung der wenigstens zwei unterschiedlichen individuellen intrinsischen Merkmale (206) in dem jeweils beförderten Schussfadenabschnitt (93) betätigt werden.
  15. Vorrichtung zur Steuerung einer Düsenwebmaschine (1),
    welche Düsenwebmaschine (1) eine Vielzahl von Staffettendüsen (33) umfasst, die entlang eines Fluid-Schusskanals (8) angeordnet sind,
    welche Vorrichtung eine Steuereinheit (7) umfasst, um die Staffettendüsen (33) derart zu betätigen, dass sie zeitlich gestaffelte Fluidimpulse aussenden, die einen Fluidstrom in dem Fluid-Schusskanal (8) erzeugen, mittels dessen ein Schussfaden (93) durch den Fluid-Schusskanal (8) beförderbar ist,
    dadurch gekennzeichnet, dass
    stromaufwärts in Bezug auf den Fluid-Schusskanal (8) wenigstens zwei Garnsensoren (51, 52) vorgesehen sind, um wenigstens zwei unterschiedliche intrinsische Merkmale (206) des Schussfadens (92) zu bestimmen, und
    die Steuereinheit (7) dafür ausgelegt ist, die Staffettendüsen (33) basierend auf den vorher bestimmten, wenigstens zwei unterschiedlichen individuellen intrinsischen Merkmalen (206) des jeweils beförderten Schussfadenabschnitts (93) zu betätigen.
  16. Vorrichtung nach Anspruch 15, wobei
    die wenigstens zwei Garnsensoren (51, 52) dafür ausgelegt sind, Werte von wenigstens zwei unterschiedlichen intrinsischen Garnparametern (206) des Schussfadens (92) entlang der Länge (x) des Schussfadens (92) zu messen, und
    die Steuereinheit (7) dafür ausgelegt ist,
    die gemessenen intrinsischen Garnparameterwerte (206) den jeweiligen Stellen (x) auf dem Schussfaden (93) zuzuordnen und
    die Staffettendüsen (33) basierend auf den intrinsischen Garnparameterwerten (206) zu betätigen, die mit dem jeweils beförderten Schussfadenabschnitt (93) verbunden sind.
  17. Vorrichtung nach Anspruch 15 oder 16, wobei wenigstens eine weitere Düse (31, 32) stromaufwärts in Bezug auf den Fluid-Schusskanal (8) vorgesehen ist, um den Schussfaden (93) zu befördern, und wobei die Steuereinheit (7) dafür ausgelegt ist, die wenigstens eine weitere Düse (31, 32) ebenfalls basierend auf den vorher bestimmten, individuellen intrinsischen Merkmalen (206) des jeweils beförderten Schussfadenabschnitts (93) zu betätigen.
  18. Vorrichtung nach einem der Ansprüche 15 bis 17, wobei die wenigsten zwei Garnsensoren (5) stromaufwärts in Bezug auf eine Schussspeichereinheit (22) vorgesehen sind, von der ausgehend der Schussfaden (92) in den Fluid-Schusskanal (8) eintragbar ist.
  19. Vorrichtung nach einem der Ansprüche 15 bis 18, wobei die wenigstens zwei Garnsensoren (51, 52) Teil eines Garnreinigers (5) sind.
  20. Düsenwebmaschine (1), vorzugsweise eine Luftdüsenwebmaschine oder eine Wasserdüsenwebmaschine mit einer Vorrichtung zur Steuerung der Düsenwebmaschine (1),
    dadurch gekennzeichnet, dass
    die Vorrichtung zur Steuerung der Düsenwebmaschine (1) eine Vorrichtung nach einem der Ansprüche 15 bis 19 ist.
EP11791419.2A 2010-11-25 2011-11-24 Verfahren und vorrichtung zur steuerung einer düsenwebmaschine Active EP2643510B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH19882010 2010-11-25
PCT/CH2011/000285 WO2012068698A2 (en) 2010-11-25 2011-11-24 A method and apparatus for controlling a jet loom

Publications (2)

Publication Number Publication Date
EP2643510A2 EP2643510A2 (de) 2013-10-02
EP2643510B1 true EP2643510B1 (de) 2016-05-11

Family

ID=43948188

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11791419.2A Active EP2643510B1 (de) 2010-11-25 2011-11-24 Verfahren und vorrichtung zur steuerung einer düsenwebmaschine

Country Status (5)

Country Link
EP (1) EP2643510B1 (de)
JP (1) JP5901031B2 (de)
CN (1) CN103370462B (de)
BR (1) BR112013013116A2 (de)
WO (1) WO2012068698A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111778619A (zh) * 2020-07-08 2020-10-16 浙江永安融通控股股份有限公司 一种喷气织机

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105063864B (zh) * 2015-09-22 2017-05-10 吴江万工机电设备有限公司 一种辅助喷嘴喷射气流控制系统
JP6384453B2 (ja) * 2015-11-03 2018-09-05 株式会社豊田自動織機 エアジェット織機における緯糸検出方法
EP3325701B1 (de) 2015-11-09 2020-04-15 Toyota Industries Corporation Anordnung zum zuführen von schussfäden
JP6447533B2 (ja) * 2016-02-19 2019-01-09 株式会社豊田自動織機 エアジェット織機における緯入れ制御方法及び緯入れ制御装置
JP7021896B2 (ja) * 2017-10-11 2022-02-17 津田駒工業株式会社 空気噴射式織機における緯糸飛走情報の設定方法
CN110172775A (zh) * 2019-06-24 2019-08-27 黎兴才 一种喷气式无梭纺织机

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8103184A (nl) 1981-07-02 1983-02-01 Rueti Te Strake Bv Werkwijze voor het weven op een met een blaasmondstuk voor een stromend transportmedium werkende weefmachine.
JPS58163756A (ja) * 1982-03-19 1983-09-28 株式会社豊田自動織機製作所 流体噴射式織機における緯入れ方法
JPS5966540A (ja) * 1982-10-02 1984-04-16 株式会社豊田自動織機製作所 無杼織機における緯糸欠点織込み防止方法
JPS60162837A (ja) * 1984-01-27 1985-08-24 株式会社豊田自動織機製作所 流体噴射式織機における緯入れ方法
JPS60162839A (ja) * 1984-02-03 1985-08-24 株式会社豊田自動織機製作所 エアジエツトル−ムの緯入れ制御方法
DE3818766A1 (de) 1988-06-02 1989-12-07 Dornier Gmbh Lindauer Duesensteuerung fuer einen luftwebstuhl
JP2849422B2 (ja) 1989-12-28 1999-01-20 津田駒工業株式会社 織機の緯入れノズルの噴射圧力制御方法と、その装置
DE59010137D1 (de) 1990-01-26 1996-03-28 Luwa Ag Zellweger Verfahren zur Qualitätsbewertung von Garnen und Einrichtung zur Durchführung des Verfahrens
KR930703494A (ko) * 1991-11-22 1993-11-30 쯔지 요시후미 직기 제어 시스템
CH683293A5 (de) 1991-12-20 1994-02-15 Peyer Ag Siegfried Fremdfasererkennung in Garnen.
DE59814414D1 (de) 1997-12-18 2010-01-07 Uster Technologies Ag Verfahren und Vorrichtung zur Ermittlung von Anteilen fester Stoffe in einem Prüfgut
CN100425989C (zh) 2000-05-31 2008-10-15 乌斯特技术股份公司 识别在纵向移动的纱线状产品中的杂质的方法及装置
JP3820994B2 (ja) * 2002-01-16 2006-09-13 株式会社豊田自動織機 ジェットルームにおける緯入れ装置
JP2004339674A (ja) * 2003-04-29 2004-12-02 Sultex Ag 横糸を挿入するための方法および装置
JP4111864B2 (ja) * 2003-05-08 2008-07-02 津田駒工業株式会社 流体噴射式織機の噴射圧力設定方法、噴射圧力設定装置および緯入れ装置
EP1584719A1 (de) * 2004-03-12 2005-10-12 Sultex AG Überwachung des Fadentransports
JP2006070410A (ja) * 2004-09-06 2006-03-16 Tsudakoma Corp 織機における設定値の設定方法
BE1016639A6 (nl) 2005-06-15 2007-03-06 Picanol Nv Werkwijze voor het inbrengen van inslagdraden.
DE502008002034D1 (de) 2007-02-02 2011-02-03 Itema Switzerland Ltd Verfahren und Vorrichtung zum Eintragen eines Schussfadens in eine Webmaschine
EP2050847B1 (de) * 2007-10-19 2012-08-29 Siemens Aktiengesellschaft Verfahren zum Transport eines Schussfadens durch das Webfach einer Webmaschine
JP5027064B2 (ja) * 2008-06-23 2012-09-19 株式会社豊田中央研究所 ジェットルームにおける緯入れ方法
EP2157218A1 (de) 2008-08-18 2010-02-24 ITEMA (Switzerland) Ltd. Verfahren und Vorrichtung zur Steuerung einer Webmaschine
EP2175058B1 (de) 2008-10-10 2011-08-03 Gebrüder Loepfe AG Webmaschine mit Garnqualitätssensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111778619A (zh) * 2020-07-08 2020-10-16 浙江永安融通控股股份有限公司 一种喷气织机
CN111778619B (zh) * 2020-07-08 2022-01-11 浙江永安融通控股股份有限公司 一种喷气织机

Also Published As

Publication number Publication date
CN103370462A (zh) 2013-10-23
BR112013013116A2 (pt) 2016-08-23
JP5901031B2 (ja) 2016-04-06
WO2012068698A3 (en) 2013-06-06
CN103370462B (zh) 2015-02-11
JP2014500915A (ja) 2014-01-16
WO2012068698A2 (en) 2012-05-31
EP2643510A2 (de) 2013-10-02

Similar Documents

Publication Publication Date Title
EP2643510B1 (de) Verfahren und vorrichtung zur steuerung einer düsenwebmaschine
EP2643509B1 (de) Verfahren und vorrichtung zur steuerung einer düsenwebmaschine
CN101285235B (zh) 将纬纱投引到织机中的方法和装置
CN107034575B (zh) 喷气织机中的纬纱行进状态监视方法
CN101550617B (zh) 纺纱装置
KR910003227B1 (ko) 급사체의 판별 교환방법
US4384596A (en) Means and method for sensing loom conditions indicative of potential fabric defects
EP2230342A1 (de) Verfahren und Speichervorrichtung zum Speichern von Schussfäden in einer Webmaschine
CN108070949B (zh) 喷气织机中的纬纱飞行状态检测装置
US4848417A (en) Monitor device for a weft yarn store and a method of operating a weft yarn store
US11814755B2 (en) Method of contactless optical detection of yarn at a workstation of a yarn manufacturing textile machine, an optical sensor of yarn and a textile machine
KR930004535A (ko) 유체 제트 직기 및 그 작동방법
KR960012186B1 (ko) 씨실 삽입상태 검사장치
EP2732085B1 (de) Webmaschine mit zugewiesenem garnsensor und verfahren für ihren betrieb
CN109943957B (zh) 喷气式织机的引纬诊断方法
JP2562594B2 (ja) 給糸体の交換判別方法
WO2017079851A1 (en) Arrangement for feeding weft yarn
GB2136834A (en) Means and method for sensing loom conditions
JP2519916B2 (ja) 給糸体の判別交換方法
CA1146047A (en) Means and method for controlling the operation of a loom
JP2001355153A (ja) 細線状材料検査装置
CZ307028B6 (cs) Způsob řízení zanášení útku do prošlupu na vzduchovém tkacím stroji a tkací stroj k jeho provádění

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20131206

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151215

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 798758

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011026538

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160811

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 798758

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160912

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160812

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011026538

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161124

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161124

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20171122

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111124

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20181022

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221011

Year of fee payment: 12

Ref country code: DE

Payment date: 20220621

Year of fee payment: 12