EP1325950A2 - Gleichstrom-Schacht-Reaktor - Google Patents

Gleichstrom-Schacht-Reaktor Download PDF

Info

Publication number
EP1325950A2
EP1325950A2 EP02028816A EP02028816A EP1325950A2 EP 1325950 A2 EP1325950 A2 EP 1325950A2 EP 02028816 A EP02028816 A EP 02028816A EP 02028816 A EP02028816 A EP 02028816A EP 1325950 A2 EP1325950 A2 EP 1325950A2
Authority
EP
European Patent Office
Prior art keywords
gas
shaft
gas discharge
discharge lines
reactor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02028816A
Other languages
English (en)
French (fr)
Other versions
EP1325950B1 (de
EP1325950A3 (de
Inventor
Jürgen Möser
Manfred Schulz
Thomas Flick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMILE BETEILIGUNGS GMBH
Original Assignee
Umweltkontor Renewable Energy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umweltkontor Renewable Energy AG filed Critical Umweltkontor Renewable Energy AG
Publication of EP1325950A2 publication Critical patent/EP1325950A2/de
Publication of EP1325950A3 publication Critical patent/EP1325950A3/de
Application granted granted Critical
Publication of EP1325950B1 publication Critical patent/EP1325950B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/02Shaft or like vertical or substantially vertical furnaces with two or more shafts or chambers, e.g. multi-storey
    • F27B1/025Shaft or like vertical or substantially vertical furnaces with two or more shafts or chambers, e.g. multi-storey with fore-hearth
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/08Continuous processes with ash-removal in liquid state
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • C10J3/24Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
    • C10J3/26Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed downwardly
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • C21B11/02Making pig-iron other than in blast furnaces in low shaft furnaces or shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • C21B13/023Making spongy iron or liquid steel, by direct processes in shaft furnaces wherein iron or steel is obtained in a molten state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0276Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using direct heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/04Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment drying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/16Arrangements of tuyeres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/20Arrangements of heating devices
    • F27B3/205Burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/22Arrangements of air or gas supply devices
    • F27B3/225Oxygen blowing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0043Floors, hearths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/001Extraction of waste gases, collection of fumes and hoods used therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0025Charging or loading melting furnaces with material in the solid state
    • F27D3/0032Charging or loading melting furnaces with material in the solid state using an air-lock
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/156Sluices, e.g. mechanical sluices for preventing escape of gas through the feed inlet
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0989Hydrocarbons as additives to gasifying agents to improve caloric properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1223Heating the gasifier by burners
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/20Combustion to temperatures melting waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2205/00Waste feed arrangements
    • F23G2205/18Waste feed arrangements using airlock systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/70Incinerating particular products or waste
    • F23G2900/7004Incinerating contaminated animal meals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/20Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/21Arrangements of devices for discharging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • F27D2003/162Introducing a fluid jet or current into the charge the fluid being an oxidant or a fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • F27D2099/0051Burning waste as a fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/15Tapping equipment; Equipment for removing or retaining slag
    • F27D3/1509Tapping equipment

Definitions

  • the present invention relates to a DC shaft reactor for Melting and gasifying feedstocks of different types and Consistency, such as pollutant-free and / or contaminated woods, house and Bulky waste, alternative fuels, pelletized dusts or animal meal, plastics, Industrial and commercial waste.
  • feedstocks of different types and Consistency such as pollutant-free and / or contaminated woods, house and Bulky waste, alternative fuels, pelletized dusts or animal meal, plastics, Industrial and commercial waste.
  • a synthesis gas which is used to generate electrical energy and heat is suitable and / or as a basis for Synthesis processes are used.
  • a solid product creates a non-leachable slag or an ash and a material further processable metal phase or a non-elutable liquid phase, which is available for further processing.
  • DE 100 07 115 A1 describes a reactor for gasifying and / or melting Feedstocks with a feed, pyrolysis, melting and superheating section described.
  • the pyrolysis section has a cross-sectional expansion Gas supply space in which at least one combustion chamber with at least one Brenner opens, through which hot combustion gases form a Bulk cones are fed.
  • high-energy media by means of upper and lower injection agents in the area of melting and Overheating zone and above the melt using oxygen lances and / or nozzles introduced.
  • the object of the invention is to provide a DC shaft reactor at which is influenced by the temperature ranges in the shaft body Gas removal is as low as possible.
  • the inventive DC shaft reactor for melting and Gasification of feedstock has a vertical shaft body in which feed is fed through a lock arrangement. Within the The insert material is dried, heated and gasified in the shaft body.
  • the shaft body can thus usually be divided into the dry zone, Divide the degassing zone and the gasification zone. Closes on the shaft body a receiving body, which is used to hold molten material Feed serves. Inside this body is the melting zone of the reactor educated.
  • the shaft body and / or the receiving body are with a Gas discharge device for discharging the generated inside the reactor Useful gases connected.
  • the gas discharge device is in the area arranged between the shaft body and the receiving body.
  • the gas discharge device has several with the shaft body and / or the Receiving body connected gas discharge lines.
  • the gas discharge lines become a common one Gas line merged.
  • the merger into a common one The gas line is preferably carried out via a flow line Cross-sectional expansion of a ring line towards the gas outlet. This results in changes as the gas quantities are brought together same gas speeds and therefore the same pressure losses.
  • the useful gas is suctioned off in the same way for each gas discharge line, so that it settles in the reactor forms a uniform pressure profile and avoids preferred flow channels become.
  • An asymmetrical reaction and temperature profile in one horizontal plane of the reactor is thus avoided, so that Influence of the temperature ranges in the shaft body through the gas discharge is low.
  • the discharged gas becomes his through the common gas line fed further use.
  • the uniform pressure profile is achieved in particular by the gas discharge lines are arranged regularly and initially via a ring line be brought together. This creates a Equalization of gas velocities and the risk that the Moving temperature zones in the direction of the gas discharge lines will continue reduced.
  • the gas discharge lines are at the top, in particular, carried out vertically upwards. Because of the local reduced flow rate and the fact that the useful gas opposes gravity flows, particles entrained in the flow be separated. Furthermore, by sharing the gas line between two Gas discharge lines are connected to the upper part of the ring line Gas flow of each gas discharge line is redirected at least twice, whereby also solid particles in the ring line are separated. The bottom of the Ring line is preferred between the mouths of the discharge lines not just, but especially funnel-shaped. So get there separated particles back through the discharge pipes into the receiving body. The Formation of possibly sinterable or melting dust deposits are avoided.
  • the flow velocities are in the individual Drainage lines lower. As a result, even within the Feed material generated by the suction of the gas lower flows and thus the temperature zones are not or only slightly shifted become. Due to the lower flow rate, the amount is entrained particles less.
  • the Manhole body and / or the receiving body preferably a gas collecting space on. With the gas collection room are the gas discharge lines connected. A calming of the gas takes place within the gas collecting room instead, in particular heavy particles settling out. In connection with the provision of several gas discharge lines and one according to the invention This can reduce the flow velocity and the particle load in the discharged gas can be significantly reduced.
  • the gas collecting space preferably at least surrounds the shaft body partially.
  • the gas collecting body is annular and completely surrounds the shaft body. This ensures even removal guaranteed by gas from the feed. It is particularly preferred here that the gas plenum is arranged in the area of the gasification zone is or surrounds the gasification zone.
  • a cooling device for example in the form of a double-walled shaft wall.
  • this cooling device results in a first cooling of the in the gas collection chamber.
  • sufficiently long gas discharge lines preferably indirect cooling is provided.
  • the design of the walls of the Discharge lines are, for example, double-walled with water cooling.
  • the DC shaft reactor has a shaft body 10.
  • the shaft body 10 can be converted into a Lock arrangement 12, one adjoining the lock arrangement 12 Drying zone 14, a subsequent to the drying zone 14 Degassing zone 16 and a gasification zone 18 adjoining it be divided.
  • the gasification zone 18 of the shaft body 10 adjoins a receiving body 20 to receive molten Feed material 22 is used.
  • the cross section of the receiving body is expanded, so that an annular gas collecting space 24 is formed, which surrounds the lower part of the gasification zone 18.
  • the gas collection chamber 24 is with a gas discharge device 26 for removing useful gases from the gas collection space 24 connected.
  • the feed material is fed into the shaft body 10 through a feed opening 28 introduced over the lock assembly 12. Feeding the feed takes place via the lock arrangement in order to introduce large quantities Ambient air through which the melting and gasification process is uncontrolled can be influenced to prevent.
  • the lock arrangement points to this two lock devices or lock gates 30, 32 between which the Lock chamber 34 is formed, wherein the lock chamber 34 is already a Is part of the shaft body 10.
  • the feed material then passes through the lock arrangement 12 into the Drying zone 14. Is in the drying zone 14 and the subsequent zones 16, 18 the shaft body 10 almost completely with during operation Feed material filled.
  • a gas supply device 36 is provided in the shaft body 10.
  • the gas supply device 36 has a ring line surrounding the shaft body 10 38, which are connected to a plurality of nozzles 40 which are evenly distributed around the circumference is.
  • the feed material in the area of Drying zone 14 preferably air, which may be enriched with oxygen can be fed to dry the feed.
  • gas supply device 42 which is also a Has shaft body 10 surrounding ring line 44.
  • the ring line 44 is with several nozzles 46, which are preferably evenly distributed on the circumference.
  • Energy-rich gases, oxygen, air can be supplied via the gas supply device 42 or others suitable for controlling the melting and gasification process Gases are fed to the feed.
  • nozzles 48 are provided in the gasification zone 18. Via the nozzles 48 can turn high energy gas or other the melting and Gases or substances controlling the gasification process can be supplied. As well instead of the nozzles 48, burners can also be provided which are located in the Gasification zone 18 immediately supply heat to the feed.
  • the End region of the shaft body 10 which is rotationally symmetrical with respect to the longitudinal axis 50 slightly tapered so that the feed material in the Area of the gasification zone 18 is somewhat retained.
  • nozzles 54 are arranged in a side wall 52 of the receiving body 20 in a side wall 52 of the receiving body 20 in a side wall 52 of the receiving body 20 .
  • the nozzles 54 are used for insertion energy-rich gases or similar substances. Through the nozzles 54 is ensures that the melt 22 remains liquid.
  • Nozzles 54 may also be provided to burners.
  • the gas discharge device 26 has several with the gas collecting space 24 connected gas discharge lines 56.
  • the gas discharge lines 56 are arranged regularly around the shaft body 10.
  • common ring line 58 are interconnected (Fig. 2). That from the Gas collecting space 24 through the gas discharge line 56 into the ring line 58 removed useful gas is then passed according to the invention into a gas line 60.
  • the useful gas discharged via the ring line 58 is at least derived two gas lines.
  • the ring line is 58 not connected between the two gas exhaust lines. It is also preferred a separation is realized on the opposite side.
  • the ring line 58 consists in this embodiment of two not connected Partial rings.
  • the heat of the discharged gases is preferably used in each connected to the gas exhaust pipes heat exchangers. To Flow through the heat exchangers can lead to a gas exhaust line common gas line 60 are merged.
  • the gas discharge lines 56 are in the lower part of the ring line 58 with this connected.
  • the individual gas line 60 or the gas discharge lines is or are preferably connected to the upper part of the ring line 58.
  • a design is also possible in which the gas line 60 or the Gas discharge lines are carried out horizontally or diagonally upwards or be (Fig. 3).
  • a horizontal design of the gas line 60 or the gas discharge lines is or are closed until the next processing facility avoid or keep it as short as possible to avoid dust buildup avoid.
  • the connection of the gas discharge lines 56 to the ring line 58 takes place via funnel-shaped openings 68, which is because of the Cross-sectional expansion a gas calming and equalization occurs and any particles that are also transported fall back into the gas discharge lines 56.
  • a further calming of the discharged gases occurs through an indirect Water cooling, the over the double-walled design of the tube 66 Gas discharge line 56 takes place. There is also a gas calming and equalization by a cross-sectional expansion of the ring line 58 to the gas line 60.
  • the gas collecting space 24 (FIG. 1), which surrounds the gasification zone 18 in a ring, is limited on the inside by a shaft wall 62.
  • the shaft wall 62 is for example double-walled and serves as a cooling device for this area of Manhole body 10 to ensure that no in this area Temperatures occur that damage the shaft walls. Because the gas collection room 24 is also limited by the shaft wall 62, this can be designed such that at the same time cooling in the gas collecting space gases is guaranteed. This is another Particle reduction in the gas that is in the gas plenum in front of the Drainage by the gas discharge device 26 calms down and in the gas discharge lines 56 is further cooled.
  • the degassing zone 16 can also continue the drying zone 14 be double-walled.
  • the double-walled version can be replaced by a silicate brickwork to be replaced.
  • An execution of the whole Drying and degassing zone 14, 16 with a ramming mass, even with one double-walled design, is advantageous. Less wear and tear on the Steel shell, less heat transfer of hot air to the interior and lower thermal shock resistance to the ramming mass.
  • the gasification zone 18 is the main reaction zone within the Shaft reactor. This takes place at temperatures of 1,200 to 1,400 ° C Material and energetic implementation of the solids. From solid fuel gases and solid products from coke to ash are created. For the complete and uniform reaction is crucial that a homogeneous pouring through the degassing gas already generated and the gas to be introduced here Gasification agent is evenly flowed through.
  • the gasification zone 18 must are of sufficient height for these reasons. In this respect, this is because achieved that the gasification zone 18 as a straight cylindrical region Transition to a conical reduction of the cross section or immediately as increasing taper is formed. Because the material Implementations and related destructive forces that Reduced material grain, the voids inside the Bulk column. By reducing the shaft cross-section in this area the rate of descent of the material column can be evened out, unwanted flow channels are destroyed and the formation of Larger voids in the bed are avoided.
  • the lower cylindrical or tapered area of the gasification area 18 protrudes into the melting zone 20.
  • the part above is on this part
  • the pillar at least partially, at the same time there are high ones Temperatures. To ensure mechanical strength and protection before too high temperatures, cooling takes place by means of indirect Water cooling in the shaft wall 62.
  • a medium combustible gas is formed Calorific value with the main components carbon monoxide, carbon dioxide, Hydrogen and water vapor without components of condensable Hydrocarbons. Many of the chemical reactions that have occurred are endothermic. The temperature of the gas and the bed is thus reduced.
  • the gas in the melting zone and at correspondingly high temperatures a deflection of approximately 180 ° and reaches the free layer 24. Due to the endothermic processes described above, the gas has one Temperature of approx. 1,000 ° C. After a certain gas calming and -Compensation, the gas is sucked out of the reactor above.
  • the gas collecting space 24 is already part of the melting zone 20, which the top is much wider than the protruding gasification zone 18.
  • the cylindrical melting zone 20 shrinks conically downwards and closes from the base plate, above which the melted phase collects.
  • the melting zone 20 is in its entirety with a multilayer Provide ramming compound or equipped with a lining. reason for that are the necessary high temperatures. Only in the area of the gas collection room brick lining may not be necessary.
  • the completely degassed and coked solid is already sintered in places or melted and sinks from the gasification zone 18 into the Melting zone 20.
  • a level with several oxygen nozzles is integrated into the melting zone 20 or injectors and / or oxidizing burners 54, which also are symmetrically distributed on the axis.
  • the supply of gas with a high proportion of oxygen leads to this strong exothermic reactions with the gas and the solid from the Gasification zone 18.
  • There are temperatures which are significantly above the The melting point of the material is usually about 1400 ° C to 1600 ° C. in the In the area of the oxygen nozzles there are even hot temperature zones from 1800 to 2000 ° C. Under these conditions and by adding Slag formers and / or materials that lower the melting point, all inorganic pollutants are melted safely.
  • the melted material collects as a melt at the bottom of the Reactor. This liquid melt is emptied as in the foundry usual via a tap hole and a gutter 64. A construction with forehearth or Siphon is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

Ein Gleichstrom-Schacht-Reaktor zum Schmelzen und Vergasen von Einsatzmaterial weist einen vertikalen Schachtkörper (10) auf. In dem Schachtkörper wird das Einsatzmaterial getrocknet, erwärmt und vergast. An den Schachtkörper (10) schließt sich ein Aufnahmekörper (20) zur Aufnahme von geschmolzenem Einsatzmaterial an. Mit dem Schachtkörper (10) und/oder dem Aufnahmekörper (20) ist eine Gas-Abführeinrichtung (26) zum Abführen entstehender Gase verbunden. Die Gas-Abführeinrichtung (26) weist mehrere nach oben gerichtete Gas-Abführleitungen (56) auf, die mit dem Schachtkörper (10) und/oder dem Aufnahmekörper (20) verbunden sind und in einer Ringleitung (58) münden. Erfindungsgemäß werden die Gas-Abführleitungen (56) zu einer gemeinsamen Gasleitung (60) zusammengeführt, wodurch in jeder Gas-Abführleitung (56) der gleiche Druck anliegt. Dadurch erfolgt die Absaugung der Nutzgase gleichartig, wodurch die nachteilige Beeinflussung der Temperaturbereiche der Strömungsverhältnisse und damit der Reaktionsverhältnisse im Schachtkörper (10) durch die Gasabfuhr verringert wird. <IMAGE>

Description

Die vorliegende Erfindung betrifft einen Gleichstrom-Schacht-Reaktor zum Schmelzen und Vergasen von Einsatzstoffen unterschiedlicher Art und Konsistenz, wie schadstofffreie und/oder schadstoffbelastete Hölzer, Haus- und Sperrmüll, Ersatzbrennstoffe, pelletierte Stäube bzw. Tiermehl, Kunststoffe, Industrie- und Gewerbeabfallstoffe.
In Schacht-Reaktoren kann ein Synthesegas, welches zur Erzeugung von elektrischer Energie sowie Wärme geeignet ist und/oder als Basis für Syntheseprozesse Verwendung findet, erzeugt werden. Als festes Produkt entsteht eine nichtauslaugbare Schlacke oder eine Asche und eine stofflich weiterverarbeitbare Metallphase oder eine nichteluierbare flüssige Phase, welche für eine weitergehende Verarbeitung zur Verfügung steht.
In DE 100 07 115 A1 ist ein Reaktor zum Vergasen und/ oder Schmelzen von Einsatzstoffen mit einem Zuführ-, Pyrolyse-, Schmelz- und Überhitzungsabschnitt beschrieben. Der Pyrolyseabschnitt weist eine Querschnittserweiterung als Gaszuführraum auf, in den mindestens eine Brennkammer mit mindestens einem Brenner mündet, durch welche heiße Verbrennungsgase einem sich ausbildenden Schüttkegel zugeführt werden. Des weiteren werden energiereiche Medien mittels oberen und unteren Eindüsungsmitteln im Bereich der Schmelz- und Überhitzungszone sowie oberhalb der Schmelze mittels Sauerstofflanzen und/oder Düsen eingebracht. Im Bereich der Schmelze befindet sich eine einseitig angeordnete Gas-Abführeinrichtung, durch die je nach Art des Einsatzmaterials beispielsweise Synthesegase abgeführt werden können. Durch das Absaugen von Gasen in diesem Bereich entstehen innerhalb des Schachtkörpers in der Nähe der Absaugung Strömungen. Hierdurch wird die Schmelzzone innerhalb des Einsatzmaterials in Richtung der Gas-Abführeinrichtung verschoben. Dies hat zur Folge, dass das Einsatzmaterial über dem Querschnitt des Schachtkörpers ungleichmäßig aufschmilzt. Hierdurch sinkt der Wirkungsgrad des Schacht-Reaktors. Ferner werden beim Absaugen des Gases feine Partikel mitgerissen, die zu störenden Ablagerungen in Leitungen der Gas-Abführeinrichtung führen können. Zur Weiterverarbeitung der Synthesegase sind daher aufwendige Filteranlagen erforderlich.
Aufgabe der Erfindung ist es, einen Gleichstrom-Schacht-Reaktor zu schaffen, bei welchem die Beeinflussung der Temperaturbereiche im Schachtkörper durch die Gasabfuhr möglichst gering ist.
Die Lösung der Aufgabe erfolgt erfindungsgemäß durch die Merkmale des Anspruchs 1.
Der erfindungsgemäße Gleichstrom-Schacht-Reaktor zum Schmelzen und Vergasen von Einsatzmaterial, weist einen vertikalen Schachtkörper auf, in den über eine Schleusenanordnung Einsatzmaterial zugeführt wird. Innerhalb des Schachtkörpers wird das Einsatzmaterial getrocknet, erwärmt und vergast. Der Schachtkörper lässt sich somit üblicherweise in die Bereiche Trockenzone, Entgasungszone und Vergasungszone unterteilen. An den Schachtkörper schließt sich ein Aufnahmekörper an, der zur Aufnahme von geschmolzenem Einsatzmaterial dient. Innerhalb dieses Körpers ist die Schmelzzone des Reaktors ausgebildet. Der Schachtkörper und/oder der Aufnahmekörper sind mit einer Gas-Abführeinrichtung zum Abführen der innerhalb des Reaktors erzeugten Nutzgase verbunden. Insbesondere ist die Gas-Abführeinrichtung im Bereich zwischen dem Schachtkörper und dem Aufnahmekörper angeordnet. Die Gas-Abführeinrichtung weist mehrere mit dem Schachtkörper und/oder dem Aufnahmekörper verbundene Gas-Abführleitungen auf.
Erfindungsgemäß werden die Gas-Abführleitungen zu einer gemeinsamen Gasleitung zusammengeführt. Die Zusammenführung zu einer gemeinsamen Gasleitung erfolgt vorzugsweise über eine, in Strömungsrichtung gesehene, Querschnittserweiterung einer Ringleitung zum Gasabgang hin. Dadurch ergeben sich bei zunehmender Zusammenführung der Gasmengen im Wesentlichen gleiche Gasgeschwindigkeiten und damit gleiche Druckverluste. Das Nutzgas wird so bei jeder Gas-Abführleitung gleichartig abgesaugt, so dass sich im Reaktor ein gleichmäßiges Druckprofil ausbildet und bevorzugte Strömungskanäle vermieden werden. Ein unsymmetrisches Reaktions- und Temperaturprofil in einer horizontalen Ebene des Reaktors wird somit vermieden, so dass die Beeinflussung der Temperaturbereiche im Schachtkörper durch die Gasabfuhr gering ist. Über die gemeinsame Gasleitung wird das abgeführte Gas seiner weiteren Nutzung zugeführt.
Das gleichmäßige Druckprofil wird insbesondere erreicht, indem die Gas-Abführleitungen regelmäßig angeordnet sind und zunächst über eine Ringleitung zusammengeführt werden. Dadurch stellt sich in der Ringleitung eine Vergleichmäßigung der Gasgeschwindigkeiten ein und die Gefahr, dass sich die Temperaturzonen in Richtung der Gas-Abführleitungen verschieben, wird weiter verringert.
In einer bevorzugten Ausführung sind die Gas-Abführleitungen nach oben, insbesondere senkrecht nach oben, ausgeführt. Auf Grund der örtlich verringerten Strömungsgeschwindigkeit und dadurch, dass das Nutzgas entgegen der Schwerkraft strömt, können mit der Strömung mitgerissene Partikel abgetrennt werden. Indem ferner die gemeinsame Gasleitung zwischen zwei Gas-Abführleitungen am oberen Teil der Ringleitung angeschlossen wird, wird die Gasströmung jeder Gas-Abführleitung mindestens zweimal umgelenkt, wodurch ebenfalls Feststoffpartikel in der Ringleitung abgetrennt werden. Der Boden der Ringleitung ist zwischen den Einmündungen der Abführleitungen vorzugsweise nicht eben, sondern insbesondere trichterartig ausgebildet. Damit gelangen abgeschiedene Partikel über die Abführrohre in den Aufnahmekörper zurück. Die Ausbildung von evtl. auch sinterfähigen oder schmelzenden Staubablagerungen werden vermieden.
Da die Abfuhr des Gases in der Gas-Abführeinrichtung über mehrere vorzugsweise mindestens vier, und besonders bevorzugt mindestens acht Gas-Abführleitungen erfolgt, sind die Strömungsgeschwindigkeiten in den einzelnen Abfuhrleitungen geringer. Dies hat zur Folge, dass auch innerhalb des Einsatzmaterials durch das Absaugen des Gases geringere Strömungen erzeugt werden und somit die Temperaturzonen nicht oder nur geringfügig verschoben werden. Aufgrund der geringeren Strömungsgeschwindigkeit ist die Menge an mitgerissenen Partikeln geringer.
Um die Partikelbelastung des abgeführten Gases weiter zu verringern, weist der Schachtkörper und/oder der Aufnahmekörper vorzugsweise einen Gas-Sammelraum auf. Mit dem Gas-Sammelraum sind die Gas-Abführleitungen verbunden. Innerhalb des Gas-Sammelraums findet eine Beruhigung des Gases statt, wobei sich insbesondere schwere Partikel absetzen. In Verbindung mit dem erfindungsgemäßen Vorsehen von mehreren Gas-Abführleitungen und einer Verringerung der Strömungsgeschwindigkeit kann hierdurch die Partikelbelastung in dem abgeführten Gas erheblich reduziert werden.
Vorzugsweise umgibt der Gas-Sammelraum den Schachtkörper zumindest teilweise. Insbesondere ist der Gas-Sammelkörper ringförmig ausgebildet und umgibt den Schachtkörper vollständig. Hierdurch ist eine gleichmäßige Entnahme von Gas aus dem Einsatzmaterial gewährleistet. Besonders bevorzugt ist es hierbei, dass der Gas-Sammelraum im Bereich der Vergasungszone angeordnet ist bzw. die Vergasungszone umgibt.
Im unteren Teil der Vergasungszone ist vorzugsweise eine Kühleinrichtung, beispielsweise in Form einer doppelwandigen Schachtwand, vorgesehen. Erfindungsgemäß ergibt sich durch diese Kühleinrichtung ein erstes Kühlen des in der Gas-Sammelkammer befindlichen Gases. In den gleichmäßig um den Umfang des Gas-Sammelraums verteilten, ausreichend langen Gas-Abführleitungen ist bevorzugt eine indirekte Kühlung vorgesehen. Die Ausgestaltung der Wände der Abführleitungen ist beispielsweise doppelwandig mit Wasserkühlung realisiert. Das dortige schnelle Abkühlen des Gases unter ca. 800°C mit deren gasförmigen, flüssigen und festen Bestandteilen vermeidet die Gefahr der Sinterung und Ablagerung in nachgeschalteten Aggregaten und Rohrleitungen. Durch das Kühlen des Gases in den Gasabführleitungen wird somit die Partikelbelastung reduziert.
Nachfolgend wird die Erfindung anhand einer bevorzugten Ausführungsform unter Bezugnahme auf die anliegenden Zeichnungen erläutert.
Es zeigen:
Fig. 1
eine schematische Seitenansicht eines Gleichstrom-Schacht-Reaktors,
Fig. 2
eine schematische Schnittansicht entlang der Linie II-II in Fig. 1, und
Fig. 3
eine schematische Schnittansicht entlang der Linie III-III in Fig. 2.
Der Gleichstrom-Schacht-Reaktor weist einen Schachtkörper 10 auf. Der Schachtkörper 10 kann im dargestellten Ausführungsbeispiel in eine Schleusenanordnung 12, eine sich an die Schleusenanordnung 12 anschließende Trocknungszone 14, eine sich an die Trocknungszone 14 anschließende Entgasungszone 16 sowie eine sich hieran anschließende Vergasungszone 18 unterteilt werden. An die Vergasungszone 18 des Schachtkörpers 10 schließt sich ein Aufnahmekörper 20 an, der zur Aufnahme von geschmolzenem Einsatzmaterial 22 dient. Im Grenzbereich zwischen der Vergasungszone 18 und dem Aufnahmekörper 20 ist der Querschnitt des Aufnahmekörpers erweitert, so dass ein ringförmig ausgebildeter Gas-Sammelraum 24 ausgebildet ist, der den unteren Teil der Vergasungszone 18 umgibt. Der Gas-Sammelraum 24 ist mit einer Gas-Abführeinrichtung 26 zur Entnahme von Nutzgasen aus dem Gas-Sammelraum 24 verbunden.
Das Einsatzmaterial wird durch eine Zuführöffnung 28 in den Schachtkörper 10 über die Schleusenanordnung 12 eingeführt. Das Zuführen des Einsatzmaterials erfolgt über die Schleusenanordnung um das Einbringen großer Mengen an Umgebungsluft, durch die der Schmelz- und Vergasungsprozess unkontrolliert beeinflusst werden kann, zu verhindern. Hierzu weist die Schleusenanordnung zwei Schleuseneinrichtungen bzw. Schleusentore 30,32 auf, zwischen denen die Schleusenkammer 34 ausgebildet ist, wobei die Schleusenkammer 34 bereits ein Teil des Schachtkörpers 10 ist.
Das Einsatzmaterial gelangt über die Schleusenanordnung 12 sodann in die Trockenzone 14. In der Trockenzone 14 und den anschließenden Zonen 16,18 ist der Schachtkörper 10 während des Betriebs nahezu vollständig mit Einsatzmaterial gefüllt.
Im dargestellten Ausführungsbeispiel ist im Bereich der Trockenzone des Schachtkörpers 10 eine Gas-Zuführeinrichtung 36 vorgesehen. Die Gas-Zuführeinrichtung 36 weist eine den Schachtkörper 10 umgebende Ringleitung 38 auf, die mit mehreren gleichmäßig an Umfang verteilten Düsen 40 verbunden ist. Über die Gas-Zuführeinrichtung 36 wird dem Einsatzmaterial im Bereich der Trockenzone 14 vorzugsweise Luft, die ggf. mit Sauerstoff angereichert sein kann, zum Trocknen des Einsatzmaterials zugeführt.
In der sich an die Trockenzone 14 anschließenden Entgasungszone 16 ist eine weitere Gas-Zuführeinrichtung 42 angeordnet, die ebenfalls eine den Schachtkörper 10 umgebende Ringleitung 44 aufweist. Die Ringleitung 44 ist mit mehreren am Umfang vorzugsweise gleichmäßig verteilten Düse 46 verbunden. Über die Gas-Zuführeinrichtung 42 können energiereiche Gase, Sauerstoff, Luft oder andere zur Steuerung des Schmelz- und Vergasungsprozesses geeignete Gase dem Einsatzmaterial zugeführt werden.
Weitere Düsen 48 sind in der Vergasungszone 18 vorgesehen. Über die Düsen 48 kann wiederum energiereiches Gas oder andere den Schmelz- und Vergasungsprozess steuernde Gase oder Stoffe zugeführt werden. Ebenso können anstatt der Düsen 48 auch Brenner vorgesehen sein, die in der Vergasungszone 18 unmittelbar Wärme dem Einsatzmaterial zuführen. Der Endbereich des zur Längsachse 50 rotationssymmetrischen Schachtkörpers 10 ist sich leicht verjüngend konisch ausgebildet, so dass das Einsatzmaterial im Bereich der Vergasungszone 18 etwas zurückgehalten wird.
In einer Seitenwand 52 des Aufnahmekörpers 20 sind ferner mehrere am Umfang verteilte Düsen 54 angeordnet. Die Düsen 54 dienen zum Einbringen energiereicher Gase oder entsprechender Stoffe. Durch die Düsen 54 ist sichergestellt, dass die Schmelze 22 flüssig bleibt. Ebenso können anstelle der Düsen 54 auch Brenner vorgesehen sein.
Die Gas-Abführeinrichtung 26 weist mehrere mit dem Gas-Sammelraum 24 verbundene Gas-Abführleitungen 56 auf. Die Gas-Abführleitungen 56 sind regelmäßig um den Schachtkörper 10 herum angeordnet. Im dargestellten Ausführungsbeispiel sind vier Gas-Abführleitungen 56 vorgesehen, die über eine gemeinsame Ringleitung 58 miteinander verbunden sind (Fig. 2). Das aus dem Gas-Sammelraum 24 durch die Gas-Abführleitung 56 in die Ringleitung 58 abgeführte Nutzgas wird sodann erfindungsgemäß in eine Gasleitung 60 geleitet.
Alternativ wird das über die Ringleitung 58 abgeführte Nutzgas über mindestens zwei Gasleitungen abgeleitet. In dieser Gestaltungsform ist die Ringleitung 58 zwischen den beiden Gas-Abzugsleitungen nicht verbunden. Bevorzugt wird auch eine Trennung an der gegenüberliegenden Seite realisiert. Die Ringleitung 58 besteht in dieser Ausführungsform aus zwei nicht miteinander verbundenen Teilringen. Die Nutzung der Wärme der abgeführten Gase erfolgt vorzugsweise in jeweils mit den Gas-Abzugsleitungen verbundenen Wärmetauschern. Nach Durchströmen der Wärmetauscher können die Gas-Abzugsleitungen zu einer gemeinsamen Gasleitung 60 zusammengeführt werden.
Die Gas-Abführleitungen 56 sind im unteren Teil der Ringleitung 58 mit dieser verbunden. Die einzelne Gasleitung 60 bzw. die Gas-Abzugsleitungen ist bzw. sind bevorzugt mit dem oberen Teil der Ringleitung 58 verbunden. Ebenfalls möglich ist jedoch auch eine Gestaltung, in welcher die Gasleitung 60 bzw. die Gas-Abzugsleitungen horizontal oder schräg nach oben ausgeführt wird bzw. werden (Fig. 3). Eine horizontale Gestaltung der Gasleitung 60 bzw. der Gas-Abzugsleitungen ist bzw. sind bis zur nächsten Weiterverarbeitungseinrichtung zu vermeiden oder so kurz wie möglich zu halten, um eine Ablagerung von Staub zu vermeiden. Die Verbindung der Gas-Abführleitungen 56 mit der Ringleitung 58 erfolgt über trichterförmige Einmündungen 68, wodurch wegen der Querschnittserweiterung eine Gasberuhigung und -vergleichmäßigung eintritt und ggf. mittransportierte Partikel zurück in die Gas-Abführleitungen 56 fällt. Eine weitere Beruhigung der abgeführten Gase tritt durch eine indirekte Wasserkühlung ein, die über die doppelwandige Ausgestaltung des Rohres 66 der Gas-Abführleitung 56 erfolgt. Ferner tritt eine Gasberuhigung und -vergleichmäßigung ein durch eine Querschnittserweiterung der Ringleitung 58 zur Gasleitung 60 hin.
Der Gas-Sammelraum 24 (Fig. 1), der die Vergasungszone 18 ringförmig umgibt, ist durch eine Schachtwand 62 nach innen begrenzt. Die Schachtwand 62 ist beispielsweise doppelwandig und dient als Kühleinrichtung für diesen Bereich des Schachtkörpers 10, um sicherzustellen, dass in diesem Bereich keine Temperaturen auftreten, die die Schachtwände beschädigen. Da der Gas-Sammelraum 24 ebenfalls durch die Schachtwand 62 begrenzt ist, kann diese derart ausgebildet sein, dass gleichzeitig auch eine Kühlung der in dem Gas-Sammelraum befindlichen Gase gewährleistet ist. Hierdurch erfolgt eine weitere Partikelreduzierung in dem Gas, das sich in dem Gas-Sammelraum vor dem Abführen durch die Gas-Abführeinrichtung 26 beruhigt und in den Gas-Abführleitungen 56 weiter abgekühlt wird.
Bei der Erwärmung des Ausgangsgutes findet in der Trocknungszone 14 die Verdampfung des Wassers statt. Die Temperatur im Gut steigt dabei nur wenig über 100°C an. Mit zunehmender Temperatur werden im weiteren Verlauf adsorbierte Gase wie Stickstoff und Kohlendioxid freigesetzt, welche nicht durch Spaltreaktionen entstanden sind. Spätestens hier kann von der Entgasung gesprochen werden. Oberhalb 250 bis 300 °C setzt dann die Entwicklung von Gasen und Dämpfen ein, bei denen es sich um abdestillierte niedrigmolekulare Verbindungen und erste Spaltprodukte handelt. Ein weiteres Ansteigen der Temperatur bewirkt den Ablauf von Reaktionen, die zur Bildung von Methan und Wasserstoff führen.
Die Entgasungszone 16 kann in Fortführung der Trocknungszone 14 ebenfalls doppelwandig gestaltet sein.
Im unteren Drittel der Trocknungs- und Entgasungszone 14,16 ergibt sich ein Bereich, in welchem die Reaktorinnentemperatur größer als die Heißlufttemperatur ist. Hier kann die doppelwandige Ausführung durch eine silikatische Ausmauerung ersetzt werden. Eine Ausführung der gesamten Trocknungs- und Entgasungszone 14,16 mit einer Stampfmasse, auch bei einer doppelwandigen Gestaltung, ist vorteilhaft. Geringerem Verschleiß der Stahlbauhülle stehen geringerer Wärmeübergang der Heißluft auf den Innenraum und niedrigere Temperaturwechselbeständigkeit der Stampfmasse gegenüber.
Bei der weiteren Erwärmung der Schüttsäule ab etwa 700 °C erfolgt neben der Spaltung des Brennstoffes unter dem Einfluss der Wärme die heterogene Reaktion zwischen dem Brennstoff und dem noch nicht reagierten Sauerstoff der Luft.
Die Vergasungszone 18 ist die Hauptreaktionszone innerhalb des Schachtreaktors. Hier erfolgt bei Temperaturen von 1.200 bis 1.400 °C die stoffliche und energetische Umsetzung der Feststoffe. Aus dem festen Brennstoff entstehen Gase und feste Produkte von Koks bis Asche. Für die vollständige und gleichmäßige Reaktion ist entscheidend, dass eine homogene Schüttung durch das bereits entstandene Entgasungsgas und das hier einzubringende Vergasungsmittel gleichmäßig durchströmt wird. Die Vergasungszone 18 muss aus diesen Gründen eine ausreichende Höhe besitzen. Dies wird insofern dadurch erreicht, dass die Vergasungszone 18 als ein gerader zylindrischer Bereich mit Übergang in eine konische Verkleinerung des Querschnittes oder sofort als zunehmende Verjüngung ausgebildet ist. Da sich durch die stofflichen Umsetzungen und damit zusammenhängende zerstörende Kräfte das Materialkorn verkleinert, vergrößern sich die Hohlräume innerhalb der Schüttsäule. Durch die Verkleinerung des Schachtquerschnittes in diesem Bereich kann die Sinkgeschwindigkeit der Materialsäule vergleichmäßigt werden, unerwünschte Strömungskanäle werden zerstört und die Ausbildung von größeren Hohlräumen in der Schüttung wird vermieden.
In Fortführung der darüber befindlichen Entgasungszone 16 ist der Bereich der Vergasung ebenfalls mit einer silikatischen Masse ausgekleidet.
Der untere zylindrische oder sich verjüngende Bereich des Vergasungsbereiches 18 ragt in die Schmelzzone 20 hinein. Auf diesen Teil liegt die darüber befindliche Schüttsäule zumindest teilweise auf, gleichzeitig herrschen dort hohe Temperaturen. Für die Sicherung der mechanischen Festigkeit und des Schutzes vor zu hohen Temperaturen erfolgt eine Kühlung mittels indirekter Wasserkühlung in der Schachtwand 62.
Das Gas durchströmte im Gleichstrom mit dem Einsatzmaterial die Zone der Hochtemperaturvergasung 18. Die aus den abgelaufenen Entgasungs- und Thermolysereaktionen entstandenen längerkettigen Kohlenwasserstoffe sind hier thermisch gespalten worden und waren gleichzeitig an den ablaufenden Vergasungsprozesse beteiligt. Es entsteht ein brennbares Gas mittleren Heizwertes mit den Hauptkomponenten Kohlenmonoxid, Kohlendioxid, Wasserstoff und Wasserdampf ohne Bestandteile an kondensierbaren Kohlenwasserstoffen. Viele der dabei abgelaufenen chemischen Reaktionen sind endotherm. Die Temperatur des Gases wie der Schüttung verringert sich somit.
Unterhalb des wassergekühlten Bereiches des Vergasungsbereiches 18 erfährt das Gas im Bereich der Schmelzzone und bei entsprechend hohen Temperaturen eine Umlenkung um etwa 180° und gelangt in den schüttschichtfreien Raum 24. Durch vorstehend beschriebene endotherme Vorgänge besitzt das Gas eine Temperatur von ca. 1.000 °C. Nach einer gewissen Gasberuhigung und -vergleichmäßigung wird das Gas oberhalb aus dem Reaktor abgesaugt.
Der Gas-Sammelraum 24 ist bereits Bestandteil der Schmelzzone 20, welche oben wesentlich weiter als die hineinragende Vergasungszone 18 ist. Die zylindrische Schmelzzone 20 verkleinert sich konisch nach unten und schließt mit der Bodenplatte ab, oberhalb welcher sich die aufgeschmolzene Phase sammelt.
Die Schmelzzone 20 ist in ihrer Gesamtheit mit einer mehrschichtigen Stampfmasse versehen oder mit einer Ausmauerung ausgestattet. Grund hierfür sind die notwendigen hohen Temperaturen. Nur im Bereich des Gas-Sammelraumes ist unter Umständen eine Ausmauerung nicht notwendig.
Der vollständig entgaste und verkokte Feststoff, ist stellenweise bereits gesintert bzw. geschmolzen und sinkt aus der Vergasungszone 18 weiter in die Schmelzzone 20.
In die Schmelzzone 20 integriert ist eine Ebene mit mehreren Sauerstoffdüsen oder -Injektoren und/oder oxidierend betriebenen Brennern 54, welche ebenso symmetrisch auf der Achse verteilt sind.
Durch die Zuführung von Gas mit einem hohen Sauerstoffanteil kommt es zu starken exothermen Reaktionen mit dem Gas und dem Feststoff aus der Vergasungszone 18. Es ergeben sich Temperaturen, welche deutlich über dem Schmelzpunkt des Materials liegen, üblicherweise ca. 1400 °C bis 1600 °C. Im Bereich der Sauerstoffdüsen ergeben sich sogar heiße Temperaturzonen von 1800 bis 2000 °C. Unter diesen Bedingungen und durch die Zugabe von Schlackebildnern und/ oder Materialien, welche den Schmelzpunkt absenken, werden alle anorganischen Schadstoffen sicher aufgeschmolzen.
Das aufgeschmolzene Material sammelt sich als Schmelze am Boden des Reaktors. Die Entleerung dieser flüssigen Schmelze erfolgt wie in der Gießerei üblich über ein Abstichloch und eine Rinne 64. Eine Bauart mit Vorherd oder Siphon ist möglich.
Bei ausreichend großer Bauart und entsprechender Verweilzeit der Schmelze wird sich die Schmelze in eine schwere metallhaltige Phase und eine darauf schwimmende Schlacke trennen. Hier besteht die Möglichkeit, über verschieden hohe Entleerungen eine verwertbare metallische Phase und eine Schlacke gewinnen zu können. Im Produkt Schlacke sind keine organischen Stoffe enthalten und die anorganischen Bestandteile sind in einer silikatischen Matrix stabil eingebaut. Die Nutzung als Material für den Hafen-, Deponie- und Straßenbau sind bekannt, ebenso möglich ist die Herstellung spezieller Gussformen und Produkten, wie sie in der Glasindustrie üblich sind.

Claims (14)

  1. Gleichstrom-Schacht-Reaktor zum Schmelzen und Vergasen von Einsatzmaterial, mit
    einem vertikalen Schachtkörper (10) zum Trocknen, Erwärmen und Vergasen des Einsatzmaterials,
    einem sich an den Schachtkörper (10) anschließenden Aufnahmekörper (20) zur Aufnahme von geschmolzenem Einsatzmaterial (22) und
    einer mit dem Schachtkörper (10) und/oder dem Aufnahmekörper (20) zum Abführen entstandener Gase verbundenen Gas-Abführeinrichtung (26), die mehrere mit dem Schachtkörper (10) und/oder dem Aufnahmekörper (20) verbundene Gas-Abführleitungen (56) aufweist,
    dadurch gekennzeichnet, dass
    die Gas-Abführleitungen (56) zu einer gemeinsamen Gasleitung (60) zusammengeführt sind.
  2. Gleichstrom-Schacht-Reaktor nach Anspruch 1, dadurch gekennzeichnet, dass die Gas-Abführleitungen (56) regelmäßig angeordnet sind.
  3. Gleichstrom-Schacht-Reaktor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Gas-Abführleitungen (56) nach oben, insbesondere senkrecht nach oben, geführt sind.
  4. Gleichstrom-Schacht-Reaktor nach einem der Ansprüche 1-3, dadurch gekennzeichnet, dass die Gas-Abführleitungen (56) über eine Ringleitung (58) zusammengeführt sind.
  5. Gleichstrom-Schacht-Reaktor nach Anspruch 4, dadurch gekennzeichnet, dass zwischen Ringleitung (58) und gemeinsamer Gasleitung (60) Gas-Abzugsleitungen angeordnet sind.
  6. Gleichstrom-Schacht-Reaktor nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Ringleitung (58) insbesondere zwei voneinander zumindest einseitig getrennten Teilringen aufweist.
  7. Gleichstrom-Schacht-Reaktor nach einem der Ansprüche 4-6, dadurch gekennzeichnet, dass die gemeinsame Gasleitung (60) bzw. Gas-Abzugsleitungen zwischen zwei Gas-Abführleitungen (56) mit der Ringleitung (58) verbunden ist bzw. sind.
  8. Gleichstrom-Schacht-Reaktor nach einem der Ansprüche 4-7, dadurch gekennzeichnet, dass die gemeinsame Gasleitung (60) mit dem oberen Teil der Ringleitung (58) und/oder die Gas-Abführleitungen (56) mit dem unteren Teil der Ringleitung (58) insbesondere über eine trichterförmige Einmündung (68) verbunden ist bzw. sind.
  9. Gleichstrom-Schacht-Reaktor nach einem der Ansprüche 4-8, dadurch gekennzeichnet, dass sich der Querschnitt der Ringleitung (58) zur gemeinsamen Gasleitung (60) bzw. zu den Gasabzugsleitungen hin erweitert.
  10. Gleichstrom-Schacht-Reaktor nach einem der Ansprüche 1-9, dadurch gekennzeichnet, dass der Schachtkörper (10) und/oder der Aufnahmekörper (20) einen Gas-Sammelraum (24) aufweist, mit dem die Gas-Abführleitungen (56) verbunden sind.
  11. Gleichstrom-Schacht-Reaktor nach Anspruch 10, dadurch gekennzeichnet, dass der Gas-Sammelraum (24) den Schachtkörper (10) zumindest teilweise umgibt.
  12. Gleichstrom-Schacht-Reaktor Anspruch 10 oder 11, dadurch gekennzeichnet, dass der Gas-Sammelraum (24) ringförmig ist.
  13. Gleichstrom-Schacht-Reaktor nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass der Gas-Sammelraum (24) den Schachtkörper (10) im Bereich einer Vergasungszone (18) umgibt.
  14. Gleichstrom-Schacht-Reaktor nach Anspruch 13, dadurch gekennzeichnet, dass in der Vergasungszone (18) eine Kühleinrichtung (62) vorgesehen ist, durch die die mechanische Festigkeit und der thermische Schutz des Schachtkörpers (10) gegeben ist und das Gas nach Durchströmen der Vergasungszone (18) um vorzugsweise 180° umzulenken.
EP02028816A 2002-01-04 2002-12-21 Gleichstrom-Schacht-Reaktor Expired - Lifetime EP1325950B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE20200095U 2002-01-04
DE20200095U DE20200095U1 (de) 2002-01-04 2002-01-04 Gleichstrom-Schacht-Reaktor

Publications (3)

Publication Number Publication Date
EP1325950A2 true EP1325950A2 (de) 2003-07-09
EP1325950A3 EP1325950A3 (de) 2004-01-02
EP1325950B1 EP1325950B1 (de) 2007-06-13

Family

ID=7966273

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02028816A Expired - Lifetime EP1325950B1 (de) 2002-01-04 2002-12-21 Gleichstrom-Schacht-Reaktor

Country Status (3)

Country Link
EP (1) EP1325950B1 (de)
AT (1) ATE364671T1 (de)
DE (2) DE20200095U1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2213971A1 (de) * 2009-01-29 2010-08-04 Linde AG Verfahren zum Schmelzen von Einsatzmaterial in einem Kupolofen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104293394A (zh) * 2014-09-23 2015-01-21 湖南省烟草公司张家界市公司 一种烤烟用生物质制气装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE261048C (de) *
DE2747571A1 (de) * 1976-10-26 1978-04-27 Union Steel South Africa Verfahren zum kontinuierlichen erzeugen eines reduktionsgases und vorrichtung zum durchfuehren des verfahrens
US4813179A (en) * 1986-04-01 1989-03-21 Distrigaz S.A. Process for the cocurrent gasification of coal
DE19816864A1 (de) * 1996-10-01 1999-10-07 Hans Ulrich Feustel Koksbeheizter Kreislaufgas-Kupolofen zur stofflichen und/oder energetischen Verwertung von Abfallmaterialien unterschiedlicher Zusammensetzung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920417A (en) * 1973-06-29 1975-11-18 Combustion Eng Method of gasifying carbonaceous material
DE3042200A1 (de) * 1980-11-08 1982-06-16 Klöckner-Humboldt-Deutz AG, 5000 Köln Vorrichtung zur gewinnung von grossen mengen an brennbarem gas aus kohlenstoffhaltigen materialien
DE4030554A1 (de) * 1990-09-27 1992-04-09 Bergmann Michael Dr Verfahren und vorrichtung zur thermischen behandlung von abfallstoffen
DE19916931C2 (de) * 1999-03-31 2001-07-05 Deponie Wirtschaft Umweltschut Luftzuführrohr für einen Vergaser zur Erzeugung von Brenngas
DE10007115C2 (de) * 2000-02-17 2002-06-27 Masch Und Stahlbau Gmbh Rolan Verfahren und Reaktor zum Vergasen und Schmelzen von Einsatzstoffen mit absteigender Gasführung
DE10051648A1 (de) * 2000-02-25 2001-09-13 Mitteldeutsche Feuerungs Und U Verfahren und Schacht-Schmelz-Vergaser zur thermischen Behandlung und Verwertung von Abfallstoffen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE261048C (de) *
DE2747571A1 (de) * 1976-10-26 1978-04-27 Union Steel South Africa Verfahren zum kontinuierlichen erzeugen eines reduktionsgases und vorrichtung zum durchfuehren des verfahrens
US4813179A (en) * 1986-04-01 1989-03-21 Distrigaz S.A. Process for the cocurrent gasification of coal
DE19816864A1 (de) * 1996-10-01 1999-10-07 Hans Ulrich Feustel Koksbeheizter Kreislaufgas-Kupolofen zur stofflichen und/oder energetischen Verwertung von Abfallmaterialien unterschiedlicher Zusammensetzung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2213971A1 (de) * 2009-01-29 2010-08-04 Linde AG Verfahren zum Schmelzen von Einsatzmaterial in einem Kupolofen
US8071013B2 (en) 2009-01-29 2011-12-06 Linde Aktiengesellschaft Melting starting material in a cupola furnace

Also Published As

Publication number Publication date
ATE364671T1 (de) 2007-07-15
EP1325950B1 (de) 2007-06-13
EP1325950A3 (de) 2004-01-02
DE20200095U1 (de) 2003-05-08
DE50210308D1 (de) 2007-07-26

Similar Documents

Publication Publication Date Title
EP1027407B1 (de) Verfahren und vorrichtung zur erzeugung von brenn-, synthese- und reduktionsgas aus festen brennstoffen
CA1148794A (en) Solid refuse disposal process
DE69718020T2 (de) Schmelzdrehrohrofen und verfahren zum vergasen von abfällen in demselben
DE3121205C2 (de) Abstichvergaser für feste Brennstoffe, insbesondere pelletierten Abfall
DE102007006981B4 (de) Verfahren, Vergasungsreaktor und Anlage zur Flugstromvergasung fester Brennstoffe unter Druck
EP2377911B1 (de) Verfahren und Vorrichtung zur Erzeugung von Brenngas aus einem festen Brennstoff
DE1900816A1 (de) Verfahren und Einrichtung zur Abfallbeseitigung
DE102011088628A1 (de) Verfahren und Vorrichtung zur Flugstromvergasung fester Brennstoffe unter Druck
EP1248828B1 (de) Vorrichtung und verfahren zur erzeugung von brenngasen
DE2735139A1 (de) Verbrennungsofen fuer abfaelle
EP2358847B1 (de) Vorrichtung in form eines bewegt-bett-vergasers und verfahren zum betreiben eines solchen in einer anordnung zur thermischen zersetzung von abprodukten und abfallstoffen
WO1993002162A1 (de) Verfahren zum herstellen von synthese- oder brenngasen aus festen oder pastösen rest- und abfallstoffen oder minderwertigen brennstoffen in einem vergasungsreaktor
DE60204353T2 (de) Verfahren und vorrichtung zum vergasen von kohlenstoffhaltigem material
EP1204466B1 (de) Verfahren und vorrichtung zum trocknen, trennen, klassieren und zersetzen von abprodukten
EP2356200B1 (de) Verfahren zum thermochemischen vergasen fester brennstoffe
AT524123B1 (de) Vorrichtung zum Verwerten von Prozessgas unter Umsetzung von Altstoffen und Bildung von Synthesegas
EP1323809B1 (de) Gleichstrom-Schacht-Reaktor
WO2000009764A1 (de) Verfahren zur herstellung von flüssigem roheisen
EP3046997B1 (de) 3-zonen-vergaser und verfahren zum betreiben eines solchen vergasers zur thermischen umwandlung von abprodukten und abfällen
EP1325950B1 (de) Gleichstrom-Schacht-Reaktor
EP1338847B1 (de) Gleichstrom-Schacht-Reaktor
DE102015009458A1 (de) Reduktionsrecycling
DE4202980A1 (de) Verfahren und vorrichtung zur vergasung von brennbaren materialien
DE3035015A1 (de) Verfahren zum entgasen oder vergasen von kohle
DEST000077MA (de) Verfahren zur Reduktion von Erz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OXYTEC ENERGY GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RIC1 Information provided on ipc code assigned before grant

Ipc: 7C 10J 3/22 B

Ipc: 7C 10J 3/26 A

Ipc: 7F 23G 5/24 B

17P Request for examination filed

Effective date: 20040630

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UMWELTKONTOR RENEWABLE ENERGY AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SMILE BETEILIGUNGS GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50210308

Country of ref document: DE

Date of ref document: 20070726

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070913

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20070613

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070913

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071113

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070924

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070914

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

26N No opposition filed

Effective date: 20080314

BERE Be: lapsed

Owner name: SMILE BETEILIGUNGS G.M.B.H.

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080208

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080701

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613