EP2449242A1 - Verfahren zur steuerung und regelung des kraftstoffsdruckes eines common-rails einer brennkraftmaschine - Google Patents

Verfahren zur steuerung und regelung des kraftstoffsdruckes eines common-rails einer brennkraftmaschine

Info

Publication number
EP2449242A1
EP2449242A1 EP10732642A EP10732642A EP2449242A1 EP 2449242 A1 EP2449242 A1 EP 2449242A1 EP 10732642 A EP10732642 A EP 10732642A EP 10732642 A EP10732642 A EP 10732642A EP 2449242 A1 EP2449242 A1 EP 2449242A1
Authority
EP
European Patent Office
Prior art keywords
pressure
rail pressure
pcr
calculated
rail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10732642A
Other languages
English (en)
French (fr)
Other versions
EP2449242B1 (de
Inventor
Armin DÖLKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP2449242A1 publication Critical patent/EP2449242A1/de
Application granted granted Critical
Publication of EP2449242B1 publication Critical patent/EP2449242B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • F02M63/0235Means for varying pressure in common rails by bleeding fuel pressure
    • F02M63/025Means for varying pressure in common rails by bleeding fuel pressure from the common rail

Definitions

  • the invention relates to a method for controlling and regulating a
  • a rail pressure control loop comprises a reference junction for determining a control deviation, a pressure regulator for calculating a control signal, the controlled system and a
  • the controlled system comprises the pressure actuator, the rail and the injectors for injecting the fuel into the combustion chambers of the internal combustion engine.
  • Controller parameters are calculated as a function of operating parameters, here: the engine speed and the desired injection quantity.
  • the pressure regulator calculates the actuating signal for a pressure regulating valve, via which the fuel outflow from the rail into the fuel tank is determined.
  • the pressure control valve is thus arranged on the high pressure side of the common rail system.
  • an electric prefeed pump or a controllable high-pressure pump are shown in this reference.
  • Pressure relief valve may be provided as a protective measure against too high a rail pressure. The fuel is then discharged from the rail into the fuel tank via the opened pressure relief valve.
  • a corresponding common rail system with a passive pressure relief valve is known from DE 10 2006 040 441 B3.
  • a common rail system has a control and a
  • the control leakage is effective when the injector is electrically energized, that is, during the duration of the injection. As the injection duration decreases, so does the control leakage.
  • the constant leakage is always effective, that is, even if the injector is not activated. This is also caused by the component tolerances. Since the constant leakage with rising
  • Raildruck increases and decreases with falling rail pressure, the pressure oscillations are damped in the rail. In contrast, the tax leakage is reversed. If the rail pressure increases, the injection duration is shortened to represent a constant injection quantity, which results in a sinking control leakage. If the rail pressure drops, the injection duration is increased accordingly, which results in an increasing control leakage. The tax leakage thus leads to the pressure vibrations in the rail to be amplified.
  • the control and constant leakage represent a loss volume flow, which is promoted and compressed by the high-pressure pump.
  • Leakage volume flow means that the high-pressure pump must be designed to be larger than necessary.
  • part of the drive energy of the high pressure pump is converted into heat, which in turn causes the heating of the fuel and an efficiency reduction of the internal combustion engine.
  • the components are shed in practice.
  • a reduction in the constant leakage has the disadvantage that the stability behavior of the common rail system deteriorates and the pressure control becomes more difficult.
  • the injection quantity ie the extracted fuel volume
  • the injection quantity is very low.
  • the invention is based on the object to optimize the stability behavior and the settling time.
  • the method consists in that in addition to the rail pressure control over the
  • a rail pressure disturbance for influencing the rail pressure via a high-pressure side pressure control valve is generated as a second pressure actuator.
  • Fuel is removed from the rail into a fuel tank via the high-pressure-side pressure control valve.
  • An essential element of the invention is thus that a constant leakage is simulated via the control of the pressure control valve.
  • the rail pressure disturbance variable is calculated on the basis of a corrected nominal volumetric flow of the pressure control valve, which in turn is calculated from a static setpoint volumetric flow and a dynamic setpoint volumetric flow.
  • the static nominal volumetric flow is calculated as a function of a desired injection quantity, alternatively a setpoint torque, and an engine speed via a setpoint volumetric flow characteristic diagram.
  • the desired volume flow characteristic map is designed in such a way that in a low load range, a setpoint volume flow with a positive value, for example 2 liters / minute, and in a normal operating range a setpoint volume flow of zero is calculated. Under low load range is to be understood in the context of the invention, the range of small injection quantities and thus small engine power.
  • the dynamic setpoint flow rate of the pressure control valve is calculated via a dynamic correction as a function of the set rail pressure and the actual rail pressure by calculating a resulting control deviation and setting the dynamic setpoint flow to zero with a resulting control deviation smaller than zero , If, on the other hand, the resulting control deviation is greater than or equal to zero, the dynamic setpoint volumetric flow is set to the value of the product of the resulting control deviation and a factor. In other words, the dynamic setpoint volume flow is largely determined by the control deviation of the rail pressure. is this negative and falls below a threshold, so for example at a
  • the static setpoint volume flow is corrected via the dynamic set flow rate. Otherwise, there is no change in the static setpoint volume flow.
  • the stationary fuel is only diverted in the low load range and in a small amount, there is no significant increase in the fuel temperature and also no significant reduction in the efficiency of the internal combustion engine.
  • the increased stability of the rail pressure control loop in the low load range can be recognized by the fact that the rail pressure remains approximately constant in overrun mode and the rail pressure peak value is significantly lower in load shedding.
  • the increase in pressure of the rail pressure is counteracted by the dynamic set volume flow, with the advantage that the settling time of the system can be further improved.
  • FIG. 1 shows a system diagram
  • FIG. 2 shows a rail pressure control loop
  • FIG. 4 shows a block diagram of the dynamic correction
  • FIG. 5 shows a current control circuit
  • FIG. 6 shows a current control loop with precontrol
  • FIG. 7 shows a desired volume flow characteristic map
  • FIG 8 is a timing diagram
  • FIG. 9 is a program flowchart.
  • FIG. 1 shows a system diagram of an electronically controlled
  • the common rail system comprises the following mechanical components: a low-pressure pump 3 for
  • Fuel volume flow a high-pressure pump 5 for conveying the fuel under pressure increase, a rail 6 for storing the fuel and injectors 7 for injecting the fuel into the combustion chambers of the internal combustion engine 1.
  • the common rail system can also be implemented with Einzelspeichem, in which case for example, in the injector 7, a single memory 8 as an additional buffer volume
  • a passive pressure relief valve 11 is provided, which abgrest the fuel from the rail 6 in the open state.
  • Pressure control valve 12 also connects the rail 6 to the fuel tank 2. About the position of the pressure control valve 12, a fuel flow is defined, which is derived from the rail 6 in the fuel tank 2. In the text below, this fuel volume flow is referred to as rail pressure disturbance variable VDRV.
  • the operation of the internal combustion engine 1 is determined by an electronic control unit (ECU) 10.
  • the electronic control unit 10 includes the usual
  • Components of a microcomputer system such as a microprocessor, I / O devices, buffers and memory devices (EEPROM, RAM).
  • EEPROM electrically erasable programmable read-only memory
  • RAM random access memory
  • Memory chips are the relevant for the operation of the internal combustion engine 1 operating data applied in maps / curves. About this calculates the
  • the electronic control unit 10 from the input variables the output variables.
  • the following input variables are shown by way of example in FIG. 1: the rail pressure pCR, which is measured by means of a rail pressure sensor 9, an engine speed nMOT, a signal FP for output specification by the operator and an input variable EIN.
  • the other sensor signals are summarized, for example, the charge air pressure of an exhaust gas turbocharger.
  • the individual storage pressure pE is an additional input of the electronic control unit 10.
  • a signal PWMSD for controlling the suction throttle 4 as first pressure actuator a signal ve for controlling the injectors 7 (start of injection / injection end), a signal PWMDV for
  • Output variable OFF is representative of the further control signals for controlling and regulating the internal combustion engine 1, for example for a control signal for activating a second exhaust gas turbocharger in a register charging.
  • FIG. 2 shows a rail pressure control loop 13 for controlling the rail pressure pCR.
  • the input variables of the rail pressure control loop 13 are: a desired rail pressure pCR (SL), a volume flow which characterizes the desired consumption Wb, the
  • the output variables of the rail pressure control loop 13 are the raw value of the rail pressure pCR, an actual rail pressure pCR (IST) and a dynamic rail pressure pCR (DYN).
  • the actual rail pressure pCR (IST) and the dynamic rail pressure pCR (DYN) are further processed in the control shown in FIG.
  • Volume flow VR is added at a summation point B, the calculated target consumption Wb.
  • the target consumption Wb is calculated via a calculation 23, which is shown in FIG. 3 and explained in connection therewith.
  • the result of the addition at summation point B corresponds to an unlimited nominal volumetric flow VSDu (SL) of the intake throttle.
  • About a limit 15 is then the
  • the output variable of the limit 15 corresponds to a nominal volume flow VSD (SL) of the suction throttle.
  • the desired volume flow VSD (SL) is then assigned to the intake throttle via the pump characteristic curve 16, a desired electric current iSD (SL).
  • the desired current iSD (SL) is converted in a calculation 17 into a PWM signal PWMSD.
  • the PWM signal PWMSD represents the duty cycle and the frequency fPWM corresponds to the fundamental frequency.
  • the solenoid of the suction throttle is applied. As a result, the path of the magnetic core is changed, whereby the flow rate of the high-pressure pump is influenced freely.
  • the suction throttle is normally open and is on the
  • the calculation of the PWM signal 17 may be subordinated to a current control loop, as this from the
  • the second filter 20 in this case has a smaller time constant and a lower phase delay than the first filter 19 in the feedback path.
  • FIG. 3 shows a block diagram of the greatly simplified rail pressure control circuit 13 of FIG. 2 and a controller 21.
  • the rail pressure disturbance variable VDRV is generated, that is to say the volume flow which the pressure control valve discharges from the rail into the fuel tank.
  • the inputs of the controller 21 are: the SoII rail pressure pCR (SL), the actual rail pressure pCR (IST), the dynamic rail pressure pCR (DYN), the engine speed nMOT, and the target injection amount QSL.
  • the desired injection quantity QSL is either calculated via a characteristic map as a function of the power requirement or corresponds to the manipulated variable of a speed controller.
  • the physical unit of the target injection quantity is mm 3 / stroke.
  • a setpoint torque MSL is used instead of the setpoint injection quantity QSL.
  • the output of the controller 21 corresponds to the rail pressure disturbance VDRV.
  • the desired static volume flow Vs (SL) for the pressure control valve is calculated via a nominal volume flow characteristic map 22 (3D characteristic map).
  • the desired volume flow characteristic map 22 is designed in such a way that in the low load range, for example at idle, a positive value of the static target volume flow Vs (SL) is calculated, while in
  • a static set flow rate Vs (SL) is calculated from zero.
  • a possible embodiment of the desired volume flow characteristic map 22 is shown in FIG. 7 and will be explained in more detail in connection therewith.
  • the desired consumption Wb is calculated via the calculation 23, which is an input of the rail pressure control loop 13.
  • the static setpoint volume flow Vs (SL) is inventively corrected by adding up a dynamic setpoint volume flow Vd (SL). Calculated is the
  • Input variables of the dynamic correction 24 are the desired rail pressure pCR (SL), the actual rail pressure pCR (IST) and the dynamic rail pressure pCR (DYN).
  • Dynamic correction 24 is shown as a block diagram in FIG. 4 and will be described in connection therewith.
  • the sum of nominal static volumetric flow Vs (SL) and dynamic Nominal volumetric flow Vd (SL) corresponds to a corrected nominal volumetric flow Vk (SL), which is delimited above a limit 25 to a maximum volumetric flow VMAX and down to the value zero. The maximum is calculated
  • the output variable of the limitation 25 corresponds to a resulting setpoint volume flow Vres (SL), which is one of the input variables of a pressure control valve characteristic map 27.
  • the second input is the actual rail pressure pCR (IST).
  • the target volume flow Vres (SL) and the actual rail pressure pCR (IST) are assigned a nominal current iDV (SL) of the pressure regulating valve.
  • the desired current iDV (SL) is converted by a PWM calculation 28 into the duty cycle PWMDV with which the pressure regulating valve 12 is actuated.
  • the conversion can be subordinated to a current control, current control loop 29, or a current control with feedforward control.
  • the current regulation is shown in FIG. 5 and will be explained in connection therewith.
  • the current control with pilot control is shown in FIG. 6 and will be explained in connection therewith.
  • PWMDV the pressure regulating valve 12 is activated.
  • the electric current iDV which adjusts itself to the pressure regulating valve 12 is converted into an actual current iDV (IST) for current regulation via a filter 30 and fed back to the calculation PWM signal 28.
  • the output signal of the pressure regulating valve 12 corresponds to the rail pressure disturbance variable VDRV, that is to say that fuel volume flow which is diverted from the rail into the fuel tank.
  • FIG. 4 shows the dynamic correction 24 from FIG. The
  • Input variables are the nominal rail pressure pCR (SL), the actual rail pressure pCR (IST), the dynamic rail pressure pCR (DYN), a constant control deviation epKON and a constant factor fKON.
  • the output quantity corresponds to the dynamic setpoint volume flow Vd (SL).
  • the nominal rail pressure pCR (SL) is assigned the limited control deviation epLIM via a characteristic curve 31. The value of the limited rail pressure pCR (SL) is assigned the limited control deviation epLIM via a characteristic curve 31. The value of the limited
  • Control deviation epLIM is negative.
  • the output variable AG1 is compared with the control deviation ep.
  • the control deviation ep at a summation point B is calculated from the desired rail pressure pCR (SL) and the actual rail pressure pCR (IST), alternatively from the dynamic rail pressure pCR (DYN). The selection is made via a second switch S2.
  • the actual rail pressure pCR (IST) is decisive for the calculation of the control deviation ep.
  • the dynamic rail pressure pCR (DYN) is decisive for the calculation of the control deviation ep.
  • the difference calculated at summation point A corresponds to a resulting control deviation epRES.
  • Control deviation epRES greater than or equal to zero (epRES ⁇ O)
  • the dynamic setpoint volume flow Vd (SL) is calculated by multiplying the resulting control deviation epRES by a factor f.
  • control deviation is greater than -50 bar (ep> (- 50 bar)
  • epRES is less than zero (epRES ⁇ O). This is about the
  • FIG. 5 shows a pure current regulation, which corresponds to the current control circuit 29 of FIG.
  • the input variables are the nominal current iDV (SL) for the pressure regulating valve, the actual current iDV (IST) of the pressure regulating valve, the battery voltage UBAT and the controller parameters (kp, Tn).
  • the output variable is the PWM signal PWMDV, with which the pressure regulating valve is controlled. From the desired current iDV (SL) and the actual current iDV (IST), see FIG. 3, the current control deviation ei is first calculated.
  • the current control deviation ei is the nominal current iDV (SL) for the pressure regulating valve, the actual current iDV (IST) of the pressure regulating valve, the battery voltage UBAT and the controller parameters (kp, Tn).
  • the output variable is the PWM signal PWMDV, with which the pressure regulating valve is controlled. From the desired current iDV (SL) and the actual current iDV (IST), see FIG. 3, the current control deviation ei is first calculated.
  • the current controller 34 may be implemented as a PI or PI (DTI) - algorithm.
  • the algorithm processes the controller parameters. These are characterized inter alia by the proportional coefficient kp and the reset time Tn.
  • the output of the current regulator 34 is a desired voltage UDV (SL) of the pressure regulating valve. This is through the
  • Battery voltage UBAT divided and then multiplied by 100. The result corresponds to the duty cycle of the pressure control valve in percent.
  • FIG. 6 shows, as an alternative to FIG. 5, a current control with combined pilot control.
  • the input quantities are the setpoint current iDV (SL), the actual current iDV (IST), the controller parameters (kp, Tn), the ohmic resistance RDV of the
  • the output variable is here also the PWM signal PWMDV, with which the pressure regulating valve is controlled.
  • PWMDV the desired current iDV
  • RDV the ohmic resistance
  • UDV pilot control voltage
  • the current control deviation ei is calculated. From the current control deviation ei, the current controller 34 then calculates the setpoint voltage UDV (SL) of the
  • the current regulator 34 can also be embodied here as either a PI or PI (DTI) controller. Thereafter, the desired voltage UDV (SL) and the pilot voltage UDV (VS) are added, the sum then by the PI or PI (DTI) controller.
  • the desired volume flow map 22 is shown. This determines the nominal static volumetric flow Vs (SL) for the pressure control valve.
  • the input variables are the engine speed nMOT and the target injection quantity QSL. In the horizontal direction, engine speed values are plotted from 0 to 2000 rpm. In the vertical direction, the nominal injection quantity values from 0 to 270 mm 3 / stroke are plotted. The values within the map then correspond to the
  • the normal operating range is doubly framed in the figure.
  • the simple framed area corresponds to the low load area.
  • FIG. 8 shows as a time diagram a load shedding from 100% to 0% load in an internal combustion engine which drives an emergency power generator (60 Hz generator).
  • FIG. 8 consists of the partial diagrams 8A to 8D. These show in each case over time: the generator power P in kilowatts in FIG. 8A, the engine speed nMOT in FIG. 8B, the actual rail pressure pCR (IST) in FIG. 8C and the dynamic setpoint volume flow Vd (SL) in FIG. 8D.
  • a dashed line in FIG. 8C shows a profile of the actual rail pressure pCR (IST) without dynamic correction.
  • the illustration of FIG. 8 was based on the same parameters as in the example of FIG. 4 described above.
  • a constant nominal rail pressure of pCR (SL) 2200 bar was also used.
  • the load on the generator of the power P 2000 kW
  • the second switch S2 1, with which the control deviation ep is calculated from the SoII rail pressure pCR (SL) and the actual rail pressure pCR (IST), and
  • the target injection amount QSL, the engine speed nMOT, the actual rail pressure pCR (IST), the battery voltage UBAT and the actual current iDV (IST) of the pressure regulating valve are read.
  • the desired static volume flow Vs (SL) is calculated via the desired volume flow characteristic field as a function of the desired injection quantity QSL and the engine speed nMOT.
  • Control deviation ep calculated from the target rail pressure pCR (SL) and the actual rail pressure pCR (IST). From the nominal rail pressure, the limited control deviation epLIM is calculated via a characteristic curve (FIG. 4: 31), which is negative, step S4. Then the resulting control deviation epRES is calculated at S5. The resulting control deviation epRES, in turn, is determined from the control deviation ep and the limited control deviation epLIM. It is then checked at S6 whether the resulting control deviation epRES is negative. If this is the case, then the dynamic setpoint volume flow Vd (SL) is set to zero at S7.
  • Vd dynamic setpoint volume flow
  • the dynamic setpoint volumetric flow Vd (SL) is calculated at S8 as the product of the costing factor fKON and the resulting control deviation epRES.
  • the corrected target volumetric flow Vk (SL) is calculated from the sum of the static volumetric flow Vs (SL) and the dynamic volumetric flow Vd (SL). From the actual rail pressure pCR (IST), the maximum volume flow VMAX at S10 is calculated via a characteristic curve (FIG. 3: 26), to which the corrected setpoint volume flow Vk (SL) is then limited at S11. The result corresponds to the resulting desired volume flow Vres (SL).
  • the setpoint current iDV (SL) is calculated as a function of the resulting setpoint volume flow Vres (SL) and the actual rail pressure pCR (IST), and finally the PWM signal for actuating the pressure control valve in S13 is calculated in S13
  • ECU electronice control unit
  • Pressure control valve electrically controllable

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Vorgeschlagen wird ein Verfahren zur Steuerung und Regelung einer Brennkraftmaschine (1), bei dem der Raildruck (pCR) über eine niederdruckseitige Saugdrossel (4) als erstes Druckstellglied in einem Raildruck-Regelkreis geregelt wird. Die Erfindung ist dadurch gekennzeichnet, dass eine Raildruck-Störgröße (VDRV) zur Beeinflussung des Raildrucks (pCR) über ein hochdruckseitiges Druckregelventil (12) als zweites Druckstellglied erzeugt wird, über welches Kraftstoff aus dem Rail (6) in einen Kraftstofftank (2) abgesteuert wird, wobei die Raildruck-Störgröße (VDRV) an Hand eines korrigierten Soll-Volumenstroms (Vk (SL)) des Druckregelventils (12) berechnet wird.

Description

VERFAHREN ZUR STEUERUNG UND REGELUNG DES KRAFTSTOFFSDRUCKES EINES COMMON-RAILS EINER BRENNKRAFTMASCHINE
Die Erfindung betrifft ein Verfahren zur Steuerung und Regelung einer
Brennkraftmaschine nach dem Oberbegriff von Anspruch 1.
Bei einer Brennkraftmaschine mit Common-Railsystem wird die Güte der Verbrennung maßgeblich über das Druckniveau im Rail bestimmt. Zur Einhaltung der gesetzlichen Emissionsgrenzwerte wird daher der Raildruck geregelt. Typischerweise umfasst ein Raildruck-Regelkreis eine Vergleichsstelle zur Bestimmung einer Regelabweichung, einen Druckregler zum Berechnen eines Stellsignals, die Regelstrecke und ein
Softwarefilter zur Berechnung des Ist-Raildrucks im Rückkopplungszweig. Berechnet wird die Regelabweichung aus einem Soll-Raildruck zum Ist-Raildruck. Die Regelstrecke umfasst das Druckstellglied, das Rail und die Injektoren zum Einspritzen des Kraftstoffs in die Brennräume der Brennkraftmaschine.
Aus der DE 197 31 995 A1 ist ein Common-Railsystem mit Druckregelung bekannt, bei dem der Druckregler mit unterschiedlichen Reglerparametern bestückt wird. Durch die unterschiedlichen Reglerparameter soll die Druckregelung stabiler sein. Die
Reglerparameter wiederum werden in Abhängigkeit von Betriebsparametern, hier: die Motordrehzahl und die Soll-Einspritzmenge, berechnet. An Hand der Reglerparameter berechnet dann der Druckregler das Stellsignal für ein Druckregelventil, über welches der Kraftstoffabfluss aus dem Rail in den Kraftstofftank festgelegt wird. Das Druckregelventil ist folglich auf der Hochdruckseite des Common-Railsystems angeordnet. Als alternative Maßnahmen zur Druckregelung sind eine elektrische Vorförderpumpe oder eine steuerbare Hochdruckpumpe in dieser Fundstelle aufgezeigt.
Auch die DE 103 30 466 B3 beschreibt ein Common-Railsystem mit Druckregelung, bei dem der Druckregler über das Stellsignal jedoch auf eine Saugdrossel zugreift. Über die Saugdrossel wiederum wird der Zulaufquerschnitt zur Hochdruckpumpe festgelegt. Die Saugdrossel ist folglich auf der Niederdruckseite des Common-Railsystems angeordnet. Ergänzend kann bei diesem Common-Railsystem noch ein passives
Druckbegrenzungsventil als Schutzmaßnahme vor einem zu hohen Raildruck vorgesehen sein. Über das geöffnete Druckbegrenzungsventil wird dann der Kraftstoff aus dem Rail in den Kraftstofftank abgeleitet. Ein entsprechendes Common-Railsystem mit passivem Druckbegrenzungsventil ist aus der DE 10 2006 040 441 B3 bekannt.
Bauartbedingt treten bei einem Common-Railsystem eine Steuer- und eine
Konstantleckage auf. Die Steuerleckage ist dann wirksam, wenn der Injektor elektrisch angesteuert wird, das heißt, während der Dauer der Einspritzung. Mit abnehmender Einspritzdauer sinkt daher auch die Steuerleckage. Die Konstantleckage ist immer wirksam, das heißt, auch dann, wenn der Injektor nicht angesteuert wird. Verursacht wird diese auch durch die Bauteiltoleranzen. Da die Konstantleckage mit steigendem
Raildruck zunimmt und mit fallendem Raildruck abnimmt, werden die Druckschwingungen im Rail bedämpft. Bei der Steuerleckage verhält es sich hingegen umgekehrt. Steigt der Raildruck, so wird zur Darstellung einer konstanten Einspritzmenge die Einspritzdauer verkürzt, was eine sinkende Steuerleckage zur Folge hat. Sinkt der Raildruck, so wird die Einspritzdauer entsprechend vergrößert, was eine steigende Steuerleckage zur Folge hat. Die Steuerleckage führt also dazu, dass die Druckschwingungen im Rail verstärkt werden. Die Steuer- und die Konstantleckage stellen einen Verlustvolumenstrom dar, welcher von der Hochdruckpumpe gefördert und verdichtet wird. Dieser
Verlustvolumenstrom führt aber dazu, dass die Hochdruckpumpe größer als notwendig ausgelegt werden muss. Zudem wird ein Teil der Antriebsenergie der Hochdruckpumpe in Wärme umgesetzt, was wiederum die Erwärmung des Kraftstoffs und eine Wirkungsgrad- Reduktion der Brennkraftmaschine bewirkt.
Zur Verringerung der Konstantleckage werden in der Praxis die Bauteile miteinander vergossen. Eine Verringerung der Konstantleckage hat allerdings den Nachteil, dass sich das Stabilitätsverhalten des Common-Railsystems verschlechtert und die Druckregelung schwieriger wird. Deutlich wird dies im Schwachlastbereich, weil hier die Einspritzmenge, also das entnommene Kraftstoffvolumen, sehr gering ist. Ebenso deutlich wird dies bei einem Lastabwurf von 100% nach 0% Last, da hier die Einspritzmenge auf Null reduziert wird und sich daher der Raildruck nur langsam wieder abbaut. Dies wiederum bewirkt eine lange Ausregelzeit. Ausgehend von einem Common-Railsystem mit einer Raildruckregelung über eine niederdruckseitige Saugdrossel und mit verringerter Konstantleckage, liegt der Erfindung die Aufgabe zu Grunde, das Stabilitätsverhalten und die Ausregelzeit zu optimieren.
Gelöst wird diese Aufgabe durch ein Verfahren zur Steuerung und Regelung einer Brennkraftmaschine mit den Merkmalen von Anspruch 1. Die Ausgestaltungen sind in den Unteransprüchen dargestellt.
Das Verfahren besteht darin, dass neben der Raildruckregelung über die
niederdruckseitige Saugdrossel als erstes Druckstellglied eine Raildruck-Störgröße zur Beeinflussung des Raildrucks über ein hochdruckseitiges Druckregelventil als zweites Druckstellglied erzeugt wird. Über das hochdruckseitige Druckregelventil wird Kraftstoff aus dem Rail in einen Kraftstofftank abgesteuert. Ein wesentliches Element der Erfindung besteht also darin, dass über die Steuerung des Druckregelventils eine Konstantleckage nachgebildet wird. Berechnet wird die Raildruck-Störgröße an Hand eines korrigierten Soll-Volumenstroms des Druckregelventils, welcher wiederum aus einem statischen Soll- Volumenstrom und einem dynamischen Soll-Volumenstrom berechnet wird.
Berechnet wird der statische Soll-Volumenstrom in Abhängigkeit einer Soll- Einspritzmenge, alternativ einem Soll-Moment, und einer Motordrehzahl über ein Soll- Volumenstrom-Kennfeld. Das Soll-Volumenstrom-Kennfeld ist in der Form ausgeführt, dass in einem Schwachlastbereich ein Soll-Volumenstrom mit einem positiven Wert, zum Beispiel 2 Liter/Minute, und in einem Normalbetriebsbereich ein Soll-Volumenstrom von Null berechnet wird. Unter Schwach lastbereich ist im Sinne der Erfindung der Bereich kleiner Einspritzmengen und damit kleiner Motorleistung zu verstehen.
Der dynamische Soll-Volumenstrom des Druckregelventils wird über eine dynamische Korrektur in Abhängigkeit des Soll-Raildrucks und des Ist-Raildrucks berechnet, indem eine resultierende Regelabweichung berechnet wird und indem bei einer resultierenden Regelabweichung kleiner Null der dynamische Soll-Volumenstrom auf den Wert Null gesetzt wird. Ist die resultierende Regelabweichung hingegen größer/gleich Null, so wird der dynamische Soll-Volumenstrom auf den Wert des Produkts von resultierender Regelabweichung und einem Faktor gesetzt. Mit anderen Worten: Der dynamische Soll- Volumenstrom wird maßgeblich von der Regelabweichung des Raildrucks bestimmt. Ist diese negativ und unterschreitet einen Grenzwert, also zum Beispiel bei einem
Lastabwurf, wird über den dynamischen Soll-Volumenstrom der statische Soll- Volumenstrom korrigiert. Anderenfalls erfolgt keine Veränderung des statischen Soll- Volumenstroms.
Da der Kraftstoff stationär nur im Schwachlastbereich und in kleiner Menge abgesteuert wird, erfolgt keine signifikante Erhöhung der Kraftstofftemperatur und auch keine signifikante Verringerung des Wirkungsgrads der Brennkraftmaschine. Die erhöhte Stabilität des Raildruck-Regelkreises im Schwachlastbereich kann daran erkannt werden, dass der Raildruck im Schubbetrieb etwa konstant bleibt und bei einem Lastabwurf der Raildruck-Spitzenwert deutlich niedriger ist. Über den dynamischen Soll-Volumenstrom wird der Druckerhöhung des Raildrucks entgegengewirkt, mit dem Vorteil, dass die Ausregelzeit des Systems nochmals verbessert werden kann.
In den Figuren ist ein bevorzugtes Ausführungsbeispiel dargestellt. Es zeigen:
Figur 1 ein Systemschaubild,
Figur 2 einen Raildruck-Regelkreis,
Figur 3 ein Blockschaltbild des Raildruck-Regelkreises mit Steuerung,
Figur 4 ein Blockschaltbild der dynamischen Korrektur,
Figur 5 einen Stromregelkreis,
Figur 6 einen Stromregelkreis mit Vorsteuerung,
Figur 7 ein Soll-Volumenstrom-Kennfeld,
Figur 8 ein Zeitdiagramm und
Figur 9 einen Programm-Ablaufplan.
Die Figur 1 zeigt ein Systemschaubild einer elektronisch gesteuerten
Brennkraftmaschine 1 mit einem Common-Railsystem. Das Common-Railsystem umfasst folgende mechanische Komponenten: eine Niederdruckpumpe 3 zur
Förderung von Kraftstoff aus einem Kraftstofftank 2, eine veränderbare,
niederdruckseitige Saugdrossel 4 zur Beeinflussung des durchströmenden
Kraftstoff-Volumenstroms, eine Hochdruckpumpe 5 zur Förderung des Kraftstoffs unter Druckerhöhung, ein Rail 6 zum Speichern des Kraftstoffs und Injektoren 7 zum Einspritzen des Kraftstoffs in die Brennräume der Brennkraftmaschine 1. Optional kann das Common-Railsystem auch mit Einzelspeichem ausgeführt sein, wobei dann zum Beispiel im Injektor 7 ein Einzelspeicher 8 als zusätzliches Puffervolumen
integriert ist. Als Schutz vor einem unzulässig hohen Druckniveau im Rail 6 ist ein passives Druckbegrenzungsventil 11 vorgesehen, welches im geöffneten Zustand den Kraftstoff aus dem Rail 6 absteuert. Ein elektrisch ansteuerbares
Druckregelventil 12 verbindet ebenfalls das Rail 6 mit dem Kraftstofftank 2. Über die Stellung des Druckregelventils 12 wird ein Kraftstoffvolumenstrom definiert, welcher aus dem Rail 6 in den Kraftstofftank 2 abgeleitet wird. Im weiteren Text wird dieser Kraftstoffvolumenstrom als Raildruck-Störgröße VDRV bezeichnet.
Die Betriebsweise der Brennkraftmaschine 1 wird durch ein elektronisches Steuergerät (ECU) 10 bestimmt. Das elektronische Steuergerät 10 beinhaltet die üblichen
Bestandteile eines Mikrocomputersystems, beispielsweise einen Mikroprozessor, I/O-Bausteine, Puffer und Speicherbausteine (EEPROM, RAM). In den
Speicherbausteinen sind die für den Betrieb der Brennkraftmaschine 1 relevanten Betriebsdaten in Kennfeldern/Kennlinien appliziert. Über diese berechnet das
elektronische Steuergerät 10 aus den Eingangsgrößen die Ausgangsgrößen. In der Figur 1 sind exemplarisch folgende Eingangsgrößen dargestellt: der Raildruck pCR, der mittels eines Rail-Drucksensors 9 gemessen wird, eine Motordrehzahl nMOT, ein Signal FP zur Leistungsvorgabe durch den Betreiber und eine Eingangsgröße EIN. Unter der
Eingangsgröße EIN sind die weiteren Sensorsignale zusammengefasst, beispielsweise der Ladeluftdruck eines Abgasturboladers. Bei einem Common-Railsystem mit
Einzelspeichern 8 ist der Einzelspeicherdruck pE eine zusätzliche Eingangsgröße des elektronischen Steuergeräts 10.
In Figur 1 sind als Ausgangsgrößen des elektronischen Steuergeräts 10 ein Signal PWMSD zur Ansteuerung der Saugdrossel 4 als erstes Druckstellglied, ein Signal ve zur Ansteuerung der Injektoren 7 (Spritzbeginn/Spritzende), ein Signal PWMDV zur
Ansteuerung des Druckregelventils 12 als zweites Druckstellglied und eine
Ausgangsgröße AUS dargestellt. Über das Signal PWMDV wird die Stellung des
Druckregelventils 12 und damit die Raildruck-Störgröße VDRV definiert. Die
Ausgangsgröße AUS steht stellvertretend für die weiteren Stellsignale zur Steuerung und Regelung der Brennkraftmaschine 1 , beispielsweise für ein Stellsignal zur Aktivierung eines zweiten Abgasturboladers bei einer Registeraufladung. In der Figur 2 ist ein Raildruck-Regelkreis 13 zur Regelung des Raildrucks pCR dargestellt. Die Eingangsgrößen des Raildruck-Regelkreises 13 sind: ein Soll-Raildruck pCR(SL), ein Volumenstrom der den Soll-Verbrauch Wb kennzeichnet, die
Motordrehzahl nMOT, die PWM-Grundfrequenz fPWM und eine Größe E1. Unter der Größe E1 sind beispielsweise die Batteriespannung und der ohmsche Widerstand der Saugdrosselspule mit Zuleitung zusammengefasst, welche in die Berechnung des PWM- Signals mit eingehen. Die Ausgangsgrößen des Raildruck-Regelkreises 13 sind der Rohwert des Raildrucks pCR, ein Ist-Raildruck pCR(IST) und ein dynamischer Raildruck pCR(DYN). Der Ist-Raildruck pCR(IST) und der dynamische Raildruck pCR(DYN) werden in der in Figur 3 dargestellten Steuerung weiterverarbeitet.
Aus dem Rohwert des Raildrucks pCR wird mittels eines ersten Filters 19 der
Ist-Raildruck pCR(IST) berechnet. Dieser wird dann mit dem Sollwert pCR(SL) an einem Summationspunkt A verglichen, woraus eine Regelabweichung ep resultiert. Aus der Regelabweichung ep berechnet ein Druckregler 14 seine Stellgröße, welche einem Volumenstrom VR mit der physikalischen Einheit Liter/Minute entspricht. Zum
Volumenstrom VR wird an einem Summationspunkt B der berechnete Soll-Verbrauch Wb addiert. Berechnet wird der Soll-Verbrauch Wb über eine Berechnung 23, welche in der Figur 3 dargestellt ist und in Verbindung mit dieser erklärt wird. Das Ergebnis der Addition am Summationspunkt B entspricht einem unbegrenzten Soll-Volumenstrom VSDu(SL) der Saugdrossel. Über eine Begrenzung 15 wird anschließend der
unbegrenzte Soll-Volumenstrom VSDu(SL) in Abhängigkeit der Motordrehzahl nMOT limitiert. Die Ausgangsgröße der Begrenzung 15 entspricht einem Soll-Volumenstrom VSD(SL) der Saugdrossel. Dem Soll-Volumenstrom VSD(SL) wird danach über die Pumpen-Kennlinie 16 ein elektrischer Soll-Strom iSD(SL) der Saugdrossel zugeordnet. Der Soll-Strom iSD(SL) wird in einer Berechnung 17 in ein PWM-Signal PWMSD umgerechnet. Das PWM-Signal PWMSD stellt hierbei die Einschaltdauer dar und die Frequenz fPWM entspricht der Grundfrequenz. Mit dem PWM-Signal PWMSD wird dann die Magnetspule der Saugdrossel beaufschlagt. Dadurch wird der Weg des Magnetkerns verändert, wodurch der Förderstrom der Hochdruckpumpe frei beeinflusst wird. Aus Sicherheitsgründen ist die Saugdrossel stromlos offen und wird über die
PWM-Ansteuerung in Richtung der Schließstellung beaufschlagt. Der Berechnung des PWM-Signals 17 kann ein Stromregelkreis unterlagert sein, wie dieser aus der
DE 10 2004 061 474 A1 bekannt ist. Die Hochdruckpumpe, die Saugdrossel, das Rail und gegebenenfalls die Einzelspeicher entsprechen einer Regelstrecke 18. Damit ist der Regelkreis geschlossen. Aus dem Rohwert des Raildrucks pCR wird über ein zweites Filter 20 der dynamische Raildruck pCR(DYN) berechnet, welcher eine der
Eingangsgrößen des Blockschaltbilds der Figur 3 ist. Das zweite Filter 20 besitzt hierbei eine kleinere Zeitkonstante und einen geringeren Phasenverzug als das erste Filter 19 im Rückkopplungszweig.
Die Figur 3 zeigt als Blockschaltbild den stark vereinfachten Raildruck-Regelkreis 13 der Figur 2 und eine Steuerung 21. Über die Steuerung 21 wird die Raildruck-Störgröße VDRV erzeugt, also derjenige Volumenstrom, welchen das Druckregelventil aus dem Rail in den Kraftstofftank absteuert. Die Eingangsgrößen der Steuerung 21 sind: der SoII- Raildruck pCR(SL), der Ist-Raildruck pCR(IST), der dynamische Raildruck pCR(DYN), die Motordrehzahl nMOT und die Soll-Einspritzmenge QSL. Die Soll-Einspritzmenge QSL wird entweder über ein Kennfeld in Abhängigkeit des Leistungswunsches berechnet oder entspricht der Stellgröße eines Drehzahlreglers. Die physikalische Einheit der Soll- Einspritzmenge ist mm3/Hub. Bei einer momentenbasierten Struktur wird anstelle der Soll-Einspritzmenge QSL ein Soll-Moment MSL verwendet. Die Ausgangsgröße der Steuerung 21 entspricht der Raildruck-Störgröße VDRV.
An Hand der Motordrehzahl nMOT und der Soll-Einspritzmenge QSL wird über ein Soll- Volumenstrom-Kennfeld 22 (3D-Kennfeld) der statische Soll-Volumenstrom Vs(SL) für das Druckregelventil berechnet. Das Soll-Volumenstrom-Kennfeld 22 ist in der Form ausgeführt, dass im Schwachlastbereich, zum Beispiel bei Leerlauf, ein positiver Wert des statischen Soll-Volumenstroms Vs(SL) berechnet wird, während im
Normalbetriebsbereich ein statischer Soll-Volumenstrom Vs(SL) von Null berechnet wird. Eine mögliche Ausführungsform des Soll-Volumenstrom-Kennfelds 22 ist in der Figur 7 dargestellt und wird in Verbindung mit dieser näher erklärt. Ebenfalls an Hand der Motordrehzahl nMOT und der Soll-Einspritzmenge QSL wird über die Berechnung 23 der Soll-Verbrauch Wb berechnet, welcher eine Eingangsgröße des Raildruck-Regelkreises 13 ist. Der statische Soll-Volumenstrom Vs(SL) wird erfindungsgemäß durch Aufaddieren eines dynamischen Soll-Volumenstroms Vd(SL) korrigiert. Berechnet wird der
dynamische Soll-Volumenstrom Vd(SL) über eine dynamische Korrektur 24. Die
Eingangsgrößen der dynamischen Korrektur 24 sind der Soll-Raildruck pCR(SL), der Ist- Raildruck pCR(IST) und der dynamische Raildruck pCR(DYN). Die dynamische Korrektur 24 ist als Blockschaltbild in der Figur 4 dargestellt und wird in Verbindung mit dieser beschrieben. Die Summe aus statischem Soll-Volumenstrom Vs(SL) und dynamischem Soll-Volumenstrom Vd(SL) entspricht einem korrigierten Soll-Volumenstrom Vk(SL), welcher über eine Begrenzung 25 nach oben auf einen maximalen Volumenstrom VMAX und nach unten auf den Wert Null begrenzt wird. Berechnet wird der maximale
Volumenstrom VMAX über eine (2D-) Kennlinie 26 in Abhängigkeit des Ist-Raildrucks pCR(IST). Die Ausgangsgröße der Begrenzung 25 entspricht einem resultierenden Soll- Volumenstrom Vres(SL), welcher eine der Eingangsgrößen eines Druckregelventil- Kennfelds 27 ist. Die zweite Eingangsgröße ist der Ist-Raildruck pCR(IST). Über das Druckregelventil-Kennfeld 27 wird dem resultierenden Soll-Volumenstrom Vres(SL) und dem Ist-Raildruck pCR(IST) ein Soll-Strom iDV(SL) des Druckregelventils zugeordnet. Der Soll-Strom iDV(SL) wird über eine PWM-Berechnung 28 in die Einschaltdauer PWMDV umgerechnet, mit welcher das Druckregelventil 12 angesteuert wird. Der Umrechnung kann eine Stromregelung, Stromregelkreis 29, oder eine Stromregelung mit Vorsteuerung unterlagert sein. Die Stromregelung ist in der Figur 5 dargestellt und wird in Verbindung mit dieser erklärt. Die Stromregelung mit Vorsteuerung ist in der Figur 6 dargestellt und wird in Verbindung mit dieser erklärt. Mit dem PWM-Signal PWMDV wird das Druckregelventil 12 angesteuert. Der sich am Druckregelventil 12 einstellende elektrische Strom iDV wird zur Stromregelung über ein Filter 30 in einen Ist-Strom iDV(IST) umgerechnet und auf die Berechnung PWM-Signal 28 zurückgekoppelt. Das Ausgangssignal des Druckregelventils 12 entspricht der Raildruck-Störgröße VDRV, also demjenigen Kraftstoffvolumenstrom, welcher aus dem Rail in den Kraftstofftank abgesteuert wird.
In der Figur 4 ist die dynamische Korrektur 24 aus Figur 3 dargestellt. Die
Eingangsgrößen sind der Soll-Raildruck pCR(SL), der Ist-Raildruck pCR(IST), der dynamische Raildruck pCR(DYN), eine konstante Regelabweichung epKON und ein konstanter Faktor fKON. Die Ausgangsgröße entspricht dem dynamischen Soll- Volumenstrom Vd(SL). Dem Soll-Raildruck pCR(SL) wird über eine Kennlinie 31 die limitierte Regelabweichung epLIM zugeordnet. Der Wert der limitierten
Regelabweichung epLIM ist negativ. So wird zum Beispiel einem Soll-Raildruck pCR(SL)=2150 bar über die Kennlinie 31 eine limitierte Regelabweichung
epLIM= -100 bar zugeordnet. Über einen ersten Schalter S1 wird festgelegt, ob dessen Ausgangsgröße AG 1 der limitierten Regelabweichung epLIM oder der konstanten Regelabweichung epKON entspricht. In der Schalterstellung S1 =1 gilt AG1=epLIM, während in der Schalterstellung S1 =2 gilt AG1=epKON. Die konstante Regelabweichung kann zum Beispiel auf den Wert epKON= -50 bar gesetzt sein. An einem Summationspunkt A wird die Ausgangsgröße AG1 mit der Regelabweichung ep verglichen. Berechnet wird die Regelabweichung ep an einem Summationspunkt B aus dem Soll-Raildruck pCR(SL) und dem Ist-Raildruck pCR(IST), alternativ aus dem dynamischen Raildruck pCR(DYN). Die Auswahl erfolgt über einen zweiten Schalter S2. In der ersten Stellung S2=1 ist der Ist-Raildruck pCR(IST) maßgeblich für die Berechnung der Regelabweichung ep. In der zweiten Stellung S2=2 ist hingegen der dynamische Raildruck pCR(DYN) maßgeblich für die Berechnung der Regelabweichung ep. Die am Summationspunkt A berechnete Differenz entspricht einer resultierenden Regelabweichung epRES. Über einen Komparator 32 wird die resultierende Regelabweichung epRES mit dem Wert Null verglichen. Ist die resultierende Regelabweichung epRES kleiner als Null (epRES<0), so wird ein dritter Schalter S3 auf die Stellung S3=2 gesetzt. In diesem Fall ist der dynamische Soll- Volumenstrom Vd(SL) gleich Null (Vd(SL)=O). Ist hingegen die resultierende
Regelabweichung epRES größer/gleich Null (epRES≥O), so wird der dritte Schalter in die Stellung S3=1 umgesteuert. In dieser Stellung S3=1 wird der dynamische Soll- Volumenstrom Vd(SL) berechnet, indem die resultierende Regelabweichung epRES mit einem Faktor f multipliziert wird. Der Faktor f wiederum wird über einen vierten Schalter S4 festgelegt. Ist der vierte Schalter in der Stellung S4=1 , dann wird der Faktor f über eine Kennlinie 33 in Abhängigkeit des Ist-Raildrucks pCR(IST), Schalter S2=1 , oder in Abhängigkeit des dynamischen Raildrucks pCR(DYN), Schalter S2=2, berechnet. Befindet sich hingegen der vierte Schalter in der Stellung S4=2, so wird der Faktor f auf einen konstanten Wert fKON gesetzt, zum Beispiel fKON=0,01 Liter/(min bar).
Die Funktion der dynamischen Korrektur 24 soll an Hand eines Beispiels erläutert werden. Folgende Parameter wurden zu Grunde gelegt:
- erster Schalter S1 =2 mit epKON=-50 bar,
- zweiter Schalter S2=1 mit ep=pCR(SL) - pCR(IST) und
- vierter Schalter S4=2 mit f=fKON=0,01 Liter/(min bar).
Ist die Regelabweichung größer als -50 bar (ep>(-50 bar)), dann ist die resultierende Regelabweichung epRES kleiner als Null (epRES<O). Damit wird über den
Komparator 32 der dritte Schalter in die Stellung S3=2 gesteuert, so dass der dynamische Soll-Volumenstrom Vd(SL)=O ist. Ist die Regelabweichung hingegen kleiner/gleich als -50 bar (ep≤(-50 bar)), dann ist die resultierende Regelabweichung epRES>0. Damit steuert der Komparator 32 den dritten Schalter in die Stellung S3=1. Der dynamische Soll-Volumenstrom wird nunmehr zu Vd(SL)=(-50 bar-ep) 0,01 Liter/(min bar) berechnet.
Eine Korrektur mittels des dynamischen Soll-Volumenstroms Vd(SL) findet also dann statt, wenn die Regelabweichung ep den Wert ep= -50 bar unterschreitet. Wird die Regelabweichung ep noch kleiner (negativer), das heißt, schwingt der Ist-Raildruck noch stärker über, so wird über den dynamischen Soll-Volumenstrom Vd(SL) der vom Druckregelventil abgesteuerte Kraftstoffvolumenstrom, also die Raildruck- Störgröße, vergrößert. Dies führt schließlich dazu, dass der Raildruck abgefangen wird.
Die Figur 5 zeigt eine reine Stromregelung, welche zum Strom-Regelkreis 29 der Figur 3 korrespondiert. Die Eingangsgrößen sind der Soll-Strom iDV(SL) für das Druckregelventil, der Ist-Strom iDV(IST) des Druckregelventils, die Batteriespannung UBAT und Reglerparameter (kp, Tn). Die Ausgangsgröße ist das PWM-Signal PWMDV, mit welchem das Druckregelventil angesteuert wird. Aus dem Soll-Strom iDV(SL) und dem Ist-Strom iDV(IST), siehe Figur 3, wird zunächst die Strom- Regelabweichung ei berechnet. Die Strom-Regelabweichung ei ist die
Eingangsgröße des Stromreglers 34. Der Stromregler 34 kann als PI- oder PI(DTI)- Algorithmus ausgeführt sein. Im Algorithmus werden die Reglerparameter verarbeitet. Diese sind unter anderem durch den Proportionalbeiwert kp und die Nachstellzeit Tn charakterisiert. Die Ausgangsgröße des Stromreglers 34 ist eine Soll-Spannung UDV(SL) des Druckregelventils. Diese wird durch die
Batteriespannung UBAT dividiert und danach mit 100 multipliziert. Das Ergebnis entspricht der Einschaltdauer des Druckregelventils in Prozent.
Die Figur 6 zeigt als Alternative zur Figur 5 eine Stromregelung mit kombinierter Vorsteuerung. Die Eingangsgrößen sind der Soll-Strom iDV(SL), der Ist-Strom iDV(IST), die Reglerparameter (kp, Tn), der ohmsche Widerstand RDV des
Druckregelventils und die Batteriespannung UBAT. Die Ausgangsgröße ist auch hier das PWM-Signal PWMDV, mit welchem das Druckregelventil angesteuert wird. Zunächst wird der Soll-Strom iDV(SL) mit dem ohmschen Widerstand RDV des Druckregelventils multipliziert. Das Ergebnis entspricht einer Vorsteuerspannung UDV(VS). An Hand des Soll-Stroms iDV(SL) und des Ist-Stroms iDV(IST) wird die Strom-Regelabweichung ei berechnet. Aus der Strom-Regelabweichung ei berechnet dann der Stromregler 34 als Stellgröße die Soll-Spannung UDV(SL) des
Druckregelventils. Der Stromregler 34 kann auch hier entweder als PI- oder als PI(DTI )-Regler ausgeführt sein. Danach werden die Soll-Spannung UDV(SL) und die Vorsteuerspannung UDV(VS) addiert, die Summe anschließend durch die
Batteriespannung UBAT geteilt und mit 100 multipliziert.
In der Figur 7 ist das Soll-Volumenstrom-Kennfeld 22 dargestellt. Über dieses wird der statische Soll-Volumenstrom Vs(SL) für das Druckregelventil bestimmt. Die Eingangsgrößen sind die Motordrehzahl nMOT und die Soll-Einspritzmenge QSL. In waagerechter Richtung sind Motordrehzahlwerte von 0 bis 2000 1/min aufgetragen. In senkrechter Richtung sind die Soll-Einspritzmengenwerte von 0 bis 270 mm3/Hub aufgetragen. Die Werte innerhalb des Kennfelds entsprechen dann dem
zugeordneten statischen Soll-Volumenstrom Vs(SL) in Liter/Minute. Über das Soll- Volumenstrom-Kennfeld 22 wird ein Teil des abzusteuernden
Kraftstoffvolumenstroms festgelegt. Das Soll-Volumenstrom-Kennfeld 22 ist in der Form ausgeführt, dass im Normalbetriebsbereich ein statischer Soll-Volumenstrom von Vs(SL)= 0 Liter/Minute berechnet wird. Der Normalbetriebsbereich ist in der Figur doppelt gerahmt. Der einfach gerahmte Bereich entspricht dem Schwachlastbereich. Im Schwachlastbereich wird ein positiver Wert des statischen Soll-Volumenstroms Vs(SL) berechnet. Beispielsweise bei nMOT=1000 1/min und QSL=30 mm3/Hub wird ein statischer Soll-Volumenstrom von Vs(SL)=1.5 Liter/Minute festgelegt.
Die Figur 8 zeigt als Zeitdiagramm einen Lastabwurf von 100% auf 0% Last bei einer Brennkraftmaschine, welche ein Notstromaggregat (60Hz-Generator) antreibt. Die Figur 8 besteht aus den Teildiagrammen 8A bis 8D. Diese zeigen jeweils über der Zeit: die Generatorleistung P in Kilowatt in der Figur 8A, die Motordrehzahl nMOT in Figur 8B, den Ist-Raildruck pCR(IST) in Figur 8C und den dynamischen Soll- Volumenstrom Vd(SL) in Figur 8D. Als gestrichelte Linie ist in der Figur 8C ein Verlauf des Ist-Raildrucks pCR(IST) ohne dynamische Korrektur dargestellt. Der Darstellung der Figur 8 wurden dieselben Parameter zu Grunde gelegt, wie im zuvor beschriebenen Beispiel zur Figur 4. Ebenfalls zu Grunde gelegt wurde ein konstanter Soll-Raildruck von pCR(SL)=2200 bar. Zum Zeitpunkt t1 wird die Last am Generator von der Leistung P=2000 kW
sprunghaft auf 0 kW abgeworfen. Die fehlende Last am Abtrieb der
Brennkraftmaschine verursacht eine sich erhöhende Motordrehzahl ab dem Zeitpunkt t1. Zum Zeitpunkt t4 erreicht diese ihren Maximalwert nMOT=1950 1/min. Da die Motordrehzahl in einem eigenen Regelkreis geregelt wird, schwingt sich die
Motordrehzahl auf den ursprünglichen Anfangswert wieder ein. Auf Grund der sich erhöhenden Motordrehzahl nMOT und der daraus resultierenden Reduktion der Einspritzmenge ab dem Zeitpunkt t1 , baut die Hochdruckpumpe ein höheres
Druckniveau im Rail auf, so dass sich der Ist-Raildruck pCR(IST) zeitverzögert zur Motordrehzahl nMOT erhöht. Zum Zeitpunkt t2 erreicht der Ist-Raildruck pCR(IST) den Wert pCR(IST)=2250 bar. Die Regelabweichung ep beträgt damit ep= -50 bar. Der dynamische Soll-Volumenstrom Vd(SL), welcher über die dynamische Korrektur (Fig. 3: 24) berechnet wird, ist daher Vd(SL)=O Liter/min. Da der Ist-Raildruck pCR(IST) nach dem Zeitpunkt t2 weiter ansteigt, nimmt die Regelabweichung ep ab, das heißt, diese unterschreitet den Wert -50 bar, wodurch nun ein positiver dynamischer Soll-Volumenstrom Vd(SL) berechnet wird, siehe Figur 8D. Zum
Zeitpunkt t3 erreicht der Ist-Raildruck den Wert pCR(IST)=2300 bar. Damit ergibt sich eine Regelabweichung von ep= -100 bar. Der daraus berechnete dynamische Soll-Volumenstrom beträgt nunmehr Vd(SL)=O, 5 Liter/min. Zum ansteigenden Ist- Raildruck pCR(IST) korrespondiert ein zunehmender dynamischer Soll- Volumenstrom Vd(SL). Zum abnehmenden Ist-Raildruck pCR(IST) korrespondiert ein abnehmender dynamischer Soll-Volumenstrom Vd(SL). Zum Zeitpunkt t7
unterschreitet der Ist-Raildruck pCR(IST) wieder den Wert pCR(IST)=2250 bar, womit sich ein dynamischer Soll-Volumenstrom von Vd(SL)=O Liter/min ergibt, siehe Figur 8D.
Ein Vergleich der beiden Kurven des Ist-Raildrucks pCR(IST) in der Figur 8C mit dynamischer Korrektur (durchgezogene Linie) und ohne dynamische Korrektur (gestrichelte Linie) zeigt eine Reduktion des Überschwingens, woraus dann auch eine kürzere Ausregelzeit resultiert.
In der Figur 9 ist ein Programm-Ablaufplan des Verfahrens zur Bestimmung der Raildruck-Störgröße mit Korrektur dargestellt. Zu Grunde gelegt wurden folgende Parameter: - erster Schalter S1 =1 , womit die Berechnung der limitierten Regelabweichung epLIM aktiviert ist,
- der zweite Schalter S2=1 , womit sich die Regelabweichung ep aus dem SoII- Raildruck pCR(SL) und dem Ist-Raildruck pCR(IST) berechnet, und
- der vierte Schalter S4=2, womit der Faktor f gleich fKON ist.
Bei S1 werden die Soll-Einspritzmenge QSL, die Motordrehzahl nMOT, der Ist- Raildruck pCR(IST), die Batteriespannung UBAT und der Ist-Strom iDV(IST) des Druckregelventils eingelesen. Danach wird bei S2 über das Soll-Volumenstrom- Kennfeld in Abhängigkeit der Soll-Einspritzmenge QSL und der Motordrehzahl nMOT der statische Soll-Volumenstrom Vs(SL) berechnet. Bei S3 wird die
Regelabweichung ep aus dem Soll-Raildruck pCR(SL) und dem Ist-Raildruck pCR(IST) berechnet. Aus dem Soll-Raildruck wird über eine Kennlinie (Fig. 4: 31) die limitierte Regelabweichung epLIM berechnet, welche negativ ist, Schritt S4. Danach wird bei S5 die resultierende Regelabweichung epRES berechnet. Die resultierende Regelabweichung epRES wiederum wird aus der Regelabweichung ep und der limitierten Regelabweichung epLIM bestimmt. Anschließend wird bei S6 geprüft, ob die resultierende Regelabweichung epRES negativ ist. Ist dies der Fall, so wird der dynamische Soll-Volumenstrom Vd(SL) bei S7 auf den Wert Null gesetzt. Ist die resultierende Regelabweichung epRES nicht negativ, so wird der dynamische Soll- Volumenstrom Vd(SL) bei S8 als Produkt des kostanten Faktors fKON und der resultierenden Regelabweichung epRES berechnet. Bei S9 wird der korrigierte Soll- Volumenstrom Vk(SL) aus der Summe des statischen Soll-Volumenstrom Vs(SL) und des dynamischen Soll-Volumenstroms Vd(SL) berechnet. Aus dem Ist-Raildruck pCR(IST) wird über eine Kennlinie (Fig. 3: 26) der maximale Volumenstrom VMAX bei S10 berechnet, auf weichen der korrigierte Soll-Volumenstrom Vk(SL) dann bei S11 begrenzt wird. Das Ergebnis entspricht dem resultierenden Soll-Volumenstrom Vres(SL). Bei S12 wird in Abhängigkeit des resultierenden Soll-Volumenstroms Vres(SL) und des Ist-Raildrucks pCR(IST) der Soll-Strom iDV(SL) berechnet und bei S13 schließlich das PWM-Signal zur Ansteuerung des Druckregelventils in
Abhängigkeit des Soll-Stroms iDV(SL) berechnet. Damit ist der Programmablauf beendet. Bezugszeichen
Brennkraftmaschine 33 Kennlinie
Kraftstofftank 34 Stromregler
Niederdruckpumpe
Saugdrossel
Hochdruckpumpe
Rail
Injektor
Einzelspeicher (optional)
Rail-Drucksensor
elektronisches Steuergerät (ECU)
Druckbegrenzungsventil, passiv
Druckregelventil, elektrisch ansteuerbar
Raildruck-Regelkreis
Druckregler
Begrenzung
Pumpen-Kennlinie
Berechnung PWM-Signal
Regelstrecke
erstes Filter
zweites Filter
Steuerung
Soll-Volumenstrom-Kennfeld
Berechnung
dynamische Korrektur
Begrenzung
Kennlinie
Druckregelventil-Kennfeld
Berechnung PWM-Signal
Stromregelkreis (Druckregelventil)
Filter
Kennlinie
Komparator

Claims

Patentansprüche
1. Verfahren zur Steuerung und Regelung einer Brennkraftmaschine (1), bei dem der Raildruck (pCR) über eine niederdruckseitige Saugdrossel (4) als erstes
Druckstellglied in einem Raildruck-Regelkreis (13) geregelt wird,
dadurch gekennzeichnet,
dass eine Raildruck-Störgröße (VDRV) zur Beeinflussung des Raildrucks (pCR) über ein hochdruckseitiges Druckregelventil (12) als zweites Druckstellglied erzeugt wird, über welches Kraftstoff aus dem Rail (6) in einen Kraftstofftank (2)
abgesteuert wird, wobei die Raildruck-Störgröße (VDRV) an Hand eines
korrigierten Soll-Volumenstroms (Vk(SL)) des Druckregelventils (12) berechnet wird.
2. Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet,
dass der korrigierte Soll-Volumenstrom (Vk(SL)) aus einem statischen Soll- Volumenstrom (Vs(SL)) und einem dynamischen Soll-Volumenstrom (Vd(SL)) berechnet wird.
3. Verfahren nach Anspruch 2,
dadurch gekennzeichnet,
dass der statische Soll-Volumenstrom (Vs(SL)) des Druckregelventils (12) in Abhängigkeit einer Soll-Einspritzmenge (QSL), alternativ einem Soll-Moment (MSL), und einer Motordrehzahl (nMOT) über ein Soll-Volumenstrom-Kennfeld (22) berechnet wird.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet,
dass der dynamische Soll-Volumenstrom (Vd(SL)) des Druckregelventils (12) über eine dynamische Korrektur (24) in Abhängigkeit eines Soll-Raildrucks (pCR(SL)) und eines Ist-Raildrucks (pCR(IST)) berechnet wird.
5. Verfahren nach Anspruch 4,
dadurch gekennzeichnet,
dass der dynamische Soll-Volumenstrom (Vd(SL)) berechnet wird, indem eine resultierende Regelabweichung (epRES) des Raildrucks (pCR) berechnet wird und indem bei einer resultierenden Regelabweichung (epRES) kleiner Null (epRES<0) der dynamische Soll-Volumenstrom (Vd(SL)) auf den Wert Null gesetzt wird (Vd(SL)=O)) oder bei einer resultierenden Regelabweichung (epRES) größer/gleich Null (epRES≥O) der dynamische Soll-Volumenstrom (Vd(SL)) auf den Wert des Produkts von resultierender Regelabweichung (epRES) und einem Faktor (T) gesetzt wird.
6. Verfahren nach Anspruch 5,
dadurch gekennzeichnet,
dass die resultierende Regelabweichung (epRES) berechnet wird, indem eine Regelabweichung (ep) des Raildrucks (pCR) aus der Differenz von Soll-Raildruck (pCR(SL)) und Ist-Raildruck (pCR(IST)) berechnet wird, indem aus dem Soll- Raildruck (pCR(SL)) über eine Kennlinie (31) eine limitierte Regelabweichung (epLIM) berechnet wird und indem die Differenz der limitierten Regelabweichung (epLIM) und der Regelabweichung (ep) berechnet wird.
7. Verfahren nach Anspruch 5,
dadurch gekennzeichnet,
dass der Faktor (f) in Abhängigkeit des Ist-Raildrucks (pCR(IST)) über eine Kennlinie (33) berechnet wird.
8. Verfahren nach einem der vorausgegangenen Ansprüche,
dadurch gekennzeichnet,
dass alternativ zum Ist-Raildruck (pCR(IST)) ein dynamischer Raildruck
(pCR(DYN)) bei der Berechnung verwendet wird, wobei der Ist-Raildruck
(pCR(IST)) über ein erstes Filter (19) aus dem Raildruck (pCR) berechnet wird und der dynamische Raildruck (pCR(DYN)) über ein zweites Filter (20) aus dem Raildruck (pCR) berechnet wird.
9. Verfahren nach einem der vorausgegangen Ansprüche,
dadurch gekennzeichnet,
dass die limitierte Regelabweichung (epLIM) und/oder der Faktor (T) auf einen konstanten Wert (epKON, fKON) gesetzt werden.
10. Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet,
dass die Raildruck-Störgröße (VDRV) über ein Druckregelventil-Kennfeld (27) berechnet wird.
EP10732642.3A 2009-07-02 2010-06-17 Verfahren zur steuerung und regelung des kraftstoffsdruckes eines common-rails einer brennkraftmaschine Active EP2449242B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009031527A DE102009031527B3 (de) 2009-07-02 2009-07-02 Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
PCT/EP2010/003652 WO2011000478A1 (de) 2009-07-02 2010-06-17 Verfahren zur steuerung und regelung des kraftstoffsdruckes eines common-rails einer brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP2449242A1 true EP2449242A1 (de) 2012-05-09
EP2449242B1 EP2449242B1 (de) 2020-07-29

Family

ID=42979356

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10732642.3A Active EP2449242B1 (de) 2009-07-02 2010-06-17 Verfahren zur steuerung und regelung des kraftstoffsdruckes eines common-rails einer brennkraftmaschine

Country Status (5)

Country Link
US (1) US9441572B2 (de)
EP (1) EP2449242B1 (de)
CN (1) CN102510942B (de)
DE (1) DE102009031527B3 (de)
WO (1) WO2011000478A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009031527B3 (de) * 2009-07-02 2010-11-18 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009031528B3 (de) * 2009-07-02 2010-11-11 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009050467B4 (de) 2009-10-23 2017-04-06 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009051390B4 (de) 2009-10-30 2015-10-22 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
CN102140973B (zh) * 2011-04-19 2016-09-14 潍柴动力股份有限公司 控制高压共轨燃油系统的高压共轨管腔轨压的设备和方法
FI123271B (fi) * 2011-06-23 2013-01-31 Waertsilae Finland Oy Polttoaineen ruiskutusjärjestelmä
DE102012019457B3 (de) * 2012-10-04 2014-03-20 Mtu Friedrichshafen Gmbh Verfahren zur Raildruckregelung einer Brennkraftmaschine
DE102013213506B4 (de) * 2012-10-15 2023-06-15 Vitesco Technologies GmbH Verfahren zum Betreiben eines Kraftstoffeinspritzsystems mit einer Kraftstofffilterheizung und Kraftstoffeinspritzsystem
US9587581B2 (en) * 2013-06-20 2017-03-07 GM Global Technology Operations LLC Wideband diesel fuel rail control using active pressure control valve
US10260444B2 (en) * 2013-12-19 2019-04-16 Fca Us Llc Direct injection fuel system with controlled accumulator energy storage
DE102014213648B3 (de) 2014-07-14 2015-10-08 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine
DE102015207961B4 (de) * 2015-04-29 2017-05-11 Mtu Friedrichshafen Gmbh Verfahren zum Erkennen einer Dauereinspritzung im Betrieb einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine und Brennkraftmaschine
DE102015209377B4 (de) 2015-05-21 2017-05-11 Mtu Friedrichshafen Gmbh Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine mit einem solchen Einspritzsystem
DE102017214001B3 (de) 2017-08-10 2019-02-07 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Brennkraftmaschine mit einem Einspritzsystem, Einspritzsystem, eingerichtet zur Durchführung eines solchen Verfahrens, und Brennkraftmaschine mit einem solchen Einspritzsystem
DE102019202004A1 (de) 2019-02-14 2020-08-20 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben eines Einspritzsystems einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine mit einem solchen Einspritzsystem
CN111651547B (zh) * 2020-06-04 2023-07-18 北京四维图新科技股份有限公司 高精度地图数据的获取方法、装置及可读存储介质
CN112555043B (zh) * 2020-12-04 2022-07-19 东风汽车股份有限公司 一种基于整车条件的喷油器流量修正方法
CN113250841B (zh) * 2021-06-18 2023-05-19 中国北方发动机研究所(天津) 一种高压共轨燃油喷射系统及其轨压控制方法

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH674243A5 (de) * 1987-07-08 1990-05-15 Dereco Dieselmotoren Forschung
JP3939779B2 (ja) * 1995-05-26 2007-07-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関の燃料供給のための燃料供給装置
DE19548278B4 (de) * 1995-12-22 2007-09-13 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19548280A1 (de) * 1995-12-22 1997-06-26 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19607070B4 (de) * 1996-02-24 2013-04-25 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19618932C2 (de) * 1996-05-10 2001-02-01 Siemens Ag Vorrichtung und Verfahren zur Regelung des Kraftstoffdruckes in einem Hochdruckspeicher
US6016791A (en) * 1997-06-04 2000-01-25 Detroit Diesel Corporation Method and system for controlling fuel pressure in a common rail fuel injection system
DE19731995B4 (de) * 1997-07-25 2008-02-21 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19739653A1 (de) * 1997-09-10 1999-03-11 Bosch Gmbh Robert Verfahren zum Erzeugen von unter Hochdruck stehendem Kraftstoff sowie System zur Kraftstoffhochdruckerzeugung
DE19752025B4 (de) * 1997-11-24 2006-11-09 Siemens Ag Verfahren und Vorrichtung zum Regeln des Kraftstoffdruckes in einem Kraftstoffspeicher
DE19757655C2 (de) * 1997-12-23 2002-09-26 Siemens Ag Verfahren und Vorrichtung zur Funktionsüberwachung eines Drucksensors
DE19802583C2 (de) * 1998-01-23 2002-01-31 Siemens Ag Vorrichtung und Verfahren zum Druckregeln in Speichereinspritzsystemen mit einem elektromagnetisch betätigten Druckstellglied
EP0964150B1 (de) * 1998-04-15 2005-06-15 Denso Corporation Brennstoffeinspritzsystem für eine Brennkraftmaschine
JP2001055961A (ja) * 1999-08-11 2001-02-27 Mitsubishi Electric Corp 高圧燃料供給装置
JP2001159359A (ja) * 1999-12-02 2001-06-12 Mitsubishi Electric Corp 筒内噴射エンジンの燃圧制御装置
IT1320684B1 (it) * 2000-10-03 2003-12-10 Fiat Ricerche Dispositivo di controllo della portata di una pompa ad alta pressionein un impianto di iniezione a collettore comune del combustibile di un
JP3908480B2 (ja) * 2001-05-16 2007-04-25 ボッシュ株式会社 燃料噴射装置における動作制御方法及び燃料噴射装置
DE10211283A1 (de) * 2002-03-14 2003-09-25 Bosch Gmbh Robert Verfahren zum Betreiben eines Kraftstoffzumesssystems eines Kraftfahrzeugs, Computerprogramm, Steuergerät und Kraftstoffzumesssystem
DE10218021A1 (de) * 2002-04-23 2003-11-06 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
US7318414B2 (en) * 2002-05-10 2008-01-15 Tmc Company Constant-speed multi-pressure fuel injection system for improved dynamic range in internal combustion engine
ITTO20020619A1 (it) * 2002-07-16 2004-01-16 Fiat Ricerche Metodo di controllo della pressione di iniezione del combustibile di un impianto di iniezione a collettore comune di un motore a combustione
DE10247564A1 (de) 2002-10-11 2004-04-22 Robert Bosch Gmbh Verfahren zum Betreiben eines Common-Rail-Kraftstoffeinspritzsystems für Brennkraftmaschinen
JP2004183550A (ja) * 2002-12-03 2004-07-02 Isuzu Motors Ltd コモンレール圧検出値のフィルタ処理装置及びコモンレール式燃料噴射制御装置
DE10261414B4 (de) * 2002-12-30 2005-03-17 Siemens Ag Kraftstoffeinspritzanlage
DE10261446A1 (de) * 2002-12-31 2004-07-08 Robert Bosch Gmbh Verfahren zum Ansteuern eines Druckregelventils in einem Kraftstoffeinspritzsystem einer Brennkraftmaschine
DE10318646A1 (de) * 2003-04-24 2004-11-18 Siemens Ag Verfahren zum Steuern eines Kraftstoffdrucks in einer Zuführungseinrichtung für Kraftstoff einer Brennkraftmaschine
DE10330466B3 (de) * 2003-07-05 2004-10-21 Mtu Friedrichshafen Gmbh Verfahren zur Regelung einer Brennkraftmaschine
DE10349628A1 (de) * 2003-10-24 2005-06-02 Robert Bosch Gmbh Verfahren zum Regeln des Druckes in einem Kraftstoffspeicher einer Brennkraftmaschine
DE102004023365B4 (de) * 2004-05-12 2007-07-19 Mtu Friedrichshafen Gmbh Verfahren zur Druck-Regelung eines Speichereinspritzsystems
JP2005337182A (ja) * 2004-05-28 2005-12-08 Mitsubishi Electric Corp 内燃機関の燃圧制御装置
DE102004059330A1 (de) * 2004-12-09 2006-06-14 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftstoffsystems einer Brennkraftmaschine
DE102004061474B4 (de) * 2004-12-21 2014-07-17 Mtu Friedrichshafen Gmbh Verfahren und Einrichtung zur Regelung des Raildrucks
US20060225760A1 (en) * 2005-04-06 2006-10-12 Crown Packaging Technology, Inc., United States Flocked wire mascara brush
DE102005029138B3 (de) * 2005-06-23 2006-12-07 Mtu Friedrichshafen Gmbh Steuer- und Regelverfahren für eine Brennkraftmaschine mit einem Common-Railsystem
JP4508011B2 (ja) * 2005-06-30 2010-07-21 トヨタ自動車株式会社 内燃機関の制御装置
JP4475205B2 (ja) * 2005-09-01 2010-06-09 株式会社デンソー コモンレール式燃料噴射システムの制御装置
JP4170345B2 (ja) * 2006-01-31 2008-10-22 三菱電機株式会社 内燃機関の高圧燃料ポンプ制御装置
JP4538851B2 (ja) * 2006-02-15 2010-09-08 株式会社デンソー 筒内噴射式の内燃機関の燃圧制御装置
DE102006018164B3 (de) * 2006-04-19 2007-08-30 Siemens Ag Verfahren und Vorrichtung zur Steuerung einer Einspritzanlage für eine Brennkraftmaschine
DE102006040441B3 (de) * 2006-08-29 2008-02-21 Mtu Friedrichshafen Gmbh Verfahren zum Erkennen des Öffnens eines passiven Druck-Begrenzungsventils
JP4525691B2 (ja) * 2007-03-05 2010-08-18 株式会社デンソー 燃料噴射圧力制御装置及び燃料噴射圧力制御システム
DE102007027943B3 (de) * 2007-06-18 2008-10-16 Mtu Friedrichshafen Gmbh Verfahren zur Regelung des Raildrucks während eines Startvorgangs
DE102008040441A1 (de) 2008-07-16 2010-02-18 Zf Friedrichshafen Ag Getriebevorrichtung mit einem Variator
DE102007059352B3 (de) * 2007-12-10 2009-06-18 Continental Automotive Gmbh Kraftstoffdruckregelsystem und Kraftstoffdruckregelverfahren
DE102008044050A1 (de) * 2007-12-19 2009-06-25 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftstoffsystems
US20090326788A1 (en) * 2008-06-25 2009-12-31 Honda Motor Co., Ltd. Fuel injection device
US8210156B2 (en) * 2009-07-01 2012-07-03 Ford Global Technologies, Llc Fuel system with electrically-controllable mechanical pressure regulator
DE102009031527B3 (de) * 2009-07-02 2010-11-18 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009031529B3 (de) * 2009-07-02 2010-11-11 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011000478A1 *

Also Published As

Publication number Publication date
US9441572B2 (en) 2016-09-13
DE102009031527B3 (de) 2010-11-18
WO2011000478A1 (de) 2011-01-06
CN102510942A (zh) 2012-06-20
CN102510942B (zh) 2015-06-03
US20120097134A1 (en) 2012-04-26
EP2449242B1 (de) 2020-07-29

Similar Documents

Publication Publication Date Title
DE102009031527B3 (de) Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009031529B3 (de) Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE10162989C1 (de) Schaltungsanordnung zum Regeln einer regelbaren Kraftstoffpumpe, Verfahren zum Regeln einer Förderleistung und Verfahren zum Überprüfen der Funktionsfähigkeit einer regelbaren Kraftstoffpumpe
DE102005029138B3 (de) Steuer- und Regelverfahren für eine Brennkraftmaschine mit einem Common-Railsystem
EP2449240B1 (de) Verfahren zur regelung des raildrucks in einem common-rail einspritzsystem einer brennkraftmaschine
DE102006049266B3 (de) Verfahren zum Erkennen eines geöffneten passiven Druck-Begrenzungsventils
EP2006521B1 (de) Verfahren zur Regelung des Raildrucks während eines Startvorgangs
DE102009050467B4 (de) Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009050468A1 (de) Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102014213648B3 (de) Verfahren zum Betreiben einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine
EP2491236B1 (de) Verfahren zur steuerung und regelung einer brennkraftmaschine
DE19913477B4 (de) Verfahren zum Betreiben einer Kraftstoffzuführeinrichtung einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
EP2358988B1 (de) Steuerungs- und regelungsverfahren für eine brennkraftmaschine mit einem common-railsystem
WO2017186326A1 (de) Verfahren zum betrieb einer brennkraftmaschine, einrichtung zum steuern und/oder regeln einer brennkraftmaschine, einspritzsystem und brennkraftmaschine
EP2358987B1 (de) Steuerung- und regelungsverfahren für eine brennkraftmaschine mit einem common-railsystem
EP2718556B1 (de) Verfahren zur raildruckregelung
DE102018218599A1 (de) Verfahren zum Regeln eines Drucks in einem Kraftstoffhochdruckspeicher
DE102017211770A1 (de) Verfahren zur Druckregelung in einem Hochdruck-Einspritzsystem einer Brennkraftmaschine, und Brennkraftmaschine zur Durchführung eines solchen Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190225

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/14 20060101ALN20191209BHEP

Ipc: F02M 63/02 20060101ALN20191209BHEP

Ipc: F02D 41/20 20060101ALN20191209BHEP

Ipc: F02D 41/38 20060101AFI20191209BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1296087

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010016715

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201130

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010016715

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

26N No opposition filed

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210617

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1296087

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100617

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240619

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240628

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240625

Year of fee payment: 15