EP2623966A1 - Gasanalysevorrichtung, quecksilberrückführungssystem, gasanalyseverfahren und verfahren zur quecksilberentfernung aus abgasen - Google Patents

Gasanalysevorrichtung, quecksilberrückführungssystem, gasanalyseverfahren und verfahren zur quecksilberentfernung aus abgasen Download PDF

Info

Publication number
EP2623966A1
EP2623966A1 EP11828967.7A EP11828967A EP2623966A1 EP 2623966 A1 EP2623966 A1 EP 2623966A1 EP 11828967 A EP11828967 A EP 11828967A EP 2623966 A1 EP2623966 A1 EP 2623966A1
Authority
EP
European Patent Office
Prior art keywords
gas
flue gas
ammonium
chloride
contained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11828967.7A
Other languages
English (en)
French (fr)
Other versions
EP2623966B1 (de
EP2623966A4 (de
Inventor
Seiji Kagawa
Masaru Chiyomaru
Nobuyuki Ukai
Takuya Okamoto
Moritoshi Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to PL11828967T priority Critical patent/PL2623966T3/pl
Publication of EP2623966A1 publication Critical patent/EP2623966A1/de
Publication of EP2623966A4 publication Critical patent/EP2623966A4/de
Application granted granted Critical
Publication of EP2623966B1 publication Critical patent/EP2623966B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Definitions

  • the present invention relates to a gas analysis device, a mercury removal system, a gas analysis method, and a removal method for mercury in flue gas that enable to measure a concentration of ammonium chloride supplied into flue gas of a boiler.
  • Harmful substances such as soot dust, sulfur oxides (SOx), and nitrogen oxides (NOx) are contained in flue gas emitted from combustion facilities such as a boiler and a waste combustor and need to be removed by using a flue-gas treatment device.
  • a typical flue-gas treatment device includes a denitrator that reduces NOx and a wet desulfurizer that uses an alkali absorbent as a SOx absorbing agent.
  • the flue-gas treatment device treats harmful substances contained in flue gas by supplying ammonia (NH 3 ) on an upstream side of the denitrator in a flue gas duct to reduce nitric oxide (NO) with a denitration catalyst of the denitrator to remove NOx as shown in the following formula (1) and absorbing SOx in the alkali absorbent by using the wet desulfurizer (see, for example, Patent Literature 11. 4NO+4NH 3 +O 2 ⁇ 4N 2 +6H 2 O (1)
  • SOx includes SO 2 and SO 3 .
  • SO 2 and SO 3 may change into ammonium hydrogen sulfate or ammonium sulfate as shown in the following formulas (2) and (3), and attach to the wall surface of the flue gas duct or devices that are installed in the flue gas duct.
  • the ammonium hydrogen sulfate, the ammonium sulfate, and the like may cause clogging of an element of an air heater due to attachment thereto.
  • the ammonium hydrogen sulfate and the ammonium sulfate are corrosive substances and thus the wall surface or the devices may corrode when these substances are attached thereto.
  • NH 3 +SO 3 +H 2 O NH 4 HSO 4 (2)
  • 2NH 3 +SO 3 +H 2 O (NH 4 ) 2 SO 4 (3)
  • NH 3 is supplied in the upstream step of the denitrator.
  • NH 3 is used for neutralization of SO 3 and thus the supply amount of NH 3 also needs to be adjusted.
  • Coal-combustion flue gas or flue gas produced when heavy oil is combusted may contain metallic mercury (Hg 0 ) in addition to soot dust, SOx, and NOx.
  • metallic mercury Hg 0
  • methods or devices that enable to treat the metallic mercury (Hg 0 ) by using a combination of the denitrator that reduces NOx and the wet desulfurizer that absorbs SOx have been variously developed.
  • NH 3 has a reduction reaction proceeding with NOx in the flue gas as shown in the formula (1) and HCl has a reduction reaction proceeding with Hg 0 in the flue gas as shown in the following formula (4).
  • Hg 0 metallic mercury
  • HgCl 2 aqueous mercury chloride
  • HgCl 2 is dissolved with water by a wet desulfurizer installed on the downstream side to remove mercury contained in the flue gas, and SOx contained in the flue gas is absorbed and removed.
  • the present invention has been achieved in view of the above problems and an object of the present invention is to provide a gas analysis device, a mercury removal system, a gas analysis method, and a removal method for mercury contained in flue gas that enable to measure a concentration of Cl - contained in the flue gas.
  • a gas analysis device including: a flue-gas extraction pipe that extracts, from a flue gas duct, flue gas that is emitted from a boiler and to which ammonium chloride is supplied; a soot dust removal unit that is provided in the flue-gas extraction pipe and removes soot dust contained in the extracted flue gas; a deposition unit that is provided in the flue-gas extraction pipe and deposits the ammonium chloride contained in the flue gas; and a measurement unit that measures the ammonium chloride contained the flue gas by detecting fluorescent X-rays generated by irradiation of the ammonium chloride deposited by the deposition unit with X-rays or laser beams.
  • the gas analysis device according to the first aspect, wherein the flue gas further contains sulfurous acid, the deposition unit deposits sulfurous acid, and the measurement unit measures sulfurous acid.
  • the mercury removal system that removes mercury contained in flue gas that is emitted from a boiler
  • the mercury removal system including: an ammonium-chloride supply unit that sprays a solution containing ammonium chloride into a flue gas duct of the boiler; a reduction denitrator that has a denitration catalyst reducing nitrogen oxides in the flue gas with ammonia and oxidizing mercury in coexistence of hydrogen chloride; a wet desulfurizer that removes the mercury oxidized in the reduction denitrator using an alkali absorbent; and an ammonium-chloride-concentration measurement unit that is provided on either one or both of upstream and downstream sides of the reduction denitrator and analyzes a concentration of the ammonium chloride contained in the flue gas, wherein the gas analysis device according to the first aspect of the invention is used as the ammonium-chloride-concentration measurement unit, and a spray amount of the solution containing the ammonium chloride is controlled
  • the mercury removal system having a heat exchanger that is provided between the reduction denitrator and the wet desulfurizer and performs heat exchange with the flue gas having passed through the reduction denitrator for heat recovery, wherein a gas temperature of the flue gas that passes through the heat exchanger is controlled based on a relation between ammonium chloride concentrations and gas temperatures, which are obtained in advance.
  • the mercury removal system having a heat exchanger that is provided between the reduction denitrator and the wet desulfurizer and performs heat exchange with the flue gas having passed through the reduction denitrator for heat recovery
  • the gas analysis device is used as the ammonium-chloride-concentration measurement unit, and a gas temperature of the flue gas passing through the heat exchanger is controlled based on either one or both of a relation between ammonium chloride concentrations and gas temperatures and a relation between sulfurous acid concentrations and gas temperatures, which are obtained in advance.
  • a gas analysis method that enables to extract, from a flue gas duct, flue gas that is emitted from a boiler and to which ammonium chloride is supplied, remove soot dust contained in the flue gas, deposit the ammonium chloride contained in the flue gas, then cause the deposited ammonium chloride to be contained in analysis gas, extract the analysis gas, and measure the ammonium chloride contained in the analysis gas.
  • the gas analysis method according to the sixth aspect wherein the flue gas further contains sulfurous acid, the sulfurous acid is deposited in addition to the ammonium chloride, and the deposited sulfurous acid is measured.
  • the mercury removal method that enables to remove mercury contained in flue gas emitted from a boiler
  • the removal method for mercury contained in flue gas including: an ammonium-chloride supply step of spraying a solution containing ammonium chloride into a flue gas duct of the boiler; a reduction denitration step of including a denitration catalyst that reduces nitrogen oxides in the flue gas with ammonia and oxidizes mercury in coexistence of hydrogen chloride; a wet desulfurization step of removing the mercury oxidized at the reduction denitration step using an alkali absorbent; and an ammonium-chloride-concentration measurement step of analyzing a concentration of the ammonium chloride contained in the flue gas on either one or both of upstream and downstream sides of the reduction denitrator, wherein the gas analysis method according to the sixth aspect of the present invention is used at the ammonium-chloride-concentration measurement step, and a concentration of the ammonimonium
  • the removal method for mercury in flue gas including: a heat recovery step of performing heat exchange between the flue gas and a heating medium circulating in a heat exchanger between the reduction denitration step and the wet desulfurization step; and a reheat step of reheating cleaned gas emitted from the wet desulfurizer by performing heat exchange between the cleaned gas and the heating medium, wherein the gas analysis method according to the sixth aspect of the present invention, is used at the ammonium-chloride-concentration measurement step, and a gas temperature of the flue gas to be subjected to heat exchange with the heating medium at the heat recovery step is controlled based on a relation between ammonium chloride concentrations and gas temperatures, which are obtained in advance.
  • the removal method for mercury in flue gas including: a heat recovery step of performing heat exchange between the flue gas and a heating medium circulating in a heat exchanger between the reduction denitration step and the wet desulfurization step; and a reheat step of reheating cleaned gas emitted from the wet desulfurizer by performing heat exchange between the cleaned gas and the heating medium, wherein the gas analysis method according to the seventh aspect is used at the ammonium-chloride-concentration measurement step, and a gas temperature of the flue gas subjected to heat exchange with the heating medium at the heat recovery step is controlled based on either one or both of a relation between ammonium chloride concentrations and gas temperatures and a relation between sulfurous acid concentrations and gas temperatures, which are obtained in advance.
  • ammonium chloride contained in flue gas is deposited and then the deposited ammonium chloride is analyzed to measure a concentration of Cl - contained in the flue gas, thereby enabling to obtain a concentration of the ammonium chloride contained in the flue gas.
  • FIG. 1 is a schematic diagram of a gas analysis device according to the first embodiment
  • FIG. 2 depicts a configuration of a roll filter in a simplified manner. As shown in FIGS.
  • a gas analysis device 10 includes a flue-gas extraction pipe 13 that extracts flue gas 11A from a flue gas duct 12 to which flue gas 11 containing both of ammonium chloride (NH 4 Cl) and sulfurous acid (SO 3 ) is fed, a collector (soot-dust removal means) 14 that is provided in the flue-gas extraction pipe 13 and removes soot dust contained in the extracted flue gas 11A, a roll filter (deposition means) 15 that is provided in the flue-gas extraction pipe 13 and deposits both of NH 4 Cl and SO 3 contained in the flue gas 11A, and a measurement device (measurement means) 19 that measures both of NH 4 Cl and SO 3 contained in the flue gas 11A by irradiating a sample 16 containing both of NH 4 Cl and SO 3 deposited by the roll filter 15 with X-rays 17 and detecting fluorescent X-rays 18 generated from the sample 16.
  • a flue-gas extraction pipe 13 that extracts flue gas 11A from a flu
  • the flue gas 11 is emitted from a boiler and the flue gas 11 contains SO 3 . Because an NH 4 Cl solution is supplied to the flue gas 11 within the flue gas duct 12, the flue gas 11 contains NH 4 Cl. While gas components to be measured in the flue gas 11 contain both of NH 4 Cl and SO 3 , the present embodiment is not limited thereto and it suffices that the flue gas 11 is gas containing at least NH 4 Cl.
  • the gas components contained in the flue gas 11 can contain also nitric oxide (NO), carbon monoxide (CO), water (H 2 O), nitrogen dioxide (NO 2 ), methane (CH 4 ), ammonia, benzene, or the like, in addition to the NH 4 Cl and SO 3 .
  • the flue-gas extraction pipe 13 is connected to the flue gas duct 12 and a part of the flue gas 11 flowing in the flue gas duct 12 is extracted through the flue-gas extraction pipe 13.
  • An adjustment valve V11 is provided in the flue-gas extraction pipe 13 to adjust a flow rate of the flue gas 11 to be extracted from the flue gas dust 12 to the flue-gas extraction pipe 13. Because the flue gas 11 can be continuously extracted through the flue-gas extraction pipe 13, the gas components in the flue gas 11 can be semicontinuously measured.
  • the flue gas 11A extracted to the flue-gas extraction pipe 13 is fed to the collector 14 through the flue-gas extraction pipe 13.
  • the collector 14 removes the soot dust contained in the flue gas 11A. While a cyclone dust-collection device is used, for example, as the collector 14, the present embodiment is not particularly limited thereto.
  • the flue gas 11A is fed to the roll filter 15.
  • the collector 14 has a soot-dust conveyance pipe 21 that emits the collected soot dust.
  • the dust removed from the flue gas 11A by the collector 14 is returned from the soot-dust conveyance pipe 21 to the flue gas duct 12.
  • the roll filter 15 has a pair of rollers 22, a conveyance belt 23, a filter 24, and a flue-gas feed pipe 25.
  • the pair of rollers 22 rotates to rotate also the conveyance belt 23 and move the filter 24.
  • the measurement device 19 analyzes concentrations of NH 4 Cl and SO 3 contained in the flue gas 11A.
  • a fluorescent X-ray analysis device is used as the measurement device 19.
  • the measurement device 19 has an X-ray irradiation device 26 that irradiates the sample 16 with the X-rays 17, and a detector 27 that detects fluorescent X-rays 18 generated from the sample 16.
  • the measurement device 19 has an opening 19a on the side of a wall surface on which the filter 24 is placed, and the filter 24 is irradiated with the X-rays 17 from the X-ray irradiation device 26 therethrough.
  • the flue gas 11A fed from the flue-gas extraction pipe 13 to the flue-gas feed pipe 25 is fed to the filter 24.
  • NH 4 Cl and SO 3 contained in the flue gas 11A is adsorbed by the filter 24 and a sample 16a containing both of NH 4 Cl and SO 3 is deposited on the filter 24.
  • the sample 16a deposited on the roll filter 15 is conveyed to the measurement device 19 with movement of the filter 24.
  • a sample 16b having moved near the opening 19a is irradiated with the X-rays 17 from the X-ray irradiation device 26 in the measurement device 19.
  • NH 4 Cl and SO 3 contained in the sample 16b are excited with irradiation of the X-rays 17.
  • the fluorescent X-rays 18 are generated from the excited NH 4 Cl and SO 3 .
  • the generated fluorescent X-rays 18 are detected and analyzed by the detector 27.
  • the detector 27 analyzes NH 4 Cl and SO 3 contained in the flue gas 11A based on energy of the fluorescent X-rays 18 that are emitted when NH 4 Cl and SO 3 in the sample 16b are irradiated with the X-rays 17.
  • the measurement device 19 is not limited to the fluorescent X-ray analysis device and another analysis device can be used as long as it can analyze NH 4 Cl and SO 3 contained in the flue gas 11A.
  • the flue-gas feed pipe 25 through which the flue gas 11A flows have a heater on an outer circumference of the flue-gas feed pipe 25 and heat the flue gas 11A to prevent moisture contained in the flue gas 11A from condensing and analysis accuracy in the measurement device 19 from decreasing.
  • the gas analysis device 10 deposits NH 4 Cl contained in the flue gas 11 and then analyzes the fluorescent X-rays 18 generated from the deposited NH 4 Cl and SO 3 , thereby enabling the concentrations of ammonium ions (NH 4 + ), chloride ions (Cl - ), and SO 3 contained in the flue gas 11 to be stably and simultaneously analyzed. Accordingly, the concentrations of NH 4 Cl and SO 3 contained in the flue gas 11 can be stably and simultaneously measured.
  • the concentration of the NH 4 Cl solution supplied into the flue gas duct 12 can be properly obtained even when the NH 4 Cl solution is supplied into the flue gas duct 12 in addition to NH 3 gas or NH 3 water.
  • the present embodiment is not limited thereto and any auxiliary agent can be used as long as it generates oxidizing gas to be used for oxidizing Hg when vaporized and reducing gas to be used for reducing NOx. Because the solution including NH 4 Cl is used in the present embodiment, the HCl gas is used as the oxidizing gas and the NH 3 gas is used as the reducing gas. Other than the solution including NH 4 Cl, a solution including an ammonium halide such as ammonium bromide (NH 4 Br) or ammonium iodide (NH 4 I) can be used.
  • an ammonium halide such as ammonium bromide (NH 4 Br) or ammonium iodide (NH 4 I) can be used.
  • FIG. 3 is a schematic diagram of an Hg removal system according to the second embodiment. Because the Hg removal system according to the present embodiment uses the gas analysis device 10 according to the first embodiment shown in FIGS. 1 and 2 as an NH 4 Cl measurement device (NH 4 Cl measurement means), explanations of the NH 4 Cl measurement device will be omitted.
  • an Hg removal system 30A is an Hg removal system that removes Hg contained in the flue gas 11 emitted from a boiler 31, and has a NH 4 Cl-solution supply means 32 that sprays a NH 4 Cl solution 41, a reduction denitrator (reduction denitration means) 33 that has a denitration catalyst for reducing NOx in the flue gas 11 with NH 3 gas and oxidizing Hg 0 in coexistence of HCl gas, an air heater (AH) 34 that performs heat exchange with the denitrated flue gas 11, an electrostatic precipitator (ESP) 35 that removes soot dust in the denitrated flue gas 11, a wet desulfurizer 37 that removes Hg oxidized in the reduction denitrator 33 by using a limestone-gypsum slurry (alkali absorbent), and NH 4 Cl measurement devices (NH 4 Cl measurement means) 38-1 and 38-2 that are provided, respectively, on upstream and downstream sides of the reduction denit
  • the NH 4 Cl solution 41 is supplied from the NH 4 Cl-solution supply means 32 to the flue gas 11 emitted from the boiler 31.
  • the NH 4 CL-solution supply means 32 has a spray nozzle 42 for oxidizing Hg 0 contained in the flue gas 11, an ammonium chloride (NH 4 Cl)-solution supply pipe 43 that supplies the NH 4 Cl solution 41 in a liquid form to the spray nozzle 42, and an air supply pipe 45 that supplies air 44 to the spray nozzle 42 to compress the NH 4 Cl solution 41 to be sprayed into the flue gas duct 12.
  • the spray nozzle 42 is a two-fluid nozzle that is provided to be inserted into the flue gas duct 12 and simultaneously sprays the NH 4 Cl solution 41 and the air 44 into the flue gas duct 12.
  • FIG. 4 schematically depicts a configuration of the spray nozzle.
  • the spray nozzle 42 is formed of a double pipe 48 including an inner pipe 46 and an outer pipe 47, and a nozzle head 49 provided at the head of the double pipe 48.
  • the inner pipe 46 is used for feeding the NH 4 Cl solution 41.
  • the outer pipe 47 is provided to cover an outer circumference of the inner pipe 46 and is used for feeding the air 44 into a space formed with the inner pipe 46.
  • the spray nozzle 42 sprays the NH 4 Cl solution 41 into the flue gas duct 12 (see FIG. 3 ) and also sprays the air 44 into the flue gas duct 12, from the nozzle head 49.
  • the NH 4 Cl solution 41 is fed from an NH 4 Cl solution tank 51 to the spray nozzle 42 through the NH 4 Cl-solution supply pipe 43.
  • a flow rate of the NH 4 Cl solution 41 supplied from the NH 4 Cl-solution supply pipe 43 is adjusted by an adjustment valve V21.
  • the NH 4 Cl solution 41 is adjusted in the NH 4 Cl solution tank 51 to have a predetermined concentration.
  • the NH 4 Cl solution 41 can be generated by dissolving ammonia chloride (NH 4 Cl) powder in water.
  • the predetermined concentration of the NH 4 Cl solution 41 can be adjusted by adjusting supply amounts of the NH 4 Cl powder and the water.
  • the NH 4 Cl solution 41 can be generated by mixing an HCl solution and an NH 3 solution in a predetermined proportion in concentration.
  • the air 44 is fed from an air supply unit 52 to the spray nozzle 42 through the air supply pipe 45 and is used as compression air when the NH 4 Cl solution 41 is sprayed from the nozzle head 49.
  • the air 44 is fed from an air supply unit 52 to the spray nozzle 42 through the air supply pipe 45 and is used as compression air when the NH 4 Cl solution 41 is sprayed from the nozzle head 49.
  • the NH 4 Cl solution 41 to be sprayed from the nozzle head 49 can be sprayed as fine liquid droplets into the flue gas duct 12.
  • a flow rate of the air 44 supplied from the air supply pipe 45 is adjusted by an adjustment valve V22.
  • the liquid droplets of the NH 4 Cl solution 41 sprayed from the nozzle head 49 into the flue gas duct 12 evaporate due to a high ambient temperature of the flue gas 11 to generate fine solid particles of NH 4 Cl, and decompose into HCl and NH 3 and sublimate as shown in the following formula (5). Accordingly, the NH 4 Cl solution 41 sprayed from the spray nozzle 42 is decomposed to generate HCl and NH 3 , and NH 3 gas and HCl gas can be supplied into the flue gas duct 12.
  • the size of the liquid droplets of the NH 4 Cl solution 41 sprayed from nozzle holes of the nozzle head 49 can be adjusted by using the flow rate of the air 44 supplied from the air supply pipe 45.
  • the flow rate of the air 44 sprayed from the nozzle head 49 is preferably an air/water ratio of 100 or higher and 10000 or lower (in volume), for example. This is to spray the NH 4 Cl solution 41 from the nozzle head 49 into the flue gas duct 12 as fine liquid droplets.
  • the air 44 acts for cooling the NH 4 Cl solution 41 and can suppress heat of the flue gas 11 in the flue gas duct 12 from being transmitted to the NH 4 Cl solution 41 via the air 44 as shown in FIG. 3 . Because heating of the NH 4 Cl solution 41 by the heat of the flue gas 11 can be suppressed, the NH 4 Cl solution 41 can be kept in a liquid state until immediately before it is sprayed.
  • the flue gas 11 is fed to the reduction denitrator 33.
  • the reduction denitrator 33 uses the NH 3 gas generated by decomposition of NH 4 Cl for reduction denitration of NOx and uses the HCl gas for oxidation of Hg, thereby removing NOx and Hg from the flue gas 11.
  • the NH 3 gas reductively denitrates NOx as shown in the following formula (6) and the HCl gas performs mercury oxidation of Hg as shown in the following formula (7).
  • the reduction denitrator 33 has one denitration catalyst layer 53
  • the present embodiment is not limited thereto and the number of denitration catalyst layers 53 in the reduction denitrator 33 can be appropriately changed according to denitration performance.
  • the flue gas 11 After reduction of NOx and oxidation of Hg in the flue gas 11 is performed in the reduction denitrator 33, the flue gas 11 passes through the air heater 34 and the precipitator (ESP) 35 and then is fed to the wet desulfurizer 37.
  • ESP precipitator
  • the flue gas 11 is fed from the wall surface side of a bottom portion in a device body 55, and a limestone-gypsum slurry 36 to be used as the alkali absorbent is fed into the device body 55 through an absorbent feed line 54 to be jetted from a nozzle 56 toward a top portion.
  • the flue gas 11 rising from the bottom portion of the device body 55 and the limestone-gypsum slurry 36 jetted from the nozzle 56 to flow down are caused to face each other to be in gas-liquid contact, and HgCl 2 and sulfur oxides (SOx) in the flue gas 11 are absorbed in the limestone-gypsum slurry 36 to be separated and removed from the flue gas 11, thereby cleaning the flue gas 11.
  • the flue gas 11 cleaned by the limestone-gypsum slurry 36 is emitted from the top portion as cleaned gas 57 and discharged from a stack 58 to outside of the system.
  • the limestone-gypsum slurry 36 used to desulfurize the flue gas 11 is generated by mixing limestone slurry CaCO 3 , which is obtained by dissolving limestone powder in water, gypsum slurry CaSO 4 , which is obtained by causing limestone and SOx in the flue gas 11 to react with each other and to be oxidized, and water.
  • the limestone-gypsum slurry 36 is used by pumping the fluid stored in a bottom portion 59 of the device body 55 of the wet desulfurizer 37, for example. SOx in the flue gas 11 reacts with the limestone-gypsum slurry 36 in the device body 55 as shown in the following formula (8).
  • the limestone-gypsum slurry 36 being stored in the bottom portion 59 of the wet desulfurizer 37 and having been used for desulfurization is oxidized, then drawn off from the bottom portion 59, fed to a dewaterer 63, and then discharged to outside of the system as dewatered cake (gypsum) 64 including mercury chloride (HgCl).
  • a belt filter is used as the dewaterer 63.
  • Filtrate obtained by dewatering (post-dewatering filtrate) is subjected to effluent treatment such as removal of suspended solids and heavy metals in the post-dewatering filtrate and pH adjustment of the post-dewatering filtrate.
  • a part of the post-dewatering filtrate subjected to the effluent treatment is returned to the wet desulfurizer 37 and the remaining part of the post-dewatering filtrate is treated as water discharge.
  • any solution can be used as the alkali absorbent as long as it can absorb HgCl 2 in the flue gas 11.
  • the limestone-gypsum slurry 36 does not always need to be jetted toward the top portion from the nozzle 56 and can be flowed down from the nozzle 56 to face the flue gas 11, for example.
  • the NH 4 Cl measurement device 38-1 is provided on the upstream side of the reduction denitrator 33, and the NH 4 Cl measurement device 38-2 is provided on the downstream side of the reduction denitrator 33.
  • the NH 4 Cl measurement devices 38-1 and 38-2 use the gas analysis device 10 according to the first embodiment shown in FIGS. 1 and 2 , as mentioned above. Therefore, the NH 4 Cl measurement devices 38-1 and 38-2 can analyze the concentration of NH 4 Cl supplied from the spray nozzle 42 into the flue gas 11. For example, when the boiler 31 is a coal combustion boiler 31, the flue gas 11 contains also SO 3 .
  • the NH 4 Cl measurement devices 38-1 and 38-2 can measure also the concentration of SO 3 contained in the flue gas 11 and accordingly the NH 4 Cl measurement devices 38-1 and 38-2 can simultaneously measure the concentrations of NH 4 Cl and SO 3 contained in the flue gas 11.
  • the gas temperature at which NH 4 Cl deposits increases as the NH 4 Cl concentration increases
  • the gas temperature at which SO 3 deposits increases as the SO 3 concentration increases.
  • the gas temperature can be adjusted according to the NH 4 Cl concentration or the SO 3 concentration to prevent deposition of NH 4 Cl or SO 3 .
  • the controller 70 can obtain the concentration of NH 4 Cl contained in the flue gas 11 by analyzing the concentration of Cl - contained in the flue gas 11 based on the map indicating the relation between NH 4 Cl concentrations and gas temperatures at which NH 4 Cl deposits, which is obtained in advance from the measurement results of the concentration of NH 4 Cl contained in the flue gas 11, measured by the NH 4 Cl measurement devices 38-1 and 38-2.
  • the controller 70 can control the spray amount of the NH 4 Cl solution, so that the NH 4 Cl solution can be sprayed from the spray nozzle 42 in an appropriate spray amount.
  • the NH 4 Cl measurement devices 38-1 and 38-2 can measure also the concentration of SO 3 in addition to the concentration of NH 4 Cl contained in the flue gas 11, the NH 4 Cl measurement devices 38-1 and 38-2 transmit the concentration of SO 3 contained in the flue gas 11 to the controller 70.
  • the controller 70 can obtain the concentration of SO 3 contained in the flue gas 11 by analyzing the concentration of SO 3 contained in the flue gas 11 based on the map indicating the relation between SO 3 concentrations and gas temperatures at which SO 3 deposits, which is obtained in advance from measurement results of the concentration of SO 3 contained in the flue gas 11, measured by the NH 4 Cl measurement devices 38-1 and 38-2.
  • the controller 70 can control the spray amount of the NH 4 Cl solution, so that the NH 4 Cl solution can be sprayed from the spray nozzle 42 in an appropriate spray amount.
  • the Hg removal system 30A to which a spray device is applied according to the present embodiment can stably and simultaneously analyze the concentrations of NH 4 + , Cl - , and SO 3 contained in the flue gas 11 and thus can stably and simultaneously measure the concentrations of NH 4 Cl and SO 3 contained in the flue gas 11. Therefore, the NH 4 Cl solution 41 can be sprayed from the spray nozzle 42 into the flue gas duct 12 in an appropriate amount and accordingly Hg removal performance and NOx reduction performance can be stably maintained in the reduction denitrator 33.
  • Corrosion of spray facilities such as the outer pipe 47 of the spray nozzle 42 can be avoided, which ensures a stable operation and also enables lives of devices such as the spray nozzle 42 to be extended and costs required for maintenance of the devices to be reduced. Furthermore, when an NH 3 -water supply means that supplies NH 3 water into the flue gas duct 12 is installed, the concentration of the NH 4 Cl solution supplied into the flue gas duct 12 can be appropriately obtained even when the NH 4 Cl-solution supply means 32 is newly installed in the flue gas duct 12.
  • a flowmeter 71 that measures a flow rate of the flue gas 11 is provided on the upstream side of the spray nozzle 42.
  • the flow rate of the flue gas 11 is measured by the flowmeter 71.
  • the value of the flow rate of the flue gas 11 measured by the flowmeter 71 is transmitted to the controller 70 and the flow rate, angle, initial velocity, and the like, at which the NH 4 Cl solution 41 is to be sprayed from the nozzle head 49 can be adjusted based on the flow rate value of the flue gas 11.
  • a NOx concentration meter 72 is provided on the side of an outlet of the reduction denitrator 33.
  • the value of the concentration of NOx in the flue gas 11 measured by the NOx concentration meter 72 is transmitted to the controller 70.
  • the controller 70 can check a NOx reduction ratio in the reduction denitrator 33 based on the concentration value of NOx in the flue gas 11 measured by the NOx concentration meter 72. Therefore, based on the value of the concentration of NOx in the flue gas 11 measured by the NOx concentration meter 72, the NH 4 Cl concentration and the supply amount of the NH 4 Cl solution 41 sprayed from the spray nozzle 42 can be adjusted and also the supply amount of the NH 3 water separately supplied into the flue gas 11 can be adjusted to adjust an NH 3 mixture ratio. Accordingly, NOx in the flue gas 11 can be reduced in the reduction denitrator 33 and the reduction denitrator 33 can meet predetermined denitration performance.
  • Hg concentration meters 73-1 to 73-3 that measure content of Hg in the flue gas 11 emitted from the boiler 31 are provided in the flue gas duct 12.
  • the Hg concentration meter 73-1 is provided in the flue gas duct 12 between the boiler 31 and the nozzle head 49
  • the Hg concentration meter 73-2 is provided between the reduction denitrator 33 and the air heater 34
  • the Hg concentration meter 73-3 is provided on the downstream side of the wet desulfurizer 37. Values of the concentration of Hg in the flue gas 11 measured by the Hg concentration meters 73-1 to 73-3 are transmitted to the controller 70.
  • the controller 70 can check the content of Hg contained in the flue gas 11 from the values of the concentration of Hg in the flue gas 11 measured by the Hg concentration meters 73-1 to 73-3.
  • each of the Hg concentration meters 73-1 to 73-3 can optionally measure metallic mercury Hg 0 , mercury oxide Hg 2+ , and total mercury (an amount of mercury including the metallic mercury Hg 0 and the mercury oxide Hg 2+ ).
  • a ratio of the mercury oxide Hg 2+ to the total mercury is known by using the Hg concentration meters 73-2 and 73-3, a mercury oxidation rate of Hg contained in the flue gas 11 can be obtained.
  • the NH 4 Cl concentration and the supply flow rate of the NH 4 Cl solution 41 can be controlled to meet predetermined denitration performance and keep Hg oxidation performance.
  • An oxidation-reduction-potential measurement controller (ORP controller) 74 that measures an oxidation-reduction potential of the limestone-gypsum slurry 36 is provided in the bottom portion 59 of the wet desulfurizer 37.
  • the value of the oxidation-reduction potential of the limestone-gypsum slurry 36 is measured by the ORP controller 74.
  • the supply amount of the air 62 to be supplied into the bottom portion 59 of the wet desulfurizer 37 is adjusted based on the measured value of the oxidation-reduction potential.
  • the oxidation-reduction potential of the limestone-gypsum slurry 36 in the wet desulfurizer 37 is preferably in a range of no less than 0 millivolt and no higher than 600 millivolts, for example, to prevent re-entrainment of Hg from the limestone-gypsum slurry 36.
  • the oxidation-reduction potential is in this range, Hg collected as HgCl 2 in the limestone-gypsum slurry 36 is stabilized and re-entrainment into air can be prevented.
  • the present embodiment is not limited thereto and a solution including ammonium halide such as NH 4 Br or NH 4 I can be used other than the solution including NH 4 Cl, as mentioned above.
  • FIG. 5 depicts a configuration of the Hg removal system according to the third embodiment
  • FIG. 6 depicts a configuration of a heat exchanger in a simplified manner.
  • Members of the Hg removal system that are redundant to constituent elements in the Hg removal system according to the second embodiment of the present invention are denoted by like reference signs and explanations thereof will be omitted.
  • a Hg removal system 30B has a heat exchanger 80 installed between the air heater 34 and the precipitator 35 to perform heat exchange with the flue gas 11 having passed through the reduction denitrator 33 for heat recovery.
  • the heat exchanger 80 includes a heat recovery unit 81 and a reheater 82.
  • the heat recovery unit 81 is provided between the air heater 34 and the precipitator 35 and performs heat exchange between the flue gas 11 emitted from the boiler 31 and a heating medium 83 circulating in the heat exchanger 80.
  • the gas temperature of the flue gas 11 emitted from the boiler 31 is in a range between 130°C to 150°C, for example, and the gas temperature of the flue gas 11 emitted from the heat recovery unit 81 falls in a range between 80°C to 100°C, for example, by the heat exchange of the flue gas 11 with the heating medium 83 circulating in the heat exchanger 80.
  • the reheater 82 is provided on the downstream side of the wet desulfurizer 37 and performs heat exchange between the cleaned gas 57 emitted from the wet desulfurizer 37 and the heating medium 83 to reheat the cleaned gas 57.
  • the heat exchanger 80 has a heating-medium circulating passage 84 for the heating medium 83 to circulate through the heat recovery unit 81 and the reheater 82.
  • the heating medium 83 circulates between the heat recovery unit 81 and the reheater 82 via the heating-medium circulating passage 84.
  • a plurality of finned tubes 85 are provided on the surface of the heating-medium circulating passage 84 located within the heat recovery unit 81 and the reheater 82.
  • a heat exchange unit 86 is provided on the heating-medium circulating passage 84 and heat exchange of the heating medium 83 with steam 87 is performed to adjust a medium temperature of the heating medium 83.
  • the controller 70 increases the medium temperature of the heating medium 83 by causing the heat exchange unit 86 to perform heat exchange of the heating medium 83 with the steam 87 based on either one or both of the map indicating the relation between NH 4 Cl concentrations and gas temperatures at which NH 4 Cl deposits or the map indicating the relation between SO 3 concentrations and gas temperatures at which SO 3 deposits, which are obtained in advance.
  • the gas temperature of the flue gas 11 on the outlet side of the heat recovery unit 81 is set to be equal to or higher than the gas temperature at which the NH 4 Cl and SO 3 deposit, deposition of SO 3 on the finned tubes 85 of the heat recovery unit 81 can be suppressed. Accordingly, corrosion of the finned tubes 85 of the heat recovery unit 81 can be suppressed.
  • the heat recovery unit 81 keeps a high outlet gas temperature. Because an amount of heat of the heating medium 83 flowing in the reheater 82 is small in this case, the temperature of the cleaned gas 57 entering the reheater 82 cannot be increased. Accordingly, to increase the temperature of the cleaned gas 57 having passed through the reheater 82, an amount of the steam 87 to be added is increased to increase the heat amount of the heating medium 83 flowing in the reheater 82, so that the temperature of the cleaned gas 57 passing through the reheater 82 can be increased.
  • the heat recovery amount recovered by the heating medium 83 in the heat recovery unit 81 is increased. Accordingly, the outlet gas temperature of the flue gas 11 exiting the heat recovery unit 81 is lowered and the temperature of the heating medium 83 flowing in the reheater 82 is increased, which increases the temperature of the cleaned gas 57 entering the reheater 82. Therefore, the supply amount of the steam 87 supplied for heat exchange with the heating medium 83 can be reduced.
  • the heating medium 83 is supplied to the heating-medium circulating passage 84 from a heating medium tank 88.
  • the heating medium 83 is circulated through the heating-medium circulating passage 84 by a heating-medium feed pump 89.
  • the supply amount of the steam 87 is adjusted by an adjustment valve V31 according to the gas temperature of the cleaned gas 57, and the heating medium 83 to be fed to the reheater 82 is supplied to the heat recovery unit 81 by an adjustment valve V32 according to the gas temperature of the flue gas 11 emitted from the heat recovery unit 81, thereby adjusting the supply amount of the heating medium 83 to be fed to the reheater 82.
  • the concentration of NH 4 Cl and the concentration of SO 3 contained in the flue gas 11 are measured by the NH 4 Cl measurement devices 38-1 and 38-2, the medium temperature of the heating medium 83 is increased based on either one or both of the map indicating the relation between NH 4 Cl concentrations and gas temperatures at which NH 4 Cl deposits and the map indicating the relation between SO 3 concentrations and gas temperatures at which SO 3 deposits, which are obtained in advance, and the gas temperature of the flue gas 11 on the outlet side of the heat recovery unit 81 is set to be equal to or higher than the gas temperature at which NH 4 Cl and SO 3 deposit.
  • deposition of NH 4 Cl and SO 3 on facilities installed within the flue gas duct 12, such as the finned tubes 85 of the heat recovery unit 81, can be suppressed and corrosion of the finned tubes 85 of the heat recovery unit 81 and the like can be suppressed.
  • the present embodiment is not limited thereto and it suffices to provide the heat exchanger 80 between the reduction denitrator 33 and the wet desulfurizer 37.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Treating Waste Gases (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
EP11828967.7A 2010-09-28 2011-09-22 Gasanalysevorrichtung, quecksilberrückführungssystem, und verfahren zur quecksilberentfernung aus abgasen Active EP2623966B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL11828967T PL2623966T3 (pl) 2010-09-28 2011-09-22 Urządzenie do analizy gazu, układ do usuwania rtęci i sposób usuwania rtęci z gazu wylotowego

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010217909A JP5529701B2 (ja) 2010-09-28 2010-09-28 ガス分析装置、水銀除去システム及び水銀除去方法
PCT/JP2011/071710 WO2012043411A1 (ja) 2010-09-28 2011-09-22 ガス分析装置、水銀除去システム、ガス分析方法及び排ガス中の水銀除去方法

Publications (3)

Publication Number Publication Date
EP2623966A1 true EP2623966A1 (de) 2013-08-07
EP2623966A4 EP2623966A4 (de) 2017-07-12
EP2623966B1 EP2623966B1 (de) 2018-10-31

Family

ID=45892861

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11828967.7A Active EP2623966B1 (de) 2010-09-28 2011-09-22 Gasanalysevorrichtung, quecksilberrückführungssystem, und verfahren zur quecksilberentfernung aus abgasen

Country Status (7)

Country Link
US (1) US8568673B2 (de)
EP (1) EP2623966B1 (de)
JP (1) JP5529701B2 (de)
CN (1) CN102959386B (de)
CA (1) CA2803817C (de)
PL (1) PL2623966T3 (de)
WO (1) WO2012043411A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103926833A (zh) * 2014-04-22 2014-07-16 东南大学 一种选择性催化还原脱硝装置入口参数确定方法
DE102016208569B4 (de) * 2015-05-19 2021-02-04 Ncs Testing Technology Co., Ltd. Online-Analysator und Analyseverfahren zur Anreicherung des Gesamtquecksilbers in Verbrennungsgas basierend auf dem Trockenprozess
CN113018943A (zh) * 2021-03-03 2021-06-25 魏福军 一种无纺布加工用废水过滤处理装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5943687B2 (ja) * 2012-04-13 2016-07-05 三菱日立パワーシステムズ株式会社 濃度測定装置
AU2016200890A1 (en) * 2015-02-13 2016-09-01 The Babcock & Wilcox Company Method and apparatus for removing mercury from a flue gas stream
CN105536485B (zh) * 2016-02-05 2023-12-15 浙江浙能技术研究院有限公司 一种碱法烟气卤素脱除装置及脱除方法
JP6763539B2 (ja) 2016-03-30 2020-09-30 三菱パワー株式会社 排ガス処理システム
JP2018034085A (ja) * 2016-08-30 2018-03-08 日立造船株式会社 燃焼排ガスの処理装置
JP6854663B2 (ja) * 2017-02-15 2021-04-07 公立大学法人大阪 排ガス処理方法及び排ガス処理装置
CN109030528A (zh) * 2018-09-26 2018-12-18 云南驰宏锌锗股份有限公司 一种x射线荧光光谱分析冶炼烟尘中氟氯的方法
BR112021007205A2 (pt) * 2018-10-18 2021-08-10 Security Matters Ltd. sistema para detectar e identificar pelo menos um elemento estranho predeterminado em uma substância, e, método para inspecionar uma substância .
CN109529621B (zh) * 2019-01-12 2024-03-12 西安交通大学 基于催化氧化和深度冷凝的半干法脱硫脱硝脱汞装置及方法
CN110243638A (zh) * 2019-05-17 2019-09-17 华电电力科学研究院有限公司 一种用于scr脱硝装置的烟气采集装置与方法
CN110420548B (zh) * 2019-09-03 2024-03-26 亚太环保股份有限公司 烟气氨法协同脱硝脱硫脱汞超低排放的装置及方法
CN111318134A (zh) * 2020-03-21 2020-06-23 山西省工业设备安装集团有限公司 一种基于在线监测技术的生活垃圾焚烧发电厂用烟气处理系统
CN114563236B (zh) * 2022-03-07 2023-12-22 马鞍山钢铁股份有限公司 一种焦炉烟气空气系数快速测定方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3578410A (en) * 1968-07-01 1971-05-11 Gen Electric Ammonia detection,following ultraviolet radiation
JPS6318251A (ja) 1986-07-11 1988-01-26 Moritetsukusu:Kk 光学的アンモニア検出素子
JPH07270284A (ja) 1994-04-01 1995-10-20 Mitsubishi Materials Corp ガスサンプリング方法
JP3572139B2 (ja) 1996-04-09 2004-09-29 三菱重工業株式会社 熱交換器及びこれを備えた排煙処理装置
JP2001198434A (ja) * 2000-01-18 2001-07-24 Mitsubishi Heavy Ind Ltd 排ガス中の水銀処理方法および排ガスの処理システム
JP2003014625A (ja) * 2001-06-28 2003-01-15 Ishikawajima Harima Heavy Ind Co Ltd So3,nh3同時連続濃度計
JP4838579B2 (ja) * 2005-12-21 2011-12-14 三菱重工業株式会社 水銀除去システムおよび水銀除去方法
JP4388542B2 (ja) * 2006-12-07 2009-12-24 三菱重工業株式会社 水銀除去方法及び水銀除去システム
WO2008078722A1 (ja) 2006-12-27 2008-07-03 Babcock-Hitachi Kabushiki Kaisha 排ガス処理方法と装置
JP5118474B2 (ja) * 2007-12-26 2013-01-16 三菱重工業株式会社 排ガス処理装置
JP5319934B2 (ja) 2008-02-28 2013-10-16 三菱重工業株式会社 排ガス処理方法及び装置
JP5398193B2 (ja) 2008-08-07 2014-01-29 三菱重工業株式会社 排ガス処理装置、排ガス処理システム及び排ガス中の水銀酸化性能管理システム
JP5338421B2 (ja) 2009-03-24 2013-11-13 栗田工業株式会社 燃焼排ガスの処理方法及び装置
US7906090B2 (en) * 2009-07-06 2011-03-15 Mitsubishi Heavy Industries, Ltd. Mercury reduction system and mercury reduction method of flue gas containing mercury
JP5558042B2 (ja) * 2009-08-05 2014-07-23 三菱重工業株式会社 排ガス処理装置及び排ガスの水銀除去方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012043411A1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103926833A (zh) * 2014-04-22 2014-07-16 东南大学 一种选择性催化还原脱硝装置入口参数确定方法
CN103926833B (zh) * 2014-04-22 2016-06-08 东南大学 一种选择性催化还原脱硝装置入口参数确定方法
DE102016208569B4 (de) * 2015-05-19 2021-02-04 Ncs Testing Technology Co., Ltd. Online-Analysator und Analyseverfahren zur Anreicherung des Gesamtquecksilbers in Verbrennungsgas basierend auf dem Trockenprozess
CN113018943A (zh) * 2021-03-03 2021-06-25 魏福军 一种无纺布加工用废水过滤处理装置

Also Published As

Publication number Publication date
JP5529701B2 (ja) 2014-06-25
CN102959386B (zh) 2015-09-30
CA2803817A1 (en) 2012-04-05
US20130101487A1 (en) 2013-04-25
EP2623966B1 (de) 2018-10-31
PL2623966T3 (pl) 2019-04-30
CN102959386A (zh) 2013-03-06
US8568673B2 (en) 2013-10-29
WO2012043411A1 (ja) 2012-04-05
CA2803817C (en) 2015-03-31
EP2623966A4 (de) 2017-07-12
JP2012073106A (ja) 2012-04-12

Similar Documents

Publication Publication Date Title
EP2623966B1 (de) Gasanalysevorrichtung, quecksilberrückführungssystem, und verfahren zur quecksilberentfernung aus abgasen
JP2012073106A5 (de)
JP4838579B2 (ja) 水銀除去システムおよび水銀除去方法
US7572420B2 (en) Method for removing mercury in exhaust gas and system therefor
JP4388542B2 (ja) 水銀除去方法及び水銀除去システム
JP6665011B2 (ja) 排ガス処理方法およびシステム
EP2463015B1 (de) Vorrichtung zur minderung der luftverschmutzung
JP5972983B2 (ja) 排ガス処理システム及び排ガス処理方法
JP6095923B2 (ja) 排ガス中の水銀処理システム
JPWO2008078722A1 (ja) 排ガス処理方法と装置
JP2011031222A (ja) 排ガス処理装置及び排ガスの水銀除去方法
JP2014057913A5 (de)
WO2012176635A1 (ja) 排ガス処理装置及び排ガス処理装置のorp制御方法
US8518332B2 (en) Air pollution control apparatus and air pollution control system
KR101606257B1 (ko) 유동층을 이용한 배가스 탈황탈질장치 및 탈황탈질방법
JP4959650B2 (ja) 排ガス処理装置及び排ガス処理システム
WO2014041951A1 (ja) 排ガス中の水銀処理システム
JP5517778B2 (ja) 噴霧装置及び水銀除去システム
KR101471719B1 (ko) 배가스 탈질탈황장치 및 배가스 탈질탈황방법
JP2010036157A (ja) 排ガス処理装置、排ガス処理システム及び排ガス中の水銀酸化性能管理システム

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MITSUBISHI HITACHI POWER SYSTEMS, LTD.

RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20170614

RIC1 Information provided on ipc code assigned before grant

Ipc: B01D 53/86 20060101ALI20170608BHEP

Ipc: G01N 1/22 20060101ALI20170608BHEP

Ipc: G01N 23/223 20060101AFI20170608BHEP

Ipc: B01D 53/64 20060101ALI20170608BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180606

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1059987

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011053502

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181031

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1059987

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190131

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190131

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190228

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190201

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011053502

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190922

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190922

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190922

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602011053502

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602011053502

Country of ref document: DE

Owner name: MITSUBISHI POWER, LTD., YOKOHAMA-SHI, JP

Free format text: FORMER OWNER: MITSUBISHI HITACHI POWER SYSTEMS, LTD., YOKOHAMA-SHI, KANAGAWA, JP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602011053502

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE GBR, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230731

Year of fee payment: 13

Ref country code: DE

Payment date: 20230802

Year of fee payment: 13