EP2528704B1 - Method and arrangement for producing metal powder - Google Patents
Method and arrangement for producing metal powder Download PDFInfo
- Publication number
- EP2528704B1 EP2528704B1 EP11736667.4A EP11736667A EP2528704B1 EP 2528704 B1 EP2528704 B1 EP 2528704B1 EP 11736667 A EP11736667 A EP 11736667A EP 2528704 B1 EP2528704 B1 EP 2528704B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- solution
- metal
- anolyte
- electrolytic cell
- catholyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 229910052751 metal Inorganic materials 0.000 title claims description 209
- 239000002184 metal Substances 0.000 title claims description 209
- 238000000034 method Methods 0.000 title claims description 95
- 239000000843 powder Substances 0.000 title claims description 56
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 47
- 238000001556 precipitation Methods 0.000 claims description 39
- 239000010949 copper Substances 0.000 claims description 32
- 229910052802 copper Inorganic materials 0.000 claims description 32
- 238000002156 mixing Methods 0.000 claims description 32
- 230000003647 oxidation Effects 0.000 claims description 29
- 238000007254 oxidation reaction Methods 0.000 claims description 29
- 239000002253 acid Substances 0.000 claims description 24
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 22
- 239000003792 electrolyte Substances 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 16
- 238000004090 dissolution Methods 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 15
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 15
- 229910052720 vanadium Inorganic materials 0.000 claims description 13
- 230000001376 precipitating effect Effects 0.000 claims description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- 230000002028 premature Effects 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052785 arsenic Inorganic materials 0.000 claims description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052793 cadmium Inorganic materials 0.000 claims description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- 229910052762 osmium Inorganic materials 0.000 claims description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910052703 rhodium Inorganic materials 0.000 claims description 2
- 239000010948 rhodium Substances 0.000 claims description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- 229910052711 selenium Inorganic materials 0.000 claims description 2
- 239000011669 selenium Substances 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 229910052713 technetium Inorganic materials 0.000 claims description 2
- GKLVYJBZJHMRIY-UHFFFAOYSA-N technetium atom Chemical compound [Tc] GKLVYJBZJHMRIY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052714 tellurium Inorganic materials 0.000 claims description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 239000000243 solution Substances 0.000 description 164
- 230000008569 process Effects 0.000 description 34
- 238000006243 chemical reaction Methods 0.000 description 20
- 238000005406 washing Methods 0.000 description 11
- 150000002739 metals Chemical class 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 150000001768 cations Chemical class 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- -1 Cu2+ cations Chemical class 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 230000014509 gene expression Effects 0.000 description 6
- 230000002706 hydrostatic effect Effects 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000007795 chemical reaction product Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000002301 combined effect Effects 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000003134 recirculating effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004540 process dynamic Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C1/00—Electrolytic production, recovery or refining of metals by electrolysis of solutions
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C5/00—Electrolytic production, recovery or refining of metal powders or porous metal masses
- C25C5/02—Electrolytic production, recovery or refining of metal powders or porous metal masses from solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
Definitions
- the metal received as the end product of the manufacturing process would be obtained in some other form than as a uniform solid object, such as a cathode plate.
- a uniform solid object such as a cathode plate.
- Particularly methods where the end product is obtained as pure metal powder would be extremely useful.
- the arrangement according to the invention is an arrangement for producing metal powder by precipitating yield metal powder by mixing dissolved yield metal powder with a solution containing at least one intermediary metal.
- the arrangement according to the invention comprises an electrolytic cell for dissolving the yield metal located on the anode side of the electrolytic cell and for oxidizing it in the anolyte, and for reducing, on the cathode side, the dissolved intermediary metal located on the cathode side of the electrolytic cell; a precipitation chamber arranged essentially separately from the electrolytic cell; as well as means for feeding anolyte solution and cathode solution respectively from the anode side and the cathode side of the electrolytic cell to the precipitation chamber for mixing the oxidized yield metal that is dissolved in the anolyte, and the cathode solution containing reduced intermediary metal, outside the electrolytic cell.
- a correct mixing ratio With a correct mixing ratio and an effective precipitate recovery, the creation of yield metal agglomerates can be prevented in the precipitation step, and consequently the homogeneity of the yield metal particles contained in the powder is enabled with respect to their size.
- a correct mixing ratio also facilitates a process with a better efficiency, which can be utilized for reducing the amount of energy needed in the process for producing a certain quantity of yield metal mass.
- the first part of the starting solution contains intermediary metal for boosting the dissolution of yield metal on the anode side.
- the first part of the circulating solution created as a result of mixing the anolyte solution and the catholyte solution is returned to anolyte.
- the first part of the starting solution is composed of the first part of the circulating solution.
- the second part of the circulating solution created as a result of mixing the anolyte solution and the catholyte solution is returned to catholyte.
- the second part of the starting solution is composed of the second part of the circulating solution.
- the purpose of the diaphragm is to mechanically separate the solutions located on different sides of the diaphragm, i.e. to serve as a mechanical obstacle, while at the same time being electroconductive to that extent that the electrolytic cell is capable of functioning effectively.
- This diaphragm divides the electrolytic cell to an anode part (or anode side), where the anolyte is located, and to a cathode part (or cathode side), where the catholyte is located.
- the anolyte and the catholyte cannot be mixed together without disturbing the anode and cathode reactions, and metal powder cannot be formed in the vicinity of those electrodes in the electrolytic cell.
- the kinetics in the dissolution step are rapid, as the quantity of yield metal dissolved in the anolyte is directly proportional to the charge that has flown through the anode.
- the quantity of yield metal that is dissolved in the anolyte can be efficiently and accurately controlled, which facilitates a more precise control of the process dynamics, and an improvement in reliability.
- the starting solution contains sulfuric acid. Further, in an embodiment of the invention the sulfuric acid content in the starting solution is at least 50 g/l and preferably within the range 50 g/l - 1,500 g/l. In an embodiment of the invention, the starting solution contains hydrochloric acid or nitric acid. Further, in an embodiment of the invention the hydrochloric acid content in the starting solution is within the range 15 g/l - 500 g/l. Yet in an embodiment of the invention the starting solution contains, in addition to hydrochloric acid, also alkaline chloride, the content of which in the starting solution is within the range 15 g/l - 500 g/l.
- a suitable acid, and content for said acid must be chosen so that the yield metal is dissolved from the supply material to the anolyte, instead of the oxidation of the intermediary metal. Therefore the anolyte pH (i.e. oxygen content) must be suitable.
- the oxygen content must be as high as possible.
- the part that is fed as the anolyte may contain intermediary metal in its high potential value.
- the starting solution may contain two or even several different intermediary metals.
- the first and second part of the starting solution are identical in composition.
- vanadium when the yield metal is copper and the intermediary metal is vanadium, vanadium may be oxidized on the anode side 6 into an intermediary oxidation state V 5+ , which is even higher than the V 3+ state, whereafter the V 5+ reacts with copper, thus oxidizing and dissolving copper. Now the "over-oxidized” vanadium V 5+ is reduced back to its original high-potential value V 3+ . On the anode side 6, a corresponding "overoxidation" to an intermediate oxidation state is also possible with other intermediary metals than vanadium.
- the efficiency and reliability of the process it is useful to ensure that any remarkable amounts of V 2+ and/or Cu 2+ cations are not left in the circulating solution.
- the real mixing ratio of anolyte and catholyte can be 1:N, where N > 2.
- the value of the parameter N also depends on how the circulating solution is cleaned before feeding it back to the electrolytic cell.
- the finding of a suitable mixing ratio is obvious routine testing for a man skilled in the art.
- the solid yield metal powder 14 separated from the solution is finished ( Figure 1 , step S6) in a finish treatment arrangement.
- the separation and finish treatment processes can include many different steps, depending on the desired properties of the end product.
- the yield metal powder 14 separated from the circulation electrolyte is washed in water for minimizing impurities carried along from the solution, whereafter the yield metal powder 14 is dried and coated with a passivation layer for preventing an oxidation of the powder, among others.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20105083A FI124812B (fi) | 2010-01-29 | 2010-01-29 | Menetelmä ja laitteisto metallipulverin valmistamiseksi |
PCT/FI2011/050056 WO2011092375A1 (en) | 2010-01-29 | 2011-01-25 | Method and arrangement for producing metal powder |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2528704A1 EP2528704A1 (en) | 2012-12-05 |
EP2528704A4 EP2528704A4 (en) | 2016-11-23 |
EP2528704B1 true EP2528704B1 (en) | 2018-10-03 |
Family
ID=41620919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11736667.4A Not-in-force EP2528704B1 (en) | 2010-01-29 | 2011-01-25 | Method and arrangement for producing metal powder |
Country Status (9)
Country | Link |
---|---|
US (1) | US20120298523A1 (ru) |
EP (1) | EP2528704B1 (ru) |
JP (1) | JP5676649B2 (ru) |
KR (1) | KR101529373B1 (ru) |
CN (1) | CN102725086B (ru) |
EA (1) | EA021918B1 (ru) |
ES (1) | ES2703254T3 (ru) |
FI (1) | FI124812B (ru) |
WO (1) | WO2011092375A1 (ru) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105506728B (zh) * | 2014-09-29 | 2019-10-15 | 盛美半导体设备(上海)有限公司 | 从电化学抛光液中析出金属离子的装置 |
RU2600305C1 (ru) * | 2015-05-08 | 2016-10-20 | Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук | СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ ПОРОШКА ИРИДИЯ С УДЕЛЬНОЙ ПОВЕРХНОСТЬЮ БОЛЕЕ 5 м2/г |
US11118276B2 (en) * | 2016-03-09 | 2021-09-14 | Jx Nippon Mining & Metals Corporation | High purity tin and method for producing same |
CN107030290B (zh) * | 2017-04-27 | 2019-02-01 | 上海交通大学 | 一种纳米锡粉的制备工艺 |
CN107513730B (zh) * | 2017-08-31 | 2019-06-14 | 北京工业大学 | 连续制备钨粉和钴粉的装置以及方法 |
CN107955952A (zh) * | 2017-11-02 | 2018-04-24 | 马鞍山市宝奕金属制品工贸有限公司 | 一种利用铁渣生产高纯铁粉的方法 |
JP7275629B2 (ja) | 2018-05-16 | 2023-05-18 | 住友金属鉱山株式会社 | 硫酸溶液の製造方法 |
RU2766336C1 (ru) * | 2018-05-16 | 2022-03-15 | Сумитомо Метал Майнинг Ко., Лтд. | Способ получения раствора серной кислоты и используемый в нем электролизер |
KR102602595B1 (ko) | 2021-11-22 | 2023-11-16 | (주)선영시스텍 | 금속 분말 세척장치 |
CN114941076B (zh) * | 2022-06-28 | 2023-06-02 | 中国矿业大学 | 水溶液中金提取与回收方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5819752B2 (ja) * | 1974-03-30 | 1983-04-19 | カガクギジユツチヨウ キンゾクザイリヨウギジユツケンキユウシヨチヨウ | ドウデンカイホウ |
JPS54104439A (en) * | 1978-02-06 | 1979-08-16 | Tdk Corp | Recovering method for metallic copper from waste acidic solution |
US4780444A (en) * | 1984-05-03 | 1988-10-25 | Mobil Oil Corporation | Activation of metallophophates |
GB2181158B (en) * | 1985-10-08 | 1989-11-15 | Electricity Council | Electrolytic process for the manufacture of salts |
JPS62188791A (ja) * | 1986-02-15 | 1987-08-18 | Nishimura Watanabe Chiyuushiyutsu Kenkyusho:Kk | Ni,Co,Zn,Cu,Mn及びCrの電解採取方法 |
US5133948A (en) * | 1991-07-11 | 1992-07-28 | Asarco Incorporated | Process for the removal of bismuth from copper refining electrolyte by using lead oxide |
US5882502A (en) * | 1992-04-01 | 1999-03-16 | Rmg Services Pty Ltd. | Electrochemical system and method |
JP3696525B2 (ja) * | 2001-05-02 | 2005-09-21 | 福田金属箔粉工業株式会社 | 銅微粉製造方法 |
JP2003328198A (ja) * | 2002-05-10 | 2003-11-19 | Mitsubishi Materials Corp | 銅イオン発生方法およびその装置,硫酸銅製造方法およびその装置,金属イオン発生方法およびその装置,酸性水製造方法およびその装置 |
JP3508766B2 (ja) * | 2002-06-14 | 2004-03-22 | 住友電気工業株式会社 | 金属微粉末の製造方法 |
JP4215583B2 (ja) * | 2003-07-23 | 2009-01-28 | 住友電気工業株式会社 | 還元剤溶液とそれを用いた金属粉末の製造方法、および金属被膜の形成方法 |
US7378011B2 (en) * | 2003-07-28 | 2008-05-27 | Phelps Dodge Corporation | Method and apparatus for electrowinning copper using the ferrous/ferric anode reaction |
JP3896107B2 (ja) * | 2003-09-30 | 2007-03-22 | 日鉱金属株式会社 | 隔膜電解方法 |
US7378010B2 (en) * | 2004-07-22 | 2008-05-27 | Phelps Dodge Corporation | System and method for producing copper powder by electrowinning in a flow-through electrowinning cell |
FI120438B (fi) * | 2006-08-11 | 2009-10-30 | Outotec Oyj | Menetelmä metallipulverin muodostamiseksi |
-
2010
- 2010-01-29 FI FI20105083A patent/FI124812B/fi not_active IP Right Cessation
-
2011
- 2011-01-25 WO PCT/FI2011/050056 patent/WO2011092375A1/en active Application Filing
- 2011-01-25 ES ES11736667T patent/ES2703254T3/es active Active
- 2011-01-25 EP EP11736667.4A patent/EP2528704B1/en not_active Not-in-force
- 2011-01-25 CN CN201180007337.XA patent/CN102725086B/zh not_active Expired - Fee Related
- 2011-01-25 US US13/575,275 patent/US20120298523A1/en not_active Abandoned
- 2011-01-25 EA EA201290714A patent/EA021918B1/ru not_active IP Right Cessation
- 2011-01-25 JP JP2012550483A patent/JP5676649B2/ja not_active Expired - Fee Related
- 2011-01-25 KR KR1020127021205A patent/KR101529373B1/ko active IP Right Grant
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EA201290714A1 (ru) | 2013-02-28 |
WO2011092375A1 (en) | 2011-08-04 |
JP5676649B2 (ja) | 2015-02-25 |
CN102725086A (zh) | 2012-10-10 |
EA021918B1 (ru) | 2015-09-30 |
US20120298523A1 (en) | 2012-11-29 |
FI20105083A (fi) | 2011-07-30 |
JP2013518189A (ja) | 2013-05-20 |
FI124812B (fi) | 2015-01-30 |
FI20105083A0 (fi) | 2010-01-29 |
KR20120115999A (ko) | 2012-10-19 |
ES2703254T3 (es) | 2019-03-07 |
EP2528704A1 (en) | 2012-12-05 |
EP2528704A4 (en) | 2016-11-23 |
KR101529373B1 (ko) | 2015-06-16 |
CN102725086B (zh) | 2015-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2528704B1 (en) | Method and arrangement for producing metal powder | |
MX2010013510A (es) | Electrorecuperacion de oro y plata a partir de soluciones de tiosulfato. | |
CN101500735B (zh) | 金属粉末的制备方法 | |
JP3431148B2 (ja) | 金属の化合物からの金属の回収用の電気化学系 | |
EP0253783B1 (en) | Process for refining gold and apparatus employed therefor | |
CN107815540A (zh) | 一种湿法冶炼金属镍钴及其盐类产品的方法 | |
JP2002544382A (ja) | ニッケル水酸化物の製法 | |
EP3699324B1 (en) | Electro-deposition method for producing metallic silver | |
JP4169367B2 (ja) | 電気化学システム | |
US5160588A (en) | Process for recovering tellurium from copper electrolysis slime | |
CA1109826A (en) | Electrolytic metal recovery with sulphate ion diffusion through ion-permeable membrane | |
EA047382B1 (ru) | Способ извлечения золота из руд | |
CN115198309A (zh) | 一种低银低硫超高纯铜提纯的电解方法 | |
JP2022543601A (ja) | 鉛含有電解液からの金属回収 | |
JP3055821B2 (ja) | 高電流密度電解の方法および装置 | |
BE461963A (ru) | ||
JPH0978283A (ja) | 銅電解精製法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120814 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OUTOTEC OYJ |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OUTOTEC OYJ |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602011052544 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: B22F0009240000 Ipc: C25B0001000000 |
|
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20161021 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B22F 9/24 20060101ALI20161017BHEP Ipc: C25B 1/00 20060101AFI20161017BHEP Ipc: C25C 5/02 20060101ALI20161017BHEP |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OUTOTEC (FINLAND) OY |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OUTOTEC (FINLAND) OY |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170630 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180419 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1048701 Country of ref document: AT Kind code of ref document: T Effective date: 20181015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Ref country code: DE Ref legal event code: R096 Ref document number: 602011052544 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20181003 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2703254 Country of ref document: ES Kind code of ref document: T3 Effective date: 20190307 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1048701 Country of ref document: AT Kind code of ref document: T Effective date: 20181003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190103 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190103 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190203 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190203 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190104 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011052544 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20190704 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190125 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190131 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190125 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20210326 Year of fee payment: 11 Ref country code: DE Payment date: 20210120 Year of fee payment: 11 Ref country code: SE Payment date: 20210120 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602011052544 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220126 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220802 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20230330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220126 |