EP2194375B1 - Röntgenoptisches Element und Diffraktometer mit einer Sollerblende - Google Patents

Röntgenoptisches Element und Diffraktometer mit einer Sollerblende Download PDF

Info

Publication number
EP2194375B1
EP2194375B1 EP09177712.8A EP09177712A EP2194375B1 EP 2194375 B1 EP2194375 B1 EP 2194375B1 EP 09177712 A EP09177712 A EP 09177712A EP 2194375 B1 EP2194375 B1 EP 2194375B1
Authority
EP
European Patent Office
Prior art keywords
optical element
soller
ray
ray optical
soller slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09177712.8A
Other languages
English (en)
French (fr)
Other versions
EP2194375A1 (de
Inventor
Christoph Ollinger
Norbert Kuhnmünch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker AXS GmbH
Original Assignee
Bruker AXS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruker AXS GmbH filed Critical Bruker AXS GmbH
Publication of EP2194375A1 publication Critical patent/EP2194375A1/de
Application granted granted Critical
Publication of EP2194375B1 publication Critical patent/EP2194375B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators

Definitions

  • the invention relates to an X-ray optical element having a Soller aperture comprising a plurality of lamellae for collimating an X-ray beam with respect to the direction of the axis of the Soller aperture, and having a further aperture for limiting an X-ray beam, wherein the further aperture is rigidly connected to the Soller aperture during operation.
  • X-ray diffractometry can be used for a variety of analytical tasks, using different measurement geometries, e.g. Bragg-Brentano or parallel beam geometry. However, this requires different optical elements in the beam path. In order to enable a quick change between the different measuring geometries, it is desirable to keep the necessary rebuilding measures as low as possible.
  • US 6,807,251 B2 is an X-ray diffractometer with a parabolic mirror for using the diffractometer in the parallel beam geometry, and a slit diaphragm for limiting the X-ray beam in the Bragg Brentano geometry known.
  • the mirror and the slit are rigidly connected.
  • a rotatable path selection disc with a slit is disposed behind the diaphragm / mirror unit and can select by rotation the X-ray beam (parallel or divergent) required for the corresponding geometry.
  • roller blinds with which vertical and / or horizontal divergence of X-rays can be restricted is advantageous.
  • linear rollerblades are in US 6,266,392 B1 . US2005 / 0281382 A1 and US Pat. No. 6,307,917 B1 described in detail.
  • Bruker Advanced X-ray solutions "Diffraction Solutions D8 Advance" 2002 discloses an X-ray diffractometer for reflection and transmission measurements in parallel beam geometry. The X-ray emanating from the sample runs through a linear or a radial Soller aperture.
  • US Pat. No. 6,307,917 B1 discloses an X-ray apparatus with Soller aperture for collimating divergent X-rays.
  • the Soller panel is part of a monochromator unit with a monochromator panel that serves to confine the X-ray beam, which is then collimated by the Soller panel.
  • the object of the invention is to propose an X-ray optical element with a Soller aperture and another aperture, which allows automatic switching between the Soller aperture and the further aperture.
  • the X-ray bounded by the further diaphragm intersects the axis of the Soller diaphragm within the Soller diaphragm and the direction of the X-ray bounded by the further diaphragm includes an angle ⁇ ⁇ 10 ° with the axis of the Soller diaphragm.
  • An X-ray beam coming from a radiation source can thus be limited either by the Soller diaphragm or by the further diaphragm, as the case may be at which angle the soller axis is aligned with the direction of the incident x-ray beam. If the X-ray beam collapses parallel or at a small angle ( ⁇ 10 °) to the Soller axis, it passes through the Soller aperture. The greater the direction of the incident X-ray differs from the Soller axis, the more radiation passes through the further aperture.
  • the Soller diaphragm has a beam window which allows X-ray radiation to be conducted in one direction, which forms an angle ⁇ ⁇ 10 ° with the axis of the Soller diaphragm. In this way, a very compact and flexible optical element is realized.
  • the "Soller Aperture Axis” is to be understood as meaning the axis of symmetry of the Soller Aperture, which runs in the direction of the X-ray beam to be collimated by the Soller Aperture (optical axis), ie. in the case of a linear Soller panel, the Soller axis runs between an inlet opening and an outlet opening parallel to the slats of the Soller panel. In the case of a radial Soller aperture, the Soller axis extends along the mirror plane of the Soller aperture between an inlet opening and an outlet opening.
  • the optical setup of a diffractometer can be adapted to the application required by the sample or the question (for example Bragg-Brentano, powder GID, reflectometry).
  • An embodiment of the X-ray optical element according to the invention provides that the Soller aperture is a linear Soller aperture.
  • a linear roller blind includes a plurality of thin laminations (eg, metal foils) arranged parallel to each other and spaced from each other. Linear roller blinds are used in particular when using point detectors.
  • the Soller aperture is a radial Soller aperture.
  • Radial Soller covers are used in particular when using strip detectors.
  • the slats of the linear Soller diaphragm are arranged parallel to the beam direction of the X-ray bounded by the further diaphragm.
  • both the X-ray beam bounded by the further diaphragm and an X-ray beam extending in the direction of the Soller axis (in different directions) can pass through the Soller diaphragm.
  • the Soller panel has a recess perpendicular to the Soller axis.
  • the X-ray beam bounded by the further diaphragm can thus intersect the axis of the Soller diaphragm within the Soller diaphragm, irrespective of the orientation of the slats of the Soller diaphragm.
  • the Soller panel may comprise two partial panels, wherein the further panel is at least partially disposed between the two partial panels.
  • the two partial panels of the Soller panel must then be precisely adjusted.
  • the further diaphragm has at least two diaphragm jaws, wherein the diaphragm jaws are arranged on different sides of the Soller diaphragm.
  • a diaphragm jaw is arranged on the side of the Soller diaphragm, which faces the incident on the further diaphragm X-ray, and the other diaphragm jaw is arranged on the side facing away from the incident on the further diaphragm X-ray.
  • the diaphragm jaws with the axis of the Soller aperture an angle not equal to 90 °, preferably 45 °, include.
  • the further diaphragm can also be arranged completely on one side of the roller blind, in particular in one piece.
  • a pinhole can be used.
  • the further diaphragm is made of tantalum.
  • the geometry of the further diaphragm, in particular the diaphragm opening can be adjusted in the non-operating state.
  • the beam cross section of the X-ray emerging from the further diaphragm is thus well-defined.
  • a further embodiment of the X-ray optical element according to the invention provides that the further diaphragm is a linear Soller diaphragm.
  • the X-ray optical element comprises in this embodiment two Soller diaphragms whose axes are arranged at an angle ⁇ ⁇ 10 °.
  • the two Soller aperture in cross through, so that at least one of the Soller covers has a recess within which the other Soller panel is at least partially arranged.
  • the two linear roller blinds have different divergence angles, i.
  • the distances between the slats are different for the two linear roller blinds.
  • the further panel may be a radial Soller panel. This is particularly advantageous in the use of strip detectors.
  • the optical element according to the invention has two radial blind plates with different opening angles.
  • the invention also relates to a diffractometer having a source for generating a primary beam, a sample holder for arranging a sample, a detector for registering a secondary beam emanating from the sample and having an X-ray optical element described above.
  • the X-ray optical element is rotatably mounted in the diffractometer about an axis of rotation perpendicular to the axis of the Soller aperture.
  • the inlet opening of the Soller aperture can thus be driven by rotation of the beam path and at the same time the beam window of the further aperture in the beam path.
  • the incident X-ray beam does not have to be divided into two beam paths, but rather the X-ray optical element can be aligned by rotation so that optimum radiation can be realized for each geometry.
  • a motor is provided for rotating the X-ray optical element.
  • the X-ray optical element is mounted on the motor axis for this purpose.
  • the size of the opening defined by the further aperture can be varied perpendicular to the X-ray beam (clear height of the further diaphragm).
  • an automatic control of the rotation of the X-ray optical element is provided, in particular a computer control.
  • the X-ray optical element is preferably arranged on the secondary beam side, e.g. to switch between Bragg-Brentano (further aperture in the beam) and reflectometry (linear Soller aperture in the beam).
  • the X-ray optical element may be arranged on the primary beam, for example for switching between Bragg-Brentano on flat powder samples (further aperture in the beam) and reflection measurements on uneven powder samples (linear Soller aperture in the beam).
  • the sample holder is arranged at the crossing point of the Lammellenraumen of at least one radial Soller aperture of the X-ray optical element.
  • An arrangement of the sample holder at the crossing point of the Soller blades is particularly advantageous for transmission measurements on capillary samples with strip detector
  • the source is arranged in the center of at least one radial Soller aperture of the X-ray optical element.
  • An arrangement of the source at the crossing point of the Soller blades is particularly advantageous for measurements in Bragg-Brentano arrangement in which special emphasis is placed on scattered beam suppression.
  • Fig. 1a -c and Fig. 2 show a particularly preferred embodiment of an optical element 1 according to the invention with a linear Sollerblende 2 (equatorially arranged Sollerblende) and a further diaphragm, the two diaphragm jaws 3a, 3b, for example in the form of tantalum cutting comprises.
  • the diaphragm jaws 3 a, 3 b, as well as the Soller diaphragm 2 are fastened to a holder 4 , whereby the further diaphragm is rigidly connected to the Soller diaphragm 2.
  • the Soller panel 2 has a Soller axis 5 which extends parallel to the slats of the Soller panel between an inlet opening 6 and an outlet opening 7 .
  • the plane formed by the diaphragm jaws 3 a, 3 b of the further diaphragm closes with the axis 5 of Soller aperture an angle which is not equal to 90 ° and preferably> 10 °, in the case shown 45 °.
  • the distance between the diaphragm jaws 3a, 3b to each other can be changed in the non-operating state by moving the diaphragm jaws 3a, 3b.
  • the Soller panel 2 has a beam window in the form of a recess 8 through which radiation with a propagation direction that does not run along the Soller axis 5 can pass through the X-ray optical element 1 ( Fig. 1b, 1c ).
  • a beam window can also be realized that by appropriate alignment of the slats of the Soller shutter 2 of the beam path during rotation of the X-ray optical element 1 relative to the Soller axis 5 both through the slats of the Soller shutter 2 and through the further aperture extends (not shown). The slats of the Sollerblende 2 off Fig. 1a-c would then be aligned parallel to the drawing plane.
  • Fig. 1a is an alignment of the X-ray optical element according to the invention against an incident X-ray 10 ("X-ray 10" will also include radiation bundles hereinafter) shown, in which the Sollerblende 2 is arranged parallel to the X-ray beam 10. The X-ray beam 10 is then collimated by the Soller shutter 2.
  • the X-ray optical element 1 By rotation of the X-ray optical element 1 about an axis of rotation 9, the X-ray optical element 1 can be rotated relative to the incident X-ray beam 10.
  • the axis of rotation 9 of the X-ray optical element 1 is in this case in each position of the X-ray optical element 1 perpendicular to the Soller axis 5 and the incident X-ray 10.
  • the X-ray optical element 1 allows the choice between a beam path through the Soller aperture 2 or a beam path through the further aperture, without while distracting or dividing the X-ray beam 10.
  • the beam path running through the further diaphragm intersects the beam path passing through the Soller diaphragm 2 within the Soller diaphragm 2.
  • a compact embodiment of the X-ray optical element 1 is realized.
  • Fig. 1b, 1c show two different positions of the X-ray optical element 1 relative to the incident X-ray beam 10, in which the X-ray beam 10 is limited by the further aperture (dimmed).
  • the limited height (with respect to the incident X-ray beam 10) of the further diaphragm can be varied by the diaphragm jaws 3a, 3b. This is done by the Fig. 1b, 1c clear.
  • the maximum passage of the X-ray beam 10 through the further diaphragm takes place in the embodiment shown here in a 90 ° relative to the in Fig. 1a shown position (position with beam parallel to the Soller axis 5).
  • the use of the X-ray optical element according to the invention in a diffractometer allows an automatic change between a Bragg-Brentano beam path, in which the simple further aperture limits the X-ray beam 10, and a parallel beam path through the Soller aperture 2.
  • a parallel primary beam reflectometry measurements are also possible in which, for small angles of incidence, that is to say in the region of intense reflexes, a construction with a single diaphragm (for example with diaphragm jaws 3a, 3b) is selected.
  • Fig. 3 shows a schematic structure of such a diffractometer according to the invention with an X-ray source 11, a sample holder 12, a detector 13 and two inventive X-ray optical elements 1, wherein one of the X-ray optical elements primary beam side and the other secondary beam side is arranged.
  • the X-ray optical elements 1 are on a goniometer attached and rotatably arranged with respect to the X-ray source 11, the sample holder 12 and the detector 13.
  • the rotation of the X-ray optical elements 1 is realized in each case by means of a motor (not shown).
  • the optical axis (direction of the X-ray beam 10) passes through the axis of rotation of the X-ray optical element 1 or the motor. It is also possible to provide only one optical element 1, ie either primary beam side or secondary beam side.
  • X-ray optical element 1 instead of in Fig. 1a-c and Fig.2 shown X-ray optical element 1, other embodiments of the X-ray optical element according to the invention can be used in the primary beam 10a and / or in the secondary beam 10b .
  • the X-ray optical element 1 ' may comprise a radial Soller diaphragm 14 , as in FIG Fig. 4 shown.
  • This embodiment of the X-ray optical element 1 ' can be used for a change between, for example, transmission measurements with capillaries and streak detector (use of the radial Soller aperture 14) and Bragg Brentano measurements in reflection geometry (use of the further aperture with diaphragm jaws 3a, 3b).
  • the source 11, the sample holder 12 or the detector 13 may be advantageous to arrange the source 11, the sample holder 12 or the detector 13 in the center of the radial Soller aperture 14, wherein the point of intersection of the slats of the radial Soller aperture 14 with the axis 15 of the radial Soller aperture 14 is the center of the radial Soller aperture 14 is defined.
  • Fig. 5 shows a further embodiment of the X-ray optical element 1 " according to the invention , in which a linear Sollerblende 2 and a radial Sollerblende 14 are combined.
  • the axis 5 of the linear Sollerblende 2 and the axis 15 of the radial Sollerblende 14 are preferably perpendicular to each other.
  • This embodiment of the X-ray optical Element 1 " is used to adjust the beam path during the automatic change between transmission measurements and reflectance measurements in powder samples. In particular, when switching between capillary samples with strip detector (use the radial Soller aperture 2) and flat samples with point detectors (using the linear Soller aperture 14).
  • two linear roller blinds 2 can also be combined (not shown). If the lamellae of the two linear roller blinds 2 are oriented perpendicular to one another and perpendicular to the roller axis 5, such an X-ray optical element can be used for switching between applications in which the one hand is measured in the scattering plane and, on the other hand, measured out of the scattering plane.
  • All embodiments of the diffractometer according to the invention can also be used for neutron beam diffractometry.
  • a change between a Soller panel and at least one further panel without user intervention and readjustment can be done automatically.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

  • Die Erfindung betrifft ein röntgenoptisches Element mit einer Sollerblende umfassend mehrere Lamellen zum Kollimieren eines Röntgenstrahls bezüglich der Richtung der Achse der Sollerblende, und mit einer weiteren Blende zur Begrenzung eines Röntgenstrahls, wobei die weitere Blende mit der Sollerblende im Betrieb starr verbunden ist.
  • Hintergrund der Erfindung
  • Röntgendiffraktometrie kann für vielfältige analytische Aufgabenstellungen verwendet werden, wobei verschiedene Messgeometrien zum Einsatz kommen, z.B. Bragg-Brentano oder Parallelstrahl-Geometrie. Hierfür werden jedoch verschiedene optische Elemente im Strahlengang benötigt. Um ein schnelles Wechseln zwischen den verschiedenen Messgeometrien zu ermöglichen, ist es wünschenswert, die hierfür nötigen Umbaumaßnahmen so gering wie möglich zu halten.
  • Aus US 6,807,251 B2 ist ein Röntgendiffraktometer mit einem Parabolspiegel zur Verwendung des Diffraktometers in der Parallelstrahlgeometrie, sowie eine Schlitzblende zur Begrenzung des Röntgenstrahls in der Bragg Brentano-Geometrie bekannt. Der Spiegel und die Schlitzblende sind starr miteinander verbunden. Eine drehbare Pfadselektionsscheibe mit einem Schlitz ist hinter der Blenden/Spiegeleinheit angeordnet und kann durch Rotation den für die entsprechende Geometrie benötigten Röntgenstrahl (parallel oder divergent) auswählen.
  • Aus US 606650372 B2 ist ein Röntgendiffraktometer bekannt, bei dem die Röntgenstrahlung für verschiedene Aufgabenstellungen abschnittsweise auf unterschiedlichen Strahlpfaden geführt werden kann, von denen der eine geradlinig von der Probe durch ein Blendensystem mit einstellbaren und/oder austauschbaren Blenden zum Röntgen-Detektors verläuft, während der andere Strahlpfad geknickt verläuft und zwar zunächst von der Probenposition zu einem dispersiven oder reflektierenden röntgenoptischen Element, und von dort zum Röntgendetektor. Mittels einer Verschlussblende kann der abgeknickte Strahlpfad gegenüber dem Detektor ausgeblendet werden. Die Blende und das dispersive oder reflektierende röntgenoptische Element sind starr zueinander justiert und können zusammen gegenüber der Probe verschwenkt werden.
  • Nachteilig an diesen Anordnungen ist jedoch, dass eine Aufteilung des Röntgenstrahls erfolgt und demnach für jede Anwendung jeweils nur ein Teil der von der Röntgenquelle ausgehenden Strahlung genutzt werden kann. Darüber hinaus beanspruchen die bekannten Anordnungen relativ viel Platz, um die verschiedenen Strahlpfade realisieren zu können.
  • Insbesondere für Messungen in der Parallelstrahlgeometrie ist der Einsatz von Sollerblenden vorteilhaft, mit denen vertikale und/oder horizontale Divergenz von Röntgenstrahlen beschränkt werden können. Lineare Sollerblenden sind beispielsweise in US 6,266,392 B1 , US2005/0281382 A1 und US 6,307,917 B1 ausführlich beschrieben.
  • Bruker Advanced X-ray solutions "Diffraction Solutions D8 Advance" 2002 offenbart ein Röntgendiffraktometer für Reflexions- und Transmissionsmessungen in Parallelstrahlgeometrie. Der von der Probe ausgehende Röntgenstrahl verläuft hierbei durch eine lineare oder eine radiale Sollerblende.
  • US 6,307,917 B1 offenbart eine Röntgenapparatur mit Sollerblende zum Kollimieren von divergenten Röntgenstrahlen. Die Sollerblende ist Teil einer Monochromatoreinheit mit einer Monochromatorblende, die zur Begrenzung des Röntgenstrahls dient, der anschließend von der Sollerblende kollimiert wird.
  • Ein röntgenoptisches Element gemäß dem Oberbegriff des Anspruchs 1 wird in der Patentschrift US-A1 -2007/0086567 offenbart.
  • Aufgabe der Erfindung
  • Aufgabe der Erfindung ist es, ein röntgenoptisches Element mit einer Sollerblende und einer weiteren Blende vorzuschlagen, welches ein automatisches Wechseln zwischen der Sollerblende und der weiteren Blende ermöglicht.
  • Kurze Beschreibung der Erfindung
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass der von der weiteren Blende begrenzte Röntgenstrahl die Achse der Sollerblende innerhalb der Sollerblende schneidet und die Richtung des von der weiteren Blende begrenzten Röntgenstrahls mit der Achse der Sollerblende einen Winkel α ≥ 10° einschließt.
  • Ein aus einer Strahlungsquelle kommender Röntgenstrahl kann somit entweder durch die Sollerblende oder durch die weitere Blende begrenzt werden, je nachdem in welchem Winkel die Sollerachse zur Richtung des einfallenden Röntgenstrahls ausgerichtet ist. Fällt der Röntgenstrahl parallel oder in einem kleinen Winkel (< 10°) zur Sollerachse ein, durchläuft er die Sollerblende. Je größer die Richtung des einfallenden Röntgenstrahls von der der Sollerachse abweicht, desto mehr Strahlung gelangt durch die weitere Blende.
  • Die Richtungen der durch die Sollerblende und die weitere Blende begrenzten Röntgenstrahlen durchdringen sich innerhalb der Sollerblende. Die Sollerblende weist hiefür ein Strahlfenster auf, das eine Durchführung von Röntgenstrahlung in einer Richtung erlaubt, die mit der Achse der Sollerblende einen Winkel α ≥ 10° einschließt. Auf diese Weise wird ein sehr kompaktes und flexibles optisches Element realisiert.
  • Unter der "Achse der Sollerblende" ist die Symmetrieachse der Sollerblende zu verstehen, die in Richtung des durch die Sollerblende zu kollimierende Röntgenstrahls verläuft (optische Achse), d.h. bei linearer Sollerblende verläuft die Sollerachse zwischen einer Eintrittsöffnung und einer Austrittsöffnung parallel zu den Lamellen der Sollerblende. Im Falle einer radialen Sollerblende verläuft die Sollerachse entlang der Spiegelebene der Sollerblende zwischen einer Eintrittsöffnung und einer Austrittsöffnung.
  • Mit dem erfindungsgemäßen optischen Element kann das Optiksetup eines Diffraktometers an die von der Probe oder der Fragestellung geforderten Applikation (z.B. Bragg-Brentano, Pulver-GID, Reflektometrie) angepasst werden.
  • Bevorzugte Ausführungsformen der Erfindung
  • Eine Ausführungsform des erfindungsgemäßen röntgenoptischen Elements sieht vor, dass die Sollerblende eine lineare Sollerblende ist. Eine lineare Sollerblende umfasst eine Vielzahl von dünne Lamellen (z.B. Metallfolien), die parallel zueinander und beabstandet voneinander angeordnet sind. Lineare Sollerblenden kommen insbesondere bei Verwendung von Punktdetektoren zum Einsatz.
  • Eine andere Ausführungsform des erfindungsgemäßen röntgenoptischen Elements sieht vor, dass die Sollerblende eine radiale Sollerblende ist. Bei einer radialen Sollerblende sind die Lamellen nicht parallel, sondern innerhalb eines bestimmten Winkelbereichs (Gesamtöffnungswinkel = Winkel zwischen der ersten und letzten Lamelle) radial bezüglich eines Mittelpunktes ausgerichtet. Der Abstand zwischen den einzelnen Lamellen definiert den Divergenzwinkel der radialen Sollerblende. Radiale Sollerblenden kommen insbesondere bei Verwendung von Streifendetektoren zum Einsatz.
  • Bei einer Weiterbildung der Ausführungsform mit linearer Sollerblende sind die Lamellen der linearen Sollerblende parallel zur Strahlrichtung des von der weiteren Blende begrenzten Röntgenstrahls angeordnet. Bei dieser Anordnung kann sowohl der von der weiteren Blende begrenzte Röntgenstrahl als auch ein in Richtung der Sollerachse verlaufender Röntgenstrahl (in verschiedenen Richtungen) durch die Sollerblende verlaufen.
  • Es kann aber auch vorteilhaft sein, wenn die Sollerblende eine Ausnehmung senkrecht zur Sollerachse aufweist. Der von der weiteren Blende begrenzte Röntgenstrahl kann somit unabhängig von der Ausrichtung der Lamellen der Sollerblende die Achse der Sollerblende innerhalb der Sollerblende schneiden.
  • Alternativ hierzu kann die Sollerblende zwei Teilblenden umfassen, wobei die weitere Blende zumindest teilweise zwischen den beiden Teilblenden angeordnet ist. Die beiden Teilblenden der Sollerblende müssen dann jedoch genau justiert sein.
  • Besonders vorteilhaft ist eine Ausführungsform, bei der die weitere Blende mindestens zwei Blendenbacken aufweist, wobei die Blendenbacken auf verschiedenen Seiten der Sollerblende angeordnet sind. Insbesondere ist es vorteilhaft, wenn eine Blendenbacke auf der Seite der Sollerblende angeordnet ist, die dem auf die weitere Blende einfallenden Röntgenstrahl zugewandt ist, und die andere Blendenbacke auf der Seite angeordnet ist, die dem auf die weitere Blende einfallenden Röntgenstrahl abgewandt ist.
  • Hierbei ist es besonders vorteilhaft, wenn die Blendenbacken mit der Achse der Sollerblende einen Winkel ungleich 90°, vorzugsweise 45°, einschließen.
  • Alternativ hierzu kann die weitere Blende jedoch auch vollständig auf einer Seite der Sollerblende angeordnet, insbesondere einstückig ausgeführt sein. In diesem Fall kann beispielsweise eine Lochblende verwendet werden.
  • Vorzugsweise ist die weitere Blende aus Tantal.
  • Darüber hinaus ist es von Vorteil, wenn die Geometrie der weiteren Blende, insbesondere die Blendenöffnung, im Nichtbetriebszustand justierbar ist. Der Strahlquerschnitt das aus der weiteren Blende austretenden Röntgenstrahls ist somit wohldefiniert.
  • Eine weitere Ausführungsform des erfindungsgemäßen röntgenoptischen Elements sieht vor, dass die die weitere Blende eine lineare Sollerblende ist. Das röntgenoptische Element umfasst in dieser Ausführungsform zwei Sollerblenden, deren Achsen in einem Winkel α ≥ 10° angeordnet sind. Die beiden Sollerblende in durchkreuzen sich, so dass mindestens eine der Sollerblenden eine Ausnehmung aufweist, innerhalb der die andere Sollerblende zumindest teilweise angeordnet ist.
  • Bei einer vorteilhaften Weiterbildung der Ausführungsform mit zwei linearen Sollerblenden weisen die beiden linearen Sollerblenden verschiedene Divergenzwinkel auf, d.h. die Abstände der Lamellen sind bei den beiden linearen Sollerblenden unterschiedlich.
  • Darüber hinaus kann die weitere Blende eine radiale Sollerblende sei. Dieses insbesondere vorteilhaft bei der Verwendung von Streifendetektoren.
  • Bei einer speziellen Weiterbildung dieser Ausführungsform weist das erfindungsgemäße optische Element zwei radiale Sollerblenden mit verschiedenen Öffnungswinkeln auf.
  • Die Erfindung betrifft auch ein Diffraktometer mit einer Quelle zur Erzeugung eines Primärstrahls, einer Probenhalterung zur Anordnung einer Probe, einem Detektor zur Registrierung eines von der Probe ausgehenden Sekundärstrahls und mit einem oben beschriebenen röntgenoptischen Element.
  • Bei einer bevorzugten Ausführungsform des erfindungsgemäßen Diffraktometers ist das röntgenoptische Element um eine Drehachse senkrecht zu Achse der Sollerblende drehbar im Diffraktometer eingebaut. Die Eintrittsöffnung der Sollerblende kann somit durch Rotation aus dem Strahlengang und gleichzeitig das Strahlfenster der weiteren Blende in den Strahlengang gefahren werden. Der einfallende Röntgenstrahl muss somit nicht auf zwei Strahlpfade aufgeteilt werden, vielmehr kann das röntgenoptische Element durch Rotation so ausgerichtet werden, dass für jede Geometrie eine optimale Einstrahlung realisiert werden kann.
  • Vorzugsweise ist ein Motor zur Drehung des röntgenoptischen Elements vorgesehen. Das röntgenoptische Element wird hierzu auf der Motorachse montiert. Entsprechend der Einstellung des Motors kann die Größe der durch die weitere Blende definierten Öffnung senkrecht zum Röntgenstrahl (lichte Höhe der weiteren Blende) variiert werden.
  • Bei einer besonders bevorzugten Ausführungsform ist eine automatische Steuerung der Drehung des röntgenoptischen Elements vorgesehen, insbesondere eine Rechnersteuerung.
  • Das röntgenoptische Element ist vorzugsweise sekundärstrahlseitig angeordnet, z.B. zum Wechseln zwischen Bragg-Brentano (weitere Blende im Strahl) und Reflektometrie (lineare Sollerblende im Strahl).
  • Alternativ oder zusätzlich hierzu ist es jedoch auch möglich, dass das röntgenoptische Element primärstrahlseitig angeordnet ist, z.B. zum Wechseln zwischen Bragg-Brentano an flachen Pulverproben (weitere Blende im Strahl) und Reflektionsmessungen an unebenen Pulverproben (lineare Sollerblende im Strahl).
  • Bei Verwendung einer Ausführungsform des erfindungsgemäßen optischen Elements mit mindestens einer radialen Sollerblende kann die radiale Sollerblende unterschiedlich bezüglich der weiteren Komponenten des Diffraktometer ausgerichtet sein:
    • Für den Fall, dass das röntgenoptische Element sekundärseitig angeordnet ist, kann es vorteilhaft sein, wenn der Detektor im Kreuzungspunkt der Lammellenrichtungen zumindest einer radialen Sollerblende des röntgenoptischen Elements angeordnet ist. Die Lamellenrichtung verläuft in der durch die entsprechende Lamelle definierten Ebene entlang der Mittellinie der Lamelle (in Ausbreitungsrichtung des kollimierten Röntgenstrahls). Eine Anordnung des Detektors im Kreuzungspunkt der Sollerblendenlamellen ist besonders vorteilhaft für beispielsweise Transmissionsmessungen mit fokussierendem Primärstrahl.
  • Unabhängig von der Anordnung des röntgenoptischen Elements kann es vorteilhaft sein, wenn die Probenhalterung im Kreuzungspunkt der Lammellenrichtungen zumindest einer radialen Sollerblende des röntgenoptischen Elements angeordnet ist. Eine Anordnung der Probenhalterung im Kreuzungspunkt der Sollerblendenlamellen ist besonders vorteilhaft für Transmissionsmessungen an Kapillarproben mit Streifendetektor
  • Für den Fall, dass das röntgenoptische Element primärseitig angeordnet ist, kann es auch vorteilhaft sein, wenn die Quelle im Mittelpunkt zumindest einer radialen Sollerblende des röntgenoptischen Elements angeordnet ist. Eine Anordnung der Quelle im Kreuzungspunkt der Sollerblendenlamellen ist besonders vorteilhaft für Messungen in Bragg-Brentano Anordnung, bei denen besonderer Wert auf Streustrahlunterdrückung gelegt wird.
  • Weitere Vorteile der Erfindung ergeben sich aus der Beschreibung und der Zeichnung. Ebenso können die vorstehend genannten und die weiter aufgeführten Merkmale je für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung.
  • Zeichnung und detaillierte Beschreibung der Erfindung
  • Es zeigen:
  • Fig. 1a-c
    eine Schnittdarstellung eines erfindungsgemäßen röntgenoptischen Elements in verschiedenen Ausrichtungen bezüglich des einfallenden Röntgenstrahls mit linearer Sollerblende und weiterer Blende mit Blendenbacken;
    Fig. 2
    eine perspektivische Darstellung des röntgenoptischen Elements aus Fig. 1;
    Fig. 3
    eine schematische Darstellung eines erfindungsgemäßen Diffraktometers,
    Fig. 4
    eine Schnittdarstellung eines erfindungsgemäßen röntgenoptischen Elements mit radialer Sollerblende und weiterer Blende mit Blendenbacken; und
    Fig. 5
    eine Schnittdarstellung eines erfindungsgemäßen röntgenoptischen Elements mit linearer Sollerblende und radialer Sollerblende als weiterer Blende.
  • Fig. 1a -c und Fig. 2 zeigen eine besonders bevorzugte Ausführungsform eines erfindungsgemäßen optischen Elements 1 mit einer linearen Sollerblende 2 (äquatorial angeordnete Sollerblende) und einer weiteren Blende, die zwei Blendenbacken 3a, 3b, z.B. in Form von Tantal-Schneiden, umfasst. Die Blendenbacken 3a, 3b, sowie die Sollerblende 2 sind an einer Halterung 4 befestigt, wodurch die weitere Blende starr mit der Sollerblende 2 verbunden ist. Die Sollerblende 2 weist eine Sollerachse 5 auf, die zwischen einer Eintrittsöffnung 6 und einer Austrittsöffnung 7 parallel zu den Lamellen der Sollerblende verläuft. Die durch die Blendenbacken 3a, 3b der weitere Blende gebildeten Ebene schließt mit der Achse 5 der Sollerblende einen Winkel ein, der ungleich 90° und vorzugsweise > 10°, im gezeigten Fall 45° ist. Der Abstand der Blendenbacken 3a, 3b zueinander kann im Nichtbetriebszustand durch Verschieben der Blendenbacken 3a, 3b verändert werden. Die Sollerblende 2 weist ein Strahlfenster in Form einer Ausnehmung 8 auf, durch die Strahlung mit einer Ausbreitungsrichtung, die nicht entlang der Sollerachse 5 verläuft durch das röntgenoptische Element 1 hindurch treten kann (Fig. 1b, 1c). Alternativ hierzu kann ein Strahlfenster auch dadurch realisiert werden, dass durch geeignete Ausrichtung der Lamellen der Sollerblende 2 der Strahlengang bei Verdrehung des röntgenoptischen Elements 1 gegenüber der Sollerachse 5 sowohl durch die Lamellen der Sollerblende 2 als auch durch die weitere Blende verläuft (nicht gezeigt). Die Lamellen der Sollerblende 2 aus Fig. 1a-c wären dann parallel zur Zeichenebene ausgerichtet.
  • In Fig. 1a ist eine Ausrichtung des erfindungsgemäßen röntgenoptischen Elements gegenüber einem einfallenden Röntgenstrahl 10 ("Röntgenstrahl 10" soll im Weiteren auch Strahlenbündel beinhalten) gezeigt, bei der die Sollerblende 2 parallel zum Röntgenstrahl 10 angeordnet ist. Der Röntgenstrahl 10 wird dann durch die Sollerblende 2 kollimiert.
  • Durch Rotation des röntgenoptischen Elements 1 um eine Rotationsachse 9, kann das röntgenoptische Element 1 relativ zum einfallenden Röntgenstrahl 10 verdreht werden. Die Rotationsachse 9 des röntgenoptischen Elements 1 ist hierbei in jeder Position des röntgenoptischen Elements 1 senkrecht zur Sollerachse 5 und zum einfallenden Röntgenstrahl 10. Das erfindungsgemäße röntgenoptische Element 1 ermöglicht die Wahl zwischen einem Strahlengang durch die Sollerblende 2 oder einem Strahlengang durch die weitere Blende, ohne dabei den Röntgenstrahl 10 abzulenken oder zu teilen. Ausgehend vom Bezugssystem des röntgenoptischen Elements 1 schneidet der durch die weitere Blende verlaufende Strahlengang den durch die Sollerblende 2 verlaufenden Strahlengang innerhalb der Sollerblende 2. Hierdurch wird eine kompakte Ausführung des röntgenoptischen Elementes 1 realisiert.
  • Fig. 1b, 1c zeigen zwei verschiedene Stellungen des röntgenoptischen Elements 1 relativ zum einfallenden Röntgenstrahl 10, bei denen der Röntgenstrahl 10 durch die weitere Blende begrenzt (abgeblendet) wird. Durch verschiedene Winkelstellungen der Sollerachse 5 zum einfallenden Röntgenstrahl 10 kann die durch die Blendenbacken 3a, 3b beschränkte lichte Höhe (bezüglich des einfallenden Röntgenstrahls 10) der weiteren Blende variiert werden. Dies wird durch die Fig. 1b, 1c deutlich. Der maximale Durchtritt des Röntgenstrahls 10 durch die weitere Blende erfolgt in der hier dargestellten Ausführungsform in einer um 90° gegenüber der in Fig. 1a gezeigten Position (Position mit Strahlengang parallel zur Sollerachse 5).
  • Die Verwendung des erfindungsgemäßen röntgenoptischen Elementes in einem Diffraktometer ermöglicht einen automatischen Wechsel zwischen einem Bragg-Brentano Strahlengang, bei dem die einfache weitere Blende den Röntgenstrahl 10 begrenzt, und einem Parallel-Strahlengang durch die Sollerblende 2. Damit wird die Untersuchung verschiedenster Pulver-Proben mit einem Aufbau und ohne Neujustage des Gerätes ermöglicht. In Verbindung mit einem parallelen Primärstrahi sind außerdem Reflektometriemessungen möglich, bei denen für kleine Einfallswinkel, also im Bereich intensiver Reflexe, ein Aufbau mit einfacher Blende (z.B. mit Blendenbacken 3a, 3b) gewählt wird. Für große Einfallswinkel, also im Bereich schwacher Intensitäten, kann dann automatisch auf einen Strahlengang mit der Sollerblende 2 gewechselt werden, um die Intensitätsausbeute der Probe zu erhöhen. Auch der Wechsel zwischen Messungen entlang der spekulären Achse der Probe mit hoher Auflösung, d.h. mit kleiner Öffnung der weiteren Blende, und Messungen des diffusen und lichtschwachen Streusignals der Probe unter streifendem Einfall, also mit Sollerblende 2, sind damit mit einem einzigen Aufbau möglich.
  • Fig. 3 zeigt einen schematischen Aufbau eines solchen erfindungsgemäßen Diffraktometers mit einer Röntgenquelle 11, einer Probenhalterung 12, einem Detektor 13 und zwei erfindungsgemäßen röntgenoptische Elementen 1, wobei eines der röntgenoptischen Elemente primärstrahlseitige und das andere sekundärstrahlseitig angeordnet ist. Die röntgenoptischen Elemente 1 sind an einem Goniometer befestigt und drehbar gegenüber der Röntgenquelle 11, der Probenhalterung 12 und dem Detektor 13 angeordnet. Vorzugsweise wird die Drehung der röntgenoptischen Elemente 1 jeweils mittels eines Motors (nicht gezeigt) realisiert. Die optische Achse (Richtung des Röntgenstrahls 10) verläuft durch die Rotationsachse des röntgenoptische Elements 1 bzw. des Motors. Es ist auch möglich lediglich ein optisches Element 1 vorzusehen, also entweder primärstrahlseitig oder sekundärstrahlseitig.
  • Statt des in Fig. 1a-c und Fig.2 gezeigten röntgenoptischen Elements 1 können im Primärstrahl 10a und/oder im Sekundärstrahl 10b auch andere Ausführungsformen des erfindungsgemäßen röntgenoptischen Elements zum Einsatz kommen.
  • So kann das erfindungsgemäß röntgenoptische Element 1' statt einer linearen Sollerblende 2 zum Beispiel eine radiale Sollerblende 14 umfassen, wie in Fig. 4 gezeigt. Diese Ausführungsform des röntgenoptische Elements 1' kann für einen Wechsel zwischen z.B. Transmissionsmessungen mit Kapillaren und Streifendetektor (Verwendung der radialen Sollerblende 14) und Bragg-Brentano-Messungen in Reflektionsgeometrie (Verwendung der weiteren Blende mit Blendenbacken 3a, 3b) eingesetzt werden. Je nach Anwendung kann es vorteilhaft sein, die Quelle 11, die Probenhalterung 12 oder den Detektor 13 im Mittelpunkt der radialen Sollerblende 14 anzuordnen, wobei als Mittelpunkt der radialen Sollerblende 14 der Schnittpunkt der Lamellen der radialen Sollerblende 14 mit der Achse 15 der radialen Sollerblende 14 definiert ist.
  • Fig. 5 zeigt eine weitere Ausführungsform des erfindungsgemäßen röntgenoptische Elements 1", bei dem eine lineare Sollerblende 2 und eine radiale Sollerblende 14 kombiniert sind. Die Achse 5 der linearen Sollerblende 2 und die Achse 15 der radialen Sollerblende 14 stehen vorzugsweise senkrecht aufeinander. Diese Ausführungsform des erfindungsgemäßen röntgenoptische Element 1" dient der Anpassung des Strahlengangs beim automatischen Wechsel zwischen Transmissionsmessungen und Reflektionsmessungen bei Pulverproben. Insbesondere beim Wechsel zwischen Kapillarproben mit Streifendetektor (Verwendung der radialen Sollerblende 2) und flachen Proben mit Punktdetektoren (Verwendung der linearen Sollerblende 14).
  • Darüber hinaus können auch zwei lineare Sollerblenden 2 kombiniert werden (nicht gezeigt). Sind die Lamellen der beiden linearen Sollerblenden 2 senkrecht zueinander und senkrecht zur Sollerachse 5 ausgerichtet, kann ein solches röntgenoptische Element zum Wechsel zwischen Anwendungen verwendet werden, bei denen einerseits in der Streuebene gemessen wird und andererseits aus der Streuebene heraus gemessen wird.
  • Es ist auch möglich mehr als zwei Blenden innerhalb eines röntgenoptischen Elements miteinander in entsprechender Weise zu kombinieren.
  • Sämtliche Ausführungsformen des erfindungsgemäßen Diffraktometers können auch für Neutronenstrahldiffraktomerie verwendet werden.
  • Mit dem erfindungsgemäßen Diffraktometer kann ein Wechsel zwischen einer Sollerblende und mindestens einer weiteren Blende ohne Nutzereingriff und Neujustage autmatisch erfolgen.
  • Bezugszeichenliste
  • 1
    röntgenoptisches Element
    2
    Sollerblende (linear)
    3a, 3b
    Blendenbacken der weiteren Blende
    4
    Halterung
    5
    Sollerachse der linearen Sollerblende
    6
    Eintrittsöffnung der Sollerblende
    7
    Austrittsöffnung der Sollerblende
    8
    Ausnehmung in Sollerblende
    9
    Rotationsachse des röntgenoptischen Elements
    10
    Röntgenstrahl
    10a
    Primärstrahl
    10b
    Sekundärstrahl
    11
    Röntgenquelle
    12
    Probenhalterung
    13
    Detektor
    14
    radiale Sollerblende
    15
    Achse der radialen Sollerblende

Claims (15)

  1. Röntgenoptisches Element (1, 1', 1") mit einer Sollerblende umfassend mehrere Lamellen zum Kollimieren eines Röntgenstrahls bezüglich der Richtung der Achse (5, 15) der Sollerblende, und einer weiteren Blende zur Begrenzung eines Röntgenstrahls (10), wobei die weitere Blende mit der Sollerblende (2, 14) im Betrieb starr verbunden ist,
    dadurch gekennzeichnet,
    dass der von der weiteren Blende begrenzte Röntgenstrahl (10) die Achse (5, 15) der Sollerblende innerhalb der Sollerblende schneidet und die Richtung des Röntgenstrahls (10)mit der Achse (5, 15) der Sollerblende einen Winkel α ≥ 10° einschließt.
  2. Röntgenoptisches Element (1, 1") nach Anspruch 1, dadurch gekennzeichnet, dass die Sollerblende eine lineare Sollerblende (2) ist.
  3. Röntgenoptisches Element (1', 1") nach Anspruch 1, dadurch gekennzeichnet, dass die Sollerblende eine radiale Sollerblende (14) ist.
  4. Röntgenoptisches Element (1, 1', 1") nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sollerblende eine Ausnehmung (8) senkrecht zur Sollerachse (5) aufweist.
  5. Röntgenoptisches Element (1, 1') nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die weitere Blende mindestens zwei Blendenbacken (3a, 3b) aufweist, wobei die Blendenbacken (3a, 3b) auf verschiedenen Seiten der Sollerblende (2, 14) angeordnet sind.
  6. Röntgenoptisches Element (1, 1') nach Anspruch 5, dadurch gekennzeichnet, dass die Blendenbacken (3a, 3b) mit der Achse (5, 15) der Sollerblende (2, 14) einen Winkel ungleich 90°, vorzugsweise 45°, einschließen.
  7. Röntgenoptisches Element (1") nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die die weitere Blende eine lineare Sollerblende (2) ist.
  8. Röntgenoptisches Element nach Anspruch 7 und Anspruch 2, dadurch gekennzeichnet, dass die beiden linearen Sollerblenden (2) verschiedene Divergenzwinkel aufweisen.
  9. Röntgenoptisches Element (1") nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die die weitere Blende eine radiale Sollerblende (14) ist.
  10. Röntgenoptisches Element nach Anspruch 3 und Anspruch 9, dadurch gekennzeichnet, dass die beiden radiale Sollerblenden (14) verschiedene Öffnungswinkel und/oder verschiedene Divergenzwinkel aufweisen.
  11. Diffraktometer mit einer Quelle (11) zur Erzeugung eines Primärstrahls, einer Probenhalterung (12) zur Anordnung einer Probe, einem Detektor (13) zur Registrierung eines von der Probe ausgehenden Sekundärstrahls und mit einem röntgenoptischen Element (1, 1', 1") nach einem der vorhergehenden Ansprüche.
  12. Diffraktometer nach Anspruch 16, dadurch gekennzeichnet, dass das röntgenoptische Element (1, 1', 1") um eine Drehachse (9) senkrecht zu Achse (5, 15) der Sollerblende (2, 14) drehbar im Diffraktometer eingebaut ist.
  13. Diffraktometer nach Anspruch 12, dadurch gekennzeichnet, dass eine automatische Steuerung der Drehung des röntgenoptischen Elements (1, 1', 1") vorgesehen ist, insbesondere eine Rechnersteuerung.
  14. Diffraktometer nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass das röntgenoptische Element (1, 1', 1") primärstrahlseitig angeordnet ist.
  15. Diffraktometer nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass das röntgenoptische Element (1, 1', 1") sekundärstrahlseitig angeordnet ist.
EP09177712.8A 2008-12-02 2009-12-02 Röntgenoptisches Element und Diffraktometer mit einer Sollerblende Active EP2194375B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008060070A DE102008060070B4 (de) 2008-12-02 2008-12-02 Röntgenoptisches Element und Diffraktometer mit einer Sollerblende

Publications (2)

Publication Number Publication Date
EP2194375A1 EP2194375A1 (de) 2010-06-09
EP2194375B1 true EP2194375B1 (de) 2018-01-31

Family

ID=42013135

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09177712.8A Active EP2194375B1 (de) 2008-12-02 2009-12-02 Röntgenoptisches Element und Diffraktometer mit einer Sollerblende

Country Status (3)

Country Link
US (1) US7983389B2 (de)
EP (1) EP2194375B1 (de)
DE (1) DE102008060070B4 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021103037B3 (de) 2021-02-09 2022-03-31 Bruker Axs Gmbh Verstellbarer segmentierter Kollimator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6905748B2 (ja) * 2017-10-25 2021-07-21 株式会社リガク ソーラースリット、x線回折装置および方法
DE102017223228B3 (de) 2017-12-19 2018-12-27 Bruker Axs Gmbh Aufbau zur ortsaufgelösten Messung mit einem wellenlängendispersiven Röntgenspektrometer
EP3553507A1 (de) * 2018-04-13 2019-10-16 Malvern Panalytical B.V. Röntgenanalysevorrichtung

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3950239B2 (ja) * 1998-09-28 2007-07-25 株式会社リガク X線装置
JP3722454B2 (ja) * 1998-11-02 2005-11-30 株式会社リガク ソーラスリット及びその製造方法
NL1015740C1 (nl) * 1999-07-23 2000-09-27 Koninkl Philips Electronics Nv Stralingsanalysetoestel voorzien van een regelbare collimator.
DE10141958B4 (de) 2001-08-28 2006-06-08 Bruker Axs Gmbh Röntgen-Diffraktometer
JP3548556B2 (ja) 2001-12-28 2004-07-28 株式会社リガク X線回折装置
US7127037B2 (en) 2002-07-26 2006-10-24 Bede Scientific Instruments Ltd. Soller slit using low density materials
JP4908119B2 (ja) 2005-10-19 2012-04-04 株式会社リガク 蛍光x線分析装置
JP4658003B2 (ja) 2006-08-29 2011-03-23 株式会社リガク X線分析装置
JP4860418B2 (ja) * 2006-10-10 2012-01-25 株式会社リガク X線光学系

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021103037B3 (de) 2021-02-09 2022-03-31 Bruker Axs Gmbh Verstellbarer segmentierter Kollimator
EP4040447A2 (de) 2021-02-09 2022-08-10 Bruker AXS GmbH Verstellbarer segmentierter kollimator
US11742104B2 (en) 2021-02-09 2023-08-29 Bruker Axs Gmbh Adjusted segmented collimator comprising a Soller slit

Also Published As

Publication number Publication date
DE102008060070A1 (de) 2010-06-10
DE102008060070B4 (de) 2010-10-14
US20100135460A1 (en) 2010-06-03
EP2194375A1 (de) 2010-06-09
US7983389B2 (en) 2011-07-19

Similar Documents

Publication Publication Date Title
DE102017223228B3 (de) Aufbau zur ortsaufgelösten Messung mit einem wellenlängendispersiven Röntgenspektrometer
DE102009006984B4 (de) Röntgen-Mehrkanal-Spektrometer
EP3441981B1 (de) Röntgenoptik-baugruppe mit umschaltsystem für drei strahlpfade und kugelgelenk und zugehöriges röntgendiffraktometer
DE69923182T2 (de) Röntgendiffraktometer mit einstellbarem bildabstand
DE69323064T2 (de) Ortsaufgelöste Analyse einer Probe mittels eines Röntgenfluoreszenzspektrometers
EP1288652B1 (de) Röntgenstrahlen-Diffraktometer mit röntgenoptischen Elementen zur Ausbildung mehrerer Strahlpfade
DE69429598T2 (de) Asymmetrischer 4-Kristallmonochromator
EP1647840B1 (de) Röntgen- oder neutronenoptisches Analysegerät mit variabel ausgeleuchtetem Streifendetektor
EP2194375B1 (de) Röntgenoptisches Element und Diffraktometer mit einer Sollerblende
DE102005048519A1 (de) Brennpunktorientierte Blende
EP2175456A2 (de) Röntgenanalyseinstrument mit verfahrbarem Aperturfenster
DE19952293B4 (de) Röntgenfluoreszenzanalysator
DE102005011467B4 (de) Kollimator mit einstellbarer Brennweite, hierauf gerichtetes Verfahren sowie Röntgenprüfanlage
DE112007000422B4 (de) Röntgenstrahlkonvergenzelement und Röntgenbestrahlungsvorrichtung
EP2339332B1 (de) Röntgenoptischer Aufbau mit zwei fokussierenden Elementen
DE10221200B4 (de) Röntgenfluoreszenzspektrometer
DE10125454A1 (de) Gerät zur Röntgenanalyse mit einem Mehrschichtspiegel und einem Ausgangskollimator
DE19962503B4 (de) Röntgenfluoreszenzanalysator mit Wegumschaltvorrichtung
DE3326868A1 (de) Anordnung zur auswahl von spektrenabschnitten aus einem gesamtspektrum
DE102016101988A1 (de) Röntgenanalysator, Vorrichtung und Verfahren zur Röntgenabsorptionsspektroskopie
DE2003753A1 (de) Blendenanordnung zur Begrenzung eines Roentgenstrahlenbuendels
EP1100092A2 (de) Vorrichtung zur Führung von Röntgenstrahlen
EP4049010B1 (de) Röntgenvorrichtung mit mehreren strahlpfaden
DE69505359T2 (de) Einen röngtenstrahlungskollimator enthaltende röntgenstrahlungsanalysevorrichtung
DE102018216805B3 (de) Streustrahlenraster für eine medizinische Röntgen-Bildgebungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20101209

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170704

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 967836

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009014710

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180430

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180501

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180430

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009014710

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181202

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181202

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 967836

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091202

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231219

Year of fee payment: 15

Ref country code: DE

Payment date: 20231214

Year of fee payment: 15