EP2459865B1 - Hochdruck-einspritzsystem mit kraftstoffkühlung aus niederdruckbereich - Google Patents

Hochdruck-einspritzsystem mit kraftstoffkühlung aus niederdruckbereich Download PDF

Info

Publication number
EP2459865B1
EP2459865B1 EP10722121.0A EP10722121A EP2459865B1 EP 2459865 B1 EP2459865 B1 EP 2459865B1 EP 10722121 A EP10722121 A EP 10722121A EP 2459865 B1 EP2459865 B1 EP 2459865B1
Authority
EP
European Patent Office
Prior art keywords
fuel
high pressure
line
mixing point
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10722121.0A
Other languages
English (en)
French (fr)
Other versions
EP2459865A1 (de
Inventor
Susanne Spindler
Jochen Walther
Dorothee Sommer
Stefan Kieferle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2459865A1 publication Critical patent/EP2459865A1/de
Application granted granted Critical
Publication of EP2459865B1 publication Critical patent/EP2459865B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/002Arrangement of leakage or drain conduits in or from injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails

Definitions

  • the invention relates to a high-pressure injection system, in particular to a high-pressure accumulator injection system for internal combustion engines, with a fuel tank, from which the fuel is passed via a fuel delivery pump and a line system to the high-pressure pump. Due to the compression of the fuel in the high-pressure pump, the fuel temperature rises.
  • the compressed fuel is passed from the high pressure pump through another line in a high-pressure accumulator, which in turn is connected to at least one fuel injection valve.
  • compressed fuel is injected from the fuel injection valve into a combustion chamber.
  • a portion of the fuel injection valve supplied fuel passes via leakage in the fuel injection valve or as a control amount from the fuel injection valve in the return line, wherein these leakage quantities additionally heat by relaxing when flowing through the fuel injection valve.
  • the invention is based on the recognition that in unfavorable conditions (almost empty fuel tank, small volume of fuel, which is often pumped in a circle) and corresponding load cases operating conditions may occur in which the fuel is heated above a permissible limit temperature, so that There is a deterioration (aging) of the fuel, which leads to the reduction of the lubricating properties of the fuel and thus to increased mechanical wear in the system. In addition, due to the increased return temperatures possibly more expensive materials for the execution of the return lines to use.
  • a cooling line is provided for admixing fuel from cooler regions of the low-pressure region between the fuel tank and the high-pressure pump, via which cooler fuel can be added to the fuel return.
  • a first embodiment of the fuel injection system is characterized in that the cooling line receives a volume flow required for fuel cooling between a fuel pump and the high-pressure pump and this volume flow for cooling via a mixing point the leakage flow from the fuel injectors, which, for example, as a common rail Injectors can be executed.
  • the fuel pump is always ensured that a volume flow is available under sufficient pressure for cooling purposes, so that this design can do without further control mechanisms.
  • An advantage of this design is further that can be omitted by the fuel pump a prefeed pump on the high-pressure pump.
  • a further exemplary embodiment of the fuel injection system is characterized in that the cooling line receives a volume flow required for fuel cooling from the prefeed pump arranged on the high-pressure pump and supplies this volume flow via a mixing point to the leakage flow from the fuel injection valves.
  • the prefeed pump directly to the high-pressure pump, which may for example be designed as a gear pump, which sucks a volume flow from the fuel tank, the fuel pump can be omitted.
  • An advantage of this design is that the cooling line can be made correspondingly short and therefore cost.
  • a further embodiment of the fuel injection system is characterized in that the cooling line leads directly from the fuel tank to the mixing point with the leakage flow from the fuel injection valve, wherein in the return line from the mixing point back to the fuel tank, for example, a suction pump is arranged so that in the Return line always a lower pressure than in the cooling line prevails.
  • a further exemplary embodiment of the fuel injection system is characterized in that the cooling line receives a volume flow required for fuel cooling from a return of the high-pressure pump and supplies this volume flow via the mixing point to the leakage flow from the fuel injection valve.
  • An advantage of this design is that the return flow from the high-pressure pump delivers a comparatively large volume flow.
  • an existing return line from the high pressure pump can be arranged so that it connects the return to the mixing point, so that no additional components are needed.
  • the mixing point at which the cooling line and the leakage from the fuel injection valves meet arranged as close as possible to the fuel injection valve.
  • a further exemplary embodiment of the fuel injection system is characterized in that the cooling line receives a volume flow required for fuel cooling from a return line of the high-pressure pump and this volume flow can be divided via a throttle or a valve so that a subset of the volume flow for cooling through the cooling line the mixing point is passed and another subset is connected directly via the return line of the high-pressure pump with the fuel return to the fuel tank.
  • An advantage of this design is that the volume flow used for cooling can be regulated by the cooling line accordingly.
  • Another embodiment of the fuel injection system is characterized in that a sensor for measuring temperature or a sensor for flow measurement is arranged at the mixing point, so that the volume flow through the cooling line, for example by an adjustable throttle or a valve can be controlled such that always a for Cooling sufficient volume flow through the cooling line is fed to the mixing point.
  • This embodiment has the advantage that, especially at lower system temperatures, no unnecessarily high volume flow is conveyed through the cooling line and thus the overall efficiency of the system is not unnecessarily reduced.
  • Fig. 1 is a well-known from the prior art high pressure injection system shown schematically. From a fuel tank 1, fuel is conveyed to a prefeed pump 4 and to a high-pressure pump 10 by means of a fuel feed pump 2 via a connecting line 3. The fuel tank 1, the fuel delivery pump 2, the connecting line 3 and the prefeed pump 4 are subjected to low pressure and are therefore assigned to the low-pressure region.
  • a fuel return 11 is arranged, which is connected via a return line 12 and a further return line 22 to the fuel tank 1.
  • a high-pressure lines 13 leads from the high-pressure pump 10, a high-pressure lines 13 to a high-pressure accumulator 14, which is also referred to as a common rail, which is connected via further high-pressure lines 15 to the fuel injection valves 20.
  • the presence of a high pressure accumulator 14 is not necessarily required.
  • the fuel compressed by the high-pressure pump 10 is injected by opening the fuel injection valves 20 into a combustion chamber.
  • a portion of the fuel injection valve 20 supplied fuel is expanded in the fuel injection valve 20 and passes as a control amount or leakage amount in the return line 21, which the fuel injection valve 20, possibly via a further return line 22, with that described in paragraph 1 Low pressure range, in particular with the fuel tank 1 connects.
  • the flow direction of the fuel is shown in the schematic drawing in each case by arrows next to the corresponding lines.
  • a pressure relief valve 16 is arranged, which is connected via the return line 17 with a mixing point 24 at which meet the flow rates from the return line 17 from the pressure relief valve 16 and the return line 21 from the fuel injection valve 20 and from where this Volumetric flow passes through a further return line 22 into the fuel tank 1. If the pressure in the high-pressure accumulator 14 exceeds a maximum predetermined value, then the pressure relief valve 16 opens and the overpressure in the high-pressure accumulator 14 is reduced by the venting of fuel into the return line 17.
  • cooler fuel from the low-pressure region is mixed with the leakage amount from the fuel injection valve by means of a cooling line to reduce the temperatures in the return lines 21 and 22.
  • Fig. 2 a first embodiment of the high-pressure injection system according to the invention is shown, compared to the illustration in Fig. 1 contains an additional cooling line 5, which leads from the low-pressure region of the injection system to a mixing point 23 at which the cooler fuel from the cooling line 5 mixed with the fuel from the leakage of the fuel injection valve 20 and thus the temperature in the return lines 21 and 22nd lowered accordingly.
  • the cooling line 5 is fed by the fuel delivery pump 2, so that the fuel can flow through the cooling line 5 to the mixing point 23.
  • the fuel delivery pump 2 is controlled so that always a sufficient amount of cooler fuel is conveyed through the cooling line 5 to the mixing point 23.
  • the fuel delivery pump 2 is to be designed so that the pressure in the connecting line 3 and the cooling line 5 is always higher than the pressure at the mixing point 23, so that the flow direction as shown in FIG Fig. 2 established.
  • the prefeed pump 4 can be omitted.
  • Fig. 3 a further embodiment of the high-pressure injection system according to the invention is shown, in which the additional cooling line 5 is arranged between the prefeed pump 4 and the mixing point 23, via which cooler fuel from the low-pressure region is pumped to the mixing point 23, wherein the prefeed pump must be designed so that it generates a pressure higher than the pressure in the return line 21 in order to ensure the flow direction from the mixing point 23 via the return lines 21 and 22 to the fuel tank 1. If the prefeed pump 4 has sufficient suction power to draw in the fuel from the fuel tank 1, the fuel feed pump 2 can be dispensed with.
  • Fig. 4 another embodiment is shown in which the cooling line 5 is disposed between the return 11 of the high-pressure pump 10 and the mixing point 23 of the volume flows from the leakage of the fuel injection valve 20, wherein the return 11 of the high-pressure pump 10 must be designed so that in the return 11, a higher pressure than the pressure in the return line 21 prevails in order to ensure the flow direction from the mixing point 23 via the return lines 21 and 22 to the fuel tank 1.
  • the return line 12 of the high-pressure pump 10 is omitted.
  • either the fuel delivery pump 2 or the feed pump 4 can be omitted.
  • Fig. 5 another embodiment is shown, in which the cooling line 5 is arranged between the fuel tank 1 and the mixing point 23.
  • a vacuum pump 25 is arranged in the return line 22, wherein the vacuum pump 25 must be designed so that in the return 21 and 22, a lower pressure than in the cooling line 5 and the mixing point 23 prevails, the flow direction from the mixing point 23 via the return lines 21st and 22 to ensure the fuel tank 1.
  • either the fuel pump 2 or the feed pump 4 can be omitted.
  • Fig. 6 another embodiment is shown, which differs from the representation in Fig. 2 the return line 17 between pressure relief valve 16 and mixing point 23 is arranged, wherein the return line 17 can be made shorter than in the other embodiments.
  • Fig. 7 another embodiment is shown, wherein different from Fig. 4 the cooling line 5 is not fed directly from the return 11 of the high-pressure pump 10, but the volume flow in the cooling line 5 is regulated by a arranged in the return line 12 of the high-pressure pump 10 valve 7.
  • Fig. 8 another embodiment is shown, wherein different from Fig. 7 the volume flow through the return line 12 of the high pressure pump 10 is limited by a throttle 6 and thus ensures that always a sufficient volume flow through the cooling line 5 reaches the mixing point 23.
  • a flow meter 26 is arranged between the fuel injection valves 20 and the mixing point 23 and a temperature sensor 27 at the mixing point 23, with which the flow through the cooling line 5 via the valve 7 is controlled.
  • this control can be controlled both via both parameters (flow and temperature) and via one of the two parameters.
  • the measuring element for the other measured variable can then be omitted.
  • a controllable valve 7 can also be analog Fig. 8 a variable throttle 6 can be used instead of the valve 7.

Description

    Stand der Technik
  • Die Erfindung bezieht sich auf ein Hochdruck-Einspritzsystem, insbesondere auf ein Hochdruck-Speicher-Einspritzsystem für Brennkraftmaschinen, mit einem Kraftstofftank, aus dem der Kraftstoff über eine Kraftstoffförderpumpe und ein Leitungssystem zur Hochdruckpumpe geleitet wird. Durch die Kompression des Kraftstoffes in der Hochdruckpumpe steigt die Kraftstofftemperatur. Der komprimierte Kraftstoff wird von der Hochdruckpumpe durch eine weitere Leitung in einen Hochdruckspeicher geleitet, der seinerseits wenigstens mit einem Kraftstoff-Einspritzventil verbunden ist. Aus dem Kraftstoff-Einspritzventil wird beim Betrieb der Brennkraftmaschine komprimierter Kraftstoff in einen Brennraum eingespritzt. Ein Teil des dem Kraftstoff-Einspritzventil zugeführten Kraftstoffs gelangt über Leckage im Kraftstoff-Einspritzventil oder als Steuermenge aus dem Kraftstoff-Einspritzventil in die Rücklaufleitung, wobei sich diese Leckagemengen durch das Entspannen beim Durchströmen des Kraftstoff-Einspritzventils zusätzlich erwärmen.
  • Die Erfindung geht von der Erkenntnis aus, dass bei ungünstigen Voraussetzungen (fast leerer Kraftstofftank, kleines Volumen an Kraftstoff, welches häufig im Kreis gepumpt wird) und entsprechenden Lastfällen Betriebszustände eintreten können, in denen der Kraftstoff über eine zulässige Grenztemperatur hinaus erhitzt wird, so dass es zu einer Zersetzung (Alterung) des Kraftstoffes kommt, was zur Reduzierung der Schmiereigenschaften des Kraftstoffes und somit zu erhöhtem mechanischen Verschleiß im System führt. Darüber hinaus sind durch die erhöhten Rücklauftemperaturen ggf. teurere Materialien für die Ausführung der Rücklaufleitungen einzusetzen.
  • Bei dem z.B. aus DE 10 2004 037 557 A1 bekannten Einspritzsystem wird der Kraftstoff ungekühlt in den Kraftstofftank zurückgeleitet, was zu einer hohen Temperatur im Rücklauf führt. Dies macht entsprechend hochwertige und teure Materialien für die Rücklaufleitungen notwendig und führt unter Umständen zur Zersetzung des Kraftstoffs mit der Folge von erhöhtem Verschleiß im Hochdruck-Einspritzsystem.
  • Aus der KR-717316 B1 sind Hochdruck-Einspritzsysteme mit einem gesonderten Kühlapparat im Kraftstoffrücklauf bekannt, welche jedoch einen hohen konstruktivem Mehraufwand und entsprechende Zusatzkosten verursachen und durch ihre Konstruktion relativ viel Bauraum benötigen, was dazu führt, dass eine solche Lösung nicht an jeder beliebigen Stelle im Motorraum realisiert werden kann bzw. zu aufwändigen Umkonstruktionen im Motorraum führt.
  • Weitere Einspritzsysteme sind in den Dokumenten WO-A-2004/020816 und EP-A-0304742 gezeigt.
  • Offenbarung der Erfindung:
  • Durch die Erfindung gelingt es mit einfachen und kostengünstigen Mitteln, die Nachteile eines ungekühlten Kraftstoffrücklaufs zu reduzieren. Dazu ist eine Kühlleitung zur Beimischung von Kraftstoff aus kühleren Bereichen des Niederdruckbereiches zwischen Kraftstofftank und Hochdruckpumpe vorgesehen, über die dem Kraftstoffrücklauf kühlerer Kraftstoff beigemischt werden kann. Dadurch wird die Kraftstofftemperatur im Rücklauf reduziert, so dass die vorher genannten negativen Effekte nicht mehr oder zumindest nur noch in deutlich reduziertem Umfang auftreten.
  • Ein erstes Ausführungsbeispiel des Kraftstoff-Einspritzsystems ist dadurch gekennzeichnet, dass die Kühlleitung einen zur Kraftstoffkühlung benötigten Volumenstrom zwischen einer Kraftstoffförderpumpe und der Hochdruckpumpe aufnimmt und diesen Volumenstrom zur Kühlung über einen Mischpunkt dem Leckagestrom aus den Kraft-stoff-Einspritzventilen, welche beispielsweise als Common-Rail-Injektoren ausgeführt sein können, zuführt. Durch die Kraftstoffförderpumpe ist stets dafür gesorgt, dass ein Volumenstrom unter ausreichendem Druck zu Kühlzwecken zur Verfügung steht, so dass diese Ausführung ohne weitere Regelmechanismen auskommen kann. Vorteilhaft bei dieser Ausführung ist weiterhin, dass durch die Kraftstoffförderpumpe eine Vorförderpumpe an der Hochdruckpumpe entfallen kann.
  • Ein weiteres Ausführungsbeispiel des Kraftstoff-Einspritzsystems ist dadurch gekennzeichnet, dass die Kühlleitung einen zur Kraftstoffkühlung benötigten Volumenstrom aus der an der Hochdruckpumpe angeordneten Vorförderpumpe aufnimmt und diesen Volumenstrom über einen Mischpunkt dem Leckagestrom aus den Kraftstoff-Einspritzventilen zuführt. Durch die Vorförderpumpe direkt an der Hochdruckpumpe, welche beispielsweise als Zahnradpumpe ausgeführt sein kann, die einen Volumenstrom aus dem Kraftstofftank ansaugt, kann die Kraftstoffförderpumpe entfallen. Vorteilhaft bei dieser Ausführung ist, dass die Kühlleitung entsprechend kurz und somit kostengünstig ausgeführt werden kann.
  • Ein weiteres Ausführungsbeispiel des Kraftstoff-Einspritzsystems ist dadurch gekennzeichnet, dass die Kühlleitung direkt aus dem Kraftstofftank an den Mischpunkt mit dem Leckagestrom aus dem Kraftstoff-Einspritzventil führt, wobei in der Rücklaufleitung vom Mischpunkt zurück zum Kraftstofftank beispielsweise ein Saugpumpe angeordnet ist, so dass in der Rücklaufleitung stets ein niedrigerer Druck als in der Kühlleitung herrscht. Vorteilhaft bei dieser Ausführung ist, dass dem Konstrukteur bei der Anordnung der Kühlleitung ein maximaler Freiheitsgrad gegeben ist.
  • Ein weiteres Ausführungsbeispiel des Kraftstoff-Einspritzsystems ist dadurch gekennzeichnet, dass die Kühlleitung einen zur Kraftstoffkühlung benötigten Volumenstrom aus einem Rücklauf der Hochdruckpumpe aufnimmt und diesen Volumenstrom über den Mischpunkt dem Leckagestrom aus dem Kraftstoff-Einspritzventil zuführt. Vorteilhaft bei dieser Ausführung ist, dass die Rücklaufmenge aus der Hochdruckpumpe einen vergleichsweise großen Volumenstrom liefert. Konstruktiv kann dabei eine vorhandene Rücklaufleitung aus der Hochdruckpumpe so angeordnet werden, dass sie den Rücklauf mit dem Mischpunkt verbindet, so dass keine zusätzlichen Bauelemente benötigt werden.
  • Erfindungsgemäß ist der Mischpunkt, an dem die Kühlleitung und die Leckage aus den Kraftstoff-Einspritzventilen zusammentreffen, möglichst dicht am Kraftstoff-Einspritzventil angeordnet. Vorteilhaft bei dieser Ausführung ist, dass durch die kurze Wegstrecke zwischen Kraftstoff-Einspritzventil und Mischpunkt die Verweildauer und das Volumen im Leitungssystem, in dem der Kraftstoff einer kritischen Temperatur ausgesetzt ist, möglichst klein gehalten wird und somit die damit verbundenen Risiken entsprechend reduziert werden.
  • Ein weiteres Ausführungsbeispiel des Kraftstoff-Einspritzsystems ist dadurch gekennzeichnet, dass die Kühlleitung einen zur Kraftstoffkühlung benötigten Volumenstrom aus einer Rücklaufleitung der Hochdruckpumpe aufnimmt und dieser Volumenstrom über eine Drossel oder ein Ventil so geteilt werden kann, dass eine Teilmenge des Volumenstroms zur Kühlung durch die Kühlleitung an den Mischpunkt geleitet wird und eine weitere Teilmenge direkt über die Rücklaufleitung der Hochdruckpumpe mit dem Kraftstoffrücklauf zum Kraftstofftank verbunden ist.
    Vorteilhaft bei dieser Ausführung ist, dass der zur Kühlung benutzte Volumenstrom durch die Kühlleitung entsprechend geregelt werden kann.
  • Ein weiteres Ausführungsbeispiel des Kraftstoff-Einspritzsystems ist dadurch gekennzeichnet, dass am Mischpunkt ein Sensor zur Temperaturmessung oder ein Sensor zur Durchflussmessung angeordnet ist, so dass der Volumenstrom durch die Kühlleitung beispielsweise durch eine verstellbare Drossel oder ein Ventil derart geregelt werden können, dass stets ein zur Kühlung ausreichender Volumenstrom durch die Kühlleitung an den Mischpunkt zugeführt wird. Diese Ausführung hat den Vorteil, dass gerade bei niedrigeren Systemtemperaturen kein unnötig hoher Volumenstrom durch die Kühlleitung gefördert wird und somit der Gesamtwirkungsgrad des Systems nicht unnötig reduziert wird.
  • Zeichnung:
  • In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt, die nachstehend detailliert beschrieben werden:
    Es zeigt:
  • Fig. 1
    eine schematische Darstellung eines Kraftstoff-Einspritzsystems gemäß dem Stand der Technik
    Fig. 2
    ein erstes Ausführungsbeispiel des erfindungsgemäßen Kraftstoff-Einspritzsystems.
    Fig. 3 bis 9
    weitere Ausführungsbeispiele des erfindungsgemäßen Kraftstoff-Einspritzsystems in schematischer Darstellung.
    Beschreibung der Ausführungsbeispiele:
  • In Fig. 1 ist ein aus dem Stand der Technik bekanntes Hochdruck-Einspritzsystem schematisch dargestellt. Aus einem Kraftstofftank 1 wird mit Hilfe einer Kraftstoffförderpumpe 2 über eine Verbindungsleitung 3 Kraftstoff zu einer Vorförderpumpe 4 und zu einer Hochdruckpumpe 10 gefördert. Der Kraftstofftank 1, die Kraftstoffförderpumpe 2, die Verbindungsleitung 3 sowie die Vorförderpumpe 4 sind mit Niederdruck beaufschlagt und werden deshalb dem Niederdruckbereich zugeordnet.
  • An der Hochdruckpumpe 10 ist ein Kraftstoffrücklauf 11 angeordnet, welcher über eine Rücklaufleitung 12 und eine weitere Rücklaufleitung 22 mit dem Kraftstofftank 1 verbunden ist. Außerdem führt von der Hochdruckpumpe 10 eine Hochdruckleitungen 13 zu einem Hochdruckspeicher 14, der auch als Common-Rail bezeichnet wird, welcher über weitere Hochdruckleitungen 15 mit den Kraftstoffeinspritzventilen 20 verbunden ist. Dabei ist das Vorhandensein eines Hochdruckspeichers 14 nicht zwangsläufig erforderlich.
    Zum Betrieb einer (nicht dargestellten) Brennkraftmaschine wird der von der Hochdruckpumpe 10 komprimierte Kraftstoff durch das Öffnen der Kraftstoff-Einspritzventile 20 in einen Brennraum eingespritzt. Ein Teil des dem Kraftstoff-Einspritzventil 20 zugeführten Kraftstoffes wird im Kraftstoff-Einspritzventil 20 entspannt und gelangt als Steuermenge oder als Leckagemenge in die Rücklaufleitung 21, welche das Kraftstoff-Einspritzventil 20, ggf. über eine weitere Rücklaufleitung 22, mit dem in Absatz 1 beschriebenen Niederdruckbereich, insbesondere mit dem Kraftstofftank 1 verbindet. Die Flussrichtung des Kraftstoffes ist in der schematischen Zeichnung jeweils durch Pfeile neben den entsprechenden Leitungen dargestellt.
  • An dem Hochdruckspeicher 14 ist ein Druckbegrenzungsventil 16 angeordnet, welches über die Rücklaufleitung 17 mit einem Mischpunkt 24 verbunden ist, an dem sich die Volumenströme aus der Rücklaufleitung 17 aus dem Druckbegrenzungsventil 16 und der Rücklaufleitung 21 aus den Kraftstoff-Einspritzventil 20 treffen und von wo aus dieser Volumenstrom über eine weitere Rücklaufleitung 22 in den Kraftstofftank 1 gelangt. Steigt der Druck im Hochdruckspeicher 14 über einen maximal vorgegebenen Wert, dann öffnet das Druckbegrenzungsventil 16 und der Überdruck im Hochdruckspeicher 14 wird durch das Absteuern von Kraftstoff in die Rücklaufleitung 17 abgebaut.
  • Gemäß der vorliegenden Erfindung wird mit Hilfe einer Kühlleitung kühlerer Kraftstoff aus dem Niederdruckbereich der Leckagemenge aus dem Kraftstoff-Einspritzventil beigemischt um die Temperaturen in den Rücklaufleitungen 21 und 22 zu reduzieren.
  • In Fig. 2 ist ein erstes Ausführungsbeispiel des erfindungsgemäßen Hochdruck-Einspritzsystems dargestellt, das gegenüber der Darstellung in Fig. 1 eine zusätzliche Kühlleitung 5 enthält, welche aus dem Niederdruckbereich des Einspritzsystems zu einem Mischpunkt 23 führt, an dem sich der kühlere Kraftstoff aus der Kühlleitung 5 mit dem Kraftstoff aus der Leckage des Kraftstoff-Einspritzventils 20 vermischt und somit die Temperatur in den Rücklaufleitungen 21 und 22 entsprechend absenkt. Dabei wird die Kühlleitung 5 durch die Kraftstoffförderpumpe 2 gespeist, so dass der Kraftstoff durch die Kühlleitung 5 zum Mischpunkt 23 fließen kann. Dabei wird die Kraftstoffförderpumpe 2 so geregelt, dass stets eine ausreichende Menge an kühlerem Kraftstoff durch die Kühlleitung 5 zum Mischpunkt 23 gefördert wird. Weiterhin ist die Kraftstoffförderpumpe 2 so auszulegen, dass der Druck in der Verbindungsleitung 3 sowie der Kühlleitung 5 stets höher als der Druck am Mischpunkt 23 ist, so dass sich die Strömungsrichtung gemäß der Darstellung in Fig. 2 einstellt. Durch den Einsatz der Kraftstoffförderpumpe 2 kann die Vorförderpumpe 4 entfallen.
  • In Fig. 3 ist ein weiteres Ausführungsbeispiel des erfindungsgemäßen Hochdruck-Einspritzsystems dargestellt, bei dem die zusätzliche Kühlleitung 5 zwischen der Vorförderpumpe 4 und dem Mischpunkt 23 angeordnet ist, über welche kühlerer Kraftstoff aus dem Niederdruckbereich an den Mischpunkt 23 gepumpt wird, wobei die Vorförderpumpe so ausgelegt sein muss, dass sie einen höheren Druck als den Druck in der Rücklaufleitung 21 erzeugt, um die Strömungsrichtung vom Mischpunkt 23 über die Rücklaufleitungen 21 und 22 zum Kraftstofftank 1 zu gewährleisten. Besitzt die Vorförderpumpe 4 eine ausreichende Saugleistung, um den Kraftstoff aus dem Kraftstofftank 1 anzusaugen, kann die Kraftstoffförderpumpe 2 entfallen.
  • In Fig. 4 ist ein weiteres Ausführungsbeispiel dargestellt, bei dem die Kühlleitung 5 zwischen dem Rücklauf 11 der Hochdruckpumpe 10 und dem Mischpunkt 23 der Volumenströme aus der Leckage des Kraftstoff-Einspritzventils 20 angeordnet ist, wobei der Rücklauf 11 der Hochdruckpumpe 10 so ausgelegt sein muss, dass im Rücklauf 11 ein höherer Druck als der Druck in der Rücklaufleitung 21 herrscht, um die Strömungsrichtung vom Mischpunkt 23 über die Rücklaufleitungen 21 und 22 zum Kraftstofftank 1 zu gewährleisten. Bei dieser Ausführungsform entfällt die Rücklaufleitung 12 der Hochdruckpumpe 10. Bei dieser Ausführungsform kann entweder die Kraftstoffförderpumpe 2 oder die Vorförderpumpe 4 entfallen.
  • In Fig. 5 ist ein weiteres Ausführungsbeispiel dargestellt, bei welchem die Kühlleitung 5 zwischen dem Kraftstofftank 1 und dem Mischpunkt 23 angeordnet ist. Zusätzlich ist in der Rücklaufleitung 22 eine Unterdruckpumpe 25 angeordnet, wobei die Unterdruckpumpe 25 so ausgelegt sein muss, dass im Rücklauf 21 und 22 ein niedriger Druck als in der Kühlleitung 5 sowie am Mischpunkt 23 herrscht, um die Strömungsrichtung vom Mischpunkt 23 über die Rücklaufleitungen 21 und 22 zum Kraftstofftank 1 zu gewährleisten. Bei dieser Ausführung kann entweder die Kraftstoffförderpumpe 2 oder die Vorförderpumpe 4 entfallen.
  • In Fig. 6 ist ein weiteres Ausführungsbeispiel dargestellt, welches abweichend von der Darstellung in Fig. 2 die Rücklaufleitung 17 zwischen Druckbegrenzungsventil 16 und Mischpunkt 23 angeordnet ist, wobei die Rücklaufleitung 17 kürzer als in den anderen Ausführungsbeispielen ausgeführt werden kann.
  • In Fig. 7 ist ein weiteres Ausführungsbeispiel dargestellt, wobei abweichend zu Fig. 4 die Kühlleitung 5 nicht direkt aus dem Rücklauf 11 der Hochdruckpumpe 10 gespeist wird, sondern der Volumenstrom in der Kühlleitung 5 durch ein in der Rücklaufleitung 12 der Hochdruckpumpe 10 angeordnetes Ventil 7 geregelt wird.
  • In Fig. 8 ist ein weiteres Ausführungsbeispiel dargestellt, wobei abweichend zu Fig. 7 der Volumenstrom durch die Rücklaufleitung 12 der Hochdruckpumpe 10 durch eine Drossel 6 begrenzt wird und somit sichergestellt ist, dass stets ein ausreichender Volumenstrom über die Kühlleitung 5 an den Mischpunkt 23 gelangt.
  • In Fig. 9 ist ein weiteres Ausführungsbeispiel dargestellt, wobei zusätzlich zu den Darstellungen in Fig. 7 ein Durchflussmessgerät 26 zwischen den Kraftstoffeinspritzventilen 20 und dem Mischpunkt 23 sowie ein Temperatursensor 27 am Mischpunkt 23 angeordnet sind, mit welchen der Durchfluss durch die Kühlleitung 5 über das Ventil 7 geregelt wird. Dabei kann diese Regelung sowohl über beide Kenngrößen (Durchfluss und Temperatur) als auch über jeweils eine der beiden Kenngrößen geregelt werden. Dabei kann dann das Messglied für die jeweils andere Messgröße entfallen. Alternativ zu einem regelbaren Ventil 7 kann auch analog Fig. 8 eine regelbare Drossel 6 anstelle des Ventils 7 verwendet werden.

Claims (9)

  1. Hochdruck-Einspritzsystem mit einem Kraftstofftank (1), einer Verbindungsleitung (2,3,4) zwischen Kraftstofftank (1) und einer Hochdruckpumpe (10) zur Verdichtung des Kraftstoffes, wobei die Hochdruckpumpe (10) über eine entsprechende Verbindungsleitung (13,14,15) mit mindestens einem Kraftstoffeinspritzventil (20) verbunden ist, aus dem zumindest eine Teilmenge des in der Hochdruckpumpe (10) verdichteten Kraftstoffes durch Leckage im Kraftstoffeinspritzventil (20) über eine mit dem Kraftstofftank (1) verbundene Rücklaufleitung (21,22) wieder in den Kraftstofftank (1) zurückgeführt wird, dadurch gekennzeichnet, dass das Hochdruck-Einspritzsystem über eine Kühlleitung (5) verfügt, welche den Kraftstofftank (1) oder die Verbindungsleitung (2,3,4) oder einen Rücklauf (11) der Hochdruckpumpe (10) über einen Mischpunkt (23) mit der Rücklaufleitung (21,22) verbindet, wobei der Mischpunkt (23), an welchem die Kühlleitung (5) und der Leckagestrom aus dem Kraftstoffeinspritzventil (20) zusammentreffen, möglichst nah am Kraftstoffeinspritzventil (20) angeordnet ist, um die Wegstrecke in der der Kraftstoff eine kritische Temperatur überschreitet möglichst klein zu halten.
  2. Hochdruck-Einspritzsystem nach Anspruch 1, dadurch gekennzeichnet, dass eine Verbindungsleitung (2,3,4) eine Kraftstoffförderpumpe (2) enthält, wobei die Kühlleitung (5) an einem Ende mit der Verbindungsleitung (2,3,4) zwischen tankseitiger Vorförderpumpe (2) und Hochdruckpumpe (10) und am anderen Ende mit dem Mischpunkt (23) verbunden ist.
  3. Hochdruck-Einspritzsystem nach Anspruch 1, dadurch gekennzeichnet, dass eine Kühlleitung (5) von einer Vorförderpumpe (4), welche ein Element der Verbindungsleitung (2,3,4) darstellt und welche den Kraftstoff unter Druck setzt, zu einem Mischpunkt (23) führt.
  4. Hochdruck-Einspritzsystem nach Anspruch 1, dadurch gekennzeichnet, dass die Verbindungsleitungen (13,14,15) zumindest die nachfolgenden Bauelemente
    • Hochdruckspeicher (14)
    • Druckbegrenzungsventil (16) zur Druckreduzierung am Hochdruckspeicher (14)
    aufweist, wobei eine Rücklaufleitung (17) vom Druckbegrenzungsventil (16) existiert, wobei diese Rücklaufleitung (17) an einem Ende mit dem Druckbegrenzungsventil (16) am Hochdruckspeicher (14) und am anderen Ende entweder direkt mit dem Mischpunkt (23) oder über einen weiteren Mischpunkt (24) mit der Rücklaufleitung (21,22) verbunden ist.
  5. Hochdruck-Einspritzsystem nach Anspruch 1, dadurch gekennzeichnet, dass in der Rücklaufleitung (12) zwischen Hochdruckpumpe (10) und Mischpunkt (23) mindestens eines der folgenden Bauelemente
    • Drossel (6)
    • Ventil (7)
    angeordnet ist, wobei das Bauelement (6,7) geeignet ist, zumindest eine Teilmenge des Volumenstroms aus dem Rücklauf (11) aus der Hochdruckpumpe (10) oder einer Rücklaufleitung (12) der Hochdruckpumpe (10) in die Kühlleitung (5) zwischen diesem Bauelement (6,7) und dem Mischpunkt (23) zu leiten.
  6. Hochdruck-Einspritzsystem nach Anspruch 1, dadurch gekennzeichnet, dass in der Rücklaufleitung (21,22) zwischen Mischpunkt (23) und Kraftstofftank (1) eine Unterdruckpumpe (25) zur Erzeugung eines Unterdrucks in der Rücklaufleitung (21,22) angeordnet ist.
  7. Hochdruck-Einspritzsystem nach Anspruch 5, dadurch gekennzeichnet, dass zwischen Hochdruck-Einspritzventil (20) und Mischpunkt (23) ein Durchflussmessgerät (26) oder am Mischpunkt (23) ein Temperatursensor (27) angeordnet ist, mit dem das Ventil (7) oder die Drossel (6) so gesteuert werden, dass der Durchfluss durch die Kühlleitung (5) geregelt wird.
  8. Verfahren zum Betreiben eines Hochdruck-Einspritzsystem mit einem Kraftstofftank (1), einer Verbindungsleitung (2,3,4) zwischen Kraftstofftank (1) und einer Hochdruckpumpe (10) zur Verdichtung des Kraftstoffes, wobei die Hochdruckpumpe (10) über eine entsprechende Verbindungsleitung (13,14,15) mit zumindest einem Kraftstoffeinspritzventil (20) verbunden ist, aus dem zumindest eine Teilmenge des in der Hochdruckpumpe (10) verdichteten Kraftstoffes durch Leckage im Kraftstoffeinspritzventil (20) über eine mit dem Kraftstofftank (1) verbundene Rücklaufleitung (21,22) wieder in den Kraftstofftank (1) zurückgeführt wird, sowie einer Kühlleitung (5), welche den Kraftstofftank (1) oder die Verbindungsleitung (2,3,4) oder einen Rücklauf (11) der Hochdruckpumpe (10) über einen Mischpunkt (23) mit der Rücklaufleitung (21,22) verbindet, dadurch gekennzeichnet, dass der Mischpunkt (23), an welchem die Kühlleitung (5) und der Leckagestrom aus dem Kraftstoffeinspritzventil (20) zusammentreffen, möglichst nah am Kraftstoffeinspritzventil (20) angeordnet ist, um die Wegstrecke in der der Kraftstoff eine kritische Temperatur überschreitet möglichst klein zu halten und dass in der Kühlleitung (5) stets ein höherer Druck als in der Rücklaufleitung (21,22) aufrecht erhalten wird und die Temperatur in der Kühlleitung (5) niedriger ist als die Temperatur der Leckagemenge aus dem Kraftstoff-Einspritzventil (20), so dass durch die Beimischung des kühleren Kraftstoffes aus der Kühlleitung (5) am Mischpunkt (23) die Temperatur in der Rücklaufleitung (21,22) reduziert wird.
  9. Verfahren zum Betreiben einer Hochdruck-Einspritzsystems nach Anspruch 8, dadurch gekennzeichnet, dass der über die Kühlleitung (5) dem Mischpunkt (23) zugeführt Volumenstrom ausreichend groß ist, um eine Kühlwirkung auf die Leckage aus dem Kraftstoffeinspritzventil (20) in der Rücklaufleitung (21,22) zu erzielen.
EP10722121.0A 2009-07-27 2010-06-08 Hochdruck-einspritzsystem mit kraftstoffkühlung aus niederdruckbereich Not-in-force EP2459865B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009028023A DE102009028023A1 (de) 2009-07-27 2009-07-27 Hochdruck-Einspritzsystem mit Kraftstoffkühlung aus Niederdruckbereich
PCT/EP2010/057966 WO2011012363A1 (de) 2009-07-27 2010-06-08 Hochdruck-einspritzsystem mit kraftstoffkühlung aus niederdruckbereich

Publications (2)

Publication Number Publication Date
EP2459865A1 EP2459865A1 (de) 2012-06-06
EP2459865B1 true EP2459865B1 (de) 2015-03-04

Family

ID=42543482

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10722121.0A Not-in-force EP2459865B1 (de) 2009-07-27 2010-06-08 Hochdruck-einspritzsystem mit kraftstoffkühlung aus niederdruckbereich

Country Status (6)

Country Link
US (1) US20120118268A1 (de)
EP (1) EP2459865B1 (de)
JP (1) JP2013500429A (de)
CN (1) CN102472217B (de)
DE (1) DE102009028023A1 (de)
WO (1) WO2011012363A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013211147B4 (de) * 2013-06-14 2021-12-30 Robert Bosch Gmbh Niederdruckkreis einer Kraftstofffördereinrichtung eines Kraftstoffeinspritzsystems
CN105332886B (zh) * 2014-06-26 2020-07-10 罗伯特·博世有限公司 泵组件
CN105332836A (zh) * 2015-11-25 2016-02-17 常州机电职业技术学院 喷油器自洁方法
DE102016001360A1 (de) 2016-01-20 2017-07-20 Karlheinrich Winkelmann Verfahren und Vorrichtung zur Kühlung von Kraftstoff von Verbrennungskraftmaschinen bei gleichzeitiger Konditionierung ihrer Verbrennungsluft
US9828931B1 (en) * 2016-11-01 2017-11-28 GM Global Technology Operations LLC Diesel low pressure/high pressure flow control system
DE102016222797A1 (de) * 2016-11-18 2018-05-24 Robert Bosch Gmbh Kryopumpe
DE102016123055A1 (de) * 2016-11-30 2018-05-30 Man Diesel & Turbo Se Kraftstoffversorgungsanlage und Kraftverteilerblock
DE102017219224A1 (de) * 2017-10-26 2019-05-02 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe, Verfahren zum Betreiben einer Kraftstofffördereinrichtung für kryogene Kraftstoffe
CN113514250B (zh) * 2021-06-25 2022-09-16 一汽解放汽车有限公司 喷油器诊断方法、装置、计算机设备和存储介质

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL153975B (nl) * 1974-02-05 1977-07-15 Doornes Bedrijfswagen Fab Brandstofverbruikmeetinrichting voor een verbrandingsmotor.
US4377149A (en) * 1980-10-14 1983-03-22 Deere & Company Fuel temperature control system
US4535741A (en) * 1984-02-16 1985-08-20 C. Hellmuth Hertz Fuel metering method and device
IT1217257B (it) * 1987-08-25 1990-03-22 Weber Srl Impianto di iniezione del combustibile con iniettori comandati per motori a ciclo diesel
DE3887263T2 (de) * 1987-10-26 1994-05-19 Nippon Denso Co Brennstoffzufuhrvorrichtung für Fahrzeuge.
JPH036048U (de) * 1989-06-06 1991-01-22
US5051090A (en) * 1990-04-09 1991-09-24 Nippon Steel Corporation Method and apparatus for burning liquid fuel
GB2245651A (en) * 1990-07-04 1992-01-08 Ford Motor Co I.c.engine fuel feed arrangement
US5197443A (en) * 1991-06-13 1993-03-30 Parker Hannifin Corporation Fuel system for diesel truck
US5558068A (en) * 1994-05-31 1996-09-24 Zexel Corporation Solenoid valve unit for fuel injection apparatus
JP3295678B2 (ja) * 1995-03-22 2002-06-24 三菱自動車工業株式会社 燃料噴射式エンジンの燃料供給装置
DE19543538C1 (de) * 1995-11-22 1997-05-28 Siemens Ag Verfahren zum Einspritzen von Kraftstoff mit einer Temperaturkompensation und Vorrichtung zur Durchführung des Verfahrens
EP0893598B1 (de) * 1997-07-26 2003-05-28 Delphi Technologies, Inc. Kraftstoffsystem
DE19740057C1 (de) * 1997-09-12 1999-01-21 Mannesmann Vdo Ag Kraftstoffversorgungssystem
US5878724A (en) * 1997-12-23 1999-03-09 Ford Global Technologies, Inc. Diesel vehicle primary fuel pump driven by return fuel energy
JP3508545B2 (ja) * 1998-05-22 2004-03-22 トヨタ自動車株式会社 燃料供給装置
JP3709755B2 (ja) * 1999-12-08 2005-10-26 日産自動車株式会社 内燃機関の燃料供給装置
JP4140175B2 (ja) * 2000-07-21 2008-08-27 株式会社デンソー 内燃機関用蓄圧式燃料噴射装置
US6341623B1 (en) * 2000-08-25 2002-01-29 Ford Global Technologies, Inc. Variable orifice, pressure compensated automated fuel jet pump
DE10057244A1 (de) * 2000-11-18 2002-06-06 Bosch Gmbh Robert Kraftstoffeinspritzanlage für Brennkraftmaschinen mit verbessertem Startverhalten
DE10059012A1 (de) * 2000-11-28 2002-06-13 Bosch Gmbh Robert Kraftstoffeinspritzsystem mit Kraftstoffvorwärmung und kraftstoffgekühltem Druckregelventil
DE10100700C1 (de) * 2001-01-10 2002-08-01 Bosch Gmbh Robert Kraftstoffeinspritzsystem mit Druckregelung in der Rücklaufleitung
WO2002084095A1 (de) * 2001-04-10 2002-10-24 Robert Bosch Gmb System und verfahren zum korrigieren des einspritzverhaltens von mindestens einem injektor
DE10146740A1 (de) * 2001-09-22 2003-04-10 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE10153185A1 (de) * 2001-10-27 2003-05-15 Bosch Gmbh Robert Kraftstoffeinspritzanlage mit verbesserter Fördermengenregelung
JP2003206824A (ja) * 2001-11-09 2003-07-25 Bosch Automotive Systems Corp インジェクションポンプ、及び該インジェクションポンプを備えたディーゼルエンジンのdme燃料供給装置
DE10205187A1 (de) * 2002-02-08 2003-08-21 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
US7318423B2 (en) * 2002-03-06 2008-01-15 Bosch Automotive Systems Corporation DME fuel supply device for diesel engine
DE10218022A1 (de) * 2002-04-23 2003-11-06 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE10218021A1 (de) * 2002-04-23 2003-11-06 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
WO2003106835A1 (ja) * 2002-06-18 2003-12-24 株式会社ボッシュオートモーティブシステム ディーゼルエンジンのdme燃料供給装置
JP2004027863A (ja) * 2002-06-21 2004-01-29 Bosch Automotive Systems Corp ディーゼルエンジンのdme燃料供給装置
DE10239429A1 (de) * 2002-08-28 2004-03-11 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE10244551A1 (de) * 2002-09-25 2004-04-08 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE10248467A1 (de) * 2002-10-17 2004-05-06 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung mit Druckübersetzer und fördermengenreduziertem Niederdruckkreis
JP3915718B2 (ja) * 2003-03-11 2007-05-16 株式会社デンソー 燃料供給ポンプ
US6827065B2 (en) * 2003-04-08 2004-12-07 General Motors Corporation Diesel injection system with dual flow fuel line
JP4207834B2 (ja) * 2003-06-27 2009-01-14 株式会社デンソー 蓄圧式燃料噴射システム
DE10343480A1 (de) * 2003-09-19 2005-04-14 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
US7077110B2 (en) * 2004-03-01 2006-07-18 Stant Manufacturing Inc. Return fuel temperature control module
US7207319B2 (en) * 2004-03-11 2007-04-24 Denso Corporation Fuel injection system having electric low-pressure pump
DE102004037557A1 (de) * 2004-08-03 2006-03-16 Robert Bosch Gmbh Kraftstoffeinspritzsystem
DE602005014283D1 (de) * 2004-09-24 2009-06-10 Denso Corp Ventil zur Flusssteuerung
JP4450211B2 (ja) * 2005-01-28 2010-04-14 株式会社デンソー 燃料供給装置
JP4432795B2 (ja) * 2005-02-17 2010-03-17 トヨタ自動車株式会社 ディーゼルエンジン用の燃料供給システム
US7234451B2 (en) * 2005-07-27 2007-06-26 Gm Global Technology Operations, Inc. Dual fuel pump configuration for saddle fuel tanks
JP4508156B2 (ja) * 2005-08-24 2010-07-21 株式会社デンソー 燃料供給装置
KR100717316B1 (ko) 2005-12-12 2007-05-15 기아자동차주식회사 자동차의 연료 냉각장치
DE102006006557A1 (de) * 2006-02-13 2007-08-23 Siemens Ag Kraftstoffeinspritz-System
DE102006007076A1 (de) * 2006-02-15 2007-08-16 Siemens Ag Einspritzanlage für eine Brennkraftmaschine und Brennkraftmaschine
WO2008000462A1 (de) * 2006-06-27 2008-01-03 Georg Gruber Dieselmotorisch betriebene brennkraftmaschine
JP2008045536A (ja) * 2006-07-20 2008-02-28 Toyota Industries Corp Dmeエンジンの燃料供給装置
JP4793162B2 (ja) * 2006-08-11 2011-10-12 株式会社デンソー 超臨界燃料用燃料噴射装置
EP1923565B1 (de) * 2006-11-16 2010-05-05 C.R.F. Societa Consortile per Azioni Verbessertes Kraftstoffeinspritzungssystem für einen Verbrennungsmotor
DE102007000855B4 (de) * 2006-12-27 2020-06-10 Denso Corporation Kraftstofffördergerät und Speicherkraftstoffeinspritzsystem, das dieses aufweist
JP4433043B2 (ja) * 2007-12-05 2010-03-17 株式会社デンソー 燃料供給装置
JP4483974B2 (ja) * 2008-05-06 2010-06-16 株式会社デンソー 燃料供給装置
US8056537B2 (en) * 2008-09-26 2011-11-15 Caterpillar Inc. Engine having fuel injector with actuator cooling system and method
US7849836B2 (en) * 2008-10-07 2010-12-14 Caterpillar Inc Cooling feature for fuel injector and fuel system using same
JP4930521B2 (ja) * 2009-02-02 2012-05-16 株式会社デンソー 燃料供給装置
US8516997B2 (en) * 2010-05-28 2013-08-27 Ford Global Technologies, Llc Approach for controlling fuel flow with alternative fuels

Also Published As

Publication number Publication date
JP2013500429A (ja) 2013-01-07
CN102472217A (zh) 2012-05-23
DE102009028023A1 (de) 2011-02-03
US20120118268A1 (en) 2012-05-17
CN102472217B (zh) 2014-07-09
WO2011012363A1 (de) 2011-02-03
EP2459865A1 (de) 2012-06-06

Similar Documents

Publication Publication Date Title
EP2459865B1 (de) Hochdruck-einspritzsystem mit kraftstoffkühlung aus niederdruckbereich
EP3292289B1 (de) Verfahren zum betreiben einer wassereinspritzvorrichtung für eine brennkraftmaschine
EP2657502B1 (de) Hochdruckeinspritzleiste für ein Kraftstoffeinspritzsystem für eine Brennkraftmaschine
EP3452714B1 (de) Einrichtung zur zumessung eines gasförmigen brennstoffs zu einem injektor
EP3346120B1 (de) Wassereinspritzvorrichtung einer brennkraftmaschine und verfahren zum betreiben einer solchen wassereinspritzvorrichtung
WO2003067072A1 (de) Kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
DE102012113210A1 (de) LPG-Direkteinspritzungseinrichtung
DE102010050560A1 (de) Kraftstoffhochdruckpumpe für eine Brennkraftmaschine mit Direkteinspritzung
DE102012113141A1 (de) Steuersystem und Steuerverfahren eines Benzin-Direkteinspritzung-Verbrennungsmotors
WO2011131448A1 (de) Pumpenanordnung
EP2756184B1 (de) Kraftstoffhochdruckpumpe für ein Einspritzsystem
EP1738069B1 (de) Kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
DE102009029596B4 (de) Verfahren zur Steuerung einer Brennkraftmaschine
EP2807368B1 (de) Ventilblock für einen hochdruckspeicher eines common-rail schweröl-einspritzsystems
DE102017125487A1 (de) Diesel-niederdruck-/hochdruck-flusssteuerungssystem
DE102012203257A1 (de) Betriebsverfahren für ein Brennkraftmaschinen-Kraftstoffsystem
EP1361359A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
EP2697501B1 (de) Kraftstoffhochdruckpumpe für ein kraftstoffeinspritzsystem einer brennkraftmaschine
DE102005059830B3 (de) Einspritzanlage für eine Brennkraftmaschine
DE102013210816A1 (de) Kraftstofffördereinrichtung für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine
DE102014207186A1 (de) Einspritzvorrichtung
WO2014170157A1 (de) Hochdruckpumpe
DE102018219943A1 (de) Brennstoffeinspritzanlage für ein Brennstoffgemisch mit einem veränderbaren Wasseranteil
DE102018209994A1 (de) Kühlsystem für eine Brennkraftmaschine
DE102011004095A1 (de) Hochdruckpumpe für eine Kraftstoffspritzvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130327

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140923

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 714122

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010009060

Country of ref document: DE

Effective date: 20150416

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150604

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150706

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150704

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010009060

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20151207

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150608

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150608

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150608

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 714122

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160621

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160621

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200824

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010009060

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220101