EP2396354B1 - Perfluoroelastomer - Google Patents

Perfluoroelastomer Download PDF

Info

Publication number
EP2396354B1
EP2396354B1 EP10702878.9A EP10702878A EP2396354B1 EP 2396354 B1 EP2396354 B1 EP 2396354B1 EP 10702878 A EP10702878 A EP 10702878A EP 2396354 B1 EP2396354 B1 EP 2396354B1
Authority
EP
European Patent Office
Prior art keywords
perfluoroelastomer
recurring units
units derived
moles
per
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10702878.9A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2396354A1 (en
Inventor
Claudia Manzoni
Milena Stanga
Margherita Albano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solvay Specialty Polymers Italy SpA
Original Assignee
Solvay Specialty Polymers Italy SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay Specialty Polymers Italy SpA filed Critical Solvay Specialty Polymers Italy SpA
Priority to EP10702878.9A priority Critical patent/EP2396354B1/en
Publication of EP2396354A1 publication Critical patent/EP2396354A1/en
Application granted granted Critical
Publication of EP2396354B1 publication Critical patent/EP2396354B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms

Definitions

  • This invention pertains to certain perfluoroelastomer having improved thermal resistance, to a process for their manufacture, and to the cured articles obtainable therefrom.
  • Fluoroelastomer are synthetic rubbers designed for demanding service applications in hostile environments, endowed with outstanding chemical and thermal resistance.
  • Perfluoroelastomers having fully fluorinated fluorinated backbones and typically based on copolymers of tetrafluoroethylene (TFE) and perfluoromethylvinylether (MVE), optionally comprising recurring units derived from cure-site containing monomers, represent in this domain top-edge class of materials, introduced into the market since late sixties.
  • TFE tetrafluoroethylene
  • MVE perfluoromethylvinylether
  • these TFE/MVE copolymers have roughly a 60/40 to 65/35 mol/mol composition, which enables achievement of required elastomeric behaviour; such copolymers generally also comprise recurring units derived from monomers comprising curing sites and/or end groups contemplating such cure sites. Typically, peroxide curing is preferred technique used for their vulcanization and moulding.
  • EP 633274 A (AUSIMONT SPA) 11.01.1995 discloses thermoprocessable copolymers of tetrafluoroethylene comprising recurring units derived from perfluoromethylvinylether and from at least one additional fluoromonomer, like, notably perfluoroethylvinylether.
  • WO 2007/096348 (SOLVAY SOLEXIS SPA) 30.08.2007 discloses thermoplastic terpolymers of tetrafluoroethylene, perfluoromethylvinylether and perfluoroethylvinylether, suitable for extrusion moulding cable sheathings.
  • thermoplastic materials While thus terpolymers of TFE, MVE and perfluoroethylvinylether (EVE) are well-known in the art as thermoplastic materials, little or nothing is known about effects of modifying a curable perfluoroelastomer by addition of EVE for obtaining cured articles, in particular for improving thermal resistance.
  • EVE perfluoroethylvinylether
  • the Applicant has now surprisingly found that when combining in a curable perfluoroelastomer recurring units derived from both EVE and MVE in well-defined amounts with tetrafluoroethylene, it is advantageously possible to significantly improve performances of perfluoroelastomers, in particular at temperatures exceeding 200°C.
  • the Applicant has surprisingly found that when combining recurring units derived from EVE and MVE in amounts as above described, it is advantageously possible to significantly improve performances of curable perfluoroelastomers, in particular at temperatures exceeding 200°C.
  • perfluoroelastomer is intended to denote a fluoroelastomer substantially free of hydrogen atoms.
  • substantially free of hydrogen atom is understood to mean that the perfluoroelastomer consists essentially of recurring units derived from ethylenically unsaturated monomers comprising at least one fluorine atom and free of hydrogen atoms [per(halo)fluoromonomer (PFM)].
  • the perfluoroelastomer can comprise, in addition to recurring units derived from TFE, EVE and MVE, recurring units derived from one or more per(halo)fluoromonomer (PFM).
  • PFM per(halo)fluoromonomer
  • perfluoroelastomer comprises recurring units derived from a per(halo)fluoromonomer (PFM) different from TFE, EVE and MVE
  • these recurring units are typically comprised in an amount not exceeding 5 % moles, preferably not exceeding 3 % moles, with respect to total moles of TFE, EVE and MVE.
  • PFM per(halo)fluoromonomers
  • the perfluoroelastomer also comprises recurring units derived from a bis-olefin of general formula (I) here below: wherein:
  • the amount of chain units derived from these bis-olefins is generally between 0.01 and 1.0 % by moles, preferably between 0.03 and 0.5 mol and even more preferably between 0.05 and 0.2 % by moles with respect to the total moles of TFE, EVE and MVE recurring units.
  • the perfluoroelastomer of the invention is peroxide curable, that is to say that it is susceptible of being cured with the aid of peroxide radical initiators in suitable conditions and/or in combination with appropriate ingredients.
  • the perfluoroelastomer of the invention is peroxide curable, that is to say that it is susceptible of being cured with the aid of peroxide radical initiators in suitable conditions and/or in combination with appropriate ingredients.
  • the perfluoroelastomer of the invention typically comprises at least one of:
  • the perfluoroelastomer of the invention comprises iodine and/or bromine atoms in the chain and/or in the end position of the perfluoroelastomer chain.
  • the perfluoroelastomer of the invention is free from recurring units derived from a cure-site monomer comprising a functional group of -CN type.
  • the introduction of these iodine and/or bromine atoms may be performed by adding, to the reaction mixture, brominated and/or iodinated comonomers, otherwise called brominated and/or iodinated cure-site comonomers.
  • the perfluoroelastomer of this embodiment typically comprises, in addition to TFE, MVE and EVE recurring units, from 0.05 to 5 % moles of recurring units derived from said brominated and/or iodinated comonomers.
  • Non limitative examples of said brominated and/or iodinated cure-site comonomers are notably:
  • perfluoroelastomer of the invention may comprise iodine and/or bromine atoms in end-groups. These iodine and/or bromine atoms are typically introduced during manufacture of perfluoroelastomer, by polymerizing in the presence of iodinated and/or brominated chain-transfer agents.
  • chain-transfer agents mention can be made of (i) alkali metal or alkaline-earth metal iodides and/or bromides and (ii) iodine and/or bromine containing fluorocarbon compounds.
  • preferred iodinated and/or brominated chain-transfer agents are those of formula R f (I) x (Br) y , where R f is a (per)fluoroalkyl or a (per)fluorochloroalkyl containing from 1 to 8 carbon atoms, while x and y are integers between 0 and 2, with 1 ⁇ x+y ⁇ 2.
  • R f is a (per)fluoroalkyl or a (per)fluorochloroalkyl containing from 1 to 8 carbon atoms
  • x and y are integers between 0 and 2, with 1 ⁇ x+y ⁇ 2.
  • the use of these compounds for manufacturing fluoroelastomers is notably described in US 4243770 (DAIKIN IND LTD) 06.01.1981 and US 4943622 (NIPPON MEKTRON KK [JP]) 24.07.1990.
  • the perfluoroelastomer of the invention preferably consists essentially of recurring units derived from TFE, EVE and MVE, and, optionally from the bis-olefin as above detailed, and further comprises iodine and/or bromine atoms in end-groups.
  • the amount of recurring units derived from EVE is advantageously of at least 2 %, preferably of at least 3 %, more preferably of at least 4 % by moles, with respect to total moles of TFE, EVE and MVE.
  • the amount of recurring units derived from EVE is advantageously of at most 17 %, preferably of at most 15 %, more preferably of at most 10 % by moles, with respect to total moles of TFE, EVE and MVE.
  • the amount of recurring units derived from MVE is advantageously of at least 23 %, preferably of at least 24 %, more preferably of at least 25 % by moles, with respect to total moles of TFE, EVE and MVE.
  • the amount of recurring units derived from MVE is advantageously of at most 35 %, preferably of at most 33 %, more preferably of at most 30 % by moles, with respect to total moles of TFE, EVE and MVE.
  • the perfluoroelastomer of the invention comprises recurring units derived from both EVE and MVE in an amount of from 26 to 42 by moles, more preferably from 28 to 40 % by moles, most preferably from 28 to 37 % by moles, with respect to total moles of TFE, EVE and MVE.
  • Preferred perfluoroelastomers of the invention are those consisting essentially of:
  • More preferred perfluoroelastomers of the invention are those consisting essentially of:
  • the preparation of the fluoroelastomer of the invention may be performed by copolymerizing the monomers in aqueous emulsion, according to methods that are well known in the art, in the presence of radical initiators (for example alkali metal or ammonium persulfates, perphosphates, perborates or percarbonates), optionally in combination with ferrous, cuprous or silver salts, or salts of other readily oxidizable metals.
  • radical initiators for example alkali metal or ammonium persulfates, perphosphates, perborates or percarbonates
  • ferrous, cuprous or silver salts or salts of other readily oxidizable metals.
  • Surfactants of various types are usually also present in the reaction medium, among which fluorinated surfactants are more particularly preferred.
  • the polymerization reaction to obtain the perfluoroelastomer may be performed in bulk or in suspension, in an organic liquid in which a suitable radical initiator is present, according to well-known techniques.
  • the polymerization reaction is generally performed at temperatures of between 25 and 150°C, at a pressure of up to 10 MPa.
  • the preparation of the perfluoroelastomer is preferably performed as a microemulsion of perfluoropolyoxyalkylenes, as notably described in US 4789717 (AUSIMONT SPA [IT]) 06.12.1988 and US 4864006 (AUSIMONT SPA [IT]) 05.09.1989.
  • the perfluoroelastomer of the present invention are typically cured via peroxide vulcanization.
  • the peroxide-mediated vulcanization can be performed according to known techniques, via the addition of suitable peroxide capable of generating radicals by thermal decomposition.
  • Curable composition comprising the perfluoroelastomer of the invention thus typically comprises at least one peroxide, preferably at least one organic peroxide.
  • Said peroxide is typically used in amount of 0.05 to 10 %, preferably of 0.5 to 5 % by weight relative to the perfluoroelastomer.
  • dialkyl peroxides for instance di-tert-butyl peroxide and 2,5-dimethyl-2,5-bis(tert-butylperoxy)hexane; dicumyl peroxide; dibenzoyl peroxide; di-tert-butyl perbenzoate; bis[1,3-dimethyl-3-(tert-butylperoxy)butyl] carbonate.
  • Curable compound comprising the perfluoroelastomer of the invention can generally comprise additional ingredients, preferably selected from the group consisting of:
  • vulcanization coagents Among vulcanization coagents, mention can be notably made of triallyl cyanurate; triallyl isocyanurate (TAIC); tris(diallylamine)-s-triazine; triallyl phosphite; N,N-diallylacrylamide; N,N,N',N'-tetraallylmalonamide; trivinyl isocyanurate; 2,4,6-trivinyl-methyltrisiloxane, and bis-olefins of formula (I) as above detailed.
  • perfluoroelastomers comprising recurring units derived from cyano (-CN) containing monomers
  • aromatic polyamines compounds and/or organotin compounds can be used as vulcanization coagents.
  • polyamine compounds mention can be notably made of compounds of formula: H 2 N-Ar-NH 2 with Ar being an aromatic group of formula: and corresponding optionally substituted structures (e.g. further comprising hydroxyl groups), with Y being -O-, -S-, -SO 2 -, -CH 2 -, -C(O)-, -C(CF 3 ) 2 -, -C(CH 3 ) 2 -, -(CH 2 ) n -, -(CF 2 ) n -, n being an integer from 0 to 5.
  • Ar being an aromatic group of formula: and corresponding optionally substituted structures (e.g. further comprising hydroxyl groups)
  • Y being -O-, -S-, -SO 2 -, -CH 2 -, -C(O)-, -C(CF 3 ) 2 -, -C(CH 3 ) 2 -, -(CH 2 ) n -, -(
  • organotin compounds mention can be notably made of those of formula Ar' x SnY 4-x , wherein Ar' is an aromatic group, optionally comprising condensed rings, Y is an organic group comprising a carbon-carbon double bond, preferably an allyl, allenyl, propargyl group, and x is an integer from 0 to 3.
  • silica fillers are those preferred for achieving improved thermal resistance.
  • silica fillers silica having a pH value, determined according to the DIN ISO 787-9 standard, higher than 7, and/or silica having hydrophobic behaviour are preferred.
  • the use of these silica fillers in fluoroelastomer is notably described in WO 2008/003634 (SOLVAY SOLEXIS SPA [IT];) 10.01.2008 and in WO 2008/003635 (SOLVAY SOLEXIS SPA [IT];) 10.01.2008.
  • carbon black fillers In cases wherein improved water vapour resistance, especially at high temperature, is sought, carbon black fillers, and more particularly, those carbon black fillers having CTAB of 25 to 35 m 2 /g are preferred; these fillers are notably described in WO 2008/003636 (SOLVAY SOLEXIS SPA [IT];) 10.01.2008.
  • the invention also pertains to cured articles made from the perfluoroelastomer of the invention.
  • the cured articles of the invention are typically manufactured by a process comprising:
  • the curable perfluoroelastomer composition is molded and simultaneously vulcanized using techniques such as injection-moulding or compression-moulding, or alternatively by extrusion-moulding.
  • temperatures at which the vulcanizing-moulding are not particularly limited, temperatures of between 50°C and 250°C and preferably between 100°C and 220°C are generally used.
  • the vulcanized shaped pre-formed sealing articles can be subjected to a subsequent thermal post-treatment step.
  • This treatment is generally performed in suitable heating devices, generally electric ovens or convection ovens.
  • the thermal post-treatment is generally performed for a time from at least two minutes to 36 hours, preferably from 30 minutes to 24 hours and more preferably from 1 hour to 12 hours.
  • Temperature of such post-treatment is not particularly limited; it is generally understood that this post-treatment (elsewhere known as post-cure) is typically carried out at temperatures between 150 and 350°C, preferably between 200 and 300°C.
  • Fluoroelastomers described below have been formulated with or without additives/ingredients mentioned in the below embedded tables; addition of said additives/ingredients has been carried out following compounding procedures described in ASTM D 3182 standard; cured specimens have been prepared following procedure described in same standard.
  • M 100 is the stress in MPa for an elongation of 100 %
  • T.S. is the stress at break in MPa
  • E.B. is the elongation at break in %.
  • Shore A (3") hardness (HDS) has been determined according to ASTM D2240 - Type A Durometer standard at 25°C
  • Compression set has been determined on type 214 O-rings according to ASTM D329 and D1414 standards.
  • TFE tetrafluoroethylene
  • EVE perfluoroethylvinylether
  • MVE perfluoromethylvinylether
  • TAICROS ® TAIC liquid triallylisocyanurate commercially available from Evonik; (10) Carried out on post-cured specimens; vulcanizing-moulding and post-curing conditions: Cure: 20min at 160°C; post-cure: (8+16)h at 230°C. (7) CS on #214 O-ring.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
EP10702878.9A 2009-02-13 2010-02-08 Perfluoroelastomer Active EP2396354B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10702878.9A EP2396354B1 (en) 2009-02-13 2010-02-08 Perfluoroelastomer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09152866 2009-02-13
PCT/EP2010/051506 WO2010092022A1 (en) 2009-02-13 2010-02-08 Perfluoroelastomer
EP10702878.9A EP2396354B1 (en) 2009-02-13 2010-02-08 Perfluoroelastomer

Publications (2)

Publication Number Publication Date
EP2396354A1 EP2396354A1 (en) 2011-12-21
EP2396354B1 true EP2396354B1 (en) 2013-04-17

Family

ID=40456433

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10702878.9A Active EP2396354B1 (en) 2009-02-13 2010-02-08 Perfluoroelastomer

Country Status (7)

Country Link
US (2) US20110294944A1 (zh)
EP (1) EP2396354B1 (zh)
JP (2) JP5684150B2 (zh)
KR (1) KR101589783B1 (zh)
CN (1) CN102317330B (zh)
TW (1) TWI482784B (zh)
WO (1) WO2010092022A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20041251A1 (it) 2004-06-22 2004-09-22 Solvay Solexis Spa Gel di perfluoroelastomeri
CN103547612B (zh) * 2011-04-06 2016-04-27 3M创新有限公司 具有低玻璃化转变温度的含氟聚醚弹性体组合物
US9688786B2 (en) * 2011-06-09 2017-06-27 Solvay Specialty Polymers Italy S.P.A. Hyperbranched fluoroelastomer additive
JP6221085B2 (ja) 2013-02-07 2017-11-01 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー ポリヒドロキシ硬化性フルオロエラストマー組成物
JP6694814B2 (ja) * 2013-07-30 2020-05-20 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. 含フッ素熱可塑性エラストマー組成物
CN107690452B (zh) * 2015-05-29 2020-12-04 3M创新有限公司 包含*唑的全氟弹性体组合物
CN105294915B (zh) * 2015-12-01 2018-04-03 上海三爱富新材料股份有限公司 透明乙烯‑四氟乙烯四元共聚物
JP6618507B2 (ja) * 2016-05-30 2019-12-11 株式会社バルカー パーフルオロエラストマー組成物及びシール材
CN109890893B (zh) * 2016-10-27 2022-01-28 索尔维特殊聚合物意大利有限公司 氟弹性体组合物
EP3601426B1 (en) * 2017-03-31 2023-05-24 Solvay Specialty Polymers Italy S.p.A. Method of making cured parts
WO2021085008A1 (ja) * 2019-10-30 2021-05-06 リンテック株式会社 デバイス用接着シート

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035565A (en) * 1975-03-27 1977-07-12 E. I. Du Pont De Nemours And Company Fluoropolymer containing a small amount of bromine-containing olefin units
JPS53125491A (en) 1977-04-08 1978-11-01 Daikin Ind Ltd Fluorine-containing polymer easily curable and its curable composition
US4564662A (en) 1984-02-23 1986-01-14 Minnesota Mining And Manufacturing Company Fluorocarbon elastomer
IT1187684B (it) 1985-07-08 1987-12-23 Montefluos Spa Procedimento per la preparazione di fluoroelastomeri vulcanizzabili e prodotti cosi' ottenuti
US4694045A (en) * 1985-12-11 1987-09-15 E. I. Du Pont De Nemours And Company Base resistant fluoroelastomers
IT1189092B (it) 1986-04-29 1988-01-28 Ausimont Spa Processo di polimerizzazione in dispersione acquosa di monomeri fluorurati
IT1204903B (it) 1986-06-26 1989-03-10 Ausimont Spa Processo di polimerizzazione in dispersione acquosa di monomeri florati
JPS63304009A (ja) 1987-06-04 1988-12-12 Nippon Mektron Ltd パ−オキサイド加硫可能な含フッ素エラストマ−の製造方法
IT1264661B1 (it) * 1993-07-05 1996-10-04 Ausimont Spa Copolimeri termoprocessabilin del tetrafluoroetilene
WO1995002634A1 (en) 1993-07-16 1995-01-26 E.I. Du Pont De Nemours And Company High purity fluoroelastomer compositions
IT1265461B1 (it) * 1993-12-29 1996-11-22 Ausimont Spa Fluoroelastomeri comprendenti unita' monomeriche derivanti da una bis-olefina
IT1276980B1 (it) * 1995-10-20 1997-11-03 Ausimont Spa Composizioni fluoroelastomeriche
US5919878A (en) * 1996-09-13 1999-07-06 E. I. Du Pont De Nemours And Company Amorphous fluoropolymer containing perfluoro(ethyl vinyl ether)
US5969067A (en) * 1996-09-13 1999-10-19 E.I. Dupont De Nemours And Company Phosphorus-containing fluoromonomers and polymers thereof
EP1042078A1 (en) 1997-12-22 2000-10-11 E.I. Du Pont De Nemours And Company Process for sealing coatings
US6248823B1 (en) 1998-07-02 2001-06-19 E. I. Du Pont De Nemours And Company Solvents for amorphous fluoropolymers
JP2000053835A (ja) * 1998-08-07 2000-02-22 Nippon Mektron Ltd 加硫性フッ素ゴム組成物
EP1194973B1 (en) * 1999-04-30 2004-12-22 E.I. Du Pont De Nemours And Company Electrochemical uses of amorphous fluoropolymers
ITMI20012165A1 (it) * 2001-10-18 2003-04-18 Ausimont Spa Perfluoroelastomeri
JP3888232B2 (ja) * 2001-12-18 2007-02-28 ユニマテック株式会社 含フッ素三元共重合体
US6646077B1 (en) * 2002-07-11 2003-11-11 Dupont Dow Elastomers Llc Peroxide curable fluoroelastomers
WO2004011508A1 (en) * 2002-07-29 2004-02-05 3M Innovative Properties Company Process for making a fluoroelastomer
US7049365B2 (en) * 2003-01-06 2006-05-23 E. I. Du Pont De Nemours And Company Fluoropolymer sealant
CN101089024B (zh) * 2003-01-24 2010-08-18 大金工业株式会社 含氟弹性体及其固化用组合物
JP4314965B2 (ja) * 2003-10-27 2009-08-19 ユニマテック株式会社 防振・制振・吸音材料
ITMI20041251A1 (it) 2004-06-22 2004-09-22 Solvay Solexis Spa Gel di perfluoroelastomeri
ITMI20041571A1 (it) * 2004-07-30 2004-10-30 Solvay Solexis Spa Perfluoroelastomeri
ITMI20060328A1 (it) 2006-02-23 2007-08-24 Solvay Solexis Spa Cavi a basso rilascio di fumi
CN103254345A (zh) * 2006-02-23 2013-08-21 索尔维索莱克西斯公司 Lan电缆
ITMI20061291A1 (it) 2006-07-03 2008-01-04 Solvay Solexis Spa Composizioni (per) fluoroelastomeriche
ITMI20061290A1 (it) 2006-07-03 2008-01-04 Solvay Solexis Spa Composizioni (per) fluoroelastometriche
ITMI20061292A1 (it) 2006-07-03 2008-01-04 Solvay Solexis Spa Composizioni (per) fluoroelastomeriche

Also Published As

Publication number Publication date
KR101589783B1 (ko) 2016-02-01
KR20110128823A (ko) 2011-11-30
CN102317330A (zh) 2012-01-11
TW201041909A (en) 2010-12-01
JP2014208845A (ja) 2014-11-06
JP5684150B2 (ja) 2015-03-11
US20170008987A1 (en) 2017-01-12
TWI482784B (zh) 2015-05-01
WO2010092022A1 (en) 2010-08-19
CN102317330B (zh) 2014-09-24
EP2396354A1 (en) 2011-12-21
US20110294944A1 (en) 2011-12-01
US10023670B2 (en) 2018-07-17
JP2012518048A (ja) 2012-08-09

Similar Documents

Publication Publication Date Title
EP2396354B1 (en) Perfluoroelastomer
EP2396353B1 (en) Perfluoroelastomer
EP1031607B1 (en) Fluoroelastomer compositions
EP1632526B1 (en) Perfluoroelastomeric compositions
CA1271891A (en) Base resistant fluoroelastomers
EP2041215B1 (en) (per)fluoroelastomeric compositions
EP2718338B1 (en) Hyperbranched fluoroelastomer additive
EP2627683B1 (en) Fluoroelastomers
KR101770084B1 (ko) (퍼)플루오로엘라스토머 조성물
EP2655441B1 (en) Low viscosity fluoroelastomers
EP1630179B1 (en) Fluorocopolymer
EP2373735B1 (en) Vulcanized (per)fluoroelastomer sealing articles
EP3484953B1 (en) Fluoroelastomer composition
US20040236028A1 (en) Fluoroelastomer composition having excellent low temperature properties

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110913

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOLVAY SPECIALTY POLYMERS ITALY S.P.A.

DAX Request for extension of the european patent (deleted)
GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOLVAY SPECIALTY POLYMERS ITALY S.P.A.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 607279

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010006290

Country of ref document: DE

Effective date: 20130613

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 607279

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130417

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130817

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130728

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130819

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130718

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

26N No opposition filed

Effective date: 20140120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010006290

Country of ref document: DE

Effective date: 20140120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140208

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140208

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160211

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100208

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230624

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240108

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231228

Year of fee payment: 15

Ref country code: GB

Payment date: 20240108

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240111

Year of fee payment: 15

Ref country code: FR

Payment date: 20240103

Year of fee payment: 15

Ref country code: BE

Payment date: 20240105

Year of fee payment: 15