EP2359031A1 - Verfahren zur steuerung eines automatisierten stufenschaltgetriebes - Google Patents

Verfahren zur steuerung eines automatisierten stufenschaltgetriebes

Info

Publication number
EP2359031A1
EP2359031A1 EP09760800A EP09760800A EP2359031A1 EP 2359031 A1 EP2359031 A1 EP 2359031A1 EP 09760800 A EP09760800 A EP 09760800A EP 09760800 A EP09760800 A EP 09760800A EP 2359031 A1 EP2359031 A1 EP 2359031A1
Authority
EP
European Patent Office
Prior art keywords
torque
engine
speed
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09760800A
Other languages
German (de)
English (en)
French (fr)
Inventor
Roland Mair
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Publication of EP2359031A1 publication Critical patent/EP2359031A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/0087Adaptive control, e.g. the control parameters adapted by learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/0096Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method using a parameter map
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • F16H2061/0232Selecting ratios for bringing engine into a particular state, e.g. for fast warming up or for reducing exhaust emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/26Inputs being a function of torque or torque demand dependent on pressure
    • F16H59/32Supercharger pressure in internal combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/74Inputs being a function of engine parameters

Definitions

  • the invention relates to a method for controlling an automated practisenschaltgetrtebe ⁇ , which is arranged in a drive train of a motor vehicle in conjunction with a turboaufgetadenen internal combustion engine, wherein the control of starting and Schattvoigangen depending on the response of the internal combustion engine takes place
  • An exhaust gas turbocharger essentially consists of a turbine arranged in the exhaust tract of the internal combustion engine and a compressor arranged in the intake tract of the internal combustion engine, which are connected to one another via a drive shaft.
  • the turbine is driven by the exhaust gas flow of the engine and in turn drives the compressor via the drive shaft, through which the combustion air of the internal combustion engine is compressed and thus the boost pressure of the internal combustion engine is increased.
  • the pollutant emissions of an internal combustion engine of a particular performance class may be reduced by the use of a smaller, i.e. Hubraumschwacheren base engine can be reduced in conjunction with an exhaust gas turbocharger.
  • the present invention has the object to provide a method for controlling a In a drive train of a motor vehicle together with a turbocharged internal combustion engine arranged automated step transmission, with the control of starting and Wegvorgfingen depending on the response of the engine with significantly lower coordination effort is possible
  • the invention is therefore based on an automated whilnschaHge- transmission, which is arranged in a drive train of a motor vehicle in conjunction with a turbocharged internal combustion engine controlled by the transmission control unit starting and switching operations, in particular the engagement of an associated friction clutch and the selection and insertion of a Anfahrgangs in a starting process or a target gear at a Switzerlandrochschattung carried out in a prior art manner depending on the response of the internal combustion engine, which is in contrast to the state of T ⁇ chnfc but not implicitly contained in the relevant maps and characteristics for controlling the friction clutch and the stepped transmission, But according to the invention an engine dynamics map is taken in which at least the spontaneously retrievable maximum torque Mm « « of the internal combustion engine as a function of the current motor torque MM and the current engine speed ⁇ M is stored (Mm n * f (MM. r *)).
  • the maximum torque gradient (dMh / dt ⁇ MK, with which the spontaneously retrievable maximum torque Mm of the internal combustion engine can be reached as quickly as possible is also stored as a function of the current engine torque MM and the current engine speed ⁇ M ((MMw / dtW *) f (MM.I *))., since the information about the highest possible load build-up speed or the shortest possible cell duration for reaching the maximum torque Mm n is available as control parameter.
  • the engine dynamics map is expediently limited by the stationary VoHlast Orehmomentkennline MvUnu), the Nullmomentiinte (MM * 0), the Leeriaufwindiere n «, and AbregelfzaN n» n of the engine, as these operating limits are not exceeded in normal driving can be.
  • arbitrary many values of the maximum torque Mm ⁇ and the maximum moment gradient (dMM / dtW of the internal combustion engine together with the current engine torque MM and the current engine speed n M can be stored as a parameter in the motor dynamics K ⁇ nnf ⁇ ld.
  • characteristic characteristics and characteristics of a turbocharged internal combustion engine such as the M8 (n M ) to which a spontaneous increase of the engine torque MM without an increase in boost pressure is possible, and the charging limit speed n ⁇ mm, from an increase in the boost pressure entering through the exhaust gas turbocharger are then implicitly contained in the stored values of the maximum torque Mm «and the maximum torque gradient (dMu / dt ⁇ .
  • the intake torque characteristic M $ ( ⁇ M) is often above the idling speed n * by appropriate intervention in the engine control.
  • the intake torque curve M ⁇ C "*) of the internal combustion engine in the engine dynamics characteristic map can be approximated by a straight line with constant suction torque (Me" const), so that at least in the first two regions of the engine dynamics characteristic map (A, B) a single spontaneously retrievable maximum torque Mm «of the Verbrnnungsrnotors and a single maximum moment gradient (dM M / dt) max can be used for the fastest possible attainment of the maximum torque M max .
  • the characteristic values of the motor dynamics k ⁇ nnf ⁇ We ⁇ (M max * f (MM, ⁇ M), (dM M / dt) max "f (MM, n M )) and / or the evaluation lines or acquisition values (M 8 (IIM), iXjnin) of the Engine dynamics map and / or the boundary lines or limiting values (MVIXIHI), n », n *,) of the engine dynamics map can be determined as part of an application of the transmission control at the transmission manufacturer to a specific vehicle type or a specific vehicle variant and in the data memory of a for the relevant vehicle type or the transmission control unit provided for the relevant vehicle variant.
  • this is problematic if the relevant exignschaHgetriebe is installed in a different vehicle type or another vehicle variant, that is combined with another engine, or if the engine tuning of the correct per se internal combustion engine has been changed in the meantime.
  • the characteristic values of the engine dynamics map (M n ., - f (MM, I *).
  • This also guarantees the use of the correct and updated values in the engine dynamics map.
  • the prerequisite for this is that the corresponding values are available in the engine control unit or can be derived from the characteristic values available there.
  • the data of the engine dynamics characteristic corresponds to the actual operating state of the internal combustion engine , ie, in the mass production of internal combustion engines occurring and within limits also allowable dispersion of power output e of an internal combustion engine is automatically detected and thus taken into account.
  • Passing predetermined load build-up sequences in an activated learning mode of the transmission control unit for determining characteristic values and / or Tetungsnten or Telungs canal and / or limits or limiting values of the engine dynamics characteristic can be either in a real driving on a test track or in a simulated ferry on a Rollenprüf stood respectively.
  • the Saugmomentkennlnie M ⁇ (n M ) of the internal combustion engine is preferably provided das ⁇ preferably in fully closed drive train, starting from a below the Saugmo- me ⁇ te ⁇ engine torque (ftfa ⁇ M 8 ⁇ M)) the engine torque MM with high torque gradient dM ⁇ / dt "0 is increased until a discontinuous decrease in the torque gradient dM * is detected ⁇ ttt, and that the value of Mo tormo mentes MM upon the occurrence of the discontinuity of the torque gradient dMu / dt detected and stored as gQittger value of SaugmomentkennHnie M 8 (HM) or for the adaptation of the suction torque characteristic M ⁇ ny) is used.
  • HM SaugmomentkennHnie M 8
  • a maximum torque gradient (dMM / dtXnw for the fastest possible achievement of the maximum torque MU K i * t expedient provided that at a well above the current engine torque MM target torque M 10 I set outside of active operating limits torque gradient dM ⁇ dt is detected and stored as a valid value of the maximum torque gradient (dM ⁇ dt ⁇ or used to adapt the maximum torque gradient (dM ⁇ dtW.)
  • the target torque M M I is that of the driver by the operation of the accelerator pedal or the gearbox control unit requested engine torque.
  • a safe below the actual loading limit speed n L MKT lying lower charge limit speed n ⁇ i ** de- is finened and corrected upward if, at the engine speed in question, the engine torque MM is increased from an engine torque (MM ⁇ Ms (nM) with high torque gradient dM * / dt »0 lying below the intake torque until a discontinuous decrease in the torque gradient dM ⁇ dt is detected to zero, that a safe above the actual Ladegrenzfilzahi nt_mM lying upper limit charging speed ⁇ , *, is defined and corrected downwards when at the engine speed, the engine torque MM from a below the Saugmom ⁇ ntes lying engine torque (MM ⁇ MS (OM) ) is increased with a high moment gradient dM ⁇ dt »0 until a discontinuous decrease of the moment gradient dMu / dt to a value greater than
  • the engine can also be accomplished, however, that lying in an operating situation with a below the suction torque MS (HM) running resistance torque (M F W ⁇ MS (HM)) and a top of the suction torque MS (HM) lying target torque MUi (M N I> MS (HM)) starting from an operating point with a lying below the suction torque MeOta) engine torque MM (MM (W) ⁇ M 8 (n M )) and underhaJb the Ladegrenzfitzahi ni ⁇ * Motor speed n M (HM (W) ⁇ ni j nto) with a moderate increase of the engine speed ⁇ M initially an increase of the engine torque MM up to the suction torque M 8 (HM) (ti to t2) and subsequently a further increase in engine torque MM above the intake torque MS ( ⁇ M), and that the engine rotational speed HM is set at the time (t3) of the top of the intake torque MS (n
  • the driving resistance torque Mw is the load torque resulting from the actual running resistance at the engaged gear on the input shaft of the stepped transmission to be applied by the internal combustion engine and at least slightly below the relevant value of the suction torque MSOHI for enabling acceleration. (MFW ⁇ MS (ITM)).
  • ITM suction torque MS
  • An acceleration required for detecting the charging limit speed nLjnin above the charging limit speed n L _m (n and a subsequent increase in the engine torque MM via the suction torque MS (HM) is made possible by a desired torque MUi lying above the suction torque MsOui (M -0 I> MS (DM)).
  • a functioning boost pressure sensor is present, that is arranged in the intake tract behind the compressor of the exhaust gas turbocharger, it is expedient to determine or adapt the charge limit rotational speed n L _mm of the internal combustion engine, das ⁇ in an operating situation with a lying below the suction torque MS (IIM) driving resistance MFW (MFW ⁇ MsdH ⁇ )) and a solmoment MUi (MMI> MS (DM)) lying above the suction moment MS (HM) starting from an operating point with an engine torque MM (MM ⁇ MS (DM)) and below the intake torque MS ( ⁇ M) a below ö «r charge limit speed n ⁇ mtn lying engine speed ⁇ M ( ⁇ M ⁇ ni j n k t) mißiger increasing the engine speed r * firstly, an increase of the engine torque MM to the suction torque MS ( ⁇ M) and subsequently a further increase of the engine torque MM upper the suction torque Me (IHi) also takes place and that the engine speed IHI
  • Rg. 1 shows a first embodiment of a motor dynamics map in one
  • Rg.2 a second embodiment of a motor dynamics map in one
  • FIG. 5 is an illustration of a second determination of the boost limit speed in a Dreteahl Tent Diagram and in a Torque Time Diagram.
  • a motor dynamics map according to Rg. 1, which is used to control starting and switching operations of an automated step transmission depending on the response of a turbocharged internal combustion engine, contains the spontaneously retrievable maximum torque Mm «of the internal combustion engine and the maximum torque gradient (dMu / dtW, with the spontaneously retrievable maximum torque Mm n of the internal combustion engine can be reached as quickly as possible, jewels as a function of the current engine torque MM and the current engine speed m * (Mm n - f (MM ⁇ ⁇ M), (dM ⁇ dtW »f (M N ⁇ ⁇ M)) ,
  • the engine dynamics characteristic is limited by the stationary volumetric torque characteristic MVL ( ⁇ M).
  • the engine dynamics map is also divided into four areas A, B, C and D.
  • the spontaneously retrievable maximum torque M ⁇ ⁇ M) of the internal combustion engine becomes respectively formed by the corresponding value of the suction torque M ⁇ (nM) (M ⁇ ⁇ M) «M 8 (IIM)).
  • the intake torque curve Ms (IUi) is in the range of the idling speed rtu »often o above the idle speed nu, lowered and raised near the idle speed nute, so that when approaching the Leeriauffitiere na» a torque increase results
  • the suction moment Me in this range is constant (Ms * const)
  • the spontaneously retrievable maximum torque Mm "of the internal combustion engine can also be represented by a single value (Mm « ⁇ M 8 * const).
  • the very high maximum torque gradient (dM ⁇ dtW in area A) can also be represented by a single value.
  • a lower charge limit rotational speed r.sub.h is reliably defined below the actual charging limit rpm nu_mm and corrected upward if, at the relevant engine rotational speed, the engine torque MM is from one below the suction torque Hege ligand engine torque (MM ⁇ Ms (n M)) is increased with a high torque gradient dMWdt »0, until a discontinuous decrease in the torque gradient dM ⁇ / dt is detected to zero, which (in Figure 4 by the torque curve MM Q in TeJIbId (a) is illustrated
  • FIG. 5 Another method illustrated in FIG. 5 for determining the charging limit rotational speed jT * of the internal combustion engine is that in an operating situation with a torque below the intake torque Mstrm) FahrwkJerstandsrnoment (MFW ⁇ Msfrui)) and lying above the suction torque MS (HM) target torque M 9 * (M 9 *> M 8 (HM)) starting from an operating point with a lying below the suction torque Ms (n M ) engine torque MM ( MM (K)) ⁇ M 8 (IIM)) and an engine speed n M (MtO) ⁇ n ⁇ *, rvjnkt below the load limit speed, with a moderate increase of the engine speed ⁇ M first an increase of the engine torque MM up to the suction torque M ⁇ (n M ) (t1 to t2) and subsequently a further increase in the engine torque MM above the suction torque MS (HM) also takes place
  • the engine torque MM remains from reaching the suction torque at the time t2, with further increase of the engine speed n M initially at this value (t2 to t3), since the engine speed n M is still below the charging limit speed n ⁇ mm ( ⁇ M ⁇ « ⁇ Jnjn). From the time the charging limit value ⁇ v_m m is reached at the time t3, the engine torque MM then increases again while the engine speed IHi is further increased.
  • the engine speed n M at the time 13 of the rising of the suction torque Ms by the engine torque MM as the sought charging speed n ⁇ ⁇ *, set or to adapt the charging limit speed iV j n k , used here is one for the detection of the charging limit speed nij ⁇ n required acceleration Above the LadegrenzfitzaN nc mm addition and a subsequent increase in the engine torque MM above the suction torque Ms (n M ) by a suction torque above the MSC ⁇ M) target torque M M M M allows (M ⁇ 1 > M 8 (HM)).
  • This type of determination of the charge limit rotational speed m.sub.i of the internal combustion engine can take place during a startup or a power upshift, whereby the temporary deactivation of an operating limit which may be present in the engine control or in the transmission control to avoid a high engine torque MM at low, close to the idling rotational speed nu * lying engine speed n M may be required.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
EP09760800A 2008-12-17 2009-11-16 Verfahren zur steuerung eines automatisierten stufenschaltgetriebes Withdrawn EP2359031A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008054802.2A DE102008054802B4 (de) 2008-12-17 2008-12-17 Verfahren zur Steuerung eines automatisierten Stufenschaltgetriebes
PCT/EP2009/065205 WO2010076078A1 (de) 2008-12-17 2009-11-16 Verfahren zur steuerung eines automatisierten stufenschaltgetriebes

Publications (1)

Publication Number Publication Date
EP2359031A1 true EP2359031A1 (de) 2011-08-24

Family

ID=41650110

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09760800A Withdrawn EP2359031A1 (de) 2008-12-17 2009-11-16 Verfahren zur steuerung eines automatisierten stufenschaltgetriebes

Country Status (5)

Country Link
US (1) US8666620B2 (zh)
EP (1) EP2359031A1 (zh)
CN (1) CN102257296B (zh)
DE (1) DE102008054802B4 (zh)
WO (1) WO2010076078A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008000326A1 (de) * 2008-02-18 2009-08-20 Zf Friedrichshafen Ag Verfahren zur Steuerung einer Druckluftversorgung einer Brennkraftmaschine bei einem Anfahrvorgang
DE102008000324A1 (de) * 2008-02-18 2009-08-20 Zf Friedrichshafen Ag Verfahren zur Steuerung der Druckluftversorgung einer Brennkraftmaschine und eines Getriebes
DE102010028071A1 (de) 2010-04-22 2011-10-27 Zf Friedrichshafen Ag Verfahren zur Fahrsteuerung eines Kraftfahrzeugs
DE102010028072A1 (de) 2010-04-22 2011-10-27 Zf Friedrichshafen Ag Verfahren zur Anfahrsteuerung eines Kraftfahrzeugs
DE102010028069A1 (de) 2010-04-22 2011-10-27 Zf Friedrichshafen Ag Verfahren zur Schaltsteuerung eines Kraftfahrzeugs
DE102010028282A1 (de) 2010-04-28 2011-12-01 Zf Friedrichshafen Ag Verfahren zur Bestimmung eines Anfahrgangs bei einem Kraftfahrzeug
DE102010028284B4 (de) 2010-04-28 2021-07-15 Zf Friedrichshafen Ag Regelungseinrichtung zur Anfahrsteuerung eines Kraftfahrzeugs
DE102010048216A1 (de) * 2010-10-12 2012-04-12 Man Truck & Bus Ag Optimieren bei der Ansteuerung eines automatisierten Getriebes, insbesondere eines automatisierten Getriebes eines Nutzfahrzeuges
DE102011002541A1 (de) * 2011-01-12 2012-07-12 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Hybridantriebs sowie Steuerungseinrichtung eines Hybridantriebs
DE102012206356A1 (de) * 2012-04-18 2013-10-24 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung einer Brennkraftmaschine mit einem Motor und einer Abgas-Turboaufladegruppe und mit einem Getriebe, Steuereinrichtung und Brennkraftmaschine
DE102012012499B4 (de) * 2012-06-21 2016-08-04 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Schaltsteuerung eines Kraftfahrzeugs
EP2969684A4 (en) * 2013-03-14 2017-02-15 Allison Transmission, Inc. System and method for compensation of turbo lag in hybrid vehicles
DE102013212376B4 (de) 2013-06-27 2023-08-31 Zf Friedrichshafen Ag Verfahren zur Steuerung eines Kraftfahrzeugsantriebsstrangs
DE102014005398A1 (de) * 2014-04-11 2015-10-15 Avl List Gmbh Verfahren zur Bewertung des Schaltverhaltens eines Kraftfahrzeuggetriebes
DE102014013286A1 (de) * 2014-09-12 2016-03-17 Man Truck & Bus Ag Verfahren zur Steuerung eines Schaltvorgangs eines automatischen Schaltgetriebes und Steuergerät
SE540509C2 (en) 2015-07-07 2018-09-25 Scania Cv Ab Method and system for determining an available engine torqueduring a gear shift operation
SE540215C2 (en) * 2015-07-07 2018-05-02 Scania Cv Ab Method and system for determining an available engine torqueduring a gear shift operation
CN106438983A (zh) * 2016-10-27 2017-02-22 张洪泉 一种以涡轮增压发动机为动力的机动车自动换档方法
JP6600320B2 (ja) * 2017-01-31 2019-10-30 本田技研工業株式会社 制御装置および制御システム
JP6750538B2 (ja) * 2017-03-01 2020-09-02 トヨタ自動車株式会社 自動変速機の変速制御装置
JP7196738B2 (ja) * 2019-04-04 2022-12-27 トヨタ自動車株式会社 ハイブリッド車両
CN112559036A (zh) * 2020-12-01 2021-03-26 贵州凯星液力传动机械有限公司 一种多机型自动变速器参数控制方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3536704B2 (ja) * 1999-02-17 2004-06-14 日産自動車株式会社 車両の駆動力制御装置
JP3846223B2 (ja) * 2001-05-02 2006-11-15 トヨタ自動車株式会社 過給機付き内燃機関と変速機とを有する車両の制御装置
US6692406B2 (en) * 2001-08-29 2004-02-17 Eaton Corporation Shift control strategy for use with an automated manual transmission coupled to a turbocharged internal combustion engine
US6754574B2 (en) * 2002-01-24 2004-06-22 Toyota Jidosha Kabushiki Kaisha Controller for automatic transmission
SE522591C2 (sv) * 2002-06-17 2004-02-24 Volvo Lastvagnar Ab Drivaggregat för motorfordon
US7010417B2 (en) * 2002-12-03 2006-03-07 Cummins, Inc. System and method for determining maximum available engine torque
JP2004218780A (ja) 2003-01-16 2004-08-05 Toyota Motor Corp ディーゼル機関用自動変速機の制御装置
KR100579259B1 (ko) * 2003-12-22 2006-05-11 현대자동차주식회사 자동변속기의 변속 제어방법 및 장치
DE102005002496A1 (de) * 2005-01-19 2006-07-27 Zf Friedrichshafen Ag Verfahren zur Schaltsteuerung eines automatisierten Schaltgetriebes
DE102005013697B4 (de) 2005-03-24 2011-02-24 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zur Kennfeldermittlung zur Steuerung eines Schaltprozesses für vollautomatische oder automatisierte Getriebe eines Kraftfahrzeuges
DE102005042845A1 (de) * 2005-09-09 2007-03-22 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Antriebseinheit
DE102005044828A1 (de) * 2005-09-20 2007-03-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ermittlung eines optimalen Betriebspunktes bei Fahrzeugen mit Hybridantrieb
DE102005057809A1 (de) * 2005-12-03 2007-06-06 Zf Friedrichshafen Ag Verfahren zur Schaltsteuerung eines automatisierten Kraftfahrzeug-Schaltgetriebes
DE102006009589A1 (de) * 2006-03-02 2007-09-06 Zf Friedrichshafen Ag Verfahren zur Steuerung eines Automatgetriebes und Getriebesteuereinrichtung mit Verbrauchskennfeld-Ermittlungsvorrichtung
DE102006019031A1 (de) * 2006-04-25 2007-10-31 Volkswagen Ag Verfahren zur Momentensteuerung einer Hybridantriebseinheit sowie Hybridantriebseinheit
JP4229165B2 (ja) * 2006-10-13 2009-02-25 トヨタ自動車株式会社 車両およびその制御方法
US8554428B2 (en) * 2007-09-28 2013-10-08 Caterpillar Inc. CVT control system having variable power source speed
US7955217B2 (en) * 2007-11-30 2011-06-07 Caterpillar Inc. Power train control system
FR2933462B1 (fr) * 2008-07-04 2010-07-30 Inst Francais Du Petrole Procede pour controler la phase de fermeture d'un embrayage d'un systeme de transmission robotisee automobile
FR2940950B1 (fr) * 2009-01-12 2011-02-11 Renault Sas Procede d'anticipation des retrogradages et de controle d'une transmission automatique
JP5120323B2 (ja) * 2009-04-14 2013-01-16 日産自動車株式会社 パワートレーンのエンジン回転速度制御装置
US8676455B2 (en) * 2011-02-15 2014-03-18 Eaton Corporation Methods and systems for selecting or maintaining an efficient gear or gear ratio

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2010076078A1 *

Also Published As

Publication number Publication date
CN102257296A (zh) 2011-11-23
DE102008054802A1 (de) 2010-06-24
US8666620B2 (en) 2014-03-04
US20110237393A1 (en) 2011-09-29
CN102257296B (zh) 2014-09-03
DE102008054802B4 (de) 2022-11-17
WO2010076078A1 (de) 2010-07-08

Similar Documents

Publication Publication Date Title
EP2359031A1 (de) Verfahren zur steuerung eines automatisierten stufenschaltgetriebes
EP0907524B1 (de) Verfahren und vorrichtung zur steuerung des antriebsstrangs eines kraftfahrzeugs
DE10025586C2 (de) Antriebsstrang für ein Kraftfahrzeug
DE10121187C2 (de) System und Verfahren zur Steuerung des Ausrollens eines Fahrzeugs
DE112006002959T5 (de) Regelungsvorrichtung für einen Verbrennungsmotor
DE4321413C2 (de) Verfahren und Vorrichtung zur Steuerung der Antriebsleistung eines Fahrzeugs
EP1954934A1 (de) Verfahren zur schaltsteuerung eines automatisierten kraftfahrzeug-schaltgetriebes
DE102005030534A1 (de) Verfahren und Vorrichtung zum Steuern einer automatisierten Kupplung
DE10144663A1 (de) Brennkraftmaschine mit zwei Abgasturboladern mit Verdichterumgehung und Verfahren hierzu
DE4315843A1 (de) Verfahren und Vorrichtung zur Steuerung der Antriebsleistung eines Fahrzeugs
DE10225448A1 (de) Verfahren und Vorrichtung zur Steuerung der Brennkraftmaschine eines Fahrzeugs
EP2761209B1 (de) Verfahren zum steuern eines automatgetriebes
DE102011114440A1 (de) Verfahren zum Steuern eines Automatgetriebes
DE102012211353A1 (de) Verfahren zur Ermittlung einer in einem bestimmten Zeitabstand erreichbaren Zylinderfüllung einer Brennkraftmaschine
DE102005058864A1 (de) Verfahren und Vorrichtung zum Betreiben eines Fahrzeugs
DE10148343B4 (de) Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit
WO2007134942A1 (de) Verfahren und vorrichtung zur steuerung eines automatisierten schaltgetriebes
EP2160523B1 (de) Verfahren zur betätigung einer kupplung eines antriebsstrangs
DE102004016846A1 (de) Steuerungssystem für ein Fahrzeuggetriebe
DE19549081A1 (de) System zur Steuerung einer Kupplung und/oder eines Fahrzeugmotors
DE102010024938A1 (de) Verfahren zur Regelung eines Antriebsstrangs mit automatischer Reibungskupplung und Antriebsstrang hierzu
DE102008060646A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE10113700A1 (de) Verfahren zur Adaption des Motorreibmomentes eines Kraftfahrzeuges
EP1091107B1 (de) Verfahren und Anordnung zum Verringern von Lastwechselschlägen bei einem Kraftfahrzeug
DE102009027564B4 (de) Verfahren zum Betreiben eines Antriebsstrangs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110504

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20171121

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180404