DE102009031528B3 - Verfahren zur Steuerung und Regelung einer Brennkraftmaschine - Google Patents

Verfahren zur Steuerung und Regelung einer Brennkraftmaschine Download PDF

Info

Publication number
DE102009031528B3
DE102009031528B3 DE102009031528A DE102009031528A DE102009031528B3 DE 102009031528 B3 DE102009031528 B3 DE 102009031528B3 DE 102009031528 A DE102009031528 A DE 102009031528A DE 102009031528 A DE102009031528 A DE 102009031528A DE 102009031528 B3 DE102009031528 B3 DE 102009031528B3
Authority
DE
Germany
Prior art keywords
pressure
volume flow
rail
rail pressure
pcr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102009031528A
Other languages
English (en)
Inventor
Armin DÖLKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Friedrichshafen GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Priority to DE102009031528A priority Critical patent/DE102009031528B3/de
Application granted granted Critical
Publication of DE102009031528B3 publication Critical patent/DE102009031528B3/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • F02D41/3854Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped with elements in the low pressure part, e.g. low pressure pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • F02M63/0235Means for varying pressure in common rails by bleeding fuel pressure
    • F02M63/025Means for varying pressure in common rails by bleeding fuel pressure from the common rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method

Abstract

Vorgeschlagen wird ein Verfahren zur Steuerung und Regelung einer Brennkraftmaschine (1), bei dem der Raildruck (pCR) über eine niederdruckseitige Saugdrossel (4) als erstes Druckstellglied in einem Raildruck-Regelkreis geregelt wird. Die Erfindung ist dadurch gekennzeichnet, dass eine Raildruck-Störgröße zur Beeinflussung des Raildrucks (pCR) über ein hochdruckseitiges Druckregelventil (12) als zweites Druckstellglied erzeugt wird, über welches Kraftstoff aus dem Rail (6) in einen Kraftstofftank (2) abgesteuert wird.

Description

  • Die Erfindung betrifft ein Verfahren zur Steuerung und Regelung einer Brennkraftmaschine nach dem Oberbegriff von Anspruch 1.
  • Bei einer Brennkraftmaschine mit Common-Railsystem wird die Güte der Verbrennung maßgeblich über das Druckniveau im Rail bestimmt. Zur Einhaltung der gesetzlichen Emissionsgrenzwerte wird daher der Raildruck geregelt. Typischerweise umfasst ein Raildruck-Regelkreis eine Vergleichsstelle zur Bestimmung einer Regelabweichung, einen Druckregler zum Berechnen eines Stellsignals, die Regelstrecke und ein Softwarefilter zur Berechnung des Ist-Raildrucks im Rückkopplungszweig. Berechnet wird die Regelabweichung aus einem Soll-Raildruck zum Ist-Raildruck. Die Regelstrecke umfasst das Druckstellglied, das Rail und die Injektoren zum Einspritzen des Kraftstoffs in die Brennräume der Brennkraftmaschine.
  • Aus der DE 197 31 995 A1 ist ein Common-Railsystem mit Druckregelung bekannt, bei dem der Druckregler mit unterschiedlichen Reglerparametern bestückt wird. Durch die unterschiedlichen Reglerparameter soll die Druckregelung stabiler sein. Die Reglerparameter wiederum werden in Abhängigkeit von Betriebsparametern, hier: die Motordrehzahl und die Soll-Einspritzmenge, berechnet. An Hand der Reglerparameter berechnet dann der Druckregler das Stellsignal für ein Druckregelventil, über welches der Kraftstoffabfluss aus dem Rail in den Kraftstofftank festgelegt wird. Das Druckregelventil ist folglich auf der Hochdruckseite des Common-Railsystems angeordnet. Als alternative Maßnahmen zur Druckregelung sind eine elektrische Vorförderpumpe oder eine steuerbare Hochdruckpumpe in dieser Fundstelle aufgezeigt.
  • Auch die DE 103 30 466 B3 beschreibt ein Common-Railsystem mit Druckregelung, bei dem jedoch der Druckregler über das Stellsignal auf eine Saugdrossel zugreift. Über die Saugdrossel wiederum wird der Zulaufquerschnitt zur Hochdruckpumpe festgelegt. Die Saugdrossel ist folglich auf der Niederdruckseite des Common-Railsystems angeordnet. Ergänzend kann bei diesem Common-Railsystem noch ein passives Druckbegrenzungsventil als Schutzmaßnahme vor zu hohem Raildruck vorgesehen sein. Über das geöffnete Druckbegrenzungsventil wird dann der Kraftstoff aus dem Rail in den Kraftstofftank abgeleitet. Ein entsprechendes Common-Railsystem ist aus der DE 10 2006 040 441 B3 bekannt.
  • Die DE 102 61 414 A1 beschreibt ebenfalls ein Common-Railsystem mit einem passiven Druckbegrenzungsventil und einem Raildruck-Regelkreis zur Regelung des Raildrucks über die niederdruckseitige Saugdrossel. Zur Verringerung der Hysterese der Saugdrossel bei geringeren Durchflussmengen ist ein Rückkopplungszweig mit Leckageventil von der Hoch- auf die Niederdruckseite vorhanden. Bei geöffnetem Leckageventil wird also Kraftstoff von der Hochdruckseite vor die Saugdrossel gefördert, wodurch der Volumenstrom der Saugdrossel oberhalb desjenigen Bereichs gehalten wird, in welchem die Hysterese der Saugdrossel eine wesentliche Rolle spielt. Das Leckageventil öffnet, sobald der Raildruck das Leerlauf-Druckniveau übersteigt.
  • Bauartbedingt treten bei einem Common-Railsystem eine Steuer- und eine Konstantleckage auf. Die Steuerleckage ist dann wirksam, wenn der Injektor elektrisch angesteuert wird, das heißt, während der Dauer der Einspritzung. Mit abnehmender Einspritzdauer sinkt daher auch die Steuerleckage. Die Konstantleckage ist immer wirksam, das heißt, auch dann, wenn der Injektor nicht angesteuert wird. Verursacht wird diese auch durch die Bauteiltoleranzen. Da die Konstantleckage mit steigendem Raildruck zunimmt und mit fallendem Raildruck abnimmt, werden die Druckschwingungen im Rail bedämpft. Bei der Steuerleckage verhält es sich hingegen umgekehrt. Steigt der Raildruck, so wird zur Darstellung einer konstanten Einspritzmenge die Einspritzdauer verkürzt, was eine sinkende Steuerleckage zur Folge hat. Sinkt der Raildruck, so wird die Einspritzdauer entsprechend vergrößert, was eine steigende Steuerleckage zur Folge hat. Die Steuerleckage führt also dazu, dass die Druckschwingungen im Rail verstärkt werden. Die Steuer- und die Konstantleckage stellen einen Verlustvolumenstrom dar, welcher von der Hochdruckpumpe gefördert und verdichtet wird. Dieser Verlustvolumenstrom führt aber dazu, dass die Hochdruckpumpe größer als notwendig ausgelegt werden muss. Zudem wird ein Teil der Antriebsenergie der Hochdruckpumpe in Wärme umgesetzt, was wiederum die Erwärmung des Kraftstoffs und eine Wirkungsgrad-Reduktion der Brennkraftmaschine bewirkt.
  • Zur Verringerung der Konstantleckage werden in der Praxis die Bauteile miteinander vergossen. Eine Verringerung der Konstantleckage hat allerdings den Nachteil, dass sich das Stabilitätsverhalten des Common-Railsystems verschlechtert und die Druckregelung schwieriger wird. Deutlich wird dies im Schwachlastbereich, weil hier die Einspritzmenge, also das entnommene Kraftstoffvolumen, sehr gering ist. Ebenso deutlich wird dies bei einem Lastabwurf von 100% nach 0% Last, da hier die Einspritzmenge auf Null reduziert wird und sich daher der Raildruck nur langsam wieder abbaut. Dies wiederum bewirkt eine lange Ausregelzeit.
  • Ausgehend von einem Common-Railsystem mit einer Raildruckregelung über eine niederdruckseitige Saugdrossel und mit verringerter Konstantleckage, liegt der Erfindung die Aufgabe zu Grunde, das Stabilitätsverhalten und die Ausregelzeit zu optimieren.
  • Gelöst wird diese Aufgabe durch ein Verfahren zur Steuerung und Regelung einer Brennkraftmaschine mit den Merkmalen von Anspruch 1. Die Ausgestaltungen sind in den Unteransprüchen dargestellt.
  • Das Verfahren besteht darin, dass neben der Raildruckregelung über die niederdruckseitige Saugdrossel als erstes Druckstellglied eine Raildruck-Störgröße zur Beeinflussung des Raildrucks über ein hochdruckseitiges Druckregelventil als zweites Druckstellglied erzeugt wird. Über das hochdruckseitige Druckregelventil wird Kraftstoff aus dem Rail in einen Kraftstofftank abgesteuert. Es wird über die Steuerung des Druckregelventils eine Konstantleckage nachgebildet. Berechnet wird die Raildruck-Störgröße in Abhängigkeit des Ist-Raildrucks und eines Soll-Volumenstroms des Druckregelventils über ein Druckregelventil-Kennfeld. Der Soll-Volumenstrom wiederum wird in Abhängigkeit einer Soll-Einspritzmenge und einer Motordrehzahl über ein Soll-Volumenstrom-Kennfeld berechnet. Bei einer momentenbasierten Struktur wird anstelle der Soll-Einspritzmenge ein Soll-Moment als Eingangsgröße für das Soll-Volumenstrom-Kennfeld verwendet. Das Soll-Volumenstrom-Kennfeld ist in der Form ausgeführt, dass in einem Schwachlastbereich ein Soll-Volumenstrom mit einem positiven Wert, zum Beispiel 2 Liter/Minute, und in einem Normalbetriebsbereich ein Soll-Volumenstrom von Null berechnet wird. Unter Schwachlastbereich ist im Sinne der Erfindung der Bereich kleiner Einspritzmengen und damit kleiner Motorleistung zu verstehen.
  • Da der Kraftstoff nur im Schwachlastbereich und in kleiner Menge abgesteuert wird, erfolgt keine signifikante Erhöhung der Kraftstofftemperatur und auch keine signifikante Verringerung des Wirkungsgrads der Brennkraftmaschine. Die erhöhte Stabilität des Hochdruck-Regelkreises im Schwachlastbereich kann daran erkannt werden, dass der Raildruck im Schubbetrieb etwa konstant bleibt und bei einem Lastabwurf der Raildruck-Spitzenwert ein deutlich reduziertes Druckniveau hat.
  • In einer Ausführungsform ist zur Verbesserung der Genauigkeit noch vorgesehen, dass die Raildruck-Störgröße ergänzend mittels eines unterlagerten Stromregelkreises, alternativ mittels eines unterlagerten Stromregelkreises nebst Vorsteuerung, bestimmt wird.
  • In den Figuren ist ein bevorzugtes Ausführungsbeispiel dargestellt. Es zeigen:
  • 1 ein Systemschaubild,
  • 2 einen Raildruck-Regelkreis,
  • 3 ein Blockschaltbild,
  • 4 einen Stromregelkreis,
  • 5 einen Stromregelkreis mit Vorsteuerung,
  • 6 ein Soll-Volumenstrom-Kennfeld,
  • 7 ein Zeitdiagramm und
  • 8 einen Programm-Ablaufplan.
  • Die 1 zeigt ein Systemschaubild einer elektronisch gesteuerten Brennkraftmaschine 1 mit einem Common-Railsystem. Das Common-Railsystem umfasst folgende mechanische Komponenten: eine Niederdruckpumpe 3 zur Förderung von Kraftstoff aus einem Kraftstofftank 2, eine veränderbare, niederdruckseitige Saugdrossel 4 zur Beeinflussung des durchströmenden Kraftstoff-Volumenstroms, eine Hochdruckpumpe 5 zur Förderung des Kraftstoffs unter Druckerhöhung, ein Rail 6 zum Speichern des Kraftstoffs und Injektoren 7 zum Einspritzen des Kraftstoffs in die Brennräume der Brennkraftmaschine 1. Optional kann das Common-Railsystem auch mit Einzelspeichern ausgeführt sein, wobei dann zum Beispiel im Injektor 7 ein Einzelspeicher 8 als zusätzliches Puffervolumen integriert ist. Als Schutz vor einem unzulässig hohen Druckniveau im Rail 6 ist ein passives Druckbegrenzungsventil 11 vorgesehen, welches im geöffneten Zustand den Kraftstoff aus dem Rail 6 absteuert. Ein elektrisch ansteuerbares Druckregelventil 12 verbindet ebenfalls das Rail 6 mit dem Kraftstofftank 2. Über die Stellung des Druckregelventils 12 wird ein Kraftstoffvolumenstrom definiert, welcher aus dem Rail 6 in den Kraftstofftank 2 abgeleitet wird. Im weiteren Text wird dieser Kraftstoffvolumenstrom als Raildruck-Störgröße VDRV bezeichnet.
  • Die Betriebsweise der Brennkraftmaschine 1 wird durch ein elektronisches Steuergerät (ECU) 10 bestimmt. Das elektronische Steuergerät 10 beinhaltet die üblichen Bestandteile eines Mikrocomputersystems, beispielsweise einen Mikroprozessor, I/O-Bausteine, Puffer und Speicherbausteine (EEPROM, RAM). In den Speicherbausteinen sind die für den Betrieb der Brennkraftmaschine 1 relevanten Betriebsdaten in Kennfeldern/Kennlinien appliziert. Über diese berechnet das elektronische Steuergerät 10 aus den Eingangsgrößen die Ausgangsgrößen. In der 1 sind exemplarisch folgende Eingangsgrößen dargestellt: der Raildruck pCR, der mittels eines Rail-Drucksensors 9 gemessen wird, eine Motordrehzahl nMOT, ein Signal FP zur Leistungsvorgabe durch den Betreiber und eine Eingangsgröße EIN. Unter der Eingangsgröße EIN sind die weiteren Sensorsignale zusammengefasst, beispielsweise der Ladeluftdruck eines Abgasturboladers. Bei einem Common-Railsystem mit Einzelspeichern 8 ist der Einzelspeicherdruck pE eine zusätzliche Eingangsgröße des elektronischen Steuergeräts 10.
  • In 1 sind als Ausgangsgrößen des elektronischen Steuergeräts 10 ein Signal PWMSD zur Ansteuerung der Saugdrossel 4 als erstes Druckstellglied, ein Signal ve zur Ansteuerung der Injektoren 7 (Spritzbeginn/Spritzende), ein Signal PWMDV zur Ansteuerung des Druckregelventils 12 als zweites Druckstellglied und eine Ausgangsgröße AUS dargestellt. Die Ausgangsgröße AUS steht stellvertretend für die weiteren Stellsignale zur Steuerung und Regelung der Brennkraftmaschine 1, beispielsweise für ein Stellsignal zur Aktivierung eines zweiten Abgasturboladers bei einer Registeraufladung.
  • Die 2 zeigt einen Raildruck-Regelkreis 13 zur Regelung des Raildrucks pCR. Die Eingangsgrößen des Raildruck-Regelkreises 13 sind: ein Soll-Raildruck pCR(SL), ein Soll-Verbrauch V2, die Motordrehzahl nMOT, die PWM-Grundfrequenz fPWM und eine Größe E1. Unter der Größe E1 sind beispielsweise die Batteriespannung und der ohmsche Widerstand der Saugdrosselspule mit Zuleitung zusammengefasst, welche in die Berechnung des PWM-Signals mit eingehen. Eine erste Ausgangsgröße des Raildruck-Regelkreises 13 ist der Rohwert des Raildrucks pCR. Eine zweite Ausgangsgröße des Raildruck-Regelkreises 13 entspricht dem Ist-Raildruck pCR(IST), welcher in einer Steuerung 14 (3) weiter verarbeitet wird. Aus dem Rohwert des Raildrucks pCR wird mittels eines Filters 20 der Ist-Raildruck pCR(IST) berechnet. Dieser wird dann mit dem Sollwert pCR(SL) an einem Summationspunkt A verglichen, woraus eine Regelabweichung ep resultiert. Aus der Regelabweichung ep berechnet ein Druckregler 15 seine Stellgröße, welche einem Volumenstrom V1 mit der physikalischen Einheit Liter/Minute entspricht. Zum Volumenstrom V1 wird an einem Summationspunkt B der berechnete Soll-Verbrauch V2 addiert. Berechnet wird der Soll-Verbrauch V2 über eine Berechnung 23, welche in der 3 dargestellt ist und in Verbindung mit dieser erklärt wird. Das Ergebnis der Addition am Summationspunkt B stellt den Volumenstrom V3 dar, welcher die Eingangsgröße einer Begrenzung 16 ist. Die Begrenzung 16 wird in Abhängigkeit der Motordrehzahl nMOT verändert. Die Ausgangsgröße der Begrenzung 16 entspricht einem Soll-Volumenstrom VSL. Liegt der Volumenstrom V3 unterhalb des Grenzwerts der Begrenzung 16, so entspricht der Wert des Soll-Volumenstroms VSL dem Wert des Volumenstroms V3. Der Soll-Volumenstrom VSL ist die Eingangsgröße einer Pumpen-Kennlinie 17. Über die Pumpen-Kennlinie 17 wird dem Soll-Volumenstrom VSL ein elektrischer Soll-Strom iSL zugeordnet. Der Soll-Strom iSL wird danach in einer Berechnung 18 in ein PWM-Signal PWMSD umgerechnet. Das PWM-Signal PWMSD stellt hierbei die Einschaltdauer dar und die Frequenz fPWM entspricht der Grundfrequenz. Mit dem PWM-Signal PWMSD wird dann die Magnetspule der Saugdrossel beaufschlagt. Dadurch wird der Weg des Magnetkerns verändert, wodurch der Förderstrom der Hochdruckpumpe frei beeinflusst wird. Aus Sicherheitsgründen ist die Saugdrossel stromlos offen und wird über die PWM-Ansteuerung in Richtung der Schließstellung beaufschlagt. Der Berechnung des PWM-Signals 18 kann ein Stromregelkreis unterlagert sein, wie dieser aus der DE 10 2004 061 474 A1 bekannt ist. Die Hochdruckpumpe, die Saugdrossel, das Rail und gegebenenfalls die Einzelspeicher entsprechen einer Regelstrecke 19. Damit ist der Regelkreis geschlossen.
  • Die 3 zeigt als Blockschaltbild den stark vereinfachten Raildruck-Regelkreis 13 der 2 und die Steuerung 14. Über die Steuerung 14 wird die Raildruck-Störgröße VDRV erzeugt. Die Eingangsgrößen der Steuerung 14 sind: der Ist-Raildruck pCR(IST), die Motordrehzahl nMOT und die Soll-Einspritzmenge QSL. Die Soll-Einspritzmenge QSL wird entweder über ein Kennfeld in Abhängigkeit eines Leistungswunsches berechnet oder entspricht der Stellgröße eines Drehzahlreglers. Die physikalische Einheit der Soll-Einspritzmenge ist mm3/Hub. Bei einer momentenorientierten Struktur wird anstelle der Soll-Einspritzmenge QSL ein Soll-Moment MSL als Eingangsgröße verwendet. Eine erste Ausgangsgröße ist die Raildruck-Störgröße VDRV, also demjenigen Kraftstoffvolumenstrom, welcher vom Druckregelventil aus dem Rail in den Kraftstofftank abgesteuert wird. Eine zweite Ausgangsgröße ist der Soll-Verbrauch V2, welcher im Raildruck-Regelkreis 13 weiterverarbeitet wird. Über eine Kennlinie 21 wird dem Ist-Raildruck pCR(IST) ein maximaler Volumenstrom VMAX, Einheit: Liter/Minute, zugeordnet. Die Kennlinie 21 ist beispielhaft als ansteigende Gerade mit den Eckwerten A(0 bar; 0 L/min) und B (2200 bar; 7.5 L/min) ausgeführt. Der maximale Volumenstrom VMAX ist eine der Eingangsgrößen einer Begrenzung 24.
  • An Hand der Motordrehzahl nMOT und der Soll-Einspritzmenge QSL wird über eine Berechnung 23 der Soll-Verbrauch V2 berechnet. Ebenfalls an Hand der Motordrehzahl nMOT und der Soll-Einspritzmenge QSL wird über das Soll-Volumenstrom-Kennfeld 22 (3D-Kennfeld) ein erster Soll-Volumenstrom VDV1(SL) für das Druckregelventil berechnet. Das Soll-Volumenstrom-Kennfeld 22 ist in der Form ausgeführt, dass im Schwachlastbereich, zum Beispiel bei Leerlauf, ein positiver Wert des ersten Soll-Volumenstroms VDV1(SL) berechnet wird, während im Normalbetriebsbereich ein erster Soll-Volumenstrom VDV1(SL) von Null berechnet wird. Eine mögliche Ausführungsform des Soll-Volumenstrom-Kennfelds 22 ist in der 6 dargestellt und wird in Verbindung mit dieser näher erklärt. Der erste Soll-Volumenstrom VDV1(SL) hat die physikalische Einheit Liter/Minute. Der erste Soll-Volumenstrom VDV1(SL) ist die zweite Eingangsgröße für die Begrenzung 24. Über die Begrenzung 24 wird der erste Soll-Volumenstrom VDV1(SL) auf den Wert des maximalen Volumenstroms VMAX begrenzt. Die Ausgangsgröße entspricht dem Soll-Volumenstrom VDV(SL), welchen das Druckregelventil aus dem Rail in den Kraftstofftank absteuern soll. Ist der erste Soll-Volumenstrom VDV1(SL) kleiner als der maximale Volumenstrom VMAX, so wird der Wert des Soll-Volumenstroms VDV(SL) auf den Wert des ersten Soll-Volumenstroms VDV1(SL) gesetzt. Anderenfalls wird der Wert des Soll-Volumenstroms VDV(SL) auf den Wert des maximalen Volumenstroms VMAX gesetzt. Der Soll-Volumenstrom VDV(SL) und der Ist-Raildruck pCR(IST) sind die Eingangsgrößen des Druckregelventil-Kennfelds 25. Das Druckregelventil-Kennfeld 25 stellt eine Kennfeld-Inversion dar, das heißt, das physikalische (stationäre) Verhalten des Druckregelventils wird mit diesem Kennfeld invertiert. Die Ausgangsgröße des Druckregelventil-Kennfelds 25 ist ein Soll-Strom iDV(SL), welcher anschließend über die Berechnung 26 in ein PWM-Signal PWMDV umgerechnet wird. Der Umrechnung kann eine Stromregelung, Stromregelkreis 27, oder eine Stromregelung mit Vorsteuerung unterlagert sein. Die Stromregelung ist in der 4 dargestellt und wird in Verbindung mit dieser erklärt. Die Stromregelung mit Vorsteuerung ist in der 5 dargestellt und wird in Verbindung mit dieser erklärt. Mit dem PWM-Signal PWMDV wird das Druckregelventil 12 angesteuert. Der sich am Druckregelventil 12 einstellende elektrische Strom iDV wird zur Stromregelung über ein Filter 28 in einen Ist-Strom iDV(IST) umgerechnet und auf die Berechnung PWM-Signal 26 zurückgekoppelt. Das Ausgangssignal des Druckregelventils 12 entspricht der Raildruck-Störgröße VDRV, also demjenigen Kraftstoffvolumenstrom, welcher aus dem Rail in den Kraftstofftank abgesteuert wird.
  • Die 4 zeigt eine reine Stromregelung. Die Eingangsgrößen sind der Soll-Strom iDV(SL), der Ist-Strom iDV(IST), die Batteriespannung UBAT und Reglerparameter (kp, Tn). Die Ausgangsgröße ist das PWM-Signal PWMDV, mit welchem das Druckregelventil angesteuert wird. Aus dem Soll-Strom iDV(SL) und dem Ist-Strom iDV(IST), siehe 3, wird zunächst die Strom-Regelabweichung ei berechnet. Die Strom-Regelabweichung ei ist die Eingangsgröße des Stromreglers 29. Der Stromregler 29 kann als PI- oder PI(DT1)-Algorithmus ausgeführt sein. Im Algorithmus werden die Reglerparameter verarbeitet. Diese sind unter anderem durch den Proportionalbeiwert kp und die Nachstellzeit Tn charakterisiert. Die Ausgangsgröße des Stromreglers 29 ist eine Soll-Spannung UDV(SL) des Druckregelventils. Diese wird durch die Batteriespannung UBAT dividiert und danach mit 100 multipliziert. Das Ergebnis entspricht der Einschaltdauer des Druckregelventils in Prozent.
  • Die 5 zeigt eine Stromregelung mit kombinierter Vorsteuerung. Die Eingangsgrößen sind der Soll-Strom iDV(SL), der Ist-Strom iDV(IST), die Reglerparameter (kp, Tn), der ohmsche Widerstand RDV des Druckregelventils und die Batteriespannung UBAT. Die Ausgangsgröße ist auch hier das PWM-Signal PWMDV, mit welchem das Druckregelventil angesteuert wird. Zunächst wird der Soll-Strom iDV(SL) mit dem ohmschen Widerstand RDV des Druckregelventils multipliziert. Das Ergebnis entspricht einer Vorsteuerspannung UDV(VS). An Hand des Soll-Stroms iDV(SL) und des Ist-Stroms iDV(IST) wird die Strom-Regelabweichung ei berechnet. Aus der Strom-Regelabweichung ei berechnet dann der Stromregler 29 als Stellgröße die Soll-Spannung UDV(SL) des Stromreglers. Der Stromregler 29 kann auch hier entweder als PI- oder als PI(DT1)-Regler ausgeführt sein. Danach werden die Soll-Spannung UDV(SL) und die Vorsteuerspannung UDV(VS) addiert, durch die Batteriespannung UBAT geteilt und mit 100 multipliziert.
  • In der 6 ist das Soll-Volumenstrom-Kennfeld 22 dargestellt. Über dieses wird der erste Soll-Volumenstrom VDV1(SL) für das Druckregelventil bestimmt. Der erste Soll-Volumenstrom VDV1(SL) und der Soll-Volumenstrom VDV(SL) sind identisch, solange der erste Soll-Volumenstrom VDV1(SL) kleiner als der maximale Volumenstrom VMAX ist (3: Begrenzung 24). Die Eingangsgrößen sind die Motordrehzahl nMOT und die Soll-Einspritzmenge QSL. In waagerechter Richtung sind Motordrehzahlwerte von 0 bis 2000 1/min aufgetragen. In senkrechter Richtung sind die Soll-Einspritzmengenwerte von 0 bis 270 mm3/Hub aufgetragen. Die Werte innerhalb des Kennfelds entsprechen dann dem zugeordneten ersten Soll-Volumenstrom VDV1(SL) in Liter/Minute. Über das Soll-Volumenstrom-Kennfeld 22 wird der abzusteuernde Kraftstoffvolumenstrom festgelegt, also die Raildruck-Störgröße. Das Soll-Volumenstrom-Kennfeld 22 ist in der Form ausgeführt, dass im Normalbetriebsbereich ein erster Soll-Volumenstrom von VDV1(SL) = 0 Liter/Minute berechnet wird. Der Normalbetriebsbereich ist in der Figur doppelt gerahmt. Der einfach gerahmte Bereich entspricht dem Schwachlastbereich. Im Schwachlastbereich wird ein positiver Wert des ersten Soll-Volumenstroms VDV1(SL) berechnet. Beispielsweise bei nMOT = 1000 1/min und QSL = 30 mm3/Hub wird ein erster Soll-Volumenstrom von VDV1(SL) = 1.5 Liter/Minute festgelegt.
  • Die 7 zeigt als Zeitdiagramm einen Lastabwurf von 100% auf 0% Last bei einer Brennkraftmaschine, welche eine Notstromaggregat (60 Hz-Generator) antreibt. Die 7 besteht aus den Teildiagrammen 7A bis 7E. Diese zeigen jeweils über der Zeit: die Motordrehzahl nMOT in 7A, die Soll-Einspritzmenge QSL in 7B, den Saugdrosselstrom iSD in 7C, den Ist-Raildruck pCR(IST) in 7D und den Soll-Volumenstrom VDV(SL) des Druckregelventils in 7E. Als gestrichelte Linie ist in den 7C und 7D der Verlauf ohne Druckregelventil dargestellt, während als durchgezogene Linien der Verlauf mit Ansteuerung des Druckregelventils dargestellt ist. Im dargestellten Zeitbereich sind die Soll-Motordrehzahl (= 1800 1/min) und der Soll-Raildruck (= 1800 bar) konstant. Die Soll-Motordrehzahl ist hierbei mit der Nenndrehzahl identisch.
  • Die 7A zeigt die Motordrehzahl nMOT, welche nach dem Abwerfen der Last, Zeitpunkt t1, zunächst ansteigt und sich anschließend wieder auf der Nenndrehzahl nMOT = 1800 1/min einpendelt (t8). Steigt die Motordrehzahl nMOT an, so fällt die Soll-Einspritzmenge QSL vom Anfangswert QSL = 300 mm3/Hub ab (7B). Zum Zeitpunkt t3 erreicht diese den Wert QSL = 0 mm3/Hub. Zum Zeitpunkt t6 schwingt die Motordrehzahl nMOT unter die Nenndrehzahl, was zu einem Ansteigen der Soll-Einspritzmenge QSL ab dem Zeitpunkt t6 führt. Ist die Motordrehzahl nMOT eingeschwungen, so ist auch die Soll-Einspritzmenge QSL eingeschwungen, und zwar auf die Leerlaufmenge von etwa QSL = 30 mm3/Hub.
  • Der Verlauf ohne Druckregelventil und Ansteuerung (gestrichelte Linien) ist wie folgt: Mit steigender Motordrehzahl nMOT und fallender Soll-Einspritzmenge QSL ab t1, steigt der Ist-Raildruck pCR(IST) an, siehe 7D. Da der Raildruck pCR geregelt wird, ergibt sich bei konstantem Soll-Raildruck pCR(SL) eine negative Regelabweichung (2: ep), so dass der Druckregler die Saugdrossel in Schließrichtung beaufschlagt. Dies geschieht über einen ansteigenden Saugdrosselstrom iSD. Zum Zeitpunkt t5 erreicht der Saugdrosselstrom iSD seinen Maximalwert iSD = 1,8 A, siehe 7C. Nun ist die Saugdrossel vollständig geschlossen. Da gleichzeitig die Soll-Einspritzmenge QSL = 0 mm3/Hub ist, erreicht der ist-Raildruck pCR(IST) zum Zeitpunkt t5 seinen Maximalwert von pCR(IST) = 2400 bar und verharrt auf diesem Druckniveau. Zum Zeitpunkt t6 steigt die Soll-Einspritzmenge QSL wieder an, so dass nunmehr der Ist-Raildruck pCR(IST) wieder fällt. Da die Raildruck-Regelabweichung weiterhin negativ ist, bleibt der Saugdrosselstrom iSD auch weiterhin auf seinem Maximalwert iSD = 1,8 A, das heißt, die Saugdrossel bleibt geschlossen. Auf Grund der geringen Einspritzmenge im Leerlauf fällt der Ist-Raildruck pCR(IST) nur sehr langsam ab. Ab dem Zeitpunkt t8 erreicht der Ist-Raildruck pCR(IST) schließlich wieder das Niveau des Soll-Raildrucks, hier: 1800 bar. Anschließend kommt es zu einem Unterschwingen des Ist-Raildrucks pCR(IST), so dass sich nun kurzzeitig eine positive Raildruck-Regelabweichung ergibt. Dies führt dazu, dass nach dem Zeitpunkt t8 der Saugdrosselstrom iSD abnimmt und sich auf einem tieferen Niveau einpendelt.
  • Der Verlauf bei Verwendung eines Druckregelventils (durchgezogene Linie) ist wie folgt: Zum Zeitpunkt t2 unterschreitet die Soll-Einspritzmenge QSL den Wert QSL = 120 mm3/Hub, wodurch über das Soll-Volumenstrom-Kennfeld (6) ein zunehmender erster Soll-Volumenstrom VDV1(SL) und ein zunehmender Soll-Volumenstrom VDV(SL) berechnet wird. Die Soll-Einspritzmenge QSL fällt nun ab bis auf QSL = 0 mm3/Hub, was zu einem Ansteigen des Soll-Volumenstroms auf VDV(SL) = 2 Liter/Minute bis zum Zeitpunkt t3 führt, siehe 7E. Bis zum Zeitpunkt t6 verharrt die Soll-Einspitzmenge auf dem Wert QSL = 0 mm3/Hub. Entsprechend bleibt der Soll-Volumenstrom auf dem Wert VDV(SL) = 2 Liter/Minute. Nach dem Zeitpunkt t6 steigt die Soll-Einspritzmenge QSL an und schwingt sich anschließend auf der Leerlaufmenge QSL = 30 mm3/Hub ein. Entsprechend fällt der Soll-Volumenstrom VDV(SL) für das Druckregelventil nach dem Zeitpunkt t6 ab und pendelt sich auf den Wert VDV(SL) = 1,5 Liter/Minute ein. Da der Soll-Volumenstrom VDV(SL) und damit der vom Druckregelventil abgesteuerte Kraftstoffvolumenstrom zum Zeitpunkt t2 ansteigt, wird der Anstieg des Ist-Raildrucks pCR(IST) verlangsamt. Zum Zeitpunkt t4 erreicht der Ist-Raildruck pCR(IST) den Spitzenwert von pCR(IST) = 2200 bar (7D). Der folgende Abfall des Ist-Raildrucks pCR(IST) erfolgt auf Grund der Absteuermenge schneller, so dass der Nenndruck (1800 bar) bereits zum Zeitpunkt t7 wieder erreicht wird. Da der Ist-Raildruck pCR(IST) vom Zeitpunkt t2 an, in Folge der Absteuerung des Kraftstoffes über das Druckregelventil, langsamer zunimmt, steigt auch der Saugdrosselstrom iSD langsamer an. Dadurch erreicht dieser später seinen Maximalwert von iSD = 1,8 A, siehe 7C. Ab dem Zeitpunkt t7 ergibt sich eine positive Raildruck-Regelabweichung, wodurch der Saugdrosselstrom iSD abfällt. Da nun im Leerlauf ein Soll-Volumenstrom von VDV(SL) = 1,5 Liter/Minute abgesteuert wird, erreicht der Saugdrosselstrom iSD im Leerlauf ein tieferes Niveau von iSD = 1,3 A.
  • Die dargestellten Diagramme zeigen, dass die Absteuerung des Kraftstoffes mit Hilfe des Druckregelventils zu einer Reduktion des Spitzenwerts des Ist-Raildrucks pCR(IST) führt. In der 7D ist dieser Druckunterschied mit dp gekennzeichnet. Durch die Absteuerung wird zudem nach einem Lastabwurf die Ausregelzeit des Ist-Raildrucks pCR(IST) reduziert. In der 7D ist die Ausregelzeit ohne Druckregelventil mit dt1 und die Ausregelzeit mit Druckregelventil mit dt2 gekennzeichnet. Insgesamt wird im Schwachlastbereich die Stabilität des Hochdruck-Regelkreises erhöht, ohne dass es hierbei zu einer signifikanten Erhöhung der Kraftstofftemperatur und Verringerung des Wirkungsgrads der Brennkraftmaschine kommt.
  • In der 8 ist ein Programm-Ablaufplan des Verfahrens zur Bestimmung der Raildruck-Störgröße dargestellt. In den Schritten S6 bis S9 ist die Ausgestaltung des Stromregelkreises mit Vorsteuerung enthalten. Bei S1 werden die Soll-Einspritzmenge QSL, die Motordrehzahl nMOT, der Ist-Raildruck pCR(IST), die Batteriespannung UBAT und der Ist-Strom iDV(IST) des Druckregelventils eingelesen. Danach wird bei S2 über das Soll-Volumenstrom-Kennfeld in Abhängigkeit der Soll-Einspritzmenge QSL und der Motordrehzahl nMOT der erste Soll-Volumenstrom VDV1(SL) berechnet. Bei S3 wird an Hand des Ist-Raildrucks pCR(IST) ein maximaler Volumenstrom VMAX (3: 21) berechnet und der erste Soll-Volumenstrom VDV1(SL) auf den maximalen Volumenstrom VMAX begrenzt, S4. Ist der erste Soll-Volumenstrom VDV1(SL) kleiner als der maximale Volumenstrom VMAX, so wird der Soll-Volumenstrom VDV(SL) auf den Wert des ersten Soll-Volumenstroms VDV1(SL) gesetzt. Anderenfalls wird der Soll-Volumenstrom VDV(SL) auf den Wert des maximalen Volumenstroms VMAX gesetzt. Bei S5 wird in Abhängigkeit des Soll-Volumenstroms VDV(SL) und des Ist-Raildrucks pCR(IST) der Soll-Strom iDV(SL) berechnet. Bei S6 wird eine Vorsteuerspannung UDV(VS) berechnet, indem der Soll-Strom iDV(SL) mit dem ohmschen Widerstand RDV des Druckregelventils und der Zuleitung multipliziert wird. Bei S7 wird als Stellgröße des Stromreglers eine Soll-Spannung UDV(SL) in Abhängigkeit der Strom-Regelabweichung ei berechnet. Dann werden bei S8 die Soll-Spannung UDV(SL) für das Druckregelventil und die Vorsteuerspannung UDV(VS) addiert. Das Ergebnis wird dann bei S9 durch die Batteriespannung UBAT geteilt und mit 100 multipliziert, was der Einschaltdauer des PWM-Signals zur Ansteuerung des Druckregelventils entspricht. Damit ist der Programmablauf beendet.
  • 1
    Brennkraftmaschine
    2
    Kraftstofftank
    3
    Niederdruckpumpe
    4
    Saugdrossel
    5
    Hochdruckpumpe
    6
    Rail
    7
    Injektor
    8
    Einzelspeicher (optional)
    9
    Rail-Drucksensor
    10
    elektronisches Steuergerät (ECU)
    11
    Druckbegrenzungsventil, passiv
    12
    Druckregelventil, elektrisch ansteuerbar
    13
    Raildruck-Regelkreis
    14
    Steuerung
    15
    Druckregler
    16
    Begrenzung
    17
    Pumpen-Kennlinie
    18
    Berechnung PWM-Signal
    19
    Regelstrecke
    20
    Filter
    21
    Kennlinie
    22
    Soll-Volumenstrom-Kennfeld
    23
    Berechnung
    24
    Begrenzung
    25
    Druckregelventil-Kennfeld
    26
    Berechnung PWM-Signal
    27
    Stromregelkreis (Druckregelventil)
    28
    Filter
    29
    Stromregler

Claims (6)

  1. Verfahren zur Steuerung und Regelung einer Brennkraftmaschine (1), bei dem der Raildruck (pCR) über eine niederdruckseitige Saugdrossel (4) als erstes Druckstellglied in einem Raildruck-Regelkreis (13) geregelt wird und bei dem eine Raildruck-Störgröße (VDRV) zur Beeinflussung des Raildrucks (pCR) über ein hochdruckseitiges Druckregelventil (12) als zweites Druckstellglied erzeugt wird, über welches Kraftstoff aus dem Rail (6) in einen Kraftstofftank (2) abgesteuert wird, dadurch gekennzeichnet, dass die Raildruck-Störgröße (VDRV) in Abhängigkeit des Ist-Raildrucks (pCR(IST)) und eines Soll-Volumenstroms (VDV(SL)) des Druckregelventils (12) über ein Druckregelventil-Kennfeld (25) berechnet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Soll-Volumenstrom (VDV(SL)) des Druckregelventils (12) in Abhängigkeit einer Soll-Einspritzmenge (QSL), alternativ einem Soll-Moment (MSL), und einer Motordrehzahl (nMOT) über ein Soll-Volumenstrom-Kennfeld (22) berechnet wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Soll-Volumenstrom-Kennfeld (22) in der Form ausgeführt ist, dass in einem Schwachlastbereich ein Soll-Volumenstrom (VDV(SL)) mit einem positiven Wert und in einem Normalbetriebsbereich ein Soll-Volumenstrom (VDV(SL)) von Null berechnet wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Soll-Volumenstrom (VDV(SL)) in Abhängigkeit des Ist-Raildrucks (pCR(IST)) begrenzt wird.
  5. Verfahren nach einem der vorausgegangenen Ansprüche, dadurch gekennzeichnet, dass die Raildruck-Störgröße (VDRV) ergänzend mittels eines unterlagerten Stromregelkreises (27) bestimmt wird.
  6. Verfahren nach einem der vorausgegangenen Ansprüche, dadurch gekennzeichnet, dass die Raildruck-Störgröße (VDRV) ergänzend mittels eines unterlagerten Stromregelkreises (27) nebst Vorsteuerung bestimmt wird.
DE102009031528A 2009-07-02 2009-07-02 Verfahren zur Steuerung und Regelung einer Brennkraftmaschine Active DE102009031528B3 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102009031528A DE102009031528B3 (de) 2009-07-02 2009-07-02 Verfahren zur Steuerung und Regelung einer Brennkraftmaschine

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102009031528A DE102009031528B3 (de) 2009-07-02 2009-07-02 Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
EP10725397.3A EP2449240B1 (de) 2009-07-02 2010-06-17 Verfahren zur regelung des raildrucks in einem common-rail einspritzsystem einer brennkraftmaschine
PCT/EP2010/003654 WO2011000480A1 (de) 2009-07-02 2010-06-17 Verfahren zur regelung des raildrucks in einem common-rail einspritzsystem einer brennkraftmaschine
CN201080031067.1A CN102575610B (zh) 2009-07-02 2010-06-17 用于在内燃机的共轨喷射系统中调节轨道压力的方法
US13/381,878 US9624867B2 (en) 2009-07-02 2010-06-17 Method for the closed-loop control of the rail pressure in a common-rail injection system of an internal combustion engine

Publications (1)

Publication Number Publication Date
DE102009031528B3 true DE102009031528B3 (de) 2010-11-11

Family

ID=42735727

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102009031528A Active DE102009031528B3 (de) 2009-07-02 2009-07-02 Verfahren zur Steuerung und Regelung einer Brennkraftmaschine

Country Status (5)

Country Link
US (1) US9624867B2 (de)
EP (1) EP2449240B1 (de)
CN (1) CN102575610B (de)
DE (1) DE102009031528B3 (de)
WO (1) WO2011000480A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012025442A1 (de) * 2010-08-27 2012-03-01 Continental Automotive Gmbh Verfahren und vorrichtung zum betreiben eines kraftstoff-hochdruckspeichereinspritzsystems für eine brennkraftmaschine
DE102014213648B3 (de) * 2014-07-14 2015-10-08 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine
WO2016184537A1 (de) 2015-05-21 2016-11-24 Mtu Friedrichshafen Gmbh Einspritzsystem für eine brennkraftmaschine sowie brennkraftmaschine mit einem solchen einspritzsystem
DE102017214001B3 (de) 2017-08-10 2019-02-07 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Brennkraftmaschine mit einem Einspritzsystem, Einspritzsystem, eingerichtet zur Durchführung eines solchen Verfahrens, und Brennkraftmaschine mit einem solchen Einspritzsystem
DE102019202004A1 (de) * 2019-02-14 2020-08-20 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben eines Einspritzsystems einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine mit einem solchen Einspritzsystem

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190285006A1 (en) * 2018-03-19 2019-09-19 Woodward, Inc. Pressure regulating mass flow system for multipoint gaseous fuel injection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19731995A1 (de) * 1997-07-25 1999-01-28 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10261414A1 (de) * 2002-12-30 2004-07-15 Siemens Ag Kraftstoffeinspritzanlage
DE10330466B3 (de) * 2003-07-05 2004-10-21 Mtu Friedrichshafen Gmbh Verfahren zur Regelung einer Brennkraftmaschine
DE102004061474A1 (de) * 2004-12-21 2006-06-29 Mtu Friedrichshafen Gmbh Verfahren und Einrichtung zur Regelung des Raildrucks
DE102006040441B3 (de) * 2006-08-29 2008-02-21 Mtu Friedrichshafen Gmbh Verfahren zum Erkennen des Öffnens eines passiven Druck-Begrenzungsventils

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2869464B2 (ja) * 1989-05-30 1999-03-10 富士重工業株式会社 2サイクルエンジンの燃料噴射制御装置
JP3033214B2 (ja) * 1991-02-27 2000-04-17 株式会社デンソー 複数の燃料圧送手段による蓄圧式燃料供給方法及び装置と、複数の流体圧送手段を有する機器における異常判断装置
US5284119A (en) * 1991-07-08 1994-02-08 Walter Potoroka, Sr. Internal combustion engine fuel injection apparatus and system
US5423303A (en) * 1993-05-28 1995-06-13 Bennett; David E. Fuel rail for internal combustion engine
JP2885076B2 (ja) 1994-07-08 1999-04-19 三菱自動車工業株式会社 蓄圧式燃料噴射装置
JP3460338B2 (ja) * 1994-10-31 2003-10-27 株式会社デンソー 内燃機関の排気還流制御装置
JP3594144B2 (ja) * 1995-08-30 2004-11-24 株式会社デンソー 燃料供給装置
DE19548278B4 (de) * 1995-12-22 2007-09-13 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19612412B4 (de) * 1996-03-28 2006-07-06 Siemens Ag Regelung für ein Druckfluid-Versorgungssystem, insbesondere für den Hochdruck in einem Kraftstoff-Einspritzsystem
US6024064A (en) * 1996-08-09 2000-02-15 Denso Corporation High pressure fuel injection system for internal combustion engine
US6016791A (en) * 1997-06-04 2000-01-25 Detroit Diesel Corporation Method and system for controlling fuel pressure in a common rail fuel injection system
JP3612175B2 (ja) * 1997-07-15 2005-01-19 株式会社日立製作所 筒内噴射エンジンの燃料圧力制御装置
DE19731994B4 (de) * 1997-07-25 2007-11-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19752025B4 (de) * 1997-11-24 2006-11-09 Siemens Ag Verfahren und Vorrichtung zum Regeln des Kraftstoffdruckes in einem Kraftstoffspeicher
DE19757655C2 (de) * 1997-12-23 2002-09-26 Siemens Ag Verfahren und Vorrichtung zur Funktionsüberwachung eines Drucksensors
DE19802583C2 (de) 1998-01-23 2002-01-31 Siemens Ag Vorrichtung und Verfahren zum Druckregeln in Speichereinspritzsystemen mit einem elektromagnetisch betätigten Druckstellglied
US5975061A (en) * 1998-02-17 1999-11-02 Walbro Corporation Bypass fuel pressure regulator
US6257209B1 (en) * 1998-03-18 2001-07-10 Toyota Jidosha Kabushiki Kaisha Evaporative fuel processing apparatus for lean-burn internal combustion engine
JP4023020B2 (ja) * 1999-02-19 2007-12-19 トヨタ自動車株式会社 高圧燃料噴射系の燃料圧制御装置
DE19916100A1 (de) * 1999-04-09 2000-10-12 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
JP3633388B2 (ja) * 1999-08-04 2005-03-30 トヨタ自動車株式会社 内燃機関の高圧燃料ポンプ制御装置
DE19950289A1 (de) * 1999-10-19 2001-04-26 Bosch Gmbh Robert Kraftstoffversorgungseinrichtung für eine Brennkraftmaschine eines Kraftfahrzeugs
US6279541B1 (en) * 2000-12-01 2001-08-28 Walbro Corporation Fuel supply system responsive to engine fuel demand
JP3908480B2 (ja) * 2001-05-16 2007-04-25 ボッシュ株式会社 燃料噴射装置における動作制御方法及び燃料噴射装置
DE10211283A1 (de) * 2002-03-14 2003-09-25 Bosch Gmbh Robert Verfahren zum Betreiben eines Kraftstoffzumesssystems eines Kraftfahrzeugs, Computerprogramm, Steuergerät und Kraftstoffzumesssystem
JP3885652B2 (ja) 2002-04-26 2007-02-21 株式会社デンソー 蓄圧式燃料噴射装置
JP3978655B2 (ja) * 2002-04-30 2007-09-19 株式会社デンソー 内燃機関の燃料供給装置
DE60302104T2 (de) * 2002-06-06 2006-06-14 Siemens Vdo Automotive Corp Ein Durchflussdruckregler mit einem perforierten Federteller, der eine Membran auf einem Sitz befestigt
ITTO20020619A1 (it) * 2002-07-16 2004-01-16 Fiat Ricerche Metodo di controllo della pressione di iniezione del combustibile di un impianto di iniezione a collettore comune di un motore a combustione
JP2004183550A (ja) * 2002-12-03 2004-07-02 Isuzu Motors Ltd コモンレール圧検出値のフィルタ処理装置及びコモンレール式燃料噴射制御装置
DE10261446A1 (de) 2002-12-31 2004-07-08 Robert Bosch Gmbh Verfahren zum Ansteuern eines Druckregelventils in einem Kraftstoffeinspritzsystem einer Brennkraftmaschine
DE10318646A1 (de) * 2003-04-24 2004-11-18 Siemens Ag Verfahren zum Steuern eines Kraftstoffdrucks in einer Zuführungseinrichtung für Kraftstoff einer Brennkraftmaschine
JP4207834B2 (ja) * 2003-06-27 2009-01-14 株式会社デンソー 蓄圧式燃料噴射システム
DE10349628A1 (de) * 2003-10-24 2005-06-02 Robert Bosch Gmbh Verfahren zum Regeln des Druckes in einem Kraftstoffspeicher einer Brennkraftmaschine
JP4042057B2 (ja) * 2003-11-04 2008-02-06 株式会社デンソー バルブ開度調整装置およびコモンレール式燃料噴射装置
DE102004023365B4 (de) * 2004-05-12 2007-07-19 Mtu Friedrichshafen Gmbh Verfahren zur Druck-Regelung eines Speichereinspritzsystems
DE102004059330A1 (de) * 2004-12-09 2006-06-14 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftstoffsystems einer Brennkraftmaschine
JP4475205B2 (ja) * 2005-09-01 2010-06-09 株式会社デンソー コモンレール式燃料噴射システムの制御装置
JP4170345B2 (ja) * 2006-01-31 2008-10-22 三菱電機株式会社 内燃機関の高圧燃料ポンプ制御装置
JP4600369B2 (ja) * 2006-09-05 2010-12-15 株式会社デンソー 減圧弁遅延補償装置、及びプログラム
DE102006049266B3 (de) * 2006-10-19 2008-03-06 Mtu Friedrichshafen Gmbh Verfahren zum Erkennen eines geöffneten passiven Druck-Begrenzungsventils
WO2008090033A1 (de) 2007-01-24 2008-07-31 Continental Automotive Gmbh Verfahren zum regeln einer kraftstoffzuführeinrichtung für eine brennkraftmaschine
AT468481T (de) * 2007-07-05 2010-06-15 Magneti Marelli Powertrain Spa Verfahren zur steuerung eines überdruckventils in einem common-rail-kraftstoffversorgungssystem
JP4345861B2 (ja) * 2007-09-20 2009-10-14 株式会社デンソー 燃料噴射制御装置およびそれを用いた燃料噴射システム
DE102007052092B4 (de) * 2007-10-31 2011-06-01 Continental Automotive Gmbh Verfahren und Kraftstoffsystem zum Steuern der Kraftstoffzufuhr für eine Brennkraftmaschine
DE102007052451B4 (de) 2007-11-02 2009-09-24 Continental Automotive Gmbh Verfahren zum Bestimmen der aktuellen Dauerleckagemenge einer Common-Rail-Einspritzanlage und Einspritzanlage für eine Brennkraftmaschine
DE102007059352B3 (de) * 2007-12-10 2009-06-18 Continental Automotive Gmbh Kraftstoffdruckregelsystem und Kraftstoffdruckregelverfahren
DE102007060006B3 (de) * 2007-12-13 2009-07-09 Continental Automotive Gmbh Kraftstoffdruckregelsystem
JP4428443B2 (ja) * 2007-12-18 2010-03-10 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102007061228A1 (de) 2007-12-19 2009-06-25 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftstoffsystems einer Brennkraftmaschine
JP4976318B2 (ja) * 2008-01-30 2012-07-18 日立オートモティブシステムズ株式会社 内燃機関の燃料噴射装置
JP4873378B2 (ja) * 2008-04-21 2012-02-08 株式会社デンソー 吸入空気量センサの異常診断装置
US20090326788A1 (en) * 2008-06-25 2009-12-31 Honda Motor Co., Ltd. Fuel injection device
DE102009031527B3 (de) * 2009-07-02 2010-11-18 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19731995A1 (de) * 1997-07-25 1999-01-28 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10261414A1 (de) * 2002-12-30 2004-07-15 Siemens Ag Kraftstoffeinspritzanlage
DE10330466B3 (de) * 2003-07-05 2004-10-21 Mtu Friedrichshafen Gmbh Verfahren zur Regelung einer Brennkraftmaschine
DE102004061474A1 (de) * 2004-12-21 2006-06-29 Mtu Friedrichshafen Gmbh Verfahren und Einrichtung zur Regelung des Raildrucks
DE102006040441B3 (de) * 2006-08-29 2008-02-21 Mtu Friedrichshafen Gmbh Verfahren zum Erkennen des Öffnens eines passiven Druck-Begrenzungsventils

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012025442A1 (de) * 2010-08-27 2012-03-01 Continental Automotive Gmbh Verfahren und vorrichtung zum betreiben eines kraftstoff-hochdruckspeichereinspritzsystems für eine brennkraftmaschine
US9410498B2 (en) 2010-08-27 2016-08-09 Continental Automotive Gmbh Method and device for operating a high-pressure accumulator fuel injection system for an internal combustion engine
DE102014213648B3 (de) * 2014-07-14 2015-10-08 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine
WO2016008565A1 (de) 2014-07-14 2016-01-21 Mtu Friedrichshafen Gmbh Verfahren zum betreiben einer brennkraftmaschine, einspritzsystem für eine brennkraftmaschine sowie brennkraftmaschine
US10787987B2 (en) 2014-07-14 2020-09-29 Mtu Friedrichshafen Gmbh Controlling a pressure regulating valve of a fuel rail
DE102015209377A1 (de) 2015-05-21 2016-11-24 Mtu Friedrichshafen Gmbh Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine mit einem solchen Einspritzsystem
WO2016184537A1 (de) 2015-05-21 2016-11-24 Mtu Friedrichshafen Gmbh Einspritzsystem für eine brennkraftmaschine sowie brennkraftmaschine mit einem solchen einspritzsystem
DE102017214001B3 (de) 2017-08-10 2019-02-07 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Brennkraftmaschine mit einem Einspritzsystem, Einspritzsystem, eingerichtet zur Durchführung eines solchen Verfahrens, und Brennkraftmaschine mit einem solchen Einspritzsystem
WO2019030245A1 (de) 2017-08-10 2019-02-14 Mtu Friedrichshafen Gmbh Verfahren zum betreiben einer brennkraftmaschine mit einem einspritzsystem, einspritzsystem, eingerichtet zur durchführung eines solchen verfahrens, und brennkraftmaschine mit einem solchen einspritzsystem
DE102019202004A1 (de) * 2019-02-14 2020-08-20 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben eines Einspritzsystems einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine mit einem solchen Einspritzsystem
WO2020165333A1 (de) 2019-02-14 2020-08-20 Mtu Friedrichshafen Gmbh Verfahren zum betreiben eines einspritzsystems einer brennkraftmaschine, einspritzsystem für eine brennkraftmaschine sowie brennkraftmaschine mit einem solchen einspritzsystem

Also Published As

Publication number Publication date
US9624867B2 (en) 2017-04-18
EP2449240B1 (de) 2020-06-24
CN102575610A (zh) 2012-07-11
US20120097131A1 (en) 2012-04-26
CN102575610B (zh) 2015-01-28
WO2011000480A1 (de) 2011-01-06
EP2449240A1 (de) 2012-05-09

Similar Documents

Publication Publication Date Title
DE60314488T2 (de) Regeleinrichtung für das Common-Rail-Einspritzsystem einer Brennkraftmaschine
DE102008041659B4 (de) Einspritzsteuervorrichtung einer Verbrennungskraftmaschine
DE19818421B4 (de) Kraftstoffversorgungsanlage einer Brennkraftmaschine
EP1442212B1 (de) Einspritzanlage mit notlauffunktion sowie zugehöriges notlaufverfahren
DE102009045309B4 (de) Verfahren und Steuergerät zum Betreiben eines Ventils
EP1360406B1 (de) Kraftstoffsystem, verfahren zum betreiben des kraftstoff-systems, computerprogramm sowie steuer- und/oder regelgerät zur steuerung des kraftstoffsystems
EP2376762B1 (de) Verfahren zum betreiben eines kraftstoffeinspritzsystems einer brennkraftmaschine
EP1509694B1 (de) Hochdruckspeicher für kraftstoffeinspritzsysteme mit integriertem druckregelventil
DE102004059655B4 (de) Kraftstoffeinspritzsystem mit geringer Wärmeerzeugung
DE102005040502B4 (de) Brennkraftmaschinen-Kraftstoffdrucksteuergerät
EP1809876B1 (de) Verfahren und vorrichtung zur steuerung oder regelung des ladedrucks einer brennkraftmaschine mit einem verdichter
DE10330466B3 (de) Verfahren zur Regelung einer Brennkraftmaschine
DE10329331B3 (de) Verfahren zur Diagnose eines Volumenstromregelventils bei einer Brennkraftmaschine mit Hochdruck-Speichereinspritzsystem
DE112014002349T9 (de) Kraftstoffeinspritzsteuervorrichtung und Kraftstoffeinspritzsystem
DE19802583C2 (de) Vorrichtung und Verfahren zum Druckregeln in Speichereinspritzsystemen mit einem elektromagnetisch betätigten Druckstellglied
DE69826092T2 (de) Verfahren und vorrichtung zum einspritzen von brennstoff in einen motor
EP1629187B1 (de) Verfahren zum betreiben eines verbrennungsmotors, kraftstoffsystem und ein volumenstromregelventil
DE102008042329B4 (de) Steuereinrichtung für ein Kraftstoffeinspritzsystem
DE102015107507A1 (de) Druckvorrichtung zum Verringern von tickenden Geräuschen im Leerlauf einer Kraftmaschine
DE102006023468B3 (de) Verfahren und Vorrichtung zur Steuerung eines Einspritzventils eines Verbrennungsmotors
DE102014222474A1 (de) Anpassung der Fluidmenge des Systems zur Zusatzeinspritzung eines Verbrennungsmotors an das Signal der Klopfregelung
DE112011100884T5 (de) Kraftstoffeinspritzsteuerungsvorrichtung
DE102015111949A1 (de) Stromimpuls-Steuerverfahren für Kraftstoffsaugpumpen
EP1281860B1 (de) Einspritzanlage für eine Brennkraftmaschine und Verfahren zu deren Betrieb
DE102011075732A1 (de) Regelverfahren für ein Einspritzventil und Einspritzsystem

Legal Events

Date Code Title Description
8364 No opposition during term of opposition
R020 Patent grant now final

Effective date: 20110211