EP2213971A1 - Verfahren zum Schmelzen von Einsatzmaterial in einem Kupolofen - Google Patents

Verfahren zum Schmelzen von Einsatzmaterial in einem Kupolofen Download PDF

Info

Publication number
EP2213971A1
EP2213971A1 EP09003981A EP09003981A EP2213971A1 EP 2213971 A1 EP2213971 A1 EP 2213971A1 EP 09003981 A EP09003981 A EP 09003981A EP 09003981 A EP09003981 A EP 09003981A EP 2213971 A1 EP2213971 A1 EP 2213971A1
Authority
EP
European Patent Office
Prior art keywords
shaft furnace
oxygen
injection gas
wind
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09003981A
Other languages
English (en)
French (fr)
Other versions
EP2213971B1 (de
Inventor
Thomas Niehoff
Peter Kokas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40628415&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2213971(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to PL09003981T priority Critical patent/PL2213971T3/pl
Publication of EP2213971A1 publication Critical patent/EP2213971A1/de
Application granted granted Critical
Publication of EP2213971B1 publication Critical patent/EP2213971B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/16Arrangements of tuyeres
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • C21B11/02Making pig-iron other than in blast furnaces in low shaft furnaces or shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents

Definitions

  • the invention relates to a method for operating a shaft furnace, in particular a cupola, for melting feedstock, wherein the shaft furnace is heated by combustion of a solid fuel and wherein in the shaft furnace, an injection gas is injected, which has an oxygen content of more than 21%. Furthermore, the invention relates to a shaft furnace, in particular cupola, for melting a feedstock, wherein a feed line for an oxygen-containing injection gas is provided, at the downstream end of a drive nozzle is connected, wherein a Injektorwind ein opens into the supply line for the injection gas or in the drive nozzle ,
  • a set of iron which usually consists of pig iron, cast iron, steel scrap and other ferro alloys, is melted.
  • Foundry coke is generally used as fuel in the cupola furnace, which is burned by reaction with oxygen, thereby releasing the amount of energy necessary to melt the iron charge.
  • the coke was burned with air as the oxidant. Meanwhile, however, the use of oxygen-enriched air during melting in the cupola furnace to the technical standard. The advantage over the use of air is that higher combustion temperatures can be generated and the melting process is faster.
  • the coke serves as a fuel on the one hand, and on the other to carburize the liquid iron. If the oxygen injection described above is used, the coke in the cupola is burned faster by the additional oxygen. The in this way reduced amount of coke has a negative effect on the carburization of the liquid iron.
  • Object of the present invention is therefore to show an improved method for operating a shaft furnace of the type mentioned and a corresponding shaft furnace.
  • This object is achieved by a method for operating a shaft furnace, in particular a cupola, for melting feedstock, wherein the shaft furnace is heated by combustion of a solid fuel and wherein in the shaft furnace, an injection gas is injected, which has an oxygen content of more than 21% , and wherein the method is characterized in that the shaft furnace is heated by means of at least one burner, wherein the burner, a gaseous or liquid fuel and a gaseous oxidant, which has an oxygen content of more than 21%, are supplied.
  • the shaft furnace according to the invention in particular cupola, for melting a feedstock, has a supply line for an oxygen-containing injection gas, at the downstream end of which a motive nozzle is connected, wherein a Injektorwindtechnisch opens into the supply line for the oxygen-containing gas or in the motive nozzle, and wherein the shaft furnace at least a burner, which is provided with a supply line for a gaseous oxidizing agent and a supply line for a liquid or gaseous fuel.
  • shaft furnace is understood in particular to mean a cupola furnace, in particular a cupola furnace for melting gray cast iron and ductile iron.
  • shaft furnace systems for melting other metallic inserts, such as copper or aluminum, or for melting non-metallic materials, for example for the production of mineral wool can be operated according to the invention.
  • feedstock is intended to include metal-containing and non-metallic charges that are fed to a shaft furnace for melting.
  • this includes in particular the so-called iron or cold set, consisting of pig iron, cast iron fracture, Stahischrott and / or other iron-containing aggregates.
  • iron or cold set consisting of pig iron, cast iron fracture, Stahischrott and / or other iron-containing aggregates.
  • copper or aluminum-containing or non-metallic batches are conceivable as an insert.
  • wind residual wind
  • injector wind are understood to mean the oxygen-containing gas streams supplied to the shaft furnace, in particular air streams supplied under elevated pressure.
  • injection gas refers to an oxygen-containing gas stream which is introduced into the shaft furnace via a lance, a pipe, a motive nozzle or the like.
  • the injection gas without reactants is fed to the shaft furnace.
  • the injection gas reacts first with the solid and liquid substances in the shaft furnace and with the atmosphere in the shaft furnace.
  • oxygen burner hereinafter refers to a burner which is operated with a liquid or gaseous fuel and an oxygen-containing gas which has an oxygen concentration of more than 21%.
  • oxygen-containing gas which has an oxygen concentration of more than 21%.
  • pure oxygen or technically pure oxygen or oxygen-enriched air is used as the oxidizing agent.
  • the technology of oxygen injection in the cupola described above has been further developed such that oxygen torches are additionally used for melting.
  • oxygen burners in cupolas is already known per se.
  • DE 1 583 213 OS describes the use of oxygen-fuel burners in shaft furnaces.
  • inventive combination of the two known per se techniques shows surprising advantages.
  • the two technologies of oxygen injection and heating are combined with burners in a shaft furnace, whereby the respective disadvantages are largely avoided and a significant improvement of the melting process is achieved.
  • the pure oxygen injection the Danger of too rapid coke burn, in the use of oxygen burners, however, the combustion gases, especially water vapor and carbon dioxide, as well as unburned fuel gas can cause an undesirable cooling effect in the shaft furnace.
  • the inventive use of both technologies avoids these disadvantages and allows greater flexibility in the process.
  • the melting process in the shaft furnace can be controlled by the amount of coke, the quantities of liquid or gaseous fuel and the amount of oxygen-containing injection gas supplied.
  • the stoichiometry in the shaft furnace can be controlled, that is, for example, a reducing or neutral atmosphere can be set.
  • this risk is counteracted by controlling the melting performance not only via the oxygen injection, but in particular also via the burner output.
  • the coke combustion and thus the carburizing of the molten iron in the shaft furnace can be optimized.
  • the additional oxygen influences secondary reactions in the shaft furnace, for example endothermic reactions of excess fuel with constituents of the furnace atmosphere.
  • the energy necessary for melting the feed material is no longer supplied only via the coke, but additionally via the burners. In this way, the melting performance can be optimized and / or the amount of coke can be reduced.
  • the injection gas is injected into the shaft furnace at a relatively "cold” location.
  • the temperature in the shaft furnace depends on the height, ie at different altitudes different temperatures prevail.
  • a "cold spot” is accordingly a location in the shaft furnace where the temperature is lower than the average temperature at that furnace height.
  • the burners are preferably directed to "hot" furnace areas where the temperature is higher than the average temperature at that furnace or shaft height.
  • the burner and the supply lines for injection gas in the shaft furnace are arranged so that the furnace undergoes over its entire circumference as uniform as possible thermal stress.
  • the amount and / or the flow rate of the injection gas and / or the injector wind and / or the power of the burners are advantageous depending on the temperature and / or the CO content of the top gas, i. the combustion gases, the shaft furnace regulated. Different coke qualities and different compositions of the melted insert introduced into the shaft furnace affect the composition of the blast furnace gas. By analyzing the CO content and / or the blast furnace temperature conclusions about the combustion process and the melting process can be drawn.
  • the melting process can always be adapted to the desired objective.
  • Other parameters that can be used to control the injection gas and / or the burner or burners (s) are the melting capacity, the furnace pressure and the exhaust gas analysis.
  • the control of the shaft furnace is advantageously carried out in response to one or more of the following parameters: temperature, composition or analysis of the gaseous or effluent gas, melt parameters such as melting temperature, furnace specific data, composition or analysis of the slag withdrawn from the shaft furnace.
  • Previously recorded operating data can be used to determine the burner output and the oxygen supply to the furnace, depending on the optimally set current operating parameters and to achieve a process management according to the technological requirements. Performance deviations can be detected and assigned quickly.
  • the kiln mode can be adjusted historically in a self-correcting database. Quality influences on, for example, different coke inserts are recognized immediately.
  • a controlled amount of oxygen is supplied to the shaft furnace for converting the solid fuel, for example coke. This is done by feeding the injection gas or gas mixture into the shaft furnace in a defined amount and / or at a defined flow rate.
  • the oxygen-containing injection gas is accelerated in a motive nozzle and an injector wind is sucked by means of the resulting during the acceleration of the injected gas negative pressure and combined with the injection gas to a motive nozzle stream and passed into the shaft furnace.
  • the injection gas is conducted into the shaft furnace at high speed and can be blown far into the interior of the shaft furnace and thus specifically influence the conversion of the coke.
  • Additional oxygen is supplied to the shaft furnace via the injector wind.
  • the injection gas flows out of the drive nozzle or nozzles at high speed and thereby generates a negative pressure, which according to the invention is used to suck in the injector wind.
  • the sucked amount of injector wind depends on the one hand on the amount and flow rate of the injection gas, on the other hand, but also be regulated separately.
  • the mixture of accelerated injection gas and aspirated injector wind forms a motive nozzle stream that provides oxygen to the combustion process in the shaft furnace.
  • the shaft furnace further oxygen is supplied in the form of residual wind. As a rule, pressurized air is available as residual wind.
  • the injector wind and the residual wind come from the same source.
  • a wind pipe, a wind ring or a wind device which a certain amount of hot air, that is under elevated pressure hot air leads.
  • the Injektorwind Arthur, on the other hand, the residual wind line connected.
  • the total available hot blast amount is divided accordingly into a proportion which is sucked in by the injector from the oxygen-containing gas gas, and in a residual residual wind which is fed to the shaft furnace via the residual draft line.
  • the shaft furnace may be provided with a first wind line from which the injector wind is withdrawn and with a second wind line from which the residual wind is taken.
  • this design is technically more complex to implement than the above-described embodiment with a common wind line for residual wind and injector wind.
  • by separate wind lines or wind devices for injector wind and residual wind their pressure and temperature conditions can be set independently, creating additional degrees of freedom to control the combustion process in the shaft furnace.
  • air sucked in directly from the environment can be used as the injector wind. It is also possible to suck in other gases or substances with the injection gas and to supply the combustion in the shaft furnace.
  • an injection gas having an oxygen content of more than 90%, preferably more than 95%, particularly preferably more than 99% is used.
  • oxygen enriched air can be used as injection gas.
  • the injection gas is preferably injected at high speed, for example, 100 to 280 m / s in the shaft furnace.
  • the supply line for the injection gas is preferably connected to a supply device, for example a tank, for technically pure oxygen.
  • the technically pure oxygen can be added via the Injektorwind founded a defined amount of air so as to adjust the oxygen content in the resulting mixture of oxygen and air.
  • This mixture is accelerated in the motive nozzle, preferably a Laval nozzle, and introduced into the shaft furnace as a motive nozzle stream.
  • the oxygen content of the motive jet stream resulting from the combination of injection gas and injector wind is particularly preferably chosen to be between 25% and 65%.
  • About the oxygen content of the motive jet current is another parameter available, via which the combustion of the fossil fuel can be controlled. For example, by increasing the oxygen content, the combustion can be intensified, that is, the temperature of the combustion gases is increased and more fossil fuel is burned per unit time.
  • coke is used as a solid fuel.
  • the quality of the coke varies in practice very strong, which it is regularly necessary to follow up and adjust the combustion parameters in order to achieve optimum conversion of the coke and thus an optimal melting process.
  • fluctuations in the coke quality can be easily compensated.
  • the burners are preferably operated with oxygen having a purity of more than 90%, preferably more than 95%, particularly preferably more than 99%, as oxidizing agent.
  • the performance of the burners can be varied according to the process conditions.
  • the burner output is adjusted to be between 10% and 50% of the total energy supplied to the shaft furnace.
  • a plurality, preferably four to ten, uniformly distributed around the circumference of the shaft furnace tuyeres are provided in the shaft furnace, which alternately with a burner or a Lance or nozzle for supplying the injection gas are provided.
  • the term "wind nozzles" here are understood openings in the walls of the shaft furnace, which usually serve to introduce wind or air into the melting chamber, but according to the invention can also be equipped with burners.
  • the nozzles for the injection gas are designed as driving nozzles, in which, as explained above, accelerates the injection gas and an injector wind is sucked by means of the resulting during the acceleration of the injection gas negative pressure.
  • the combination of oxygen injection and burners according to the invention in a cupola furnace has numerous advantages in comparison to the previously used methods.
  • the combustion of solid fossil fuel is significantly improved and less fuel is needed.
  • the emissions or immissions are substantially reduced.
  • Quality variations of the fuel, in particular different coke qualities, can be taken into account.
  • the combustion of the solid fuel can be better controlled and thus set the stoichiometry defined in the shaft furnace.
  • the invention makes it possible to specifically intervene in the melting process of shaft furnaces and cupola systems.
  • the efficiencies and environmental results are significantly improved.
  • the combination of oxygen injection and oxygen burners according to the invention makes it possible to supply more oxygen to the shaft furnace and at the same time to use less coke.
  • the figure shows a cross section through a cupola 1 for melting iron.
  • a plurality of wind nozzles 2 are distributed around the circumference of the cupola 1.
  • the tuyeres 2 are alternately equipped with an oxygen friction nozzle 3 and an oxygen burner 4.
  • Technically pure oxygen having a purity of more than 95% is injected into the cupola furnace 1 via the oxygen friction nozzles 3.
  • the driving nozzles 3 are connected to the wind ring, not shown in the figure, from which sucked when injecting the oxygen into the furnace 1 air or wind and is also blown into the cupola 1.
  • the oxygen burners 4 are operated with a fuel gas, preferably natural gas, and oxygen with a purity of more than 95%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines Schachtofens (1), insbesondere eines Kupolofens, zum Schmelzen von Einsatzmaterial, wobei der Schachtofen (1) durch Verbrennung eines festen Brennstoffs beheizt wird und wobei in den Schachtofen (1) ein Injektionsgas, welches einen Sauerstoffanteil von mehr als 21% besitzt, eingedüst wird. Der Schachtofen (1) wird mittels mindestens eines Brenners (4) beheizt, wobei dem Brenner (4) ein gasförmiger oder flüssiger Brennstoff und ein gasförmiges Oxidationsmittel, welches einen Sauerstoffanteil von mehr als 21% aufweist, zugeführt werden.

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben eines Schachtofens, insbesondere eines Kupolofens, zum Schmelzen von Einsatzmaterial, wobei der Schachtofen durch Verbrennung eines festen Brennstoffs beheizt wird und wobei in den Schachtofen ein Injektionsgas eingedüst wird, welches einen Sauerstoffanteil von mehr als 21% besitzt. Ferner bezieht sich die Erfindung auf einen Schachtofen, insbesondere Kupolofen, zum Schmelzen eines Einsatzmaterials, wobei eine Zuleitung für ein sauerstoffhaltiges Injektionsgas vorgesehen ist, an deren stromabwärtigem Ende eine Treibdüse angeschlossen ist, wobei eine Injektorwindleitung in die Zuleitung für das Injektionsgas oder in die Treibdüse mündet.
  • In einem Kupolofen wird ein Eisensatz, der meist aus Roheisen, Gussbruch, Stahlschrott und sonstigen Ferrolegierungen besteht, aufgeschmolzen. Als Brennstoff wird im Kupolofen in der Regel Gießereikoks eingesetzt, der durch Umsetzung mit Sauerstoff verbrannt wird und dabei die zum Schmelzen des Eisensatzes notwendigen Energiemengen freisetzt.
  • Ursprünglich wurde der Koks mit Luft als Oxidationsmittel verbrannt. Mittlerweile gehört jedoch der Einsatz von mit Sauerstoff angereicherter Luft beim Schmelzen im Kupolofen zum technischen Standard. Der Vorteil gegenüber der Verwendung von Luft liegt darin, dass höhere Verbrennungstemperaturen erzeugt werden können und der Schmelzprozess schneller abläuft.
  • Aus der EP 0 762 068 A1 ist ein Verfahren zur Zuführung von Verbrennungsluft in einen Kupolofen bekannt, bei dem Sauerstoff in den Kupolofen eingedüst wird und der dabei entstehende Unterdruck ausgenutzt wird, um weitere Verbrennungsluft in den Kupolofen zu saugen.
  • Im Kupolofen dient der Koks zum einen als Brennstoff, zum anderen zum Aufkohlen des flüssigen Eisens. Wird die oben beschriebene Sauerstoffeindüsung eingesetzt, so wird der Koks im Kupolofen durch den zusätzlichen Sauerstoff schneller verbrannt. Die auf diese Weise verringerte Koksmenge wirkt sich aber negativ auf die Aufkohlung des flüssigen Eisens aus.
  • Aufgabe vorliegender Erfindung ist es daher, ein verbessertes Verfahren zum Betreiben eines Schachtofens der eingangs genannten Art und einen entsprechenden Schachtofen aufzuzeigen.
  • Diese Aufgabe wird durch ein Verfahren zum Betreiben eines Schachtofens, insbesondere eines Kupolofens, zum Schmelzen von Einsatzmaterial gelöst, wobei der Schachtofen durch Verbrennung eines festen Brennstoffs beheizt wird und wobei in den Schachtofen ein Injektionsgas eingedüst wird, welches einen Sauerstoffanteil von mehr als 21% besitzt, und wobei das Verfahren dadurch gekennzeichnet ist, dass der Schachtofen mittels mindestens eines Brenners beheizt wird, wobei dem Brenner ein gasförmiger oder flüssiger Brennstoff und ein gasförmiges Oxidationsmittel, welches einen Sauerstoffanteil von mehr als 21% aufweist, zugeführt werden.
  • Der erfindungsgemäße Schachtofen, insbesondere Kupolofen, zum Schmelzen eines Einsatzmaterials, besitzt eine Zuleitung für ein sauerstoffhaltiges Injektionsgas, an deren stromabwärtigem Ende eine Treibdüse angeschlossen ist, wobei eine Injektorwindleitung in die Zuleitung für das sauerstoffhaltige Gas oder in die Treibdüse mündet, und wobei der Schachtofen mindestens einen Brenner aufweist, der mit einer Zuleitung für ein gasförmiges Oxidationsmittel und einer Zuleitung für einen flüssigen oder gasförmigen Brennstoff versehen ist.
  • Unter dem Begriff "Schachtofen" wird insbesondere ein Kupolofen verstanden, insbesondere ein Kupolofen zum Schmelzen von Grauguss und Sphäroguss. Aber auch andere Schachtofenanlagen zum Schmelzen von anderen metallischen Einsätzen, wie zum Beispiel Kupfer oder Aluminium, oder auch zum Schmelzen von nichtmetallischen Materialien, beispielsweise zur Erzeugung von Mineralwolle, können erfindungsgemäß betrieben werden.
  • Der Begriff "Einsatzmaterial" soll dementsprechend metallhaltige und nichtmetallische Chargen umfassen, die einem Schachtofen zum Schmelzen zugeführt werden. Wie eingangs bereits erwähnt, fällt hierunter insbesondere der sogenannte Eisensatz oder kalte Satz, bestehend aus Roheisen, Gussbruch, Stahischrott und/oder sonstigen eisenhaltigen Zuschlagstoffen. Je nach Art des Schachtofens sind aber auch kupfer- oder aluminiumhaltige oder nichtmetallische Chargen als Einsatz denkbar.
  • Mit den Begriffen "Wind", "Restwind" und "Injektorwind" werden im Rahmen dieser Anmeldung dem Schachtofen zugeführte sauerstoffhaltige Gasströme, insbesondere unter erhöhtem Druck zugeführte Luftströme, verstanden.
  • Der Begriff "Injektionsgas" bezeichnet einen sauerstoffhaltigen Gasstrom, der über eine Lanze, ein Rohr, eine Treibdüse oder ähnliches in den Schachtofen eingebracht wird. Im Gegensatz zu einem Brenner wird das Injektionsgas ohne Reaktionspartner dem Schachtofen zugeführt. Das Injektionsgas reagiert erst mit den im Schachtofen befindlichen festen und flüssigen Stoffen sowie mit der Atmosphäre im Schachtofen. Es ist aber auch möglich, das Injektionsgas gemeinsam mit anderen Stoffen oder Fluiden, mit denen das Injektionsgas unter den in der Lanze oder Düse herrschenden Bedingungen nicht reagiert, in den Schachtofen einzuleiten.
  • Der Begriff "Sauerstoffbrenner" bezeichnet im Folgenden einen Brenner, der mit einem flüssigen oder gasförmigen Brennstoff und einem sauerstoffhaltigen Gas betrieben wird, welches eine Sauerstoffkonzentration von mehr als 21% besitzt. Insbesondere wird als Oxidationsmittel reiner Sauerstoff bzw. technisch reiner Sauerstoff oder mit Sauerstoff angereicherte Luft verwendet.
  • Erfindungsgemäß wurde die eingangs beschriebene Technologie der Sauerstoffinjektion in den Kupolofen dahingehend weiterentwickelt, dass zusätzlich Sauerstoffbrenner zum Schmelzen eingesetzt werden. Der Einsatz von Sauerstoffbrennern in Kupolöfen ist zwar an sich bereits bekannt. So ist beispielsweise in der deutschen Offenlegungsschrift DE 1 583 213 OS die Verwendung von Sauerstoff-Brennstoff-Brennern in Schachtöfen beschrieben. Die erfindungsgemäße Kombination der beiden jeweils für sich bekannten Techniken zeigt aber überraschende Vorteile.
  • Erfindungsgemäß werden die beiden Technologien der Sauerstoffeindüsung und der Beheizung mit Brennern in einem Schachtofen kombiniert, wodurch die jeweiligen Nachteile weitgehend vermieden und eine deutliche Verbesserung des Schmelzverfahrens erreicht wird. So besteht bei der reinen Sauerstoffinjektion die Gefahr des zu schnellen Koksabbrandes, bei der Verwendung von Sauerstoffbrennern können dagegen die Verbrennungsgase, insbesondere Wasserdampf und Kohlendioxid, sowie unverbranntes Brenngas einen unerwünschten Kühleffekt im Schachtofen hervorrufen. Die erfindungsgemäße Nutzung beider Technologien vermeidet diese Nachteile und erlaubt eine größere Flexibilität in der Verfahrensführung.
  • Erfindungsgemäß kann der Schmelzvorgang im Schachtofen über die Koksmenge, die Mengen an flüssigem oder gasförmigem Brennstoff und die zugeführte Menge an sauerstoffhaltigem Injektionsgas geregelt werden. Über entsprechende Einstellung dieser Parameter kann beispielsweise die Stöchiometrie im Schachtofen gesteuert werden, das heißt, es kann beispielsweise eine reduzierende oder neutrale Atmosphäre eingestellt werden. Bei den aus dem Stand der Technik bekannten Schmelzverfahren mit Sauerstoffinjektion besteht die Gefahr einer zu stark oxidierenden Atmosphäre, wenn der Schmelzprozess durch Sauerstoffeindüsung beschleunigt wird. Erfindungsgemäß wird dieser Gefahr dadurch begegnet, dass die Schmelzleistung nicht nur über die Sauerstoffinjektion, sondern insbesondere auch über die Brennerleistung gesteuert wird.
  • Über die Zuführung des sauerstoffhaltigen Injektionsgases kann die Koksverbrennung und damit die Aufkohlung des schmelzflüssigen Eisens im Schachtofen optimiert werden. Außerdem werden durch den zusätzlichen Sauerstoff Sekundärreaktionen im Schachtofen, beispielsweise endotherme Reaktionen von überschüssigem Brennstoff mit Bestandteilen der Ofenatmosphäre, beeinflusst.
  • Die zum Schmelzen des Einsatzmaterials notwendige Energie wird nicht mehr nur über den Koks, sondern zusätzlich über die Brenner zugeführt. Auf diese Weise kann die Schmelzleistung optimiert und/oder die Koksmenge reduziert werden.
  • Vorzugsweise wird das Injektionsgas an einer relativ "kalten" Stelle in den Schachtofen injiziert. Die Temperatur im Schachtofen ist von der Höhe abhängig, d.h. auf unterschiedlichen Höhen herrschen unterschiedliche Temperaturen. Eine "kalte Stelle" ist dementsprechend eine Stelle im Schachtofen, an der die Temperatur niedriger ist als die Durchschnittstemperatur auf dieser Ofenhöhe.
  • Umgekehrt werden die Brenner vorzugsweise auf "heiße" Ofenbereiche gerichtet, an denen die Temperatur höher ist als die Durchschnittstemperatur auf dieser Ofen- bzw. Schachthöhe.
  • Im Kupolofenbetrieb tritt häufig über den Ofenumfang eine ungleichmäßige thermische Belastung auf. Dies ist beispielsweise an einem ungleichmäßigen Verschleiß der feuerfesten Ofenwandauskleidungen erkennbar. Von Vorteil werden daher die Brenner und die Zuleitungen für Injektionsgas in den Schachtofen so angeordnet, dass der Ofen über seinen gesamten Umfang eine möglichst gleichmäßige thermische Belastung erfährt.
  • Die Menge und/oder die Strömungsgeschwindigkeit des Injektionsgases und/oder des Injektorwindes und/oder die Leistung der Brenner werden von Vorteil in Abhängigkeit von der Temperatur und/oder dem CO-Gehalt des Gichtgases, d.h. der Verbrennungsgase, des Schachtofens geregelt. Unterschiedliche Koksqualitäten und unterschiedliche Zusammensetzungen des in den Schachtofen eingebrachten, zu schmelzenden Einsatzes beeinflussen die Zusammensetzung des Gichtgases. Durch Analyse des CO-Gehalts und/oder der Gichtgastemperatur können Rückschlüsse auf den Verbrennungsprozess und den Schmelzprozess gezogen werden.
  • Durch Variation der Strömungsgeschwindigkeit, des Sauerstoffgehalts und/oder der Menge des Treibdüsenstroms sowie der Leistung des oder der Brenner(s) kann der Schmelzprozess stets an die gewünschte Zielsetzung angepasst werden. Weitere Parameter, die zur Regelung des Injektionsgases und/oder des oder der Brenner(s) herangezogen werden können, sind die Schmelzleistung, der Ofendruck und die Abgasanalyse.
  • Die Steuerung des Schachtofens erfolgt von Vorteil in Abhängigkeit von einem oder mehreren der folgenden Parameter: Temperatur, Zusammensetzung oder Analyse des Gicht- oder Abgases, Schmelzparameter, wie beispielsweise Schmelztemperatur, ofenspezifische Daten, Zusammensetzung bzw. Analyse der aus dem Schachtofen abgezogenen Schlacke.
  • Zuvor aufgezeichnete Betriebsdaten können hierbei genutzt werden, um die Brennerleistung und die Sauerstoffzufuhr zum Ofen in Abhängigkeit von den momentanen Betriebsparametern optimal einzustellen und eine den technologischen Forderungen entsprechende Verfahrensführung zu erzielen. Leistungsabweichungen können schnell erkannt und zugeordnet werden. Durch die Hinterlegung der praktischen Schmelzergebnisse kann historisch in einer selbst korrigierenden Datenbank die Ofenfahrweise angepasst werden. Qualitätseinflüsse über zum Beispiel unterschiedliche Kokseinsätze werden sofort erkannt.
  • Erfindungsgemäß wird dem Schachtofen zur Umsetzung des festen Brennstoffs, beispielsweise des Koks, eine geregelte Menge Sauerstoff zugeführt. Dies erfolgt dadurch, dass das Injektionsgas oder -gasgemisch in definierter Menge und/oder mit definierter Strömungsgeschwindigkeit dem Schachtofen zugeführt wird.
  • Von Vorteil wird das sauerstoffhaltige Injektionsgas in einer Treibdüse beschleunigt und ein Injektorwind wird mittels des bei der Beschleunigung des eingedüsten Gases entstehenden Unterdrucks angesaugt und mit dem Injektionsgas zu einem Treibdüsenstrom zusammengeführt und in den Schachtofen geleitet.
  • Das Injektionsgas wird bei dieser Ausführungsform mit hoher Geschwindigkeit in den Schachtofen geleitet und kann weit in das Innere des Schachtofens eingeblasen werden und so die Umsetzung des Kokses gezielt beeinflussen. Zusätzlicher Sauerstoff wird dem Schachtofen über den Injektorwind zugeführt. Das Injektionsgas strömt mit hoher Geschwindigkeit aus der oder den Treibdüsen aus und erzeugt dabei einen Unterdruck, welcher erfindungsgemäß dazu genutzt wird, den Injektorwind anzusaugen. Die angesaugte Menge an Injektorwind hängt zum einen von der Menge und Strömungsgeschwindigkeit des Injektionsgases ab, kann zum anderen von Vorteil aber auch noch separat geregelt werden. Das Gemisch aus beschleunigtem Injektionsgas und angesaugtem Injektorwind bildet einen Treibdüsenstrom, der dem Verbrennungsprozess im Schachtofen Sauerstoff definiert zur Verfügung stellt. Vorzugsweise wird dem Schachtofen weiterer Sauerstoff in Form von Restwind zugeführt. In der Regel steht hierzu unter Druck befindliche Luft als Restwind zur Verfügung.
  • In einer bevorzugten Ausführungsform stammen der Injektorwind und der Restwind aus derselben Quelle. So ist beispielsweise eine Windleitung, ein Windring oder eine Windeinrichtung vorgesehen, die eine bestimmte Menge Heißwind, das heißt unter erhöhtem Druck stehende heiße Luft, führt. An diese Windleitung ist zum einen die Injektorwindleitung, zum anderen die Restwindleitung angeschlossen. Die gesamte zur Verfügung stehende Heißwindmenge teilt sich entsprechend auf in einen Anteil, der über die Injektorwindleitung von dem sauerstoffhaltigen Gas angesaugt wird, und in einen verbleibenden Restwind, der über die Restwindleitung dem Schachtofen zugeführt wird.
  • Es ist ebenso möglich, eine separate Zufuhr für den Injektorwind und den Restwind vorzusehen. Zum Beispiel kann der Schachtofen mit einer ersten Windleitung versehen sein, aus der der Injektorwind abgezogen wird, und mit einer zweiten Windleitung, aus der der Restwind entnommen wird. Diese Ausführung ist zwar technisch aufwändiger zu realisieren als die oben beschriebene Ausführung mit einer gemeinsamen Windleitung für Restwind und Injektorwind. Andererseits können aber durch separate Windleitungen oder Windeinrichtungen für Injektorwind und Restwind deren Druck- und Temperaturverhältnisse unabhängig voneinander eingestellt werden, wodurch weitere Freiheitsgrade zur Steuerung des Verbrennungsprozesses im Schachtofen entstehen. Außerdem kann als Injektorwind direkt aus der Umgebung angesaugte Luft eingesetzt werden. Ebenso ist es möglich, mit dem Injektionsgas andere Gase oder Stoffe anzusaugen und der Verbrennung in dem Schachtofen zuzuführen.
  • Vorzugsweise wird ein Injektionsgas mit einem Sauerstoffgehalt von mehr als 90%, bevorzugt mehr als 95%, besonders bevorzugt mehr als 99% eingesetzt. Aber auch mit Sauerstoff angereicherte Luft kann als Injektionsgas verwendet werden. Das Injektionsgas wird bevorzugt mit hoher Geschwindigkeit von beispielsweise 100 bis 280 m/s in den Schachtofen eingedüst.
  • Vorzugsweise ist die Zuleitung für das Injektionsgas mit einer Versorgungseinrichtung, beispielsweise einem Tank, für technisch reinen Sauerstoff verbunden. Dem technisch reinen Sauerstoff kann über die Injektorwindleitung eine definierte Luftmenge zugegeben werden, um so den Sauerstoffgehalt in dem resultierenden Gemisch aus Sauerstoff und Luft einzustellen. Dieses Gemisch wird in der Treibdüse, vorzugsweise einer Lavaldüse, beschleunigt und als Treibdüsenstrom in den Schachtofen eingebracht.
  • Besonders bevorzugt wird der Sauerstoffgehalt des aus der Zusammenführung von Injektionsgas und Injektorwind resultierenden Treibdüsenstroms zwischen 25% und 65% gewählt. Über den Sauerstoffgehalt des Treibdüsenstroms steht ein weiterer Parameter zur Verfügung, über den die Verbrennung des fossilen Brennstoffs gesteuert werden kann. So kann beispielsweise durch Erhöhung des Sauerstoffgehalts die Verbrennung intensiviert werden, das heißt, die Temperatur der Verbrennungsgase wird erhöht und es wird pro Zeiteinheit mehr fossiler Brennstoff verbrannt.
  • Zum Beispiel wird technischer Sauerstoff über Lavaldüsen in eine spezielle Treibdüsenkammer eingetragen. Ein vorab ausgelegter Anteil der Primärwindmenge wird über den entstehenden Unterdruck als Injektorwindanteil geregelt angesaugt. Mit der Einstellung des Injektorwindanteiles über eine Regelklappe ergeben sich verschiedene Sauerstoffanreicherungen, und entsprechend hohe Austrittsgeschwindigkeiten in die Schmelzzone. Der verbleibende Restprimärwind gelangt mit deutlich geringerer Menge und Geschwindigkeit in den Bereich der Schmelzzone.
  • Vorzugsweise wird Koks als fester Brennstoff eingesetzt. Die Qualität des Kokses variiert in der Praxis sehr stark, wodurch es regelmäßig erforderlich wird, die Verbrennungsparameter nachzufahren und anzupassen, um eine optimale Umsetzung des Kokses und damit einen optimalen Schmelzprozess zu erreichen. Durch den erfindungsgemäßen Einsatz der Brenner können Schwankungen in der Koksqualität leicht kompensiert werden.
  • Die Brenner werden bevorzugt mit Sauerstoff mit einer Reinheit von mehr als 90%, bevorzugt mehr als 95 %, besonders bevorzugt mehr als 99%, als Oxidationsmittel betrieben.
  • Die Leistung der Brenner kann je nach den Verfahrensbedingungen variiert werden. Vorzugsweise wird die Brennerleistung so eingestellt, dass diese zwischen 10 % und 50 % der gesamten, dem Schachtofen zugeführten Energie beträgt.
  • In einer besonders bevorzugten Ausführungsform sind mehrere, vorzugsweise vier bis zehn, gleichmäßig um den Umfang des Schachtofens verteilte Winddüsen in den Schachtofen vorgesehen, die abwechselnd mit einem Brenner beziehungsweise einer Lanze oder Düse zur Zuführung des Injektionsgases versehen sind. Unter dem Begriff "Winddüsen" werden hierbei Öffnungen in den Wänden des Schachtofens verstanden, die üblicherweise zur Einführung von Wind oder Luft in den Schmelzraum dienen, erfindungsgemäß aber auch mit Brennern bestückt werden können..
  • In einer besonders bevorzugten Ausführung sind die Düsen für das Injektionsgas als Treibdüsen ausgeführt, in denen, wie oben erläutert, das Injektionsgas beschleunigt und ein Injektorwind mittels des bei der Beschleunigung des Injektionsgases entstehenden Unterdrucks angesaugt wird.
  • Die erfindungsgemäße Kombination von Sauerstoffinjektion und Brennern in einem Kupolofen hat zahlreiche Vorteile im Vergleich zu den bisher eingesetzten Verfahren. Die Verbrennung des festen, fossilen Brennstoffs wird deutlich verbessert und es wird weniger Brennstoff benötigt. Die Emissionen bzw. Immissionen werden wesentlich verringert. Qualitätsschwankungen des Brennstoffs, insbesondere unterschiedlichen Koksqualitäten, kann Rechnung getragen werden. Die Verbrennung des festen Brennstoffs kann besser geregelt und so die Stöchiometrie im Schachtofen definiert eingestellt werden. Durch die Erfindung wird es möglich, gezielt in den Schmelzprozess von Schachtöfen und Kupolofenanlagen einzugreifen. Die Wirkungsgrade und Umweltergebnisse werden entscheidend verbessert. Die erfindungsgemäße Kombination von Sauerstoffinjektion und Sauerstoffbrennern ermöglicht es, dem Schachtofen mehr Sauerstoff zuzuführen und gleichzeitig weniger Koks einsetzen zu müssen.
  • Mit der erfindungsgemäßen Technologie kann mehr Sauerstoff zum Schmelzen eingesetzt werden, ohne dass die aus dem Stand der Technik bekannten Nachteile, wie geringeres Aufkohlen oder Abfall der Eisentemperatur, auftreten. Es hat sich gezeigt, dass die pro produzierte Tonne Eisen verarbeitete Sauerstoffmenge von 20 bis 40 Nm3/tFe auf 20 bis 80 Nm3/tFe gesteigert werden kann.
  • Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von dem in der Zeichnung dargestellten Ausführungsbeispiel näher erläutert. Hierbei zeigt die Figur einen Kupolofen im Querschnitt.
  • Die Figur zeigt einen Querschnitt durch einen Kupolofen 1 zum Einschmelzen von Eisensatz. In bekannter Weise sind um den Umfang des Kupolofens 1 mehrere Winddüsen 2 verteilt. In der gezeigten Ausführung sind die Winddüsen 2 abwechselnd mit einer Sauerstofftreibdüse 3 und einem Sauerstoffbrenner 4 bestückt. Über die Sauerstofftreibdüsen 3 wird technisch reiner Sauerstoff mit einer Reinheit von mehr als 95% in den Kupolofen 1 eingedüst. Die Treibdüsen 3 sind mit dem in der Figur nicht dargestellten Windring verbunden, aus dem beim Eindüsen des Sauerstoffs in den Ofen 1 Luft bzw. Wind angesaugt und ebenfalls in den Kupolofen 1 eingeblasen wird. Die Sauerstoffbrenner 4 werden mit einem Brenngas, bevorzugt Erdgas, und Sauerstoff mit einer Reinheit von mehr als 95% betrieben.

Claims (12)

  1. Verfahren zum Betreiben eines Schachtofens (1), insbesondere eines Kupolofens, zum Schmelzen von Einsatzmaterial, wobei der Schachtofen (1) durch Verbrennung eines festen Brennstoffs beheizt wird und wobei in den Schachtofen (1) ein Injektionsgas, welches einen Sauerstoffanteil von mehr als 21% besitzt, eingedüst wird, dadurch gekennzeichnet, dass der Schachtofen (1) mittels mindestens eines Brenners (4) beheizt wird, wobei dem Brenner (4) ein gasförmiger oder flüssiger Brennstoff und ein gasförmiges Oxidationsmittel, welches einen Sauerstoffanteil von mehr als 21% aufweist, zugeführt werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Injektionsgas in einer Treibdüse (3) beschleunigt wird und ein Injektorwind mittels des bei der Beschleunigung des Injektionsgases entstehenden Unterdrucks angesaugt und mit dem Injektionsgas zu einem Treibdüsenstrom zusammengeführt und in den Schachtofen (1) geleitet wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass dem Schachtofen (1) zusätzlich ein Restwind zugeführt wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Injektorwind und der Restwind aus einer gemeinsamen Windleitung abgezogen werden.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als Injektionsgas Sauerstoff mit einer Reinheit von mehr als 90%, bevorzugt mehr als 95 %, besonders bevorzugt mehr als 99%, verwendet wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Koks als fester Brennstoff eingesetzt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass als Oxidationsmittel Sauerstoff mit einer Reinheit von mehr als 90%, bevorzugt mehr als 95 %, besonders bevorzugt mehr als 99% verwendet wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass dem Schachtofen (1) über den oder die Brenner (4) zwischen 10 % und 50 % der gesamten dem Schachtofen (1) zugeführten Energie zugeführt wird.
  9. Schachtofen (1), insbesondere Kupolofen, zum Schmelzen eines Einsatzmaterials, wobei eine Zuleitung für ein sauerstoffhaltiges Injektionsgas vorgesehen ist, an deren stromabwärtigem Ende eine Treibdüse (3) angeschlossen ist, und wobei eine Injektorwindleitung in die Zuleitung für das Injektionsgas oder in die Treibdüse (3) mündet, dadurch gekennzeichnet, dass der Schachtofen (1) mindestens einen Brenner (4) aufweist, der mit einer Zuleitung für ein gasförmiges Oxidationsmittel und einer Zuleitung für einen flüssigen oder gasförmigen Brennstoff versehen ist.
  10. Schachtofen (1) nach Anspruch 9, dadurch gekennzeichnet, dass eine Restwindleitung zur Zuführung eines Restwindes in den Schachtofen (1) vorgesehen ist.
  11. Schachtofen (1) nach Anspruch 10, dadurch gekennzeichnet, dass die Restwindleitung und die Injektorwindleitung in eine gemeinsame Windleitung münden.
  12. Schachtofen (1) nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die Zuleitungen (3) für das Injektionsgas und die Brenner (4) abwechselnd um den Umfang des Schachtofens (1) angeordnet sind.
EP09003981.9A 2009-01-29 2009-03-19 Verfahren zum Schmelzen von Einsatzmaterial in einem Kupolofen Not-in-force EP2213971B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09003981T PL2213971T3 (pl) 2009-01-29 2009-03-19 Sposób wytapiania materiału wsadowego w żeliwiaku

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009006573A DE102009006573A1 (de) 2009-01-29 2009-01-29 Verfahren zum Schmelzen von Einsatzmaterial in einem Kupolofen

Publications (2)

Publication Number Publication Date
EP2213971A1 true EP2213971A1 (de) 2010-08-04
EP2213971B1 EP2213971B1 (de) 2014-12-03

Family

ID=40628415

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09003981.9A Not-in-force EP2213971B1 (de) 2009-01-29 2009-03-19 Verfahren zum Schmelzen von Einsatzmaterial in einem Kupolofen

Country Status (5)

Country Link
US (1) US8071013B2 (de)
EP (1) EP2213971B1 (de)
DE (1) DE102009006573A1 (de)
ES (1) ES2530864T3 (de)
PL (1) PL2213971T3 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011107326A1 (de) 2011-07-14 2013-01-17 Linde Aktiengesellschaft Schachtofen und Verfahren zum Betreiben desselben
US9797023B2 (en) 2013-12-20 2017-10-24 Grede Llc Shaft furnace and method of operating same
RU2755239C1 (ru) 2021-03-02 2021-09-14 Общество с ограниченной ответственностью "ЭР ЛИКИД" Топливно-кислородная горелка для плавильной печи, система и способ управления розжигом и контролем пламени такой горелки

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1583213A1 (de) 1966-12-16 1970-07-30 Air Reduction Sauerstoff-Brennstoff -Brenner in Ofenduesen
US5346183A (en) * 1992-01-31 1994-09-13 The Boc Group Plc Fumeless cupolas
EP0762068A1 (de) 1995-08-28 1997-03-12 Linde Aktiengesellschaft Verfahren zum Betreiben eines Sauerstoff-verzehrenden metallurgischen Schachtofens und Schachtofen zum Durchführen des Verfahrens
EP0793071A2 (de) * 1996-03-01 1997-09-03 The BOC Group plc Abgasenverbrennungsregelung eines Ofens
EP1325950A2 (de) * 2002-01-04 2003-07-09 Umweltkontor Renewable Energy AG Gleichstrom-Schacht-Reaktor
EP1997915A1 (de) * 2007-06-01 2008-12-03 Linde Aktiengesellschaft Verfahren zur gesteuerten Koksumsetzung in Kupolöfen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE386660B (sv) * 1973-06-18 1976-08-16 Rockwool Ab Forfarande for smeltning i schaktugn samt schaktugn for utovande av forfarandet
DE3565691D1 (en) * 1984-06-29 1988-11-24 Daido Steel Co Ltd Reactor iron making

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1583213A1 (de) 1966-12-16 1970-07-30 Air Reduction Sauerstoff-Brennstoff -Brenner in Ofenduesen
US5346183A (en) * 1992-01-31 1994-09-13 The Boc Group Plc Fumeless cupolas
EP0762068A1 (de) 1995-08-28 1997-03-12 Linde Aktiengesellschaft Verfahren zum Betreiben eines Sauerstoff-verzehrenden metallurgischen Schachtofens und Schachtofen zum Durchführen des Verfahrens
EP0793071A2 (de) * 1996-03-01 1997-09-03 The BOC Group plc Abgasenverbrennungsregelung eines Ofens
EP1325950A2 (de) * 2002-01-04 2003-07-09 Umweltkontor Renewable Energy AG Gleichstrom-Schacht-Reaktor
EP1997915A1 (de) * 2007-06-01 2008-12-03 Linde Aktiengesellschaft Verfahren zur gesteuerten Koksumsetzung in Kupolöfen

Also Published As

Publication number Publication date
US20100186552A1 (en) 2010-07-29
DE102009006573A1 (de) 2010-08-05
EP2213971B1 (de) 2014-12-03
US8071013B2 (en) 2011-12-06
PL2213971T3 (pl) 2015-04-30
ES2530864T3 (es) 2015-03-06

Similar Documents

Publication Publication Date Title
DE3607774C2 (de)
EP0037809B1 (de) Verfahren zur Herstellung von flüssigem Roheisen oder Stahlvormaterial sowie Anlage zur Durchführung des Verfahrens
EP1466022B1 (de) Verfahren zur pyrometallurgischen behandlung von metallen, metallschmelzen und/oder schlacken sowie eine injektorvorrichtung
DE2428891C3 (de) Schachtofen zum Schmelzen von mineralischen Substanzen zur Herstellung von Mineralwolle
CN110218951A (zh) 一种φ14mm大直径矿用钢绞线用盘条生产方法
EP1997915A1 (de) Verfahren zur gesteuerten Koksumsetzung in Kupolöfen
EP2213971B1 (de) Verfahren zum Schmelzen von Einsatzmaterial in einem Kupolofen
DE3423247C2 (de) Verfahren und Einrichtung zum Herstellen von Stahl aus Schrott
EP0826130B1 (de) Verfahren zum einschmelzen von metallischen einsatzstoffen in einem schachtofen
EP1285096B1 (de) Verfahren und vorrichtung zur herstellung von roheisen oder flüssigen stahlvorprodukten aus eisenerzhältigen einsatzstoffen
EP0680592B1 (de) Verfahren und einrichtung zum schmelzen von eisenmetallischen werkstoffen in einem koksbeheizten kupolofen
DE3219984C2 (de)
DE10249235B4 (de) Verfahren zum Betreiben eines Schachtofens
EP0946848A2 (de) Verfahren und vorrichtung zum betreiben eines schachtofens
EP0118655A2 (de) Verfahren zur Durchführung von metallurgischen oder chemischen Prozessen und Niederschachtofen
EP0521523B1 (de) Verfahren zum Betreiben eines Kupolofens
EP1275739A2 (de) Verfahren und Anlage zur Metallerzeugung, vorzugsweise zur Stahlerzeugung, aus feink-rnigem Metalloxid
DE102007027038B4 (de) Verfahren zur Sauerstoffinjektion
DE102011107326A1 (de) Schachtofen und Verfahren zum Betreiben desselben
DE102008048779A1 (de) Schachtofen mit Gichtgasrückführung
DE2819465C2 (de)
EP0992754A2 (de) Verfahren zum Betreiben eines Schachtofens
DE2255945A1 (de) Siemens-martin-ofen
DE916647C (de) Erzeugung eines Ausgangswerkstoffes fuer die Eisenpulverherstellung
DE202007002799U1 (de) Treibdüsensystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110127

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20111129

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140806

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 699603

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009010286

Country of ref document: DE

Effective date: 20150108

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2530864

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150306

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150303

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150403

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502009010286

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150403

26 Opposition filed

Opponent name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

Effective date: 20150821

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150319

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150319

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150319

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150319

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 699603

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502009010286

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090319

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20170515

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190401

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20200309

Year of fee payment: 12

Ref country code: DE

Payment date: 20200324

Year of fee payment: 12

Ref country code: IT

Payment date: 20200325

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20200309

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200324

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009010286

Country of ref document: DE

Owner name: LINDE GMBH, DE

Free format text: FORMER OWNER: LINDE AG, 80331 MUENCHEN, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210804

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009010286

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210319