US20110294944A1 - Perfluoroelastomer - Google Patents

Perfluoroelastomer Download PDF

Info

Publication number
US20110294944A1
US20110294944A1 US13/148,062 US201013148062A US2011294944A1 US 20110294944 A1 US20110294944 A1 US 20110294944A1 US 201013148062 A US201013148062 A US 201013148062A US 2011294944 A1 US2011294944 A1 US 2011294944A1
Authority
US
United States
Prior art keywords
perfluoroelastomer
recurring units
units derived
moles
per
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/148,062
Other languages
English (en)
Inventor
Claudia Manzoni
Milena Stanga
Margherita Albano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solvay Specialty Polymers Italy SpA
Original Assignee
Solvay Solexis SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay Solexis SpA filed Critical Solvay Solexis SpA
Assigned to SOLVAY SOLEXIS S.P.A. reassignment SOLVAY SOLEXIS S.P.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALBANO, MARGHERITA, MANZONI, CLAUDIA, STANGA, MILENA
Publication of US20110294944A1 publication Critical patent/US20110294944A1/en
Assigned to SOLVAY SPECIALTY POLYMERS ITALY S.P.A. reassignment SOLVAY SPECIALTY POLYMERS ITALY S.P.A. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SOLVAY SOLEXIS S.P.A.
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms

Definitions

  • This invention pertains to certain perfluoroelastomer having improved thermal resistance, to a process for their manufacture, and to the cured articles obtainable therefrom.
  • Fluoroelastomer are synthetic rubbers designed for demanding service applications in hostile environments, endowed with outstanding chemical and thermal resistance.
  • Perfluoroelastomers having fully fluorinated fluorinated backbones and typically based on copolymers of tetrafluoroethylene (TFE) and perfluoromethylvinylether (MVE), optionally comprising recurring units derived from cure-site containing monomers, represent in this domain top-edge class of materials, introduced into the market since late sixties.
  • TFE tetrafluoroethylene
  • MVE perfluoromethylvinylether
  • these TFE/MVE copolymers have roughly a 60/40 to 65/35 mol/mol composition, which enables achievement of required elastomeric behaviour; such copolymers generally also comprise recurring units derived from monomers comprising curing sites and/or end groups contemplating such cure sites. Typically, peroxide curing is preferred technique used for their vulcanization and moulding.
  • EP 633274 A (AUSIMONT SPA) 11 Jan. 1995 discloses thermoprocessable copolymers of tetrafluoroethylene comprising recurring units derived from perfluoromethylvinylether and from at least one additional fluoromonomer, like, notably perfluoroethylvinylether.
  • WO 2007/096348 SOLVAY SOLEXIS SPA 30 Aug. 2007 discloses thermoplastic terpolymers of tetrafluoroethylene, perfluoromethylvinylether and perfluoroethylvinylether, suitable for extrusion moulding cable sheathings.
  • Amorphous plastomers of tetrafluorethylene, perfluoromethylvinylether and perfluoroethylvinylether have been aso described in the past.
  • U.S. Pat. No. 5,919,878 (E.I. DUPONT DE NEMOURS) 6 Jun. 1999 discloses amorphous terpolymers of TFE, MVE and perfluoroethylvinylether (EVE) suitable as thermoplastic coating.
  • Similar amorphous copolymers, suitable as adhesive or coating compositions are also known from WO 99/32234 (DU PONT) 1 Jul. 1999, EP 1093485 A (DU PONT) 25 Apr. 2001, U.S. Pat. No.
  • thermoplastic materials While thus terpolymers of TFE, MVE and perfluoroethylvinylether (EVE) are well-known in the art as thermoplastic materials, little or nothing is known about effects of modifying a curable perfluoroelastomer by addition of EVE for obtaining cured articles, in particular for improving thermal resistance.
  • EVE perfluoroethylvinylether
  • the Applicant has now surprisingly found that when combining in a curable perfluoroelastomer recurring units derived from both EVE and MVE in well-defined amounts with tetrafluoroethylene, it is advantageously possible to significantly improve performances of perfluoroelastomers, in particular at temperatures exceeding 200° C.
  • the Applicant has surprisingly found that when combining recurring units derived from EVE and MVE in amounts as above described, it is advantageously possible to significantly improve performances of curable perfluoroelastomers, in particular at temperatures exceeding 200° C.
  • perfluoroelastomer is intended to denote a fluoroelastomer substantially free of hydrogen atoms.
  • substantially free of hydrogen atom is understood to mean that the perfluoroelastomer consists essentially of recurring units derived from ethylenically unsaturated monomers comprising at least one fluorine atom and free of hydrogen atoms [per(halo)fluoromonomer (PFM)].
  • the perfluoroelastomer can comprise, in addition to recurring units derived from TFE, EVE and MVE, recurring units derived from one or more per(halo)fluoromonomer (PFM).
  • PFM per(halo)fluoromonomer
  • perfluoroelastomer comprises recurring units derived from a per(halo)fluoromonomer (PFM) different from TFE, EVE and MVE
  • these recurring units are typically comprised in an amount not exceeding 5% moles, preferably not exceeding 3% moles, with respect to total moles of TFE, EVE and MVE.
  • PFM per(halo)fluoromonomers
  • each of R f3 , R f4 , R f5 , R f6 is independently a fluorine atom, a C 1 -C 6 per(halo)fluoroalkyl group, optionally comprising one or more oxygen atom, e.g.
  • the perfluoroelastomer also comprises recurring units derived from a bis-olefin of general formula (I) here below:
  • the amount of chain units derived from these bis-olefins is generally between 0.01 and 1.0% by moles, preferably between 0.03 and 0.5 mol and even more preferably between 0.05 and 0.2% by moles with respect to the total moles of TFE, EVE and MVE recurring units.
  • the perfluoroelastomer of the invention is peroxide curable, that is to say that it is susceptible of being cured with the aid of peroxide radical initiators in suitable conditions and/or in combination with appropriate ingredients.
  • the perfluoroelastomer of the invention is peroxide curable, that is to say that it is susceptible of being cured with the aid of peroxide radical initiators in suitable conditions and/or in combination with appropriate ingredients.
  • the perfluoroelastomer of the invention typically comprises at least one of:
  • the perfluoroelastomer of the invention comprises iodine and/or bromine atoms in the chain and/or in the end position of the perfluoroelastomer chain.
  • the perfluoroelastomer of the invention is free from recurring units derived from a cure-site monomer comprising a functional group of —CN type.
  • the introduction of these iodine and/or bromine atoms may be performed by adding, to the reaction mixture, brominated and/or iodinated comonomers, otherwise called brominated and/or iodinated cure-site comonomers.
  • the perfluoroelastomer of this embodiment typically comprises, in addition to TFE, MVE and EVE recurring units, from 0.05 to 5% moles of recurring units derived from said brominated and/or iodinated comonomers.
  • Non limitative examples of said brominated and/or iodinated cure-site comonomers are notably:
  • perfluoroelastomer of the invention may comprise iodine and/or bromine atoms in end-groups. These iodine and/or bromine atoms are typically introduced during manufacture of perfluoroelastomer, by polymerizing in the presence of iodinated and/or brominated chain-transfer agents.
  • chain-transfer agents mention can be made of (i) alkali metal or alkaline-earth metal iodides and/or bromides and (ii) iodine and/or bromine containing fluorocarbon compounds.
  • preferred iodinated and/or brominated chain-transfer agents are those of formula R f (I) x (Br) y , where R f is a (per)fluoroalkyl or a (per)fluorochloroalkyl containing from 1 to 8 carbon atoms, while x and y are integers between 0 and 2, with 1 ⁇ x+y ⁇ 2.
  • R f is a (per)fluoroalkyl or a (per)fluorochloroalkyl containing from 1 to 8 carbon atoms
  • x and y are integers between 0 and 2, with 1 ⁇ x+y ⁇ 2.
  • the perfluoroelastomer of the invention preferably consists essentially of recurring units derived from TFE, EVE and MVE, and, optionally from the bis-olefin as above detailed, and further comprises iodine and/or bromine atoms in end-groups.
  • the amount of recurring units derived from EVE is advantageously of at least 2%, preferably of at least 3%, more preferably of at least 4% by moles, with respect to total moles of TFE, EVE and MVE.
  • the amount of recurring units derived from EVE is advantageously of at most 17%, preferably of at most 15%, more preferably of at most 10% by moles, with respect to total moles of TFE, EVE and MVE.
  • the amount of recurring units derived from MVE is advantageously of at least 23%, preferably of at least 24%, more preferably of at least 25% by moles, with respect to total moles of TFE, EVE and MVE.
  • the amount of recurring units derived from MVE is advantageously of at most 35%, preferably of at most 33%, more preferably of at most 30% by moles, with respect to total moles of TFE, EVE and MVE.
  • polymer When the amount of MVE is below 23% by moles, even if the polymer further comprises recurring units derived from EVE, polymer fails to provide adequate fluoroelastomer behaviour and suitable sealing features, but rather behaves as a thermoplastomer, which is out of the scope of present invention.
  • the perfluoroelastomer of the invention comprises recurring units derived from both EVE and MVE in an amount of from 26 to 42 by moles, more preferably from 28 to 40% by moles, most preferably from 28 to 37% by moles, with respect to total moles of TFE, EVE and MVE.
  • Preferred perfluoroelastomers of the invention are those consisting essentially of:
  • More preferred perfluoroelastomers of the invention are those consisting essentially of:
  • the preparation of the fluoroelastomer of the invention may be performed by copolymerizing the monomers in aqueous emulsion, according to methods that are well known in the art, in the presence of radical initiators (for example alkali metal or ammonium persulfates, perphosphates, perborates or percarbonates), optionally in combination with ferrous, cuprous or silver salts, or salts of other readily oxidizable metals.
  • radical initiators for example alkali metal or ammonium persulfates, perphosphates, perborates or percarbonates
  • ferrous, cuprous or silver salts or salts of other readily oxidizable metals.
  • Surfactants of various types are usually also present in the reaction medium, among which fluorinated surfactants are more particularly preferred.
  • the polymerization reaction to obtain the perfluoroelastomer may be performed in bulk or in suspension, in an organic liquid in which a suitable radical initiator is present, according to well-known techniques.
  • the polymerization reaction is generally performed at temperatures of between 25 and 150° C., at a pressure of up to 10 MPa.
  • the preparation of the perfluoroelastomer is preferably performed as a microemulsion of perfluoropolyoxyalkylenes, as notably described in U.S. Pat. No. 4,789,717 (AUSIMONT SPA [IT]) 6 Dec. 1988 and U.S. Pat. No. 4,864,006 (AUSIMONT SPA [IT]) 5 Sep. 1989.
  • the perfluoroelastomer of the present invention are typically cured via peroxide vulcanization.
  • the peroxide-mediated vulcanization can be performed according to known techniques, via the addition of suitable peroxide capable of generating radicals by thermal decomposition.
  • Curable composition comprising the perfluoroelastomer of the invention thus typically comprises at least one peroxide, preferably at least one organic peroxide.
  • Said peroxide is typically used in amount of 0.05 to 10%, preferably of 0.5 to 5% by weight relative to the perfluoroelastomer.
  • dialkyl peroxides for instance di-tert-butyl peroxide and 2,5-dimethyl-2,5-bis(tert-butylperoxy)hexane; dicumyl peroxide; dibenzoyl peroxide; di-tert-butyl perbenzoate; bis[1,3-dimethyl-3-(tert-butylperoxy)butyl]carbonate.
  • Curable compound comprising the perfluoroelastomer of the invention can generally comprise additional ingredients, preferably selected from the group consisting of:
  • vulcanization coagents in an amount generally of between 0.5% and 10% and preferably between 1% and 7% by weight relative to the perfluoroelastomer;
  • b′ optionally, a metallic compound, in an amount of between 1% and 15% and preferably between 2% and 10% by weight relative to the polymer, preferably chosen from oxides and hydroxides of divalent metals, for instance Mg, Zn, Ca or Pb, optionally combined with a salt of a weak acid, for instance stearates, benzoates, carbonates, oxalates or phosphites of Ba, Na, K, Pb or Ca;
  • c′ optionally, acid acceptors of metal non-oxide type such as 1,8-bis(dimethylamino)naphthalene, octadecylamine, etc.
  • thickening fillers preferably carbon black, silica, semicrystalline fluoropolymers consisting of TFE homopolymers or copolymers of TFE with one or more monomers containing at least one unsaturation of ethylenic type, in an amount of from 0.01 mol % to 10 mol % and preferably from 0.05 mol % to 7 mol %; pigments, antioxidants, stabilizers and the like.
  • vulcanization coagents mention can be notably made of triallyl cyanurate; triallyl isocyanurate (TAIC); tris(diallylamine)-s-triazine; triallyl phosphite; N,N-diallylacrylamide; N,N,N′,N′-tetraallylmalonamide; trivinyl isocyanurate; 2,4,6-trivinyl-methyltrisiloxane, and bis-olefins of formula (I) as above detailed.
  • perfluoroelastomers comprising recurring units derived from cyano (—CN) containing monomers
  • aromatic polyamines compounds and/or organotin compounds can be used as vulcanization coagents.
  • Y being —O—, —S—, —SO 2 —, —CH 2 —, —C(O)—, —C(CF 3 ) 2 —, —C(CH 3 ) 2 —, —(CH 2 ) n —, —(CF 2 ) n —, n being an integer from 0 to 5.
  • organotin compounds mention can be notably made of those of formula Ar′ x SnY 4-x , wherein Ar′ is an aromatic group, optionally comprising condensed rings, Y is an organic group comprising a carbon-carbon double bond, preferably an allyl, allenyl, propargyl group, and x is an integer from 0 to 3.
  • silica fillers are those preferred for achieving improved thermal resistance.
  • silica fillers silica having a pH value, determined according to the DIN ISO 787-9 standard, higher than 7, and/or silica having hydrophobic behaviour are preferred.
  • the use of these silica fillers in fluoroelastomer is notably described in WO 2008/003634 (SOLVAY SOLEXIS SPA [IT];) 10 Jan. 2008 and in WO 2008/003635 (SOLVAY SOLEXIS SPA [IT];) 10 Jan. 2008.
  • carbon black fillers In cases wherein improved water vapour resistance, especially at high temperature, is sought, carbon black fillers, and more particularly, those carbon black fillers having CTAB of 25 to 35 m 2 /g are preferred; these fillers are notably described in WO 2008/003636 (SOLVAY SOLEXIS SPA [IT];) 10 Jan. 2008.
  • the invention also pertains to cured articles made from the perfluoroelastomer of the invention.
  • the cured articles of the invention are typically manufactured by a process comprising:
  • the curable perfluoroelastomer composition is molded and simultaneously vulcanized using techniques such as injection-moulding or compression-moulding, or alternatively by extrusion-moulding.
  • temperatures at which the vulcanizing-moulding are not particularly limited, temperatures of between about 50° C. and about 250° C. and preferably between about 100° C. and about 220° C. are generally used.
  • the vulcanized shaped pre-formed sealing articles can be subjected to a subsequent thermal post-treatment step.
  • This treatment is generally performed in suitable heating devices, generally electric ovens or convection ovens.
  • the thermal post-treatment is generally performed for a time from at least two minutes to 36 hours, preferably from 30 minutes to 24 hours and more preferably from 1 hour to 12 hours.
  • Temperature of such post-treatment is not particularly limited; it is generally understood that this post-treatment (elsewhere known as post-cure) is typically carried out at temperatures between 150 and 350° C., preferably between 200 and 300° C.
  • Fluoroelastomers described below have been formulated with or without additives/ingredients mentioned in the below embedded tables; addition of said additives/ingredients has been carried out following compounding procedures described in ASTM D 3182 standard; cured specimens have been prepared following procedure described in same standard.
  • M 100 is the stress in MPa for an elongation of 100%
  • T.S. is the stress at break in MPa
  • E.B. is the elongation at break in %.
  • Shore A (3′′) hardness (HDS) has been determined according to ASTM D2240—Type A Durometer standard at 25° C.
  • Compression set has been determined on type 214 O-rings according to ASTM D329 and D1414 standards.
  • Reactor was thus heated to set-point temperature of 80° C.; then 18 g of 1,4-diiodoperfluorobutane (C 4 F 8 I 2 ) were added, followed by a monomers mixtures having following composition: tetrafluoroethylene (TFE) 45% moles, perfluoroethylvinylether (EVE) 10% moles, perfluoromethylvinylether (MVE) 45% until a final pressure of 20 bar (2 MPa), 0.31 g of ammonium persulfate (APS) and 8.6 g of CH 2 ⁇ CH—(CF 2 ) 6 —CH ⁇ CH 2 , fed in 20 portions each 5% increase in conversion.
  • TFE tetrafluoroethylene
  • EVE perfluoroethylvinylether
  • MVE perfluoromethylvinylether
  • APS ammonium persulfate
  • reactor was loaded with a monomers mixture having following composition: TFE 45% moles; EVE 15% moles; MVE 40% moles, for reaching set-point pressure of 20 bar relative, which was maintained feeding a mixture having following composition: TFE 55% moles; EVE 12% moles; MVE 33% moles.
  • CS % 38 38 37 36 65 (1) Mooney viscosity (2 + 9) at 121° C.; (2) bis-olefin of formula: CH 2 ⁇ CH—(CF 2 ) 6 —CH ⁇ CH 2 ; (3) LUPEROX ® 101XL: neat liquid 2,5-dimethyl-2,5-bis(tert-butylperoxy)hexane; (4) Carbon black MT N 990 (5) Austin black 325 filler, commercially available from Coal Fillers Incorporated; (6) Carried out on post-cured specimens; vulcanizing-moulding and post-curing conditions: Cure: 20 min at 175° C.; post-cure: (8 + 16)h at 290° C. (7) CS on #214 O-ring.
  • TAICROS ® TAIC liquid triallylisocyanurate commercially available from Evonik; (10) Carried out on post-cured specimens; vulcanizing-moulding and post-curing conditions: Cure: 20 min at 160° C.; post-cure: (8 + 16) h at 230° C. (7) CS on #214 O-ring.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
US13/148,062 2009-02-13 2010-02-08 Perfluoroelastomer Abandoned US20110294944A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09152866 2009-02-13
EP09152866.1 2009-02-13
PCT/EP2010/051506 WO2010092022A1 (en) 2009-02-13 2010-02-08 Perfluoroelastomer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/051506 A-371-Of-International WO2010092022A1 (en) 2009-02-13 2010-02-08 Perfluoroelastomer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/210,690 Continuation US10023670B2 (en) 2009-02-13 2016-07-14 Perfluoroelastomer

Publications (1)

Publication Number Publication Date
US20110294944A1 true US20110294944A1 (en) 2011-12-01

Family

ID=40456433

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/148,062 Abandoned US20110294944A1 (en) 2009-02-13 2010-02-08 Perfluoroelastomer
US15/210,690 Active 2030-02-19 US10023670B2 (en) 2009-02-13 2016-07-14 Perfluoroelastomer

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/210,690 Active 2030-02-19 US10023670B2 (en) 2009-02-13 2016-07-14 Perfluoroelastomer

Country Status (7)

Country Link
US (2) US20110294944A1 (zh)
EP (1) EP2396354B1 (zh)
JP (2) JP5684150B2 (zh)
KR (1) KR101589783B1 (zh)
CN (1) CN102317330B (zh)
TW (1) TWI482784B (zh)
WO (1) WO2010092022A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140066572A1 (en) * 2011-04-06 2014-03-06 Steven G. Corveleyn Fluoropolyether elastomer compositions having low glass transition temperatures
CN105294915A (zh) * 2015-12-01 2016-02-03 上海三爱富新材料股份有限公司 透明乙烯-四氟乙烯四元共聚物
US9540496B2 (en) 2013-02-07 2017-01-10 The Chemours Company Fc, Llc Polyhydroxy curable fluoroelastomer composition
EP3467026A4 (en) * 2016-05-30 2020-01-29 Valqua, Ltd. PERFLUORELASTOMER COMPOSITION AND SEALING MATERIAL

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20041251A1 (it) 2004-06-22 2004-09-22 Solvay Solexis Spa Gel di perfluoroelastomeri
JP6017550B2 (ja) * 2011-06-09 2016-11-02 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. 超分岐フルオロエラストマー添加剤
WO2015014699A1 (en) * 2013-07-30 2015-02-05 Solvay Specialty Polymers Italy S.P.A. Fluorine-containing thermoplastic elastomer composition
JP6871176B2 (ja) * 2015-05-29 2021-05-12 スリーエム イノベイティブ プロパティズ カンパニー オキサゾールを含むペルフルオロエラストマー組成物
US10899917B2 (en) * 2016-10-27 2021-01-26 Solvay Specialty Polymers Italy S.P.A. Fluoroelastomer composition
CN110475816B (zh) * 2017-03-31 2022-01-28 索尔维特殊聚合物意大利有限公司 制造固化的零件的方法
WO2021085008A1 (ja) * 2019-10-30 2021-05-06 リンテック株式会社 デバイス用接着シート

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035565A (en) * 1975-03-27 1977-07-12 E. I. Du Pont De Nemours And Company Fluoropolymer containing a small amount of bromine-containing olefin units
US4694045A (en) * 1985-12-11 1987-09-15 E. I. Du Pont De Nemours And Company Base resistant fluoroelastomers
EP0633274A1 (en) * 1993-07-05 1995-01-11 AUSIMONT S.p.A. Thermoprocessable copolymers of tetrafluoroethylene
US5919878A (en) * 1996-09-13 1999-07-06 E. I. Du Pont De Nemours And Company Amorphous fluoropolymer containing perfluoro(ethyl vinyl ether)
EP1308467A2 (en) * 2001-10-18 2003-05-07 Solvay Solexis S.p.A. Perfluoroelastomers
EP1457505A1 (en) * 2001-12-18 2004-09-15 Unimatec Co., Ltd. Fluorinated terpolymer
WO2007096347A1 (en) * 2006-02-23 2007-08-30 Solvay Solexis S.P.A. Lan cables

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53125491A (en) 1977-04-08 1978-11-01 Daikin Ind Ltd Fluorine-containing polymer easily curable and its curable composition
US4564662A (en) 1984-02-23 1986-01-14 Minnesota Mining And Manufacturing Company Fluorocarbon elastomer
IT1187684B (it) 1985-07-08 1987-12-23 Montefluos Spa Procedimento per la preparazione di fluoroelastomeri vulcanizzabili e prodotti cosi' ottenuti
IT1189092B (it) 1986-04-29 1988-01-28 Ausimont Spa Processo di polimerizzazione in dispersione acquosa di monomeri fluorurati
IT1204903B (it) 1986-06-26 1989-03-10 Ausimont Spa Processo di polimerizzazione in dispersione acquosa di monomeri florati
JPS63304009A (ja) 1987-06-04 1988-12-12 Nippon Mektron Ltd パ−オキサイド加硫可能な含フッ素エラストマ−の製造方法
DE69408460T2 (de) 1993-07-16 1998-05-20 Du Pont Hochreine fluorelastomerzusammensetzungen
IT1265461B1 (it) 1993-12-29 1996-11-22 Ausimont Spa Fluoroelastomeri comprendenti unita' monomeriche derivanti da una bis-olefina
IT1276980B1 (it) * 1995-10-20 1997-11-03 Ausimont Spa Composizioni fluoroelastomeriche
US5969067A (en) * 1996-09-13 1999-10-19 E.I. Dupont De Nemours And Company Phosphorus-containing fluoromonomers and polymers thereof
WO1999032234A1 (en) 1997-12-22 1999-07-01 E.I. Du Pont De Nemours And Company Process for sealing coatings
US6248823B1 (en) 1998-07-02 2001-06-19 E. I. Du Pont De Nemours And Company Solvents for amorphous fluoropolymers
JP2000053835A (ja) * 1998-08-07 2000-02-22 Nippon Mektron Ltd 加硫性フッ素ゴム組成物
ATE285625T1 (de) * 1999-04-30 2005-01-15 Du Pont Elektrochemische anwendungen von amorphen fluoropolymeren
US6646077B1 (en) * 2002-07-11 2003-11-11 Dupont Dow Elastomers Llc Peroxide curable fluoroelastomers
DE60335627D1 (de) * 2002-07-29 2011-02-17 3M Innovative Properties Co Fluorelastomer und verfahren zur dessen herstellung
US7049365B2 (en) 2003-01-06 2006-05-23 E. I. Du Pont De Nemours And Company Fluoropolymer sealant
CN101089024B (zh) * 2003-01-24 2010-08-18 大金工业株式会社 含氟弹性体及其固化用组合物
JP4314965B2 (ja) * 2003-10-27 2009-08-19 ユニマテック株式会社 防振・制振・吸音材料
ITMI20041251A1 (it) 2004-06-22 2004-09-22 Solvay Solexis Spa Gel di perfluoroelastomeri
ITMI20041571A1 (it) * 2004-07-30 2004-10-30 Solvay Solexis Spa Perfluoroelastomeri
ITMI20060328A1 (it) 2006-02-23 2007-08-24 Solvay Solexis Spa Cavi a basso rilascio di fumi
ITMI20061292A1 (it) 2006-07-03 2008-01-04 Solvay Solexis Spa Composizioni (per) fluoroelastomeriche
ITMI20061290A1 (it) 2006-07-03 2008-01-04 Solvay Solexis Spa Composizioni (per) fluoroelastometriche
ITMI20061291A1 (it) 2006-07-03 2008-01-04 Solvay Solexis Spa Composizioni (per) fluoroelastomeriche

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035565A (en) * 1975-03-27 1977-07-12 E. I. Du Pont De Nemours And Company Fluoropolymer containing a small amount of bromine-containing olefin units
US4694045A (en) * 1985-12-11 1987-09-15 E. I. Du Pont De Nemours And Company Base resistant fluoroelastomers
EP0633274A1 (en) * 1993-07-05 1995-01-11 AUSIMONT S.p.A. Thermoprocessable copolymers of tetrafluoroethylene
US5919878A (en) * 1996-09-13 1999-07-06 E. I. Du Pont De Nemours And Company Amorphous fluoropolymer containing perfluoro(ethyl vinyl ether)
EP1308467A2 (en) * 2001-10-18 2003-05-07 Solvay Solexis S.p.A. Perfluoroelastomers
EP1457505A1 (en) * 2001-12-18 2004-09-15 Unimatec Co., Ltd. Fluorinated terpolymer
WO2007096347A1 (en) * 2006-02-23 2007-08-30 Solvay Solexis S.P.A. Lan cables

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140066572A1 (en) * 2011-04-06 2014-03-06 Steven G. Corveleyn Fluoropolyether elastomer compositions having low glass transition temperatures
US9902836B2 (en) * 2011-04-06 2018-02-27 3M Innovative Properties Company Fluoropolyether elastomer compositions having low glass transition temperatures
US9540496B2 (en) 2013-02-07 2017-01-10 The Chemours Company Fc, Llc Polyhydroxy curable fluoroelastomer composition
CN105294915A (zh) * 2015-12-01 2016-02-03 上海三爱富新材料股份有限公司 透明乙烯-四氟乙烯四元共聚物
EP3467026A4 (en) * 2016-05-30 2020-01-29 Valqua, Ltd. PERFLUORELASTOMER COMPOSITION AND SEALING MATERIAL
US11015096B2 (en) 2016-05-30 2021-05-25 Valqua, Ltd. Perfluoroelastomer composition and sealing material

Also Published As

Publication number Publication date
TW201041909A (en) 2010-12-01
EP2396354A1 (en) 2011-12-21
CN102317330B (zh) 2014-09-24
JP2014208845A (ja) 2014-11-06
EP2396354B1 (en) 2013-04-17
US20170008987A1 (en) 2017-01-12
CN102317330A (zh) 2012-01-11
JP5684150B2 (ja) 2015-03-11
JP2012518048A (ja) 2012-08-09
US10023670B2 (en) 2018-07-17
KR101589783B1 (ko) 2016-02-01
KR20110128823A (ko) 2011-11-30
WO2010092022A1 (en) 2010-08-19
TWI482784B (zh) 2015-05-01

Similar Documents

Publication Publication Date Title
US9234063B2 (en) Perfluoroelastomer
EP2396354B1 (en) Perfluoroelastomer
EP1031607B1 (en) Fluoroelastomer compositions
CA1271891A (en) Base resistant fluoroelastomers
EP1632526B1 (en) Perfluoroelastomeric compositions
US8168714B2 (en) (Per)fluoroelastomeric compositions
US8476356B2 (en) (Per)fluoroelastomeric compositions
US10533064B2 (en) Fluoroelastomers
US9688786B2 (en) Hyperbranched fluoroelastomer additive
US9458272B2 (en) Low viscosity fluoroelastomers
US8263708B2 (en) Vulcanized (per) fluoroelastomer sealing articles
EP3484953A1 (en) Fluoroelastomer composition
US20040236028A1 (en) Fluoroelastomer composition having excellent low temperature properties
US20170313849A1 (en) Fluoroelastomer composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: SOLVAY SOLEXIS S.P.A., ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MANZONI, CLAUDIA;STANGA, MILENA;ALBANO, MARGHERITA;REEL/FRAME:026705/0632

Effective date: 20100331

AS Assignment

Owner name: SOLVAY SPECIALTY POLYMERS ITALY S.P.A., ITALY

Free format text: CHANGE OF NAME;ASSIGNOR:SOLVAY SOLEXIS S.P.A.;REEL/FRAME:032682/0661

Effective date: 20111017

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION