WO2012043411A1 - ガス分析装置、水銀除去システム、ガス分析方法及び排ガス中の水銀除去方法 - Google Patents

ガス分析装置、水銀除去システム、ガス分析方法及び排ガス中の水銀除去方法 Download PDF

Info

Publication number
WO2012043411A1
WO2012043411A1 PCT/JP2011/071710 JP2011071710W WO2012043411A1 WO 2012043411 A1 WO2012043411 A1 WO 2012043411A1 JP 2011071710 W JP2011071710 W JP 2011071710W WO 2012043411 A1 WO2012043411 A1 WO 2012043411A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
gas
ammonium chloride
concentration
heat
Prior art date
Application number
PCT/JP2011/071710
Other languages
English (en)
French (fr)
Inventor
晴治 香川
勝 千代丸
鵜飼 展行
岡本 卓也
盛紀 村上
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/807,196 priority Critical patent/US8568673B2/en
Priority to PL11828967T priority patent/PL2623966T3/pl
Priority to CA2803817A priority patent/CA2803817C/en
Priority to CN201180031530.7A priority patent/CN102959386B/zh
Priority to EP11828967.7A priority patent/EP2623966B1/en
Publication of WO2012043411A1 publication Critical patent/WO2012043411A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Definitions

  • the present invention relates to a gas analyzer, a mercury removal system, a gas analysis method, and a mercury removal method in exhaust gas for measuring the concentration of ammonium chloride supplied in the exhaust gas of a boiler.
  • a flue gas treatment apparatus includes a denitration apparatus that reduces NOx and a wet desulfurization apparatus that uses an alkaline absorbent as an SOx absorbent, and supplies ammonia (NH 3 ) in the flue on the upstream side of the denitration apparatus.
  • nitrogen monoxide (NO) is reduced by the denitration catalyst of the denitration device to remove NOx, and the wet desulfurization device absorbs SOx in the alkali absorption liquid and is contained in the exhaust gas.
  • the harmful components to be treated are treated (for example, see Patent Document 1). 4NO + 4NH 3 + O 2 ⁇ 4N 2 + 6H 2 O (1)
  • NH 3 is supplied in the upstream process of the denitration device, but NH 3 is also used for neutralization of SO 3 , so it is necessary to adjust the supply amount of NH 3 as well. there were.
  • the exhaust gas generated when burning coal-fired exhaust gas or heavy oil may contain metal mercury (Hg 0 ) in addition to soot, SOx, NOx.
  • metal mercury Hg 0
  • various devices and methods for treating metallic mercury (Hg 0 ) have been devised in combination with a denitration device that reduces NOx and a wet desulfurization device that absorbs SOx.
  • NH 3 undergoes a reduction reaction with NOx in the exhaust gas as shown in the above formula (1) on the denitration catalyst packed in the reduction denitrification apparatus, and HCl is in the exhaust gas as shown in the following formula (4).
  • the oxidation reaction proceeds with Hg 0 .
  • NH 3 is reduced and denitrated on the denitration catalyst, and metal mercury (Hg 0 ) is oxidized to form water-soluble mercury chloride (HgCl 2 ), and then HgCl 2 is treated with water by a wet desulfurization device installed on the downstream side.
  • SOx contained in the exhaust gas is absorbed and removed.
  • the present invention was made in view of the above, Cl contained in the exhaust gas - to provide a concentration gas analyzer capable of measuring, mercury removal system, the mercury removal method of the gas analysis method and the exhaust gas For the purpose.
  • the first invention of the present invention for solving the above-mentioned problems is an exhaust gas extraction pipe for extracting the exhaust gas discharged from the boiler and supplying ammonium chloride from the flue, and the exhaust gas provided and extracted in the exhaust gas extraction pipe Dust removing means for removing dust contained therein, precipitation means provided in the exhaust gas extraction pipe for precipitating ammonium chloride contained in the exhaust gas, and X-ray or laser on the ammonium chloride deposited by the precipitation means And a measuring means for detecting ammonium chloride contained in the exhaust gas by detecting fluorescent X-rays generated by light irradiation.
  • the second invention is the gas analyzer according to the first aspect, wherein the exhaust gas further contains sulfurous acid, the precipitation means precipitates sulfurous acid, and the measurement means measures sulfurous acid.
  • a third invention is a mercury removal system that removes mercury contained in exhaust gas discharged from a boiler, ammonium chloride supply means for spraying a solution containing ammonium chloride into the flue of the boiler, and in the exhaust gas Reduction denitration device having a denitration catalyst that reduces nitrogen oxides of ammonia with ammonia and oxidizes mercury in the presence of hydrogen chloride, and wet desulfurization device that removes mercury oxidized in the reduction denitration device using an alkaline absorbent And ammonium chloride concentration measuring means for analyzing the concentration of the ammonium chloride contained in the exhaust gas, provided on either or both of the upstream side and the downstream side of the reduction denitration device, and the ammonium chloride concentration
  • the gas analyzer according to claim 1 is used as a measurement means, and the measurement was performed by the ammonium chloride concentration measurement means.
  • a heat exchanger provided between the reductive denitration device and the wet desulfurization device, for exchanging heat with the exhaust gas passing through the reductive denitration device and recovering heat.
  • the mercury removal system is characterized in that the gas temperature of the exhaust gas passing through the heat exchanger is controlled based on the relationship between the ammonium chloride concentration and the gas temperature determined in advance.
  • a heat exchanger provided between the reductive denitration device and the wet desulfurization device, for exchanging heat with the exhaust gas passing through the reductive denitration device and recovering heat.
  • the gas analyzer of the second invention is used, and either the relationship between the ammonium chloride concentration and the gas temperature determined in advance or the relationship between the sulfurous acid concentration and the gas temperature or
  • the mercury removal system is characterized in that the gas temperature of the exhaust gas passing through the heat exchanger is controlled based on both.
  • the exhaust gas discharged from the boiler and supplied with ammonium chloride is extracted from the flue, the dust contained in the exhaust gas is removed, and the ammonium chloride contained in the exhaust gas is precipitated, and then precipitated.
  • the ammonium chloride contained in the analysis gas is measured after the ammonium chloride is contained in the analysis gas and the analysis gas is extracted.
  • a seventh invention is a gas analysis method according to the sixth invention, wherein the exhaust gas further contains sulfurous acid, sulfurous acid is precipitated in addition to ammonium chloride, and the precipitated sulfurous acid is measured.
  • An eighth invention is a mercury removal method for removing mercury contained in exhaust gas discharged from a boiler, wherein an ammonium chloride supply step of spraying a solution containing ammonium chloride into the flue of the boiler, and in the exhaust gas Reduction denitration step having a denitration catalyst that oxidizes mercury in the presence of hydrogen chloride and oxidizing the mercury in the presence of hydrogen chloride, and a wet desulfurization step of removing mercury oxidized in the reduction denitration step using an alkali absorbent And an ammonium chloride concentration measurement step for analyzing the concentration of the ammonium chloride contained in the exhaust gas at either or both of the upstream side and the downstream side of the reduction denitration device, and the ammonium chloride concentration measurement step,
  • the ammonium chloride contained in the exhaust gas by the ammonium chloride concentration measurement step using the gas analysis method of the sixth invention Determine the concentration of bromide, a mercury removal method in an exhaust gas to control the spray amount of a solution containing the ammonium
  • a heat recovery step of exchanging heat between the exhaust gas and a heat medium circulating in a heat exchanger between the reductive denitration step and the wet desulfurization step, and the wet type The gas analysis method according to claim 6, further comprising: a reheating step of reheating the purified gas by exchanging heat between the purified gas discharged from the desulfurization apparatus and the heat medium, and the ammonium chloride concentration measuring step. Is used to control the gas temperature of the exhaust gas that exchanges heat with the heat medium in the heat recovery step based on the relationship between the ammonium chloride concentration determined in advance and the gas temperature.
  • a heat recovery step of exchanging heat between the exhaust gas and a heat medium circulating in a heat exchanger between the reductive denitration step and the wet desulfurization step, and the wet type And a reheating step of reheating the purified gas by exchanging heat between the purified gas discharged from the desulfurization apparatus and the heating medium.
  • the gas analysis method according to the seventh aspect of the invention is used.
  • the exhaust gas used to exchange heat with the heat medium in the heat recovery step based on one or both of the relationship between ammonium chloride concentration and gas temperature obtained in advance and the relationship between sulfurous acid concentration and gas temperature. This is a method for removing mercury in exhaust gas to control the temperature.
  • the precipitated ammonium chloride is analyzed, and the Cl ⁇ concentration contained in the exhaust gas is measured, whereby the ammonium chloride contained in the exhaust gas is measured.
  • the concentration can be determined.
  • FIG. 1 is a schematic view showing a gas analyzer according to the first embodiment of the present invention.
  • FIG. 2 is a diagram simply showing the configuration of the roll filter.
  • FIG. 3 is a schematic diagram showing an Hg removal system according to the second embodiment of the present invention.
  • FIG. 4 is a diagram simply showing the configuration of the spray nozzle.
  • FIG. 5 is a diagram showing a configuration of an Hg removal system according to the third embodiment of the present invention.
  • FIG. 6 is a diagram simply showing the configuration of the heat exchanger.
  • FIG. 1 is a schematic diagram showing a gas analyzer according to the first embodiment of the present invention
  • FIG. 1 is a schematic diagram showing a gas analyzer according to the first embodiment of the present invention
  • the gas analyzer 10 has an exhaust gas 11A from a flue 12 to which an exhaust gas 11 containing both ammonium chloride (NH 4 Cl) and sulfurous acid (SO 3 ) is supplied.
  • an exhaust gas 11 containing both ammonium chloride (NH 4 Cl) and sulfurous acid (SO 3 ) is supplied.
  • a roll filter (precipitation means) 15 for depositing both NH 4 Cl and SO 3 contained therein, and a sample 16 containing both NH 4 Cl and SO 3 deposited by the roll filter 15 are irradiated with X-rays 17.
  • a measuring device (measuring means) 19 for detecting both fluorescent X-rays 18 generated from the sample 16 and measuring both NH 4 Cl and SO 3 contained in the exhaust gas 11A.
  • the exhaust gas 11 is gas discharged from the boiler, and the exhaust gas 11 contains SO 3 . Since the NH 4 Cl solution is supplied into the exhaust gas 11 in the flue 12, the exhaust gas 11 contains NH 4 Cl.
  • the gas component to be measured in the exhaust gas 11 includes both NH 4 Cl and SO 3 , but this embodiment is not limited to this, and the exhaust gas 11 includes at least NH 4 Cl. Any gas can be used.
  • gas components contained in the exhaust gas 11, in addition to NH 4 Cl and SO 3 for example, nitrogen monoxide (NO), carbon monoxide (CO), water (H 2 O), nitrogen dioxide (NO 2 ), Methane (CH 4 ), ammonia, benzene and the like may be contained.
  • the exhaust gas extraction pipe 13 is connected to the flue 12, and a part of the exhaust gas 11 flowing through the flue 12 is extracted from the exhaust gas extraction pipe 13.
  • the exhaust gas extraction pipe 13 is provided with a control valve V11 to adjust the flow rate of the exhaust gas 11 extracted from the flue 12 to the exhaust gas extraction pipe 13. Since the exhaust gas 11 can be continuously extracted from the exhaust gas extraction pipe 13, the gas component in the exhaust gas 11 can be measured semi-continuously.
  • the exhaust gas 11 ⁇ / b> A extracted to the exhaust gas extraction pipe 13 is fed to the collector 14 through the exhaust gas extraction pipe 13.
  • the collector 14 removes the dust contained in the exhaust gas 11A.
  • a cyclone dust collector is used as the collector 14, but the present embodiment is not particularly limited to this.
  • the collector 14 After the dust contained in the exhaust gas 11 ⁇ / b> A is removed by the collector 14, the exhaust gas 11 ⁇ / b> A is fed to the roll filter 15. Moreover, the collector 14 has the dust conveyance pipe
  • the roll filter 15 includes a pair of rollers 22, a conveyor belt 23, a filter 24, and an exhaust gas supply pipe 25. In the roll filter 15, when the pair of rollers 22 rotate, the conveying belt 23 also rotates, and the filter 24 moves.
  • the measuring device 19 analyzes the concentration of each of NH 4 Cl and SO 3 contained in the exhaust gas 11A. Examples of the measuring device 19 include a fluorescent X-ray analyzer.
  • the measurement device 19 includes an X-ray irradiation device 26 that irradiates the sample 16 with the X-rays 17 and a detector 27 that detects the fluorescent X-rays 18 generated from the sample 16.
  • the measuring device 19 is provided with an opening 19 a on the wall surface side where the filter 24 is provided, and the X-ray 17 is irradiated from the X-ray irradiation device 26 to the filter 24.
  • the exhaust gas 11A fed from the exhaust gas extraction pipe 13 to the exhaust gas feed pipe 25 is fed to the filter 24, and when passing through the filter 24, NH 4 Cl and SO 3 contained in the exhaust gas 11A are adsorbed by the filter 24.
  • the sample 16 a containing both NH 4 Cl and SO 3 is deposited on the filter 24.
  • the sample 16a deposited on the roll filter 15 is transported to the measuring device 19 as the filter 24 moves.
  • the X-ray 17 is irradiated from the X-ray irradiation device 26 to the sample 16b moved to the vicinity of the opening 19a in the measurement device 19.
  • NH 4 Cl and SO 3 contained in the sample 16 b are excited by irradiation with the X-rays 17.
  • Fluorescent X-rays 18 are generated from the excited NH 4 Cl and SO 3 .
  • the generated fluorescent X-ray 18 is detected by a detector 27 and analyzed. Detector 27, based on the NH 4 Cl, the energy of the fluorescent X-ray 18 emitted when the X-ray 17 to the SO 3 is irradiated sample 16b, NH 4 Cl contained in the exhaust gas 11A, analyzing the SO 3 To do.
  • the measuring device 19 is not limited to the fluorescent X-ray analyzer, and other analyzers may be used as long as they can analyze NH 4 Cl and SO 3 contained in the exhaust gas 11A. .
  • the exhaust gas supply pipe 25 that flows the exhaust gas 11A aggregates moisture contained in the exhaust gas 11A and measures It is preferable that a heater is provided on the outer periphery of the exhaust gas supply pipe 25 so that the analysis accuracy in the apparatus 19 does not deteriorate.
  • the gas analyzer 10 after the NH 4 Cl contained in the exhaust gas 11 is deposited, by analyzing the fluorescent X-rays 18 generated from the deposited NH 4 Cl and SO 3 , The concentrations of ammonium ions (NH 4 + ), chlorine ions (Cl ⁇ ), and SO 3 contained in the exhaust gas 11 can be analyzed stably and simultaneously. For this reason, the concentration of NH 4 Cl and SO 3 contained in the exhaust gas 11 can be measured stably and simultaneously. Therefore, solution of NH 4 Cl when oxidizing the Hg, even when supplied in addition to solution of NH 4 Cl in NH 3 gas or NH 3 water to flue 12, supplied to the flue 12 contained in the exhaust gas 11 The concentration of can be determined appropriately.
  • a solution containing NH 4 Cl is used for the exhaust gas 11.
  • the present embodiment is not limited to this, and oxidizes Hg when vaporized. Any auxiliary can be used as long as it produces an oxidizing gas used in the process and a reducing gas used to reduce NOx.
  • a solution containing NH 4 Cl is used, HCl gas is used as the oxidizing gas, and NH 3 gas is used as the reducing gas.
  • a solution containing ammonium halide such as ammonium bromide (NH 4 Br) or ammonium iodide (NH 4 I) may be used.
  • FIG. 3 is a schematic diagram showing an Hg removal system according to the second embodiment of the present invention. Since the Hg removal system according to this embodiment uses the gas analyzer 10 according to the first embodiment shown in FIGS. 1 and 2 as the NH 4 Cl measuring device (NH 4 Cl measuring means), NH 4 Cl Description of the measuring device is omitted.
  • the Hg removal system 30 ⁇ / b> A is an Hg removal system that removes Hg contained in the exhaust gas 11 discharged from the boiler 31, and is disposed in the flue 12 downstream of the boiler 31.
  • NH 4 Cl solution supply means 32 for spraying the NH 4 Cl solution 41
  • a reduction denitration apparatus having a NOx removal catalyst for reducing NOx in the exhaust gas 11 with NH 3 gas and oxidizing Hg 0 in the presence of HCl gas ( Reductive denitration means) 33, an air heater (AH) 34 for exchanging heat from the denitrated exhaust gas 11, a dust collector (ESP: Electrostatic Precipitator) 35 for removing dust in the denitrated exhaust gas 11, and a reductive denitration device 33
  • a wet desulfurization device 37 that removes the oxidized Hg using a lime gypsum slurry (alkali absorbing solution) 36, and a reductive denitration device 33 upstream and downstream, Those having a
  • the exhaust gas 11 discharged from the boiler 31, solution of NH 4 Cl 41 is supplied from the solution of NH 4 Cl supply unit 32.
  • the NH 4 Cl solution supply means 32 is a spray nozzle 42 for oxidizing Hg 0 contained in the exhaust gas 11, and an ammonium chloride (NH 4 Cl) solution that supplies the NH 4 Cl solution 41 to the spray nozzle 42 in a liquid state. It has a supply pipe 43 and an air supply pipe 45 that supplies air 44 for compressing and spraying the NH 4 Cl solution 41 into the flue 12 to the spray nozzle 42.
  • the spray nozzle 42 is a two-fluid nozzle that is provided by being inserted into the flue 12 and injects the NH 4 Cl solution 41 and the air 44 into the flue 12 at the same time.
  • FIG. 4 is a diagram simply showing the configuration of the spray nozzle.
  • the spray nozzle 42 is formed of a double pipe 48 including an inner pipe 46 and an outer pipe 47 and a nozzle head 49 provided at the tip of the double pipe 48.
  • the inner tube 46 is a tube used for feeding the NH 4 Cl solution 41.
  • the outer tube 47 is a tube that is provided so as to cover the outer periphery of the inner tube 46 and is used to feed the air 44 into the space with the inner tube 46.
  • the spray nozzle 42 sprays the NH 4 Cl solution 41 from the nozzle head 49 into the flue 12 (see FIG. 3) and jets air 44 into the flue 12.
  • solution of NH 4 Cl 41 is fed to the spray nozzle 42 through a solution of NH 4 Cl supply tube 43 from the solution of NH 4 Cl tank 51.
  • the flow rate of the NH 4 Cl solution 41 supplied from the NH 4 Cl solution supply pipe 43 is adjusted by the control valve V21.
  • the NH 4 Cl solution 41 is adjusted to a predetermined concentration in the NH 4 Cl solution tank 51.
  • the NH 4 Cl solution 41 can be generated by dissolving ammonium chloride (NH 4 Cl) powder in water. NH 4 Cl powder, it is possible to adjust the solution of NH 4 Cl 41 with a predetermined concentration by adjusting the supply amount of each of the water.
  • the NH 4 Cl solution 41 may be generated by mixing an HCl solution and an NH 3 solution at a predetermined concentration ratio.
  • the air 44 is supplied from the air supply unit 52 to the spray nozzle 42 via the air supply pipe 45 and is used as compression air when the NH 4 Cl solution 41 is sprayed from the nozzle head 49.
  • a solution of NH 4 Cl 41 ejected from the nozzle head 49 can be sprayed as fine droplets into the flue 12.
  • the flow rate of the air 44 supplied from the air supply pipe 45 is adjusted by the control valve V22.
  • the droplets of the NH 4 Cl solution 41 sprayed from the nozzle head 49 into the flue 12 are evaporated and vaporized by the high-temperature atmosphere temperature of the exhaust gas 11 to form fine NH 4 Cl solid particles.
  • it is decomposed into HCl and NH 3 and sublimated. Therefore, the NH 4 Cl solution 41 sprayed from the spray nozzle 42 is decomposed to generate HCl and NH 3 , and NH 3 gas and HCl gas can be supplied into the flue 12.
  • the size of the droplets of the NH 4 Cl solution 41 sprayed from the nozzle holes of the nozzle head 49 can be adjusted by the flow rate of the air 44 supplied from the air supply pipe 45.
  • the flow rate of the air 44 ejected from the nozzle head 49 is preferably set to, for example, an air / water ratio of 100 to 10,000 (volume ratio). This is because the NH 4 Cl solution 41 ejected from the nozzle head 49 is sprayed into the flue 12 as fine droplets.
  • the air 44 serves to cool the NH 4 Cl solution 41.
  • the heat of the exhaust gas 11 inside can be suppressed from being transferred to the NH 4 Cl solution 41 by the air 44. Since the NH 4 Cl solution 41 can be prevented from being heated by the heat of the exhaust gas 11, the liquid state can be maintained until immediately before the NH 4 Cl solution 41 is jetted.
  • the exhaust gas 11 contains HCl gas and NH 3 gas generated from droplets of the NH 4 Cl solution 41 sprayed into the flue 12 from the NH 4 Cl solution supply means 32 and then reduced.
  • the denitration device 33 is fed.
  • NH 3 gas generated by decomposition of NH 4 Cl is used for NOx reductive denitration
  • HCl gas is used for Hg oxidation to remove NOx and Hg from the exhaust gas 11.
  • the reductive denitration device 33 includes one denitration catalyst layer 53.
  • the present embodiment is not limited to this, and the reductive denitration device 33 appropriately determines the number of denitration catalyst layers 53 according to the denitration performance. Can be changed.
  • the exhaust gas 11 is supplied to the wet desulfurization device 37 through the air heater 34 and the dust collector (ESP) 35 after reduction of NOx in the exhaust gas 11 and oxidation of Hg in the reduction denitration device 33.
  • ESP dust collector
  • the exhaust gas 11 is fed from the bottom wall surface in the apparatus main body 55, and the lime gypsum slurry 36 used as the alkali absorbent is supplied into the apparatus main body 55 through the absorption liquid supply line 54. It is made to jet from 56 toward the tower top side.
  • the exhaust gas 11 rising from the bottom side in the apparatus main body 55 and the lime gypsum slurry 36 jetted from the nozzle 56 are brought into gas-liquid contact with each other, and HgCl 2 and sulfur oxide (SOx) in the exhaust gas 11 are brought into contact with each other.
  • the exhaust gas 11 purified by the lime gypsum slurry 36 is discharged from the tower top side as the purified gas 57 and is discharged from the chimney 58 to the outside of the system.
  • the lime gypsum slurry 36 used for the desulfurization of the exhaust gas 11 includes lime slurry CaCO 3 in which limestone powder is dissolved in water, gypsum slurry CaSO 4 in which lime and SOx in the exhaust gas 11 are reacted and further oxidized, and water. Produced by mixing.
  • As the lime gypsum slurry 36 for example, a pumped liquid stored in the tower bottom 59 of the apparatus main body 55 of the wet desulfurization apparatus 37 is used. In the apparatus main body 55, SOx in the exhaust gas 11 reacts with the lime-gypsum slurry 36 as shown in the following formula (8).
  • the lime-gypsum slurry 36 that has absorbed SOx in the exhaust gas 11 is mixed with water 61 supplied into the apparatus main body 55 and oxidized by air 62 supplied to the tower bottom 59 of the apparatus main body 55.
  • the lime gypsum slurry 36 that has flowed down inside the apparatus main body 55 causes a reaction such as the following formula (9) with water 61 and air 62.
  • the lime gypsum slurry 36 used for the desulfurization stored in the tower bottom 59 of the wet desulfurization apparatus 37 is oxidized, extracted from the tower bottom 59 and fed to the dehydrator 63, and then mercury chloride (HgCl). It is discharged out of the system as a dehydrated cake (gypsum) 64 containing.
  • a dehydrated cake gypsum
  • the dehydrator 63 for example, a belt filter or the like is used.
  • the dehydrated filtrate (dehydrated filtrate) is subjected to wastewater treatment such as removal of suspensions in the dehydrated filtrate, heavy metals, and pH adjustment of the dehydrated filtrate. A part of this drained filtrate is returned to the wet desulfurization apparatus 37, and the other part of the dehydrated filtrate is treated as waste water.
  • Lime gypsum slurry 36 is used as the alkali absorbing liquid, but other solutions can be used as the alkali absorbing liquid as long as it can absorb HgCl 2 in the exhaust gas 11.
  • the lime gypsum slurry 36 is not limited to the method of jetting from the nozzle 56 toward the tower top side, and may be caused to flow down from the nozzle 56 so as to face the exhaust gas 11, for example.
  • the NH 4 Cl measuring device 38-1 is provided on the upstream side of the reducing denitration device 33, and the NH 4 Cl measuring device 38-2 is provided on the downstream side of the reducing denitration device 33.
  • the NH 4 Cl measuring devices 38-1 and 38-2 use the gas analyzer 10 according to the first embodiment shown in FIGS. Therefore, the NH 4 Cl measuring devices 38-1 and 38-2 can analyze the concentration of NH 4 Cl supplied from the spray nozzle 42 in the exhaust gas 11. Further, when the boiler 31 is, for example, a coal fired boiler 31, SO 3 is also contained in the exhaust gas 11, but the NH 4 Cl measuring devices 38-1 and 38-2 are SO 3 contained in the exhaust gas 11. The concentration of can also be measured. Therefore, the NH 4 Cl measuring devices 38-1 and 38-2 can simultaneously measure the concentrations of NH 4 Cl and SO 3 contained in the exhaust gas 11.
  • Controller 70 a map showing the previously obtained NH 4 Cl concentration and NH 4 relationship between the gas temperature of Cl to precipitate, and a map showing the relationship between the gas temperature concentration and SO 3 in the SO 3 is deposited Record it.
  • Controller 70 a map showing the previously obtained NH 4 Cl concentration and NH 4 relationship between the gas temperature of Cl to precipitate, and a map showing the relationship between the gas temperature concentration and SO 3 in the SO 3 is deposited Record it.
  • the higher the NH 4 Cl concentration the higher the gas temperature at which NH 4 Cl precipitates, and the higher the SO 3 concentration, the higher the gas temperature at which SO 3 precipitates.
  • NH 4 By Cl concentration and NH 4 concentration and SO 3 maps and SO 3 showing the relationship between the gas temperature Cl is precipitated obtained in advance a map representing the relationship between the gas temperature to precipitate, NH 4 Cl
  • the gas temperature can be adjusted so that NH 4 Cl and SO 3 do not precipitate according to the concentration of SO 3 or the concentration of SO 3 .
  • Controller 70 previously obtained of NH 4 Cl concentration and NH 4 Cl is precipitated from the measurement result of the concentration of NH 4 Cl contained in the exhaust gas 11 measured in NH 4 Cl measuring device 38-1, 38-2 to on the basis of a map showing the relationship between the gas temperature Cl contained in the exhaust gas 11 - analyzing the concentration of, it is possible to determine the concentration of NH 4 Cl contained in the exhaust gas 11.
  • the control device 70 can control the spray amount of the NH 4 Cl solution, so that the NH 4 Cl solution sprayed from the spray nozzle 42 can be appropriately controlled. The amount of spray can be set.
  • the NH 4 Cl measuring devices 38-1 and 38-2 can measure the concentration of SO 3 in addition to the concentration of NH 4 Cl contained in the exhaust gas 11, the NH 4 Cl measuring device 38-1, 38-2 transmits the concentration of SO 3 contained in the exhaust gas 11 to the control device 70.
  • the control device 70 determines the SO 3 concentration obtained in advance from the measurement result of the concentration of SO 3 contained in the exhaust gas 11 measured by the NH 4 Cl measuring devices 38-1 and 38-2 and the gas temperature at which SO 3 is deposited. on the basis of a map showing the relationship between the by analyzing the concentration of SO 3 contained in the exhaust gas 11, it is possible to determine the concentration of SO 3 contained in the flue gas 11.
  • the control device 70 can control the spray amount of the NH 4 Cl solution, so that the NH 4 Cl solution sprayed from the spray nozzle 42 can be appropriately sprayed. It can be an amount.
  • the concentrations of NH 4 + , Cl ⁇ and SO 3 contained in the exhaust gas 11 can be stably and simultaneously analyzed.
  • the concentrations of NH 4 Cl and SO 3 contained in the exhaust gas 11 can be measured stably and simultaneously. Therefore, since the NH 4 Cl solution 41 can be sprayed in an appropriate amount from the spray nozzle 42 into the flue 12, it is possible to stably maintain the Hg removal performance and the NOx reduction performance in the reductive denitration device 33. it can.
  • a flow meter 71 for measuring the flow rate of the exhaust gas 11 is provided on the upstream side of the spray nozzle 42.
  • the flow rate of the exhaust gas 11 is measured by the flow meter 71.
  • the flow rate value of the exhaust gas 11 measured by the flow meter 71 is sent to the control device 70, and the flow rate, angle, initial velocity, etc. of the NH 4 Cl solution 41 injected from the nozzle head 49 based on the flow rate value of the exhaust gas 11 are determined. Can be adjusted.
  • a NOx concentration meter 72 is provided on the outlet side of the reductive denitration device 33.
  • the value of the NOx concentration in the exhaust gas 11 measured by the NOx concentration meter 72 is transmitted to the control device 70.
  • the control device 70 can confirm the NOx reduction ratio in the reductive denitration device 33 from the value of the NOx concentration in the exhaust gas 11 measured by the NOx concentration meter 72. Therefore, the NH 4 Cl concentration and supply amount of the NH 4 Cl solution 41 sprayed from the spray nozzle 42 are adjusted from the value of the NOx concentration in the exhaust gas 11 measured by the NOx concentration meter 72 and supplied separately into the exhaust gas 11.
  • the amount of NH 3 water supplied can be adjusted, and the mixing ratio of NH 3 can be adjusted. Thereby, NOx of the exhaust gas 11 can be reduced in the reduction denitration apparatus 33, and the reduction denitration apparatus 33 can satisfy a predetermined denitration performance.
  • the flue 12 is provided with Hg concentration meters 73-1 to 73-3 for measuring the Hg content in the exhaust gas 11 discharged from the boiler 31.
  • the Hg concentration meter 73-1 is provided in the flue 12 between the boiler 31 and the nozzle head 49, and the Hg concentration meter 73-2 is provided between the reductive denitration device 33 and the air heater 34.
  • 73-3 is provided on the downstream side of the wet desulfurization apparatus 37.
  • the value of the Hg concentration in the exhaust gas 11 measured by the Hg concentration meters 73-1 to 73-3 is transmitted to the control device 70.
  • the control device 70 can confirm the content of Hg contained in the exhaust gas 11 from the value of the Hg concentration in the exhaust gas 11 measured by the Hg concentration meters 73-1 to 73-3.
  • the Hg densitometers 73-1 to 73-3 are composed of metallic mercury Hg 0 , mercury oxide Hg 2+ , and total mercury (amount of mercury including metallic mercury Hg 0 and mercury oxide Hg 2+ ). And can be arbitrarily measured. By grasping the ratio of mercury oxide Hg 2+ to the total mercury with the Hg concentration meters 73-2 and 73-3, the mercury oxidation rate of Hg contained in the exhaust gas 11 can be obtained.
  • the nozzle head 49 By controlling the NH 4 Cl concentration and supply flow rate of the NH 4 Cl solution 41 from the Hg concentration value and mercury oxidation rate in the exhaust gas 11 measured by the Hg concentration meters 73-1 to 73-3, the nozzle head 49 The NH 4 Cl concentration and supply flow rate of the sprayed NH 4 Cl solution 41 can satisfy the predetermined denitration performance and maintain the Hg oxidation performance.
  • An oxidation-reduction potential measurement controller (ORP controller) 74 that measures the oxidation-reduction potential of the lime gypsum slurry 36 is provided at the tower bottom 59 of the wet desulfurization apparatus 37.
  • This ORP controller 74 measures the value of the oxidation-reduction potential of the lime gypsum slurry 36.
  • the supply amount of the air 62 supplied to the tower bottom 59 of the wet desulfurization apparatus 37 is adjusted based on the measured oxidation-reduction potential value. By adjusting the supply amount of the air 62 supplied to the tower bottom 59, the oxidized Hg collected in the lime gypsum slurry 36 stored in the tower bottom 59 of the wet desulfurization apparatus 37 is reduced. And can be prevented from being diffused from the chimney 58.
  • the oxidation-reduction potential of the lime gypsum slurry 36 in the wet desulfurization device 37 is preferably in the range of, for example, 0 mV or more and +600 mV or less in order to prevent re-scattering of Hg from the lime gypsum slurry 36. This is because if the oxidation-reduction potential is within the above range, Hg collected as HgCl 2 in the lime-gypsum slurry 36 is a stable region, and re-scattering into the atmosphere can be prevented.
  • a solution containing NH 4 Cl is used to oxidize Hg and reduce NOx, but the present embodiment is not limited to this.
  • a solution containing ammonium halide such as NH 4 Br or NH 4 I may be used.
  • FIG. 5 is a diagram showing the configuration of the Hg removal system according to the third embodiment of the present invention
  • FIG. 6 is a diagram simply showing the configuration of the heat exchanger.
  • symbol is attached
  • the Hg removal system 30 ⁇ / b> B heats the exhaust gas 11 that has passed through the reductive denitration device 33 between the air heater 34 and the dust collector 35 to recover heat.
  • An exchanger 80 is provided.
  • the heat exchanger 80 includes a heat recovery unit 81 and a reheater 82.
  • the heat recovery unit 81 is provided between the air heater 34 and the dust collector 35 and exchanges heat between the exhaust gas 11 discharged from the boiler 31 and the heat medium 83 circulating in the heat exchanger 80.
  • the gas temperature of the exhaust gas 11 discharged from the boiler 31 is in the range of, for example, 130 ° C. to 150 ° C.
  • the gas temperature of the exhaust gas 11 is in the range of 80 ° C.
  • the reheater 82 is provided on the downstream side of the wet desulfurization device 37, exchanges heat between the purified gas 57 discharged from the wet desulfurization device 37 and the heat medium 83, and reheats the purified gas 57.
  • the heat exchanger 80 has a heat medium circulation passage 84 through which the heat medium 83 circulates between the heat recovery unit 81 and the reheater 82.
  • the heat medium 83 circulates between the heat recovery device 81 and the reheater 82 via the heat medium circulation passage 84.
  • a plurality of fin tubes 85 are provided on the surface of the heat medium circulation passage 84 provided in each of the heat recovery device 81 and the reheater 82.
  • a heat exchanging portion 86 is provided in the heat medium circulation passage 84, and the medium temperature of the heat medium 83 can be adjusted by exchanging the heat medium 83 with the steam 87.
  • the controller 70 determines the concentration of NH 4 Cl determined in advance.
  • the heat exchange section 86 generates heat based on one or both of a map showing the relationship between the gas temperature at which NH 4 Cl is deposited and a map showing the relationship between the SO 3 concentration and the gas temperature at which SO 3 is deposited. By exchanging the heat of the medium 83 with the steam 87, the medium temperature of the heat medium 83 is raised.
  • the SO 3 can be inhibited from precipitating on the fin tube 85 of the heat recovery unit 81 Can do. Thereby, corrosion of the fin tube 85 of the heat recovery device 81 can be suppressed.
  • the heat recovery amount recovered by the heat recovery device 81 by the heat recovery device 81 decreases, so that the outlet gas temperature of the heat recovery device 81 maintains a high state. Since the heat medium 83 flowing into the reheater 82 has a small amount of heat, the temperature of the purified gas 57 entering the reheater 82 cannot be increased. Therefore, in order to increase the temperature of the purified gas 57 that has passed through the reheater 82, the amount of addition of the steam 87 is increased, and the amount of heat of the heat medium 83 flowing into the reheater 82 is increased. The temperature of the purified gas 57 passing through 82 can be raised.
  • the heat recovery amount recovered by the heat medium 83 by the heat recovery device 81 is increased.
  • the outlet gas temperature of the exhaust gas 11 exiting from the heat recovery device 81 is lowered, and the temperature of the heat medium 83 flowing into the reheater 82 is raised, so that the temperature of the purified gas 57 entering the reheater 82 is raised. be able to.
  • the supply amount of the steam 87 supplied for heat exchange with the heat medium 83 can be reduced.
  • the heat medium 83 is supplied from the heat medium tank 88 to the heat medium circulation passage 84.
  • the heat medium 83 is circulated in the heat medium circulation passage 84 by the heat medium feed pump 89. Further, the supply amount of the steam 87 is adjusted by the control valve V31 according to the gas temperature of the purified gas 57, and sent to the reheater 82 by the control valve V32 according to the gas temperature of the exhaust gas 11 discharged from the heat recovery device 81.
  • the supplied heat medium 83 is supplied to the heat recovery unit 81, and the supply amount of the heat medium 83 supplied to the reheater 82 is adjusted.
  • the NH 4 Cl measuring device 38-1 and 38-2 to measure the NH 4 Cl concentration and SO 3 concentration contained in the exhaust gas 11, pre-concentration of the obtained NH 4 Cl and NH 4 Cl is precipitated Gas a map showing the relationship between the temperature, increasing the medium temperature of the heat medium 83 based on either one or both of the map showing the relationship between the gas temperature concentration and SO 3 in the SO 3 is deposited, the heat recovery unit The gas temperature of the exhaust gas 11 on the outlet side 81 is set to be equal to or higher than the gas temperature at which NH 4 Cl and SO 3 are deposited.
  • the heat exchanger 80 is provided between the air heater 34 and the dust collector 35, but the present embodiment is not limited to this, and the reductive denitration device 33, the wet desulfurization device 37, and the like. Between.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

 本発明に係るガス分析装置10は、NH4Cl、SO3の両方を含む排ガス11が送給される煙道12から排ガス11Aを抜出す排ガス抜出し管13と、排ガス抜出し管13に設けられ、抜出した排ガス11A中に含まれる煤塵を除去する捕集器14と、排ガス抜出し管13に設けられ、排ガス11A中に含まれるNH4Cl、SO3の両方を析出させるロールフィルタ15と、ロールフィルタ15で析出されたNH4Cl、SO3の両方を含む試料にX線を照射させて試料から発生する蛍光X線を検出して排ガス11A中に含まれるNH4Cl、SO3の両方を測定する測定装置19とを含む。

Description

ガス分析装置、水銀除去システム、ガス分析方法及び排ガス中の水銀除去方法
 本発明は、ボイラの排ガス中に供給した塩化アンモニウムの濃度を測定するガス分析装置、水銀除去システム、ガス分析方法及び排ガス中の水銀除去方法に関する。
 ボイラやゴミ焼却炉などの燃焼設備から排出される排ガス中には、煤塵、硫黄酸化物(SOx)、窒素酸化物(NOx)などの有害な成分が含まれていたため、排煙処理装置を用いて除去する必要があった。従来の排煙処理装置は、NOxを還元する脱硝装置と、アルカリ吸収液をSOx吸収剤とする湿式脱硫装置とを含み、煙道中、脱硝装置の前流側でアンモニア(NH3)を供給することで脱硝装置の脱硝触媒により一酸化窒素(NO)を下記式(1)のように、還元してNOxを除去し、湿式脱硫装置でSOxをアルカリ吸収液に吸収して、排ガス中に含まれる有害な成分を処理するようにしていた(例えば、特許文献1参照)。
4NO+4NH3+O2→4N2+6H2O・・・(1)
 SOxとしては、SO2やSO3などがあるが、排ガスのガス温度が低下すると、SO2やSO3 は、下記式(2)、(3)のように、硫酸水素アンモニウム、硫酸アンモニウムに変化し、煙道壁面や煙道内に設けられる装置に付着してしまう虞があった。また、硫酸水素アンモニウム、硫酸アンモニウムなどは、エアヒータのエレメントへの付着による閉塞などを引き起こす虞がある上、硫酸水素アンモニウム、硫酸アンモニウムは腐食性物質であり、これが付着すると壁面や機器が腐食してしまう虞があった。
NH3+SO3+H2O=NH4HSO4・・・(2)
2NH3+SO3+H2O=(NH42SO4・・・(3)
 NOxを還元するため、脱硝装置の前流工程でNH3を供給しているが、NH3はSO3の中和用にも使用されていたことから、NH3の供給量も調整する必要があった。
 そのため、従来では、排ガスの一部を抜き出し、紫外線吸収分析を行い、排ガス中のSO3やNH3を分析して排ガス中のSO3やNH3の濃度を測定するガスの分析方法が提案されている(例えば、特許文献2参照)。
 また、石炭焚き排ガスや重質油を燃焼した際に生じる排ガス中には、煤塵、SOx、NOxのほか、金属水銀(Hg0)が含まれることがある。近年、NOxを還元する脱硝装置及びSOxを吸収する湿式脱硫装置と組み合わせて、金属水銀(Hg0)を処理する方法や装置について様々な考案がなされてきた。
 排ガス中の金属水銀(Hg0)を処理する方法として、煙道中、還元脱硝装置の前流側でNH4Cl溶液を液状で噴霧して煙道内に供給する方法が提案されている(例えば、特許文献3、4参照)。煙道内にNH4Cl溶液を液状で噴霧すると、NH4Clは解離して、アンモニウム(NH3)ガス、塩酸(HCl)ガスを生成する。NH3ガスは還元剤として作用し、HClガスは水銀塩素化剤として作用する。即ち、還元脱硝装置に充填されている脱硝触媒上で、NH3は上記式(1)のように排ガス中のNOxと還元反応が進行し、HClは下記式(4)のように排ガス中のHg0と酸化反応が進行する。脱硝触媒上でNH3を還元脱硝すると共に、金属水銀(Hg0)を酸化し、水溶性の塩化水銀(HgCl2)とした後、後流側に設置した湿式の脱硫装置でHgCl2を水に溶解させて排ガス中に含まれる水銀を除去すると共に、排ガス中に含まれるSOxを吸収除去するようにしていた。
Hg0+1/2O2+2HCl→HgCl2+H2O・・・(4)
特開平9-280540号公報 特開2003-14625号公報 特開2008-142602号公報 特開2009-202107号公報
 しかしながら、排ガス中に含まれるHg0を酸化して脱硫装置で処理するために、NH4Cl溶液を液状で煙道内に噴霧する場合、特許文献2に記載のような従来の排ガス中のSO3やNH3の濃度を測定するガスの分析方法では、NH4Clが解離して生じるHClに起因する塩素イオン(Cl-)の分析ができない、という問題があった。即ち、従来のような煙道内にNH3を供給する装置が設けられていた排煙処理装置に、排ガス中に含まれるHg0を酸化するためにNH4Cl溶液を供給する装置を追加すると、従来の特許文献2に記載のような排ガス中のNH3の濃度を測定した場合、分析して得られるNH3の濃度の値が、NH3を供給する装置から供給されたNH3の濃度に依存するのか、NH4Cl溶液を供給する装置から供給されたNH3の濃度に依存するのかと特定することができなくなる。
 そのため、NH4Cl溶液の供給量を特定するため、排ガス中に含まれるCl-濃度も測定可能なガス分析装置が求められている。
 本発明は、上記に鑑みてなされたものであって、排ガス中に含まれるCl-濃度を測定することができるガス分析装置、水銀除去システム、ガス分析方法及び排ガス中の水銀除去方法を提供することを目的とする。
 上述した課題を解決するための本発明の第1の発明は、ボイラから排出され、塩化アンモニウムを供給した排ガスを煙道から抜出す排ガス抜出し管と、前記排ガス抜出し管に設けられ、抜出した排ガス中に含まれる煤塵を除去する煤塵除去手段と、前記排ガス抜出し管に設けられ、前記排ガス中に含まれる塩化アンモニウムを析出させる析出手段と、前記析出手段で析出された塩化アンモニウムにX線またはレーザ光を照射させて発生する蛍光X線を検出して、排ガス中に含まれる塩化アンモニウムを測定する測定手段と、を含むことを特徴とするガス分析装置である。
 第2の発明は、第1において、前記排ガスが、更に亜硫酸を含み、前記析出手段が亜硫酸を析出させると共に、前記測定手段が亜硫酸を測定するガス分析装置である。
 第3の発明は、ボイラから排出される排ガス中に含まれる水銀を除去する水銀除去システムであり、前記ボイラの煙道内に、塩化アンモニウムを含む溶液を噴霧する塩化アンモニウム供給手段と、前記排ガス中の窒素酸化物をアンモニアで還元すると共に、塩化水素共存下で水銀を酸化する脱硝触媒を有する還元脱硝装置と、該還元脱硝装置において酸化された水銀をアルカリ吸収液を用いて除去する湿式脱硫装置と、前記還元脱硝装置の上流側と下流側の何れか一方又は両方に設けられ、前記排ガス中に含まれる前記塩化アンモニウムの濃度を分析する塩化アンモニウム濃度測定手段とを有し、前記塩化アンモニウム濃度測定手段として、請求項1に記載のガス分析装置が用いられ、前記塩化アンモニウム濃度測定手段により求められた前記塩化アンモニウムの濃度に応じて前記塩化アンモニウムを含む溶液の噴霧量を制御することを特徴とする水銀除去システムである。
 第4の発明は、第3の発明において、前記還元脱硝装置と前記湿式脱硫装置との間に設けられ、前記還元脱硝装置を通過した排ガスと熱交換して熱回収する熱交換器とを有し、予め求めた塩化アンモニウム濃度とガス温度との関係に基づいて前記熱交換器を通過する排ガスのガス温度を制御することを特徴とする水銀除去システムである。
 第5の発明は、第3の発明において、前記還元脱硝装置と前記湿式脱硫装置との間に設けられ、前記還元脱硝装置を通過した排ガスと熱交換して熱回収する熱交換器とを有し、前記塩化アンモニウム濃度測定手段として、第2の発明のガス分析装置が用いられ、予め求めた塩化アンモニウム濃度とガス温度との関係と、亜硫酸濃度とガス温度との関係との何れか一方又は両方に基づいて前記熱交換器を通過する排ガスのガス温度を制御することを特徴とする水銀除去システムである。
 第6の発明は、ボイラから排出され、塩化アンモニウムを供給した排ガスを煙道から抜出し、前記排ガス中に含まれる煤塵を除去し、前記排ガス中に含まれる塩化アンモニウムを析出させた後、析出された塩化アンモニウムを分析用ガス中に含有させ、前記分析用ガスを抜き出した後、前記分析用ガス中に含まれる前記塩化アンモニウムを測定することを特徴とするガス分析方法である。
 第7の発明は、第6の発明において、前記排ガスが、更に亜硫酸を含み、塩化アンモニウムの他に亜硫酸を析出させ、析出した亜硫酸を測定するガス分析方法である。
 第8の発明は、ボイラから排出される排ガス中に含まれる水銀を除去する水銀除去方法であり、前記ボイラの煙道内に、塩化アンモニウムを含む溶液を噴霧する塩化アンモニウム供給工程と、前記排ガス中の窒素酸化物をアンモニアで還元すると共に、塩化水素共存下で水銀を酸化する脱硝触媒を有する還元脱硝工程と、該還元脱硝工程において酸化された水銀をアルカリ吸収液を用いて除去する湿式脱硫工程と、前記還元脱硝装置の上流側と下流側の何れか一方又は両方で、前記排ガス中に含まれる前記塩化アンモニウムの濃度を分析する塩化アンモニウム濃度測定工程を含み、前記塩化アンモニウム濃度測定工程では、第6の発明のガス分析方法を用い、前記塩化アンモニウム濃度測定工程により前記排ガス中に含まれる前記塩化アンモニウムの濃度を求め、求められた前記塩化アンモニウムの濃度に応じて前記塩化アンモニウムを含む溶液の噴霧量を制御する排ガス中の水銀除去方法である。
 第9の発明は、第8の発明において、前記還元脱硝工程と前記湿式脱硫工程との間に、前記排ガスと熱交換器内を循環する熱媒体とを熱交換する熱回収工程と、前記湿式脱硫装置から排出される浄化ガスと前記熱媒体とを熱交換して、前記浄化ガスを再加熱する再加熱工程とを含み、前記塩化アンモニウム濃度測定工程では、請求項6に記載のガス分析方法を用い、予め求めた塩化アンモニウム濃度とガス温度との関係に基づいて前記熱回収工程で前記熱媒体と熱交換する前記排ガスのガス温度を制御する排ガス中の水銀除去方法である。
 第10の発明は、第8の発明において、前記還元脱硝工程と前記湿式脱硫工程との間に、前記排ガスと熱交換器内を循環する熱媒体とを熱交換する熱回収工程と、前記湿式脱硫装置から排出される浄化ガスと前記熱媒体とを熱交換して、前記浄化ガスを再加熱する再加熱工程とを含み、前記塩化アンモニウム濃度測定工程では、第7の発明のガス分析方法を用い、予め求めた塩化アンモニウム濃度とガス温度との関係と、亜硫酸濃度とガス温度との関係との何れか一方又は両方に基づいて前記熱回収工程で前記熱媒体と熱交換する前記排ガスのガス温度を制御する排ガス中の水銀除去方法である。
 本発明によれば、排ガス中に含まれる塩化アンモニウムを析出させた後、析出された塩化アンモニウムを分析し、排ガス中に含まれるCl-濃度を測定することで、排ガス中に含まれる塩化アンモニウムの濃度を求めることができる。
図1は、本発明の第1の実施形態に係るガス分析装置を示す概略図である。 図2は、ロールフィルタの構成を簡略に示す図である。 図3は、本発明の第2の実施形態に係るHg除去システムを示す概略図である。 図4は、噴霧ノズルの構成を簡略に示す図である。 図5は、本発明の第3の実施形態に係るHg除去システムの構成を示す図である。 図6は、熱交換器の構成を簡略に示す図である。
 以下、本発明を好適に実施するための形態(以下、実施形態という)につき、図面を参照しつつ詳細に説明する。なお、本発明は以下の実施形態に記載した内容により限定されるものではない。また、以下に記載した下記実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、以下に記載した下記実施形態で開示した構成要素は適宜組み合わせることが可能である。
[第1の実施形態]
 本発明による第1の実施形態に係るガス分析装置について、図面を参照して説明する。図1は、本発明の第1の実施形態に係るガス分析装置を示す概略図であり、図2は、ロールフィルタの構成を簡略に示す図である。図1、2に示すように、本実施形態に係るガス分析装置10は、塩化アンモニウム(NH4Cl)、亜硫酸(SO3)の両方を含む排ガス11が送給される煙道12から排ガス11Aを抜出す排ガス抜出し管13と、排ガス抜出し管13に設けられ、抜き出した排ガス11A中に含まれる煤塵を除去する捕集器(煤塵除去手段)14と、排ガス抜出し管13に設けられ、排ガス11A中に含まれるNH4Cl、SO3の両方を析出させるロールフィルタ(析出手段)15と、ロールフィルタ15で析出されたNH4Cl、SO3の両方を含む試料16にX線17を照射させて試料16から発生する蛍光X線18を検出して排ガス11A中に含まれるNH4Cl、SO3の両方を測定する測定装置(測定手段)19とを含むものである。
 排ガス11はボイラから排出されるガスであり、排ガス11にはSO3が含まれている。煙道12内で排ガス11中にNH4Cl溶液を供給しているため、排ガス11はNH4Clを含む。排ガス11中の計測対象のガス成分には、NH4Cl、SO3の両方を含んでいるが、本実施形態は、これに限定されるものではなく、排ガス11は、少なくともNH4Clを含んでいるガスであればよい。排ガス11に含まれるガス成分としては、NH4Cl、SO3の他に、例えば、一酸化窒素(NO)、一酸化炭素(CO)、水(H2O)、二酸化窒素(NO2)、メタン(CH4)、アンモニア、ベンゼン等を含んでいてもよい。
 排ガス抜出し管13は煙道12に連結され、煙道12内を流れる排ガス11を排ガス抜出し管13から一部抜出す。排ガス抜出し管13には、調節弁V11が設けられ、煙道12から排ガス抜出し管13に抜き出す排ガス11の流量を調整する。排ガス抜出し管13より排ガス11を連続して抜出すことができるため、排ガス11中のガス成分を半連続して測定することができる。
 排ガス抜出し管13に抜き出された排ガス11Aは、排ガス抜出し管13を通って捕集器14に送給される。捕集器14は、排ガス11A中に含まれる煤塵を除去する。捕集器14としては、例えばサイクロン式ダスト捕集機などが用いられるが、特に本実施形態はこれに限定されるものではない。
 捕集器14で排ガス11A中に含まれる煤塵が除去された後、排ガス11Aはロールフィルタ15に送給される。また、捕集器14は、捕集した煤塵を排出する煤塵搬送管21を有している。捕集器14で排ガス11Aから除去されたダストは、煤塵搬送管21から煙道12に戻される。
 ロールフィルタ15は、一対のローラ22と、搬送用ベルト23と、フィルタ24と、排ガス送給管25とを有する。ロールフィルタ15は、一対のローラ22が回転することで、搬送用ベルト23も回転し、フィルタ24が移動する。測定装置19は、排ガス11A中に含まれるNH4Cl、SO3の各々の濃度を分析する。測定装置19としては、例えば、蛍光X線分析装置が挙げられる。測定装置19は、試料16にX線17を照射するX線照射装置26と、試料16から発生する蛍光X線18を検出する検出器27とを有する。また、測定装置19は、フィルタ24の設けられている壁面側に開口部19aを設け、X線照射装置26からX線17がフィルタ24に照射される。排ガス抜出し管13から排ガス送給管25に送給された排ガス11Aは、フィルタ24に送給され、フィルタ24を通過する際、排ガス11A中に含まれるNH4Cl、SO3はフィルタ24で吸着され、フィルタ24上にNH4Cl、SO3の両方を含む試料16aが析出する。ロールフィルタ15上に析出した試料16aはフィルタ24が移動することにより、測定装置19に搬送される。測定装置19において開口部19a付近に移動した試料16bに対してX線照射装置26からX線17が照射される。試料16bに含まれるNH4Cl、SO3は、X線17が照射されることにより励起される。励起されたNH4Cl、SO3からは蛍光X線18を発生する。発生した蛍光X線18は検出器27で検出され、分析される。検出器27は、試料16bのNH4Cl、SO3にX線17が照射された際に放出された蛍光X線18のエネルギーに基づき、排ガス11A中に含まれるNH4Cl、SO3を分析する。
 測定装置19は、蛍光X線分析装置に限定されるものではなく、排ガス11A中に含まれるNH4Cl、SO3を分析することができるものであれば、他の分析装置を用いてもよい。
 ロールフィルタ15は、排ガス抜出し管13の排ガス11A中に含まれるNH4Cl、SO3を析出させるため、排ガス11Aを流す排ガス送給管25は、排ガス11A中に含まれる水分が凝集し、測定装置19での分析精度が低下しないように、排ガス送給管25の外周にヒータを設け加熱しておくことが好ましい。
 本実施形態に係るガス分析装置10によれば、排ガス11中に含まれるNH4Clを析出させた後、析出されたNH4Cl、SO3から発生する蛍光X線18を分析することで、排ガス11中に含まれるアンモニウムイオン(NH4 +)、塩素イオン(Cl-)、SO3の濃度を安定して同時に分析することができる。このため、排ガス11中に含まれるNH4Cl及びSO3の濃度を安定して同時に測定することができる。従って、排ガス11中に含まれるHgを酸化する際、煙道12内にNH3ガス又はNH3水の他にNH4Cl溶液を供給する場合でも、煙道12内に供給したNH4Cl溶液の濃度を適正に求めることができる。
 本実施形態に係るガス分析装置10においては、排ガス11にNH4Clを含む溶液を用いているが、本実施形態は、これに限定されるものではなく、気化した際にHgを酸化するために用いられる酸化性ガスと、NOxを還元するために用いられる還元性ガスとを生成する助剤であれば用いることができる。本実施形態では、NH4Clを含む溶液を用いているため、酸化性ガスとしてHClガスが用いられ、還元性ガスとしてNH3ガスが用いられている。NH4Clを含む溶液以外には、例えば臭化アンモニウム(NH4Br)、ヨウ化アンモニウム(NH4I)などのハロゲン化アンモニウムを含む溶液を用いてもよい。
[第2の実施形態]
 本発明による第2の実施形態に係るHg除去システムについて、図面を参照して説明する。図3は、本発明の第2の実施形態に係るHg除去システムを示す概略図である。本実施形態に係るHg除去システムは、NH4Cl測定装置(NH4Cl測定手段)として、図1、2に示す第1の実施形態に係るガス分析装置10を用いているため、NH4Cl測定装置の説明は省略する。
 図3に示すように、本実施形態に係るHg除去システム30Aは、ボイラ31から排出される排ガス11中に含まれるHgを除去するHg除去システムであり、ボイラ31の下流の煙道12内に、NH4Cl溶液41を噴霧するNH4Cl溶液供給手段32と、排ガス11中のNOxをNH3ガスで還元すると共に、HClガス共存下でHg0を酸化する脱硝触媒を有する還元脱硝装置(還元脱硝手段)33と、脱硝された排ガス11を熱交換するエアヒータ(AH)34と、脱硝された排ガス11中の煤塵を除去する集塵器(ESP:Electrostatic Precipitator)35と、還元脱硝装置33において酸化されたHgを石灰石膏スラリー(アルカリ吸収液)36を用いて除去する湿式脱硫装置37と、還元脱硝装置33の上流側と下流側に設けられ、排ガス11中に含まれるNH4Clの濃度を分析するNH4Cl測定装置(NH4Cl測定手段)38-1、38-2とを有するものである。
 ボイラ31から排出される排ガス11には、NH4Cl溶液供給手段32からNH4Cl溶液41が供給される。NH4Cl溶液供給手段32は、排ガス11中に含まれるHg0を酸化するための噴霧ノズル42と、NH4Cl溶液41を液体状で噴霧ノズル42に供給する塩化アンモニウム(NH4Cl)溶液供給管43と、煙道12内にNH4Cl溶液41を圧縮して噴霧させる空気44を噴霧ノズル42に供給する空気供給管45とを有する。
 噴霧ノズル42は、煙道12内に挿入して設けられ、NH4Cl溶液41と空気44とを煙道12内に同時に噴射する二流体ノズルである。図4は、噴霧ノズルの構成を簡略に示す図である。図4に示すように、噴霧ノズル42は、内管46と外管47とからなる二重管48と、二重管48の先端に設けられるノズルヘッド49とから形成されている。内管46は、NH4Cl溶液41を送給するために用いる管である。外管47は、内管46の外周を覆うように設けられ、内管46との空間内に空気44を送給するために用いる管である。噴霧ノズル42は、ノズルヘッド49からNH4Cl溶液41を煙道12(図3参照)内に噴霧すると共に、空気44を煙道12内に噴射する。
 図3に示すように、NH4Cl溶液41は、NH4Cl溶液タンク51からNH4Cl溶液供給管43を介して噴霧ノズル42に送給される。NH4Cl溶液供給管43から供給されるNH4Cl溶液41の流量は調節弁V21により調整される。NH4Cl溶液41はNH4Cl溶液タンク51内で所定濃度に調整される。NH4Cl溶液41は、塩化アンモニウム(NH4Cl)粉末を水に溶解させて生成することができる。NH4Cl粉末、水の各々の供給量を調整することで所定濃度のNH4Cl溶液41を調整することができる。NH4Cl溶液41は、HCl溶液とNH3溶液とを所定濃度の割合で混合させて生成するようにしてもよい。
 空気44は、空気供給部52から空気供給管45を介して噴霧ノズル42に送給され、ノズルヘッド49からNH4Cl溶液41を噴霧する際の圧縮用の空気として用いられる。空気44の気流によりNH4Cl溶液41を微粒化することで、ノズルヘッド49から噴射されるNH4Cl溶液41を煙道12内に微細な液滴として噴霧することができる。空気供給管45から供給される空気44の流量は調節弁V22により調整される。
 図4に示すように、ノズルヘッド49から煙道12内に噴霧されたNH4Cl溶液41の液滴は、排ガス11の高温雰囲気温度により蒸発して気化され、微細なNH4Clの固体粒子を生成し、下記式(5)のように、HClとNH3とに分解し、昇華する。よって、噴霧ノズル42から噴霧されたNH4Cl溶液41は分解されて、HCl、NH3を生じ、NH3ガス、HClガスを煙道12内に供給することができる。
NH4Cl→NH3+HCl・・・(5)
 図3に示すように、空気供給管45から供給される空気44の流量により、ノズルヘッド49のノズル孔から噴霧されるNH4Cl溶液41の液滴の大きさを調整することができる。ノズルヘッド49から噴射される空気44の流量は、例えば気水比100以上10000以下(体積比)とするのが好ましい。これは、ノズルヘッド49から噴射されるNH4Cl溶液41を微細な液滴として煙道12内に噴霧させるようにするためである。
 図4に示すように、空気44は内管46と外管47との間の空間を流れるため、空気44はNH4Cl溶液41の冷却用として働き、図3に示すように、煙道12内の排ガス11の熱が空気44によりNH4Cl溶液41に伝達されるのを抑制することができる。NH4Cl溶液41が排ガス11の熱により加熱されるのを抑制することができるため、NH4Cl溶液41が噴射される直前まで液体状態を維持することができる。
 図3に示すように、排ガス11は、NH4Cl溶液供給手段32から煙道12内に噴霧されたNH4Cl溶液41の液滴から生じたHClガス、NH3ガスを含んだ後、還元脱硝装置33に送給される。還元脱硝装置33では、NH4Clが分解して生じたNH3ガスはNOxの還元脱硝用に用いられ、HClガスはHgの酸化用に用いられ、NOx及びHgを排ガス11から除去する。
 即ち、還元脱硝装置33に充填されている脱硝触媒上でNH3ガスは、下記式(6)のようにNOxを還元脱硝し、HClガスは、下記式(7)のようにHgを水銀酸化する。
4NO+4NH3+O2→4N2+6H2O・・・(6)
Hg+1/2O2+2HCl→HgCl2+H2O・・・(7)
 還元脱硝装置33は、脱硝触媒層53を1つ備えているが、本実施形態はこれに限定されるものではなく、還元脱硝装置33は、脱硝性能に応じて脱硝触媒層53の数を適宜変更することができる。
 排ガス11は、還元脱硝装置33において排ガス11中のNOxの還元とHgの酸化がされた後、エアヒータ34、集塵器(ESP)35を通過して湿式脱硫装置37に送給される。
 湿式脱硫装置37では、排ガス11を装置本体55内の底部の壁面側から送給し、アルカリ吸収液として用いられる石灰石膏スラリー36を吸収液送給ライン54により装置本体55内に供給し、ノズル56より塔頂部側に向かって噴流させる。装置本体55内の底部側から上昇してくる排ガス11と、ノズル56から噴流して流下する石灰石膏スラリー36とを対向して気液接触させ、排ガス11中のHgCl2、硫黄酸化物(SOx)は石灰石膏スラリー36中に吸収され、排ガス11から分離、除去され、排ガス11は浄化される。石灰石膏スラリー36により浄化された排ガス11は、浄化ガス57として塔頂部側より排出され、煙突58から系外に排出される。
 排ガス11の脱硫に用いられる石灰石膏スラリー36は、水に石灰石粉末を溶解させた石灰スラリーCaCO3と、石灰と排ガス11中のSOxが反応し更に酸化させた石膏スラリーCaSO4と、水とを混合させて生成される。石灰石膏スラリー36は、例えば湿式脱硫装置37の装置本体55の塔底部59に貯留した液を揚水したものが用いられる。装置本体55内で排ガス11中のSOxは石灰石膏スラリー36と下記式(8)のような反応を生じる。
CaCO3+SO2+0.5H2O→CaSO3・0.5H2O+CO2・・・(8)
 一方、排ガス11中のSOxを吸収した石灰石膏スラリー36は、装置本体55内に供給される水61と混合され、装置本体55の塔底部59に供給される空気62により酸化処理される。このとき、装置本体55内を流下した石灰石膏スラリー36は、水61、空気62と下記式(9)のような反応を生じる。
CaSO3・0.5H2O+0.5O2+1.5H2O→CaSO4・2H2O・・・(9)
 湿式脱硫装置37の塔底部59に貯留される脱硫に用いた石灰石膏スラリー36は酸化処理された後、塔底部59より抜き出され、脱水器63に送給された後、塩化水銀(HgCl)を含んだ脱水ケーキ(石膏)64として系外に排出される。脱水器63として、例えばベルトフィルターなどが用いられる。また、脱水したろ液(脱水ろ液)は、例えば脱水ろ液中の懸濁物、重金属の除去、脱水ろ液のpH調整などの排水処理が行われる。この排水処理された脱水ろ液の一部は湿式脱硫装置37に返送され、脱水ろ液の他の一部は排水として処理される。
 アルカリ吸収液として石灰石膏スラリー36を用いているが、排ガス11中のHgCl2を吸収できるものであれば他の溶液をアルカリ吸収液として用いることができる。
 石灰石膏スラリー36はノズル56より塔頂部側に向かって噴流させる方法に限定されるものではなく、例えばノズル56から排ガス11と対向するように流下させてもよい。
(NH4Cl溶液の噴霧量の制御)
 NH4Cl測定装置38-1は、還元脱硝装置33の前流側に設けられ、NH4Cl測定装置38-2は、還元脱硝装置33の後流側に設けられている。NH4Cl測定装置38-1、38-2は、上述の通り、図1、2に示す第1の実施形態に係るガス分析装置10を用いている。よって、NH4Cl測定装置38-1、38-2は、排ガス11中に噴霧ノズル42から供給されたNH4Clの濃度を分析することができる。また、ボイラ31が、例えば石炭焚きボイラ31の場合、排ガス11中にはSO3も含まれているが、NH4Cl測定装置38-1、38-2は、排ガス11中に含まれるSO3の濃度も測定することができる。従って、NH4Cl測定装置38-1、38-2は、排ガス11中に含まれるNH4ClおよびSO3の濃度を同時に測定することができる。
 NH4Cl測定装置38-1、38-2で測定された排ガス11中に含まれるNH4Clの濃度の測定結果は、制御装置70に伝達される。制御装置70は、予め求めたNH4Clの濃度とNH4Clが析出するガス温度との関係を示すマップと、SO3の濃度とSO3が析出するガス温度との関係を示すマップとを記録しておく。例えば、NH4Clの濃度が高くなるほどNH4Clが析出するガス温度は高くなり、SO3の濃度が高くなるほどSO3が析出するガス温度は高くなる。NH4Clの濃度とNH4Clが析出するガス温度との関係を示すマップやSO3の濃度とSO3が析出するガス温度との関係を示すマップを予め求めておくことで、NH4Clの濃度またはSO3の濃度に応じてNH4ClやSO3が析出しないようにガス温度を調整することが可能となる。
 制御装置70は、NH4Cl測定装置38-1、38-2で測定された排ガス11中に含まれるNH4Clの濃度の測定結果から予め求めたNH4Clの濃度とNH4Clが析出するガス温度との関係を示すマップに基づいて排ガス11中に含まれるCl-の濃度を分析し、排ガス11中に含まれるNH4Clの濃度を求めることができる。排ガス11中に含まれるNH4Clの濃度を求めることで、制御装置70は、NH4Cl溶液の噴霧量を制御することができるので、噴霧ノズル42から噴霧されるNH4Cl溶液を適正な噴霧量とすることができる。
 NH4Cl測定装置38-1、38-2は、排ガス11中に含まれるNH4Clの濃度の他に、SO3の濃度も測定することができるため、NH4Cl測定装置38-1、38-2は、排ガス11中に含まれるSO3の濃度を制御装置70に伝達する。制御装置70は、NH4Cl測定装置38-1、38-2で測定された排ガス11中に含まれるSO3の濃度の測定結果から予め求めたSO3の濃度とSO3が析出するガス温度との関係を示すマップに基づいて排ガス11中に含まれるSO3の濃度を分析することにより、排ガス11中に含まれるSO3の濃度を求めることができる。排ガス11中に含まれるSO3の濃度を求めることで、制御装置70は、NH4Cl溶液の噴霧量を制御することができるので、噴霧ノズル42から噴霧されるNH4Cl溶液を適正な噴霧量とすることができる。
 このように、本実施形態に係る噴霧装置を適用したHg除去システム30Aによれば、排ガス11中に含まれるNH4 +、Cl-、SO3の濃度を安定して同時に分析することができるため、排ガス11中に含まれるNH4Cl及びSO3の濃度を安定して同時に測定することができる。従って、噴霧ノズル42から煙道12内にNH4Cl溶液41を適正な量で噴霧することができるため、還元脱硝装置33においてHgの除去性能およびNOxの還元性能を安定して維持することができる。また、噴霧ノズル42の外管47など噴霧設備の腐食の防止も可能となるため、安定して運転することが可能となると共に、噴霧ノズル42などの装置の延命化、装置のメンテナンスに要する費用の低減を図ることが可能となる。更に、煙道12内にNH3水を供給するNH3水供給手段が設けられている場合、NH4Cl溶液供給手段32を煙道12内に新たに新設する場合でも、煙道12内に供給するNH4Cl溶液の濃度を適正に求めることができる。
 噴霧ノズル42の上流側には、排ガス11の流量を計測する流量計71が設けられている。流量計71により排ガス11の流量が測定される。流量計71により測定された排ガス11の流量の値は制御装置70に送られ、排ガス11の流量の値に基づいてノズルヘッド49から噴射するNH4Cl溶液41の流量、角度、初速度などを調整することができる。
 還元脱硝装置33の出口側には、NOx濃度計72が設けられている。NOx濃度計72で測定された排ガス11中のNOx濃度の値は、制御装置70に伝達される。制御装置70はNOx濃度計72で測定された排ガス11中のNOx濃度の値から還元脱硝装置33におけるNOxの還元割合を確認することができる。よって、NOx濃度計72で測定された排ガス11中のNOx濃度の値から噴霧ノズル42から噴霧されるNH4Cl溶液41のNH4Cl濃度、供給量を調整すると共に、排ガス11中に別途供給されるNH3水の供給量を調整し、NH3の混合比率を調整することができる。これにより、還元脱硝装置33において排ガス11のNOxを還元し、還元脱硝装置33が所定の脱硝性能を満足するようにすることができる。
 煙道12には、ボイラ31から排出される排ガス11中のHg含有量を測定するHg濃度計73-1~73-3が設けられている。Hg濃度計73-1は、ボイラ31とノズルヘッド49との間の煙道12に設けられ、Hg濃度計73-2は、還元脱硝装置33とエアヒータ34との間に設けられ、Hg濃度計73-3は、湿式脱硫装置37の後流側に設けられる。Hg濃度計計73-1~73-3で測定された排ガス11中のHg濃度の値は、制御装置70に伝達される。制御装置70は、Hg濃度計計73-1~73-3で測定された排ガス11中のHg濃度の値から排ガス11中に含まれるHgの含有量を確認することができる。具体的には、Hg濃度計計73-1~73-3は、金属水銀Hg0と、酸化水銀Hg2+と、全水銀(金属水銀Hg0と酸化水銀Hg2+とを含む水銀量)とを各々任意に測定することができる。Hg濃度計73-2、73-3で全水銀に対する酸化水銀Hg2+の比率を把握することで、排ガス11中に含まれるHgの水銀酸化率を求めることができる。Hg濃度計73-1~73-3で測定された排ガス11中のHg濃度の値と水銀酸化率からNH4Cl溶液41のNH4Cl濃度、供給流量を制御することで、ノズルヘッド49から噴霧されるNH4Cl溶液41のNH4Cl濃度、供給流量を所定の脱硝性能を満足すると共に、Hgの酸化性能を維持するようにすることができる。
 湿式脱硫装置37の塔底部59には、石灰石膏スラリー36の酸化還元電位を測定する酸化還元電位測定制御装置(ORPコントローラ)74が設けられている。このORPコントローラ74により石灰石膏スラリー36の酸化還元電位の値を測定する。測定された酸化還元電位の値に基づいて湿式脱硫装置37の塔底部59に供給される空気62の供給量を調整する。塔底部59に供給される空気62の供給量を調整することで、湿式脱硫装置37の塔底部59に貯留する石灰石膏スラリー36内に捕集されている酸化されたHgが還元されるのを防止し、煙突58より放散されるのを防止することができる。
 湿式脱硫装置37内の石灰石膏スラリー36の酸化還元電位は、石灰石膏スラリー36からのHgの再飛散を防止するためには、例えば0mV以上+600mV以下の範囲内にあることが好ましい。これは酸化還元電位が上記範囲内であれば石灰石膏スラリー36中にHgCl2として捕集されたHgが安定な領域であり、大気中への再飛散を防ぐことができるためである。
 本実施形態に係るHg除去システム30Aにおいては、Hgを酸化すると共に、NOxを還元するのにNH4Clを含む溶液を用いているが、本実施形態は、これに限定されるものではなく、上述のように、NH4Clを含む溶液以外に、例えば、NH4Br、NH4Iなどのハロゲン化アンモニウムを含む溶液を用いてもよい。
[第3の実施形態]
 本発明による第3の実施形態に係る噴霧装置を適用したHg除去システムについて、図面を参照して説明する。図5は、本発明の第3の実施形態に係るHg除去システムの構成を示す図であり、図6は、熱交換器の構成を簡略に示す図である。なお、本発明の第2の実施形態に係るHg除去システムの構成と重複する部材については、同一符号を付してその説明は省略する。
 図5、6に示すように、本実施形態に係るHg除去システム30Bは、エアヒータ34と集塵器35との間に、還元脱硝装置33を通過した排ガス11を熱交換して熱回収する熱交換器80が設けられている。熱交換器80は、熱回収器81と、再加熱器82とを含むものである。熱回収器81は、エアヒータ34と集塵器35との間に設けられ、ボイラ31から排出される排ガス11と熱交換器80内を循環する熱媒体83とを熱交換する。ボイラ31から排出される排ガス11のガス温度は例えば130℃~150℃の範囲であり、排ガス11が熱交換器80内を循環する熱媒体83と熱交換することで、熱回収器81から排出される排ガス11のガス温度は例えば80℃~100℃の範囲になる。再加熱器82は、湿式脱硫装置37の後流側に設けられ、湿式脱硫装置37から排出される浄化ガス57と熱媒体83とを熱交換して、浄化ガス57を再加熱する。
 熱交換器80は、熱回収器81と再加熱器82とを熱媒体83が循環するための熱媒体循環通路84を有する。熱媒体83は、熱媒体循環通路84を介して熱回収器81と再加熱器82との間を循環している。熱回収器81と再加熱器82との各々の内部に設けられる熱媒体循環通路84の表面には、複数のフィンチューブ85が設けられている。熱媒体循環通路84には熱交換部86が設けられ、熱媒体83をスチーム87と熱交換することで、熱媒体83の媒体温度を調整することができる。
 NH4Cl測定装置38-1、38-2により、排ガス11中に含まれるNH4Cl濃度及びSO3濃度を測定することができるため、制御装置70は、予め求めたNH4Clの濃度とNH4Clが析出するガス温度との関係を示すマップと、SO3の濃度とSO3が析出するガス温度との関係を示すマップとの何れか一方又は両方に基づいて熱交換部86で熱媒体83をスチーム87と熱交換することで、熱媒体83の媒体温度を上昇させる。熱回収器81の出口側の排ガス11のガス温度をNH4Cl及びSO3が析出するガス温度以上にすることで、熱回収器81のフィンチューブ85にSO3が析出するのを抑制することができる。これにより、熱回収器81のフィンチューブ85の腐食を抑制することができる。
 熱回収器81に流入させる熱媒体83の量を減少させると、熱媒体83が熱回収器81で回収する熱回収量は減少するため、熱回収器81の出口ガス温度は高い状体を維持したままであり、再加熱器82に流入する熱媒体83の熱量は少ないため、再加熱器82に入る浄化ガス57の温度を上昇させることができない。そのため、再加熱器82を通過した浄化ガス57の温度を上昇させるために、スチーム87の添加量を増大させて再加熱器82に流入する熱媒体83の熱量を上昇させることで、再加熱器82を通過する浄化ガス57の温度を上昇させることができる。
 また、熱回収器81に流入させる熱媒体83の量を増大させると、熱回収器81で熱媒体83が回収する熱回収量が増大する。これにより、熱回収器81から出る排ガス11の出口ガス温度は低下し、再加熱器82に流入する熱媒体83の温度は上昇するため、再加熱器82に入る浄化ガス57の温度を上昇させることができる。これにより、熱媒体83と熱交換するために供給されるスチーム87の供給量を軽減ことができる。
 熱媒体83は、熱媒体タンク88から熱媒体循環通路84に供給される。熱媒体83は、熱媒体送給ポンプ89により熱媒体循環通路84内を循環させる。また、浄化ガス57のガス温度に応じて調節弁V31によりスチーム87の供給量を調整し、熱回収器81から排出される排ガス11のガス温度に応じて調節弁V32により再加熱器82に送給される熱媒体83を熱回収器81に供給し、再加熱器82に送給される熱媒体83の供給量を調整する。
 よって、NH4Cl測定装置38-1、38-2により、排ガス11中に含まれるNH4Cl濃度及びSO3濃度を測定し、予め求めたNH4Clの濃度とNH4Clが析出するガス温度との関係を示すマップと、SO3の濃度とSO3が析出するガス温度との関係を示すマップとの何れか一方又は両方に基づいて熱媒体83の媒体温度を上昇させ、熱回収器81の出口側の排ガス11のガス温度をNH4Cl及びSO3が析出するガス温度以上にする。これにより、熱回収器81のフィンチューブ85など煙道12内に設けられた設備にNH4Cl及びSO3が析出するのを抑制することができ、熱回収器81のフィンチューブ85などの腐食を抑制することができる。
 本実施形態では、熱交換器80は、エアヒータ34と集塵器35との間に設けているが、本実施形態はこれに限定されるものではなく、還元脱硝装置33と湿式脱硫装置37との間であればよい。
 10 ガス分析装置
 11、11A 排ガス
 12 煙道
 13 排ガス抜出し管
 14 捕集器(煤塵除去手段)
 15 ロールフィルタ(析出手段)
 16、16a、16b 試料
 17 X線
 18 蛍光X線
 19 測定装置(測定手段)
 19a 開口部
 21 煤塵搬送管
 22 ローラ
 23 搬送用ベルト
 24 フィルタ
 25 排ガス送給管
 26 X線照射装置
 27 検出器
 30A、30B Hg除去システム
 31 ボイラ
 32 NH4Cl溶液供給手段
 33 還元脱硝装置(還元脱硝手段)
 34 エアヒータ(AH)
 35 集塵器(ESP)
 36 石灰石膏スラリー(アルカリ吸収液)
 37 湿式脱硫装置
 38-1、38-2 NH4Cl測定装置(NH4Cl測定手段)
 41 NH4Cl溶液
 42 噴霧ノズル
 43 塩化アンモニウム(NH4Cl)溶液供給管
 44 空気
 45 空気供給管
 46 内管
 47 外管
 48 二重管
 49 ノズルヘッド
 51 塩化アンモニウム(NH4Cl)溶液タンク
 52 空気供給部
 53 脱硝触媒層
 54 吸収液送給ライン
 55 装置本体
 56 ノズル
 57 浄化ガス
 58 煙突
 59 塔底部
 61 水
 62 空気
 63 脱水器
 64 脱水ケーキ(石膏)
 70 制御装置
 71 流量計
 72 NOx濃度計
 73-1~73-3 水銀(Hg)濃度計
 74 酸化還元電位測定制御装置(ORPコントローラ)
 80 熱交換器
 81 熱回収器
 82 再加熱器
 83 熱媒体
 84 熱媒体循環通路
 85 フィンチューブ
 86 熱交換部
 87 スチーム
 88 熱媒体タンク
 V11、V21、V22、V31、V32 調節弁

Claims (10)

  1.  ボイラから排出され、塩化アンモニウムを供給した排ガスを煙道から抜出す排ガス抜出し管と、
     前記排ガス抜出し管に設けられ、抜出した排ガス中に含まれる煤塵を除去する煤塵除去手段と、
     前記排ガス抜出し管に設けられ、前記排ガス中に含まれる塩化アンモニウムを析出させる析出手段と、
     前記析出手段で析出された塩化アンモニウムにX線またはレーザ光を照射させて発生する蛍光X線を検出して、排ガス中に含まれる塩化アンモニウムを測定する測定手段と、
    を含むことを特徴とするガス分析装置。
  2.  請求項1において、
     前記排ガスが、更に亜硫酸を含み、前記析出手段が亜硫酸を析出させると共に、前記測定手段が亜硫酸を測定するガス分析装置。
  3.  ボイラから排出される排ガス中に含まれる水銀を除去する水銀除去システムであり、
     前記ボイラの煙道内に、塩化アンモニウムを含む溶液を噴霧する塩化アンモニウム供給手段と、
     前記排ガス中の窒素酸化物をアンモニアで還元すると共に、塩化水素共存下で水銀を酸化する脱硝触媒を有する還元脱硝装置と、
     該還元脱硝装置において酸化された水銀をアルカリ吸収液を用いて除去する湿式脱硫装置と、
     前記還元脱硝装置の上流側と下流側の何れか一方又は両方に設けられ、前記排ガス中に含まれる前記塩化アンモニウムの濃度を分析する塩化アンモニウム濃度測定手段とを有し、
     前記塩化アンモニウム濃度測定手段として、請求項1に記載のガス分析装置が用いられ、
     前記塩化アンモニウム濃度測定手段により求められた前記塩化アンモニウムの濃度に応じて前記塩化アンモニウムを含む溶液の噴霧量を制御することを特徴とする水銀除去システム。
  4.  請求項3において、
     前記還元脱硝装置と前記湿式脱硫装置との間に設けられ、前記還元脱硝装置を通過した排ガスと熱交換して熱回収する熱交換器とを有し、
     予め求めた塩化アンモニウム濃度とガス温度との関係に基づいて前記熱交換器を通過する排ガスのガス温度を制御することを特徴とする水銀除去システム。
  5.  請求項3において、
     前記還元脱硝装置と前記湿式脱硫装置との間に設けられ、前記還元脱硝装置を通過した排ガスと熱交換して熱回収する熱交換器とを有し、
     前記塩化アンモニウム濃度測定手段として、請求項2に記載のガス分析装置が用いられ、
     予め求めた塩化アンモニウム濃度とガス温度との関係と、亜硫酸濃度とガス温度との関係との何れか一方又は両方に基づいて前記熱交換器を通過する排ガスのガス温度を制御することを特徴とする水銀除去システム。
  6.  ボイラから排出され、塩化アンモニウムを供給した排ガスを煙道から抜出し、前記排ガス中に含まれる煤塵を除去し、前記排ガス中に含まれる塩化アンモニウムを析出させた後、析出された塩化アンモニウムを分析用ガス中に含有させ、前記分析用ガスを抜き出した後、前記分析用ガス中に含まれる前記塩化アンモニウムを測定することを特徴とするガス分析方法。
  7.  請求項6において、
     前記排ガスが、更に亜硫酸を含み、塩化アンモニウムの他に亜硫酸を析出させ、析出した亜硫酸を測定するガス分析方法。
  8.  ボイラから排出される排ガス中に含まれる水銀を除去する水銀除去方法であり、
     前記ボイラの煙道内に、塩化アンモニウムを含む溶液を噴霧する塩化アンモニウム供給工程と、
     前記排ガス中の窒素酸化物をアンモニアで還元すると共に、塩化水素共存下で水銀を酸化する脱硝触媒を有する還元脱硝工程と、
     該還元脱硝工程において酸化された水銀をアルカリ吸収液を用いて除去する湿式脱硫工程と、
     前記還元脱硝装置の上流側と下流側の何れか一方又は両方で、前記排ガス中に含まれる前記塩化アンモニウムの濃度を分析する塩化アンモニウム濃度測定工程を含み、
     前記塩化アンモニウム濃度測定工程では、請求項6に記載のガス分析方法を用い、
     前記塩化アンモニウム濃度測定工程により前記排ガス中に含まれる前記塩化アンモニウムの濃度を求め、求められた前記塩化アンモニウムの濃度に応じて前記塩化アンモニウムを含む溶液の噴霧量を制御する排ガス中の水銀除去方法。
  9.  請求項8において、
     前記還元脱硝工程と前記湿式脱硫工程との間に、前記排ガスと熱交換器内を循環する熱媒体とを熱交換する熱回収工程と、
     前記湿式脱硫装置から排出される浄化ガスと前記熱媒体とを熱交換して、前記浄化ガスを再加熱する再加熱工程とを含み、
     前記塩化アンモニウム濃度測定工程では、請求項6に記載のガス分析方法を用い、
     予め求めた塩化アンモニウム濃度とガス温度との関係に基づいて前記熱回収工程で前記熱媒体と熱交換する前記排ガスのガス温度を制御する排ガス中の水銀除去方法。
  10.  請求項8において、
     前記還元脱硝工程と前記湿式脱硫工程との間に、前記排ガスと熱交換器内を循環する熱媒体とを熱交換する熱回収工程と、
     前記湿式脱硫装置から排出される浄化ガスと前記熱媒体とを熱交換して、前記浄化ガスを再加熱する再加熱工程とを含み、
     前記塩化アンモニウム濃度測定工程では、請求項7に記載のガス分析方法を用い、
     予め求めた塩化アンモニウム濃度とガス温度との関係と、亜硫酸濃度とガス温度との関係との何れか一方又は両方に基づいて前記熱回収工程で前記熱媒体と熱交換する前記排ガスのガス温度を制御する排ガス中の水銀除去方法。
PCT/JP2011/071710 2010-09-28 2011-09-22 ガス分析装置、水銀除去システム、ガス分析方法及び排ガス中の水銀除去方法 WO2012043411A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/807,196 US8568673B2 (en) 2010-09-28 2011-09-22 Gas analysis device, mercury removal system, gas analysis method, and removal method for mercury in flue gas
PL11828967T PL2623966T3 (pl) 2010-09-28 2011-09-22 Urządzenie do analizy gazu, układ do usuwania rtęci i sposób usuwania rtęci z gazu wylotowego
CA2803817A CA2803817C (en) 2010-09-28 2011-09-22 Gas analysis device, mercury removal system, gas analysis method, and removal method for mercury in flue gas
CN201180031530.7A CN102959386B (zh) 2010-09-28 2011-09-22 气体分析装置、汞除去系统、气体分析方法及废气中的汞除去方法
EP11828967.7A EP2623966B1 (en) 2010-09-28 2011-09-22 Gas analysis device, mercury removal system, and method of removing mercury from exhaust gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-217909 2010-09-28
JP2010217909A JP5529701B2 (ja) 2010-09-28 2010-09-28 ガス分析装置、水銀除去システム及び水銀除去方法

Publications (1)

Publication Number Publication Date
WO2012043411A1 true WO2012043411A1 (ja) 2012-04-05

Family

ID=45892861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071710 WO2012043411A1 (ja) 2010-09-28 2011-09-22 ガス分析装置、水銀除去システム、ガス分析方法及び排ガス中の水銀除去方法

Country Status (7)

Country Link
US (1) US8568673B2 (ja)
EP (1) EP2623966B1 (ja)
JP (1) JP5529701B2 (ja)
CN (1) CN102959386B (ja)
CA (1) CA2803817C (ja)
PL (1) PL2623966T3 (ja)
WO (1) WO2012043411A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169310A1 (ja) * 2016-03-30 2017-10-05 三菱日立パワーシステムズ株式会社 排ガス処理システム
JP2018130672A (ja) * 2017-02-15 2018-08-23 公立大学法人大阪府立大学 排ガス処理方法及び排ガス処理装置
CN110420548A (zh) * 2019-09-03 2019-11-08 亚太环保股份有限公司 烟气氨法协同脱硝脱硫脱汞超低排放的装置及方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5943687B2 (ja) * 2012-04-13 2016-07-05 三菱日立パワーシステムズ株式会社 濃度測定装置
CN103926833B (zh) * 2014-04-22 2016-06-08 东南大学 一种选择性催化还原脱硝装置入口参数确定方法
AU2016200890A1 (en) * 2015-02-13 2016-09-01 The Babcock & Wilcox Company Method and apparatus for removing mercury from a flue gas stream
CN104833689B (zh) * 2015-05-19 2018-05-01 钢研纳克检测技术股份有限公司 基于干法富集烟气中总汞的在线分析仪
CN105536485B (zh) * 2016-02-05 2023-12-15 浙江浙能技术研究院有限公司 一种碱法烟气卤素脱除装置及脱除方法
JP2018034085A (ja) * 2016-08-30 2018-03-08 日立造船株式会社 燃焼排ガスの処理装置
CN109030528A (zh) * 2018-09-26 2018-12-18 云南驰宏锌锗股份有限公司 一种x射线荧光光谱分析冶炼烟尘中氟氯的方法
KR20210076942A (ko) * 2018-10-18 2021-06-24 시큐리티 매터스 엘티디. 물질 내의 이물의 검출 및 식별을 위한 시스템 및 방법
CN109529621B (zh) * 2019-01-12 2024-03-12 西安交通大学 基于催化氧化和深度冷凝的半干法脱硫脱硝脱汞装置及方法
CN110243638A (zh) * 2019-05-17 2019-09-17 华电电力科学研究院有限公司 一种用于scr脱硝装置的烟气采集装置与方法
CN111318134A (zh) * 2020-03-21 2020-06-23 山西省工业设备安装集团有限公司 一种基于在线监测技术的生活垃圾焚烧发电厂用烟气处理系统
CN113018943A (zh) * 2021-03-03 2021-06-25 魏福军 一种无纺布加工用废水过滤处理装置
CN114563236B (zh) * 2022-03-07 2023-12-22 马鞍山钢铁股份有限公司 一种焦炉烟气空气系数快速测定方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318251A (ja) * 1986-07-11 1988-01-26 Moritetsukusu:Kk 光学的アンモニア検出素子
JPH07270284A (ja) * 1994-04-01 1995-10-20 Mitsubishi Materials Corp ガスサンプリング方法
JP2003014625A (ja) * 2001-06-28 2003-01-15 Ishikawajima Harima Heavy Ind Co Ltd So3,nh3同時連続濃度計
JP2007167743A (ja) * 2005-12-21 2007-07-05 Mitsubishi Heavy Ind Ltd 水銀除去システムおよび水銀除去方法
JP2008142602A (ja) * 2006-12-07 2008-06-26 Mitsubishi Heavy Ind Ltd 水銀除去方法及び水銀除去システム
WO2008078722A1 (ja) * 2006-12-27 2008-07-03 Babcock-Hitachi Kabushiki Kaisha 排ガス処理方法と装置
JP2009202107A (ja) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd 排ガス処理方法及び装置
JP2010036157A (ja) * 2008-08-07 2010-02-18 Mitsubishi Heavy Ind Ltd 排ガス処理装置、排ガス処理システム及び排ガス中の水銀酸化性能管理システム
JP2010221150A (ja) * 2009-03-24 2010-10-07 Kurita Water Ind Ltd 燃焼排ガスの処理方法及び装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3578410A (en) * 1968-07-01 1971-05-11 Gen Electric Ammonia detection,following ultraviolet radiation
JP3572139B2 (ja) 1996-04-09 2004-09-29 三菱重工業株式会社 熱交換器及びこれを備えた排煙処理装置
JP2001198434A (ja) * 2000-01-18 2001-07-24 Mitsubishi Heavy Ind Ltd 排ガス中の水銀処理方法および排ガスの処理システム
JP5118474B2 (ja) * 2007-12-26 2013-01-16 三菱重工業株式会社 排ガス処理装置
US7906090B2 (en) * 2009-07-06 2011-03-15 Mitsubishi Heavy Industries, Ltd. Mercury reduction system and mercury reduction method of flue gas containing mercury
JP5558042B2 (ja) * 2009-08-05 2014-07-23 三菱重工業株式会社 排ガス処理装置及び排ガスの水銀除去方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318251A (ja) * 1986-07-11 1988-01-26 Moritetsukusu:Kk 光学的アンモニア検出素子
JPH07270284A (ja) * 1994-04-01 1995-10-20 Mitsubishi Materials Corp ガスサンプリング方法
JP2003014625A (ja) * 2001-06-28 2003-01-15 Ishikawajima Harima Heavy Ind Co Ltd So3,nh3同時連続濃度計
JP2007167743A (ja) * 2005-12-21 2007-07-05 Mitsubishi Heavy Ind Ltd 水銀除去システムおよび水銀除去方法
JP2008142602A (ja) * 2006-12-07 2008-06-26 Mitsubishi Heavy Ind Ltd 水銀除去方法及び水銀除去システム
WO2008078722A1 (ja) * 2006-12-27 2008-07-03 Babcock-Hitachi Kabushiki Kaisha 排ガス処理方法と装置
JP2009202107A (ja) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd 排ガス処理方法及び装置
JP2010036157A (ja) * 2008-08-07 2010-02-18 Mitsubishi Heavy Ind Ltd 排ガス処理装置、排ガス処理システム及び排ガス中の水銀酸化性能管理システム
JP2010221150A (ja) * 2009-03-24 2010-10-07 Kurita Water Ind Ltd 燃焼排ガスの処理方法及び装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169310A1 (ja) * 2016-03-30 2017-10-05 三菱日立パワーシステムズ株式会社 排ガス処理システム
JP2017180951A (ja) * 2016-03-30 2017-10-05 三菱日立パワーシステムズ株式会社 排ガス処理システム
KR20180115762A (ko) * 2016-03-30 2018-10-23 미츠비시 히타치 파워 시스템즈 가부시키가이샤 배기 가스 처리 시스템
US10471382B2 (en) 2016-03-30 2019-11-12 Mitsubishi Hitachi Power Systems, Ltd. Air pollution control system
KR102221878B1 (ko) * 2016-03-30 2021-03-02 미츠비시 파워 가부시키가이샤 배기 가스 처리 시스템
JP2018130672A (ja) * 2017-02-15 2018-08-23 公立大学法人大阪府立大学 排ガス処理方法及び排ガス処理装置
CN110420548A (zh) * 2019-09-03 2019-11-08 亚太环保股份有限公司 烟气氨法协同脱硝脱硫脱汞超低排放的装置及方法
CN110420548B (zh) * 2019-09-03 2024-03-26 亚太环保股份有限公司 烟气氨法协同脱硝脱硫脱汞超低排放的装置及方法

Also Published As

Publication number Publication date
CN102959386B (zh) 2015-09-30
CN102959386A (zh) 2013-03-06
US20130101487A1 (en) 2013-04-25
EP2623966B1 (en) 2018-10-31
EP2623966A1 (en) 2013-08-07
PL2623966T3 (pl) 2019-04-30
JP5529701B2 (ja) 2014-06-25
CA2803817A1 (en) 2012-04-05
CA2803817C (en) 2015-03-31
US8568673B2 (en) 2013-10-29
JP2012073106A (ja) 2012-04-12
EP2623966A4 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
JP5529701B2 (ja) ガス分析装置、水銀除去システム及び水銀除去方法
JP2012073106A5 (ja)
JP6665011B2 (ja) 排ガス処理方法およびシステム
US7572420B2 (en) Method for removing mercury in exhaust gas and system therefor
JP4388542B2 (ja) 水銀除去方法及び水銀除去システム
JP4838579B2 (ja) 水銀除去システムおよび水銀除去方法
JP5554162B2 (ja) 排ガス中の水銀処理システム
JP5558042B2 (ja) 排ガス処理装置及び排ガスの水銀除去方法
JP6095923B2 (ja) 排ガス中の水銀処理システム
WO2012049774A1 (ja) 排ガス中の水銀処理システム
JP5972983B2 (ja) 排ガス処理システム及び排ガス処理方法
JPWO2008078722A1 (ja) 排ガス処理方法と装置
WO2012176635A1 (ja) 排ガス処理装置及び排ガス処理装置のorp制御方法
JP2014057913A5 (ja)
US8518332B2 (en) Air pollution control apparatus and air pollution control system
TWI531538B (zh) Oxidation tank, seawater desulfurization system and power generation system
KR100702660B1 (ko) 산화/환원공정을 이용한 습식 질소산화물 제거방법과 장치
WO2014041951A1 (ja) 排ガス中の水銀処理システム
JP4959650B2 (ja) 排ガス処理装置及び排ガス処理システム
JP5517778B2 (ja) 噴霧装置及び水銀除去システム
JP5398193B2 (ja) 排ガス処理装置、排ガス処理システム及び排ガス中の水銀酸化性能管理システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031530.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2803817

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10795/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13807196

Country of ref document: US

Ref document number: 2011828967

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE