EP2131993A2 - Methode zum laserritzen von solarzellen - Google Patents

Methode zum laserritzen von solarzellen

Info

Publication number
EP2131993A2
EP2131993A2 EP08737595A EP08737595A EP2131993A2 EP 2131993 A2 EP2131993 A2 EP 2131993A2 EP 08737595 A EP08737595 A EP 08737595A EP 08737595 A EP08737595 A EP 08737595A EP 2131993 A2 EP2131993 A2 EP 2131993A2
Authority
EP
European Patent Office
Prior art keywords
substrate
ablation
edge
edge region
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08737595A
Other languages
English (en)
French (fr)
Inventor
Philip Grunewald
Philip Rumsby
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEL Solar AG
Original Assignee
Oerlikon Trading AG Truebbach
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Trading AG Truebbach filed Critical Oerlikon Trading AG Truebbach
Publication of EP2131993A2 publication Critical patent/EP2131993A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/16Removal of by-products, e.g. particles or vapours produced during treatment of a workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0823Devices involving rotation of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/351Working by laser beam, e.g. welding, cutting or boring for trimming or tuning of electrical components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method and apparatus for ablation of thin films on a substrate for use in solar cells.
  • Thin-film solar cells are becoming increasingly known as a cost-efficient and therefore interesting alternative to conventional crystalline solar cells.
  • the substantial elements of a thin film solar cell consist of a thin film layer system on a glass substrate.
  • the thin film layer system essentially comprises an absorber layer sandwiched between a back electrode and a front electrode.
  • the thin film layer system must be encapsulated such that the sensitive thin film materials do not come into contact with the external environment, both for safety reasons, and to prevent excessive aging when the solar cell is exposed to the weather. Usually, this is done by means of a second piece of glass adhered to the coated side of the substrate. In order to prevent electrical contact with the outside of the solar cell and to ensure that the bond between the two glass substrates is firm and stable, it is necessary that the thin film system be removed in an edge region along the edge of the solar cell.
  • Different methods are known for removing the thin film layer system from the edge region. These include, for example, sandblasting and laser ablation.
  • Sandblasting is unreliable and expensive because many of the thin film layer systems include materials that require special disposal measures (e.g., CdTe). It is difficult and therefore expensive to separate such materials from the sand.
  • CdTe special disposal measures
  • Laser ablation is advantageous for this, since no ablation medium mixes with the materials to be removed and collection of the ablated materials is therefore not a problem.
  • "Ablated" within the meaning of the present description By the action of electromagnetic radiation, this means that it is detached from the substrate.
  • No. 4,734,500 describes a method for laser ablation which is based on a device for laser ablation.
  • the basic components of such a device are the laser, an optical unit whose optical elements have the task of directing the laser beams and a table to store and support the substrate.
  • a laser is used which emits short laser pulses to the surface of the substrate positioned on the table.
  • the optical unit may include apertures that form the beam; lenses to focus the beam or image the aperture on the workpiece and further include movable mirror systems to rapidly move the spot across the surface of the workpiece.
  • the generated laser light must be moved over the surface of the substrate to be processed. It is therefore required a relative movement between the substrate and the laser beam. This can be achieved either by moving the substrate relative to the stationary optical unit or by moving the optical unit relative to the stationary solar cell, or by a combination of both.
  • a CNC machine with X and Y guide can be used for the movement.
  • Figure 1 in US 4,734,550 shows an embodiment of a laser ablation apparatus which employs an XY table to move the substrate and in which the optical unit is stationary.
  • the substrate is kept horizontal with the coating facing the light beam during ablation. This can lead to, for example, due to gravity, ablated material is only partially removed from the substrate and deposited on this again.
  • FIG. 12 of US 4 734 550 An embodiment in which the "table" is suspended vertically from a support rail is shown in Figure 12 of US 4 734 550.
  • the optical unit is arranged as a whole on an XY table and therefore movable with respect to the workpiece stationary in at least one direction. At least for the ablation, which is done on the upper part of the workpiece, it can happen that detached material only is incompletely collected and deposited again on the substrate. This can happen, for example, when thin film material is to be removed from the edge region along the top edge.
  • the width of the edge region is typically less than 20mm.
  • the object is achieved according to the invention by a method for ablating thin layers in the edge region of the surface of a planar thin-film-coated substrate, wherein the edge region extends along the edge of the substrate, comprising the following steps:
  • the optical unit used to propagate laser pulses to the ablation area and optionally also means for finally removing the ablated material can be made completely stationary and it is ensured that the ablated material is always efficiently directed away from the substrate can.
  • the substrate is held in a vertical orientation.
  • This has the advantage of simplifying the required movement of the substrate.
  • the movement of the border area of the sub- strates through the ablation region can take place in such a way that ablation is always carried out in the region at the edge of the substrate currently located at the bottom.
  • Gravitational forces then cause or at least assist in transporting the ablated material away from the substrate. Sometimes the effect of the gravitational forces is sufficient and no further means of evacuation need be provided.
  • FIG. 1 Device for laser ablation of the known type
  • FIG. 4 Ablation head with means for the final removal of the ablated material.
  • FIG. 5 Embodiment of the device according to the invention with vertical
  • FIG. 1 shows a laser ablation device known from the prior art. This comprises a laser 3, an optical unit 5 with different optical elements such as mirrors and lenses and a table 7 which is movable along an X and a Y direction.
  • the optical unit 5 directs the laser pulse generated by the laser 3 into a region on the surface of a coated substrate 9, which rests with its rear side on the table 7. This defines an ablation range. Since the coating is applied to the front side of the substrate 9, there is the disadvantage that the material which is removed by a laser pulse from the surface of the substrate is deposited again on the substrate with relatively high probability due to the gravitational forces and thereby disturbing impurities and problems can cause.
  • FIG. 2 shows a first embodiment of the present invention. Shown is a device for laser ablation 201 with a laser 203 and an optical unit 205, which directs the laser pulses of the laser 203 to an ablation region 207.
  • the laser ablation apparatus 201 also includes a table 209 to horizontally support a coated substrate 211.
  • the table 209 can be moved in two horizontal directions X and Y, but it can also be rotated about a vertical axis. These movement possibilities are indicated in the figure 2 with the broken arrows.
  • the extent of the table 209 and in particular the table surface is so much smaller than the extent of the substrate 211 that the substrate 211 can be positioned on the table such that the entire edge region to be machined projects beyond the table.
  • the front side coated substrate 211 is placed on the table 209 with the front side so that the entire edge portion to be processed projects beyond the table.
  • the coating faces down and the laser ablation is performed through the substrate.
  • the laser light first transmits through the substrate before it hits the coating.
  • means 213 for finally picking up the removed material Due to gravity, the material removed from the glass surface will move downwardly away from the substrate.
  • the means 213 may comprise only one container to collect this material.
  • the means preferably generates a flow of gas into the container, in the sense of a vacuum cleaner, thereby at least supporting the process of gathering and removing the material removed by ablation.
  • FIG. 3a to 3j illustrate in a sequence how the method of ablation according to the present invention is performed.
  • the coated substrate is shown. Coated areas are shaded. Areas where material has been removed by ablation are displayed transparently.
  • the ablation is started somewhere in the middle region of the long edge of the substrate. This is shown in FIG. 3a. There is no material here yet removed.
  • Ablation is now performed while the substrate is pushed through the ablation region along the edge region to be treated in a linear motion until a first corner of the substrate is reached. This is shown in FIG. 3b. Now, the substrate is rotated to the position shown in Fig. 3c. This rotation around the first corner involves a rotation of the table as well as movements in the X and Y directions.
  • FIGS. 3 a to 3 j each show a small, non-dashed vector. This defines a directional distance, which remains constant during the ablation process, in the room with start point outside and end point within the substratum. It can be seen that this is a method for ablating thin layers in the edge region of the surface of a planar thin-film-coated substrate, wherein the edge region runs along the edge of the substrate, with the following steps
  • FIG. 4 shows an example of means for finally picking up material removed from the substrate.
  • An ablation head 401 is shown which includes a lens 421 as part of the optical unit.
  • the ablation head 401 also includes a container 413 provided near the edge region of a substrate 411 with the thin film coating 419.
  • the container 413 also includes a tube 425 to aspirate the ablated material 423.
  • the geometry of the container 413 is selected so that a gas flow is generated from both sides of the substrate to the tube by negative pressure in the container and thereby the ablated material is transported away from the substrate.
  • the ablation head may also include means for absorbing the portion of the laser light which is transmitted through the substrate without being absorbed. Such means are not shown in FIG.
  • the ability to rotate the table is important. Only with such a rotatable table is it possible to keep the ablation head 401, as shown in FIG. 4, completely stationary.
  • the substrate is held in a vertical orientation. This is shown in FIG.
  • the ablation procedure is then carried out in such a way that the area of the ablation always comes to rest on the lower edge of the substrate.
  • the coated surface may point toward or away from the optical unit: gravity carries the ablated material away from the substrate in both cases.
  • a slight advantage may be to have the coating whitened away from the optical unit, since then no ablated material can interact with the laser light still needed for ablation.
  • it is important to have a substrate holder which, in addition to permitting linear movements in the substrate plane, allows for rotation about a normal on the substrate surface. Only this will make it possible for the Ablation region is in each case at the lower edge of the substrate.
  • the support of the substrate can be accomplished with a mechanism based on negative pressure.
  • Figure 6 shows an embodiment of the present invention wherein the table is replaced by a robust multi-axis industrial robot.
  • a robot With such a robot, not only the steps shown in Fig. 3 can be made, but also an efficient loading and unloading of the substrates is possible.
  • the use of a robot makes it possible to support the substrate with the aid of a component at the end of the robot arm, whereby the component is fastened to the uncoated side of the substrate.
  • the coated side can be towards or away from the optical component Unit, with the latter configuration having slight advantages, since it is clear that ablated material does not interact with the laser light still needed for ablation.
  • the device of the invention is an apparatus for ablating thin layers in the edge region of the surface of a planar thin film coated substrate, the edge region extending along the edge or edges of the substrate comprises - a laser for generating laser light for ablation
  • the ablation method according to the invention can be carried out, namely a method for ablating thin layers in the edge region of the surface of a thin film-coated substrate, wherein the edge region runs along the edge or edges of the substrate, and at least ablating the thin layers two not necessarily disjoint regions of the edge region along non-parallel edge pieces should take place with the following steps - providing a laser beam
  • the orientation of the coated substrate is maintained at least substantially substantially during the ablation process in at least approximately vertical orientation and the substrate is moved so that the ablation region is always located at the lower edge of the substrate during ablation. It may be advantageous to use a multiaxial robot.
  • the substrate is held by means that interact only with inner regions of the surface spaced from the edge region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Vorrichtung zur Ablation dünner filme eines beschichteten Substrates in der Randregion des Substrates, sowie das zugehörige Verfahren. Die erfindungsgemäße Vorrichtung umfasst einen Laser, eine optische Einheit um das Laserlicht in einen Ablationsbereich zu lenken und eine Halterung für plane Substrate. Die Halterung erlaubt das Substrat in der Ebene des Substrates linear in zwei linear unabhängige Richtungen zu bewegen. Die Halterung erlaubt das Substrat um eine Achse zu rotieren, welche senkrecht auf der Substratoberfläche steht. Dies erlaubt einen vereinfachten stationären Aufbau der Vorrichtung in Bezug auf optischer Einheit und Mittel zum endgültigen Entfernen der ablatierten Materialien.

Description

Methode zum Laserritzen von Solarzellen
Die vorliegende Erfindung betrifft eine Methode und eine Vorrichtung zur Ablation von dünnen Filmen auf einem Substrat zum Gebrauch für Solarzellen.
Dünnfilm-Solarzellen werden als kosteneffiziente und daher interessante Alternative zu den herkömmlichen kristallinen Solarzellen zunehmend bekannt. Die substantiellen Elemente einer Dünnfilm-Solarzelle bestehen aus einem Dünnfilmschichtsystem auf einem Glassubstrat. Das Dünnfilmschichtsystem umfasst im Wesentlichen eine Absorberschicht die zwischen einer Rückelektrode und einer Frontelektrode eingepackt ist. Das Dünnfilmschichtsystem muss derart verkapselt sein, dass die empfindlichen Dünnfilmmaterialien nicht in Kontakt mit der äusseren Umgebung kommen und zwar sowohl aus Sicherheitsgründen, als auch um übermäßige Alterung zu verhindern, wenn die Solarzelle dem Wetter ausgesetzt ist. Üblicherweise wird dies mit- tels eines zweiten Stückes Glases, das mit der beschichteten Seite des Substrates verklebt wird, gemacht. Um zu verhindern, dass es einen elektrischen Kontakt zur Aussenseite der Solarzelle kommt und um sicherzustellen, dass die Verklebung zwischen den zwei Glasssubstraten fest und beständig ist, ist es notwendig, dass das Dünnschichtsystem in einer Randregion entlang der Kante der Solarzelle entfernt wird.
Es sind unterschiedliche Methoden bekannt, das Dünnfilmschichtsystem von der Randregion zu entfernen. Hierzu gehören zum Beispiel das Sandstrahlen und die Laserablation.
Das Sandstrahlen ist unzuverlässig und teuer, da viele der Dünnfilmschichtsysteme Materialien umfassen, die spezielle Massnahmen zur Entsorgung notwendig machen (beispielsweise CdTe). Es ist schwierig und daher teuer, solche Materialien vom Sand zu trennen.
Die Laserablation ist, was dies betrifft, vorteilhaft, da sich kein Ablationsmedium mit den zu entfernenden Materialien vermischt und das Sammeln der ablatierten Materialien daher kein Problem darstellt. „Ablatiert" im Sinne der vorliegenden Beschrei- bung bedeutet durch Einwirkung elektromagnetischer Strahlung losgelöst vom Substrat.
In US 4 734 500 wird eine Methode zur Laserablation beschrieben die, auf einer Vor- richtung zur Laserablation beruht. Grundbestandteile einer solchen Vorrichtung sind der Laser, eine optische Einheit, die mit ihren optischen Elementen die Aufgabe hat, die Laserstrahlen zu lenken und einen Tisch, um das Substrat abzulegen und zu hal- tern. Für die Ablation wird typischerweise ein Laser verwendet, der kurze Laserpulse zur Oberfläche des auf dem Tisch positionierten Substrates aussendet. Die optische Einheit kann Aperturen umfassen, die den Strahl formen; ferner Linsen, um den Strahl zu fokussieren oder die Apertur auf das Werkstück abzubilden und weiters bewegliche Spiegelsysteme umfassen, um den Fleck schnell über die Oberfläche des Werkstückes zu bewegen. Während des Ablationsprozesses muss das erzeugte Laserlicht über die Oberfläche des zu bearbeitenden Substrates bewegt werden. Es wird daher eine Relativbewegung zwischen Substrat und Laserstrahl benötigt. Dies kann entweder dadurch erzielt werden, indem das Substrat relativ zu der stationären optischen Einheit bewegt wird oder die optische Einheit relativ zu der stationären Solarzelle bewegt wird, oder durch eine Kombination beider Möglichkeiten. Für die Bewegung kann beispielsweise eine CNC Anlage mit X und Y - Führung verwendet werden.
Die Figur 1 in US 4 734 550 zeigt eine Ausführungsform einer Vorrichtung zur Laserablation, bei der ein XY-Tisch verwendet wird, um das Substrat zu bewegen, und bei der die optische Einheit stationär ist. In dem dort gezeigten Fall wird das Substrat horizontal gehalten, wobei die Beschichtung während der Ablation in Richtung Lichtstrahl zeigt. Das kann dazu führen, dass, beispielsweise aufgrund der Gravitation, ablatiertes Material nur unvollständig vom Substrat entfernt wird und auf diesem wieder abgelagert wird.
Die Figur 12 der US 4 734 550 zeigt eine Ausführungsform bei der der „Tisch" senkrecht an einer Trägerschiene aufgehängt ist. Die optische Einheit ist als Ganzes auf einem XY-Tisch angeordnet und daher in Bezug auf das zumindest in einer Richtung stationäre Werkstück beweglich. Zumindest für die Ablation, die am oberen Teil des Werkstückes vorgenommen wird, kann es passieren dass losgelöstes Material nur unvollständig aufgesammelt wird und sich wieder auf dem Substrat ablagert. Dies kann zum Beispiel dann passieren, wenn Dünnfilmmaterial von der Randregion entlang der oberen Kante entfernt werden soll.
Es besteht daher ein Bedürfnis nach einer Vorrichtung zur Laserablation und nach einer Ablationsmethode, in der das Problem der Rückablagerung überwunden oder zumindest verringert wird.
Es ist daher Aufgabe der vorliegenden Erfindung, eine Vorrichtung und eine Methode der Dünnfilm-Ablation für Solarzellen anzugeben, die es gestattet, kosteneffizient den Randbereich der Solarzelle zu ablatieren. Die Breite des Randbereichs beträgt typischerweise weniger als 20mm.
Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Ablation von dün- nen Schichten in der Randregion der Oberfläche eines planen Dünnfilm - beschichteten Substrates, wobei die Randregion entlang der Kante des Substrates verläuft, das folgende Schritte umfasst:
- Bereitstellen eines Laserstrahls
- Lenkung des Laserstrahls auf einen stationären Ablationsbereich - Führung des zu bearbeitenden Randbereichs durch den stationären Ablationsbereich dergestalt, dass es einen vom Zentrum des stationären Ablationsbereichs ausgehenden stationären Vektor gibt, der im Wesentlichen während des gesamten AbIa- tionsprozesses in Richtung Inneres der von der Kante des Substrates umschlossenen Fläche zeigt
Durch dieses Verfahren kann die optische Einheit, die verwendet wird um Laserpulse zur dem Ablationsbereich zu propagieren und gegebenenfalls auch Mittel zur endgültigen Entfernung des ablatierten Materials vollständig stationär ausgebildet sein und es ist gesichert, dass das ablatierte Material immer effizient in Richtung weg vom Substrat gelenkt werden kann.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird das Substrat in einer vertikalen Orientierung gehalten. Dies hat den Vorteil, dass es die benötigte Bewegung des Substrates vereinfacht. Die Bewegung des Randbereichs des Sub- strates durch den Ablationsbereich kann dabei dergestalt erfolgen, dass Ablation immer im Bereich an der aktuell unten gelegenen Kante des Substrates durchgeführt wird. Gravitationskräfte führen dann dazu oder unterstützen zumindest, dass das ablatierte Material vom Substrat wegtransportiert wird. Manchmal ist der Effekt der Gravitationskräfte ausreichend und es müssen keine weiteren Mittel zum Abtransport vorgesehen werden.
Figur 1 Vorrichtung zur Laserablation der bekannten Art
Figur 2 Ausführungsform der erfindungsgemässen Vorrichtung mit horizontaler Ausrichtung des Substrates
Figur 3a)-j) Unterschiedliche Stadien der Laserablation. Die Figuren sollen demonstrieren, wie das Substrat geführt wird.
Figur 4 Ablationskopf mit Mittel zum endgültigen Entfernen des ablatierten Materials Figur 5 Ausführungsform der erfindungsgemässen Vorrichtung mit vertikale
Ausrichtung des Substrates
Figur 6 Ausführungsform der erfindungsgemäßen Vorrichtung mit einem Roboter
Figur 1 zeigt eine gemäß dem Stand der Technik bekannte Vorrichtung zur Laserablation. Diese umfasst einen Laser 3, eine optische Einheit 5 mit unterschiedlichen optischen Elementen wie zum Beispiel Spiegel und Linsen und einen Tisch 7 der entlang einer X- und einer Y-Richtung beweglich ist.
Die optische Einheit 5 lenkt den Laserpuls, der durch den Laser 3 erzeugt wird, in einen Bereich auf der Oberfläche eines beschichteten Substrates 9, das mit seiner Rückseite auf dem Tisch 7 aufliegt. Hierdurch wird ein Ablationsbreich definiert. Da die Beschichtung auf der Vorderseite des Substrates 9 angebracht ist besteht der Nachteil, dass dasjenige Material, welches durch einen Laserpuls von der Oberfläche des Substrates entfernt wird mit relativ hoher Wahrscheinlichkeit aufgrund der Gravitationskräfte wieder auf dem Substrat wieder abgelegt wird und dabei störende Verunreinigungen und Probleme verursachen kann. Die Figur 2 zeigt eine erste Ausführungsform der vorliegenden Erfindung. Gezeigt ist eine Vorrichtung zur Laserablation 201 mit einem Laser 203 und einer optischen Einheit 205, die die Laserpulse des Lasers 203 zu einem Ablationsbereich 207 lenkt. Die Vorrichtung zur Laserablation 201 entsprechend dieser ersten Ausführungsform umfasst auch einen Tisch 209 um ein beschichtetes Substrat 211 horizontal zu hal- tem. Der Tisch 209 kann in zwei horizontale Richtungen X und Y bewegt werden, er kann aber auch zusätzlich um eine vertikale Achse rotiert werden. Diese Bewegungsmöglichkeiten sind in der Figur 2 mit den gebrochenen Pfeilen angedeutet.
Die Ausdehnung des Tisches 209 und insbesondere die Tischoberfläche ist dabei so deutlich kleiner als die Ausdehung des Substrates 211 , dass das Substrat 211 derart auf den Tisch positioniert werden kann, dass der gesamte zu bearbeitende Randbereich über den Tisch übersteht.
In dem Verfahren entsprechend der ersten Ausführungsform der vorliegenden Erfindung wird das auf seiner Vorderseite beschichtete Substrat 211 mit der Vorderseite so auf den Tisch 209 gelegt, dass der gesamte zu bearbeitende Randbereich über den Tisch übersteht. Damit zeigt die Beschichtung nach unten und die Laserablation wird durch das Substrat hindurch durchgeführt. Das bedeutet, dass das Laserlicht zunächst durch das Substrat hindurch transmittiert, bevor es auf die Beschichtung trifft. Gezeigt in Figur 2 sind auch Mittel 213 um das entfernte Material endgültig aufzunehmen. Aufgrund der Gravitation wird sich das von der Glasoberfläche entfernte Material nach unten vom Substrat weg entfernen. Daher können die Mittel 213 beispielsweise lediglich einen Behälter umfassen, um dieses Material aufzusammeln. Allerdings wird durch die Mittel bevorzugt ein Gasfluss in den Behälter hinein, im Sinne eines Staubsaugers, generiert, wodurch der Prozess des Aufsammeins und Wegführens des durch Ablation entfernten Materials zumindest unterstützt wird.
Figur 3a bis 3j stellt in einer Sequenz dar, wie das Verfahren der Ablation gemäss der vorliegenden Erfindung durchgeführt wird. In Draufsicht wird das beschichtete Substrat gezeigt. Noch beschichtete Bereiche sind schraffiert dargestellt. Bereiche, in denen Material durch Ablation entfernt wurde sind transparent dargestellt. In dem Beispiel wird die Ablation irgendwo im mittleren Bereich der langen Kante des Substrates angefangen. Dies ist in Figur 3a dargestellt. Hier ist noch kein Material ent- fernt. Ablation wird nun durchgeführt, während das Substrat entlang dem zu bearbeitenden Randbereich in einer linearen Bewegung durch den Ablationsbereich durchgeschoben wird, bis eine erste Ecke des Substrates erreicht wird. Dies ist in Figur 3b gezeigt. Nun wird das Substrat in die Position, die in Figur 3c gezeigt ist, gedreht. Diese Rotation um die erste Ecke beinhaltet eine Rotation des Tisches sowie Bewegungen in X- und Y-Richtung. Ablation wird nun durchgeführt, während das Substrat entlang dem zu bearbeitenden Randbereich in einer linearen Bewegung durch den Ablationsbereich durchgeschoben wird, bis eine zweite Ecke des Substrates erreicht wird. Dies.ist in Figur 3d gezeigt. Nun wird das Substrat in die Position, die in Figur 3e gezeigt ist, gedreht. Ablation wird nun durchgeführt, während das Substrat entlang dem zu bearbeitenden Randbereich in einer linearen Bewegung durch den Ablationsbereich durchgeschoben wird, bis eine dritte Ecke des Substrates erreicht wird. Dies ist in Figur 3f gezeigt. Nun wird das Substrat in die Position, die in Figur 3g gezeigt ist gedreht. Ablation wird nun durchgeführt, während das Substrat entlang dem zu bearbeitenden Randbereich in einer linearen Bewegung durch den Ablationsbereich durchgeschoben wird, bis eine vierte Ecke des Substrates erreicht wird. Dies ist in Figur 3h gezeigt. Nun wird das Substrat in die Position, die in Figur 3i gezeigt ist gedreht. Ablation wird nun durchgeführt, während das Substrat entlang dem zu bearbeitenden Randbereich in einer linearen Bewegung durch den Ablationsbe- reich durchgeschoben wird, bis die Startposition erreicht ist, wie in Figur 3j gezeigt.
In den Figuren 3a bis 3j ist jeweils ein kleiner, nicht gestrichelter Vektor dargestellt. Dieser definiert eine während des Ablationsprozesses gleichbleibende gerichtete Strecke im Raum mit Anfangspunkt ausserhalb und Endpunkt innerhalb des Substra- tes. Daraus wird ersichtlich, dass es sich um ein Verfahren zur Ablation von dünnen Schichten in der Randregion der Oberfläche eines planen dünnfilmbeschichteten Substrates, wobei die Randregion entlang der Kante des Substrates verläuft, mit folgenden Schritten handelt
- Bereitstellen eines Laserstrahls - Lenkung des Laserstrahls auf einen stationären Ablationsbereich
- Führung des zu bearbeitenden Randbereichs durch den stationären Ablationsbereich dergestalt, dass es einen vom Zentrum des stationären Ablationsbereichs ausgehenden stationären Vektor gibt, der im Wesentlichen während des gesamten AbIa- tionsprozesses in Richtung Inneres der von der Kante des Substrates umschlossenen Fläche zeigt.
Die Figur 4 zeigt ein Beispiel für Mittel, um vom Substrat entferntes Material endgül- tig aufzunehmen. Es ist ein Ablationskopf 401 gezeigt, der eine Linse 421 als Teil der optischen Einheit umfasst. Der Ablationskopf 401 umfasst auch einen Behälter 413, der dafür vorgesehen ist nahe and die Randregion eines Substrates 411 mit der Dünnfilmbeschichtuπg 419. Der Behälter 413 umfasst auch ein Rohr 425 um das ablatierte Material 423 abzusaugen. Die Geometrie des Behälters 413 ist so gewählt, dass durch Unterdruck im Behälter einen Gasfluss von beiden Seiten des Substrates zum Rohr hin erzeugt wird und dadurch das ablatierte Material vom Substrat wegtransportiert wird. Der Ablationskopf kann auch Mittel zur Absorption des Anteils des Laserlichtes, welches durch das Substrat transmittiert ohne absorbiert zu werden, umfassen. Solche Mittel sind in Figur 4 nicht gezeigt.
Wie aus der obigen Beschreibung hervorgeht, ist die Möglichkeit, den Tisch rotieren zu können wichtig. Lediglich mit solch einem rotierbaren Tisch ist es möglich den Ablationskopf 401 , wie er in Figur 4 gezeigt wird, vollständig stationär zu halten.
Entsprechend einer weiteren Ausführungsform der vorliegenden Erfindung wird das Substrat in vertikaler Orientierung gehalten. Dies ist in Figur 5 gezeigt. Das Ablati- onsverfahren wird dann in der Weise durchgeführt, dass der Bereich der Ablation immer an der unteren Kante des Substrates zu liegen kommt.
Aufgrund der Gravitationskräfte fällt das ablatierte Material nach unten und daher weg von der Substratoberfläche. In dieser vertikalen Konfiguration kann die beschichtete Oberfläche in Richtung optischer Einheit weisen oder von dieser weg- weissen: Die Gravitation trägt das ablatierte Material in beiden Fällen weg vom Substrat. Allerdings kann ein leichter Vorteil darin bestehen, die Beschichtung von der optischen Einheit wegweissen zu lassen, da dann kein ablatiertes Material mit dem Laserlicht, welches noch zu Ablation benötigt wird, interagieren kann. Es ist wiederum von Wichtigkeit eine Substrathalterung zu haben, welche, abgesehen davon, dass sie lineare Bewegungen in der Substratebene zulässt, die Rotation um eine Normale auf der Substratoberfläche zulässt. Nur hierdurch wird es möglich, dass der Ablationsbereich jeweils an der unteren Kante des Substrates liegt. Die Halterung des Substrates kann mit einem Mechanismus bewerkstelligt werden, der auf Unterdruck beruht.
Figur 6 zeigt eine Ausführungsform der vorliegenden Erfindung, wobei der Tisch durch einen robusten Multiachsen-Industrieroboter ersetzt ist. Mit solch einem Roboter können nicht nur die in Figur 3 gezeigten Schritte gemacht werden, sondern es ist auch eine effiziente Be- und Entladung der Substrate möglich. Zusätzlich wird es durch die die Verwendung eines Roboters möglich, das Substrat mit Hilfe eines Bau- teils am Ende des Roboterarmes zu haltern, wobei das Bauteil an der unbeschichteten Seite des Substrates befestigt ist: Auch hier kann die beschichtete Seite zur oder weg von der optischen Einheit zeigen, wobei letztere Konfiguration leichte Vorteile hat, da dann klar ist, dass ablatiertes Material nicht mit den Laserlicht interagiert, welches noch für die Ablation benötigt wird.
Die unterschiedlichen Ausführungsformen sollten die Erfindung beispielhaft erläutern und nicht als auf diese Beispiele einschränkend verstanden werden.
Vielmehr sollte zum Ausdruck gekommen sein, dass es sich bei der erfindungsgemäßen Vorrichtung um eine Vorrichtung zur Ablation von dünnen Schichten in der Randregion der Oberfläche eines planen Dünnfilm - beschichteten Substrates handelt, wobei die Randregion entlang der Kante oder Kanten des Substrates verläuft, wobei die Vorrichtung umfasst - einen Laser zur Erzeugung von Laserlicht für die Ablation
- eine optische Einheit zur Lenkung des Lichtes in einen für die Ablation vorgesehenen Ablationsbereich
- einen Substrathalter zur Halterung des Substrates, wobei der Substrathalter so ausgeführt ist dass bei gehaltertem Substrat lineare Bewegungen in zwei linear unabhängige Richtungen im Wesentlichen parallel zur Substratebene durchgeführt werden können dadurch gekennzeichnet dass der Substrathalter so ausgeführt ist, dass bei gehaltertem Substrat die Rotation um eine Achse die im wesentlichen Normal auf der Substratoberfläche steht, ausgeführt werden kann. Mit einer solchen Vorrichtung kann das erfindungsgemässe Ablationsverfahren durchgeführt werden, nämlich ein Verfahren zur Ablation von dünnen Schichten in der Randregion der Oberfläche eines planen dünnfilmbeschichteten Substrates, wo- bei die Randregion entlang der Kante oder Kanten des Substrates verläuft, und Ablation der dünnen Schichten in mindestens zwei nicht notwendigerweise unzusammenhängenden Bereichen der Randregion entlang zueinander nicht parallelen Kantenstücken erfolgen soll mit folgenden Schritten - Bereitstellen eines Laserstrahls
- Lenkung des Laserstrahls auf einen Ablationsbereich
- Führung der zu bearbeitenden Bereiche der Randregion durch den Ablationsbereich dergestalt, dass es in der Ebene der Oberfläche des Substrates eine im Wesentlichen während des gesamten Ablationsprozesses gleichbleibende gerichtete Strecke im Raum gibt und teilweise im Ablationsbereich liegt und den Anfangspunkt ausserhalb der Substratoberfläche und den Endpunkt innerhalb der Substratoberfläche hat.
Wie beschrieben, besteht eine Möglichkeit darin die Orientierung des beschichteten Substrates zumindest im Wesentlichen während des Ablationsprozesses in zumindest angenähert vertikaler Orientierung gehalten wird und das Substrat so bewegt wird dass der Ablationsbereich während der Ablation immer an der unteren Kante des Substrates gelegen ist. Dabei kann es von Vorteil sein, einen multiaxialen Roboter zu verwenden.
Vorzugsweise wird das Substrat mit Mitteln gehalten, die lediglich mit von der Randregion beabstandeten inneren Regionen der Oberfläche interagieren.

Claims

1. Ein Verfahren zur Ablation von dünnen Schichten in der Randregion der Oberfläche eines planen, dünnfilmbeschichteten Substrates, wobei die Randregion entlang der Kante oder den Kanten des Substrates verläuft, und Ablation der dünnen Schichten in mindestens zwei nicht notwendigerweise unzusammenhängenden Bereichen der Randregion entlang zueinander nicht parallelen Kantenstücken erfolgen soll mit folgenden Schritten
- Bereitstellen eines Laserstrahls
- Lenkung des Laserstrahls auf einen Ablationsbereich
- Führung der zu bearbeitenden Bereiche der Randregion durch den Ablationsbe- reich dergestalt, dass es in der Ebene der Oberfläche des Substrates eine im Wesentlichen während des gesamten Ablationsprozesses gleichbleibende gerichtete Strecke im Raum gibt, die teilweise im Ablationsbereich liegt und den Anfangspunkt ausserhalb der Substratoberfläche und Endpunkt innerhalb der Substratoberfläche hat.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Orientierung des beschichteten Substrates zumindest im Wesentlichen während des Ablationsprozesses in zumindest angenähert vertikaler Orientierung gehalten wird und das Substrat so bewegt wird, dass der Ablationsbreich während der Ablation immer an der unteren Kante des Substrates gelegen ist.
3. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein multiaxialer Roboter verwendet wird, um die für die Ablation notwendigen Bewegungen des Substrates durchzuführen.
4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Substrat mit Mitteln gehalten wird die lediglich mit von der Randregion beabstandeten inneren Regionen der Oberfläche interagieren.
5. Vorrichtung zur Ablation von dünnen Schichten in der Randregion der Oberfläche eines planen dünnfilmbeschichteten Substrates, wobei die Randregion entlang der Kante des Substrates verläuft, wobei die Vorrichtung umfasst
- einen Laser zur Erzeugung von Laserlicht für die Ablation - eine optische Einheit zur Lenkung des Lichtes in einen für die Ablation vorgesehenen Ablationsbereich
- einen Substrathalter zur Halterung des Substrates, wobei der Substrathalter so ausgeführt ist dass bei gehaltertem Substrat lineare Bewegungen im Wesentlichen parallel zur Substratebene durchgeführt werden können dadurch gekennzeichnet, dass der Substrathalter so ausgeführt ist, dass bei gehaltertem Substrat die Rotation um eine Achse die im wesentlichen Normal auf der Substratoberfläche steht, ausgeführt werden kann.
EP08737595A 2007-03-30 2008-03-26 Methode zum laserritzen von solarzellen Withdrawn EP2131993A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007015767A DE102007015767A1 (de) 2007-03-30 2007-03-30 Methode zum Laserritzen von Solarzellen
US90972807P 2007-04-03 2007-04-03
PCT/IB2008/001117 WO2008120102A2 (de) 2007-03-30 2008-03-26 Methode zum laserritzen von solarzellen

Publications (1)

Publication Number Publication Date
EP2131993A2 true EP2131993A2 (de) 2009-12-16

Family

ID=39719583

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08737595A Withdrawn EP2131993A2 (de) 2007-03-30 2008-03-26 Methode zum laserritzen von solarzellen

Country Status (7)

Country Link
US (1) US8299396B2 (de)
EP (1) EP2131993A2 (de)
JP (1) JP2010524203A (de)
CN (1) CN101647126B (de)
DE (1) DE102007015767A1 (de)
TW (1) TWI440199B (de)
WO (1) WO2008120102A2 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275962A (ja) * 2006-04-10 2007-10-25 Disco Abrasive Syst Ltd レーザー加工装置
DE102009020365A1 (de) * 2009-05-07 2010-11-11 Jenoptik Automatisierungstechnik Gmbh Verfahren zur Herstellung von Dünnschichtsolarzellenmodulen mit einer vorbestimmten Transparenz
DE102009021273A1 (de) * 2009-05-14 2010-11-18 Schott Solar Ag Verfahren und Vorrichtung zur Herstellung eines photovoltaischen Dünnschichtmoduls
ITUD20090105A1 (it) * 2009-05-27 2010-11-28 Applied Materials Inc Applicazione laser in fibra per un processo di rimozione della pellicola di bordo in applicazioni di celle solari
WO2011061160A1 (en) * 2009-11-19 2011-05-26 Oerlikon Solar Ag, Trübbach Method and device for ablation of thin-films from a substrate
CN102110745B (zh) * 2010-12-20 2012-07-04 东莞宏威薄膜真空技术有限公司 薄膜层边缘清除装置及清除方法
DE102011103589B4 (de) * 2011-05-30 2024-08-08 Hegla Boraident Gmbh & Co. Kg Verfahren zum Entfernen einer Schicht auf einem Trägersubstrat
DE102011103481B4 (de) * 2011-06-03 2017-08-17 Leibniz-Institut für Oberflächenmodifizierung e.V. Selektives Abtragen dünner Schichten mittels gepulster Laserstrahlung zur Dünnschichtstrukturierung
US20130153552A1 (en) * 2011-12-14 2013-06-20 Gwangju Institute Of Science And Technology Scribing apparatus and method for having analysis function of material distribution
US8980156B2 (en) * 2012-02-23 2015-03-17 Nike, Inc. System and method for making golf balls
CN102626831A (zh) * 2012-04-09 2012-08-08 镇江大成新能源有限公司 薄膜太阳能电池飞秒激光刻蚀设备
DE102018010277B4 (de) 2018-03-29 2022-01-13 Hegla Boraident Gmbh & Co. Kg Entschichtungsverfahren und Verwendung einer Entschichtungseinrichtung zum Entschichten von Glastafeln, vorzugsweise Verbundglastafeln
DE102018107697B4 (de) 2018-03-29 2020-12-10 Hegla Boraident Gmbh & Co. Kg Entschichtungseinrichtungen und -verfahren zum Entschichten von Glastafeln, vorzugsweise Verbundglastafeln
KR102270936B1 (ko) 2019-06-17 2021-07-01 세메스 주식회사 기판 처리 방법 및 기판 처리 장치
DE102019213603A1 (de) 2019-09-06 2021-03-11 Hegla Boraident Gmbh & Co. Kg Entschichtungseinrichtung und -verfahren zum Entschichten von Glasscheiben, sowie Verfahren zur Herstellung von Glasscheiben für Stufenglas, Stufenglas und Stufenglasfenster

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523875A (ja) * 1991-07-24 1993-02-02 Nec Yamagata Ltd レーザーマーキング装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650524A (en) * 1984-06-20 1987-03-17 Sanyo Electric Co., Ltd Method for dividing semiconductor film formed on a substrate into plural regions by backside energy beam irradiation
JPS61210063A (ja) 1985-03-14 1986-09-18 Mitsubishi Chem Ind Ltd アリ−ルスルホン類
JPS6240986A (ja) 1985-08-20 1987-02-21 Fuji Electric Corp Res & Dev Ltd レ−ザ−加工方法
US4705698A (en) * 1986-10-27 1987-11-10 Chronar Corporation Isolation of semiconductor contacts
FI78577C (fi) * 1987-12-30 1989-08-10 Vaisala Oy Foerfarande foer avstaemning av en plankondensator.
US5082791A (en) * 1988-05-13 1992-01-21 Mobil Solar Energy Corporation Method of fabricating solar cells
EP0536431B1 (de) * 1991-10-07 1994-11-30 Siemens Aktiengesellschaft Laserbearbeitungsverfahren für einen Dünnschichtaufbau
DE29512519U1 (de) * 1994-10-27 1995-09-21 Benteler Ag, 33104 Paderborn Vorrichtung zum Abbrechen eines Randstreifens einer Glasscheibe
JPH11267860A (ja) * 1998-03-23 1999-10-05 Olympus Optical Co Ltd マーキング装置
US6413839B1 (en) * 1998-10-23 2002-07-02 Emcore Corporation Semiconductor device separation using a patterned laser projection
US7649153B2 (en) * 1998-12-11 2010-01-19 International Business Machines Corporation Method for minimizing sample damage during the ablation of material using a focused ultrashort pulsed laser beam
DE19933703B4 (de) * 1999-04-07 2005-07-28 Shell Solar Gmbh Vorrichtung und Verfahren zum Abtragen von Schichten auf einer Solarzelle
WO2000060668A1 (de) * 1999-04-07 2000-10-12 Siemens Solar Gmbh Vorrichtung und verfahren zum abtragen von dünnen schichten auf einem trägermaterial
BE1013237A3 (fr) * 2000-01-20 2001-11-06 Wallonia Space Logistics En Ab Procede d'enlevement local d'un revetement applique sur un substrat translucide ou transparent.
US6422082B1 (en) * 2000-11-27 2002-07-23 General Electric Company Laser shock peening quality assurance by ultrasonic analysis
US6559411B2 (en) * 2001-08-10 2003-05-06 First Solar, Llc Method and apparatus for laser scribing glass sheet substrate coatings
US20030047538A1 (en) * 2001-09-12 2003-03-13 Paul Trpkovski Laser etching indicia apparatus
US6737605B1 (en) * 2003-01-21 2004-05-18 Gerald L. Kern Single and/or dual surface automatic edge sensing trimmer
JP4342992B2 (ja) * 2004-03-17 2009-10-14 株式会社ディスコ レーザー加工装置のチャックテーブル
US20070084838A1 (en) * 2004-12-07 2007-04-19 Chih-Ming Hsu Method and cutting system for cutting a wafer by laser using a vacuum working table
US20100038825A1 (en) * 2006-12-21 2010-02-18 Mcdonald Joel P Methods of forming microchannels by ultrafast pulsed laser direct-write processing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523875A (ja) * 1991-07-24 1993-02-02 Nec Yamagata Ltd レーザーマーキング装置

Also Published As

Publication number Publication date
US20080237189A1 (en) 2008-10-02
WO2008120102A2 (de) 2008-10-09
WO2008120102A3 (de) 2008-12-24
JP2010524203A (ja) 2010-07-15
DE102007015767A1 (de) 2008-10-02
TWI440199B (zh) 2014-06-01
US8299396B2 (en) 2012-10-30
CN101647126A (zh) 2010-02-10
TW200849634A (en) 2008-12-16
CN101647126B (zh) 2011-09-07

Similar Documents

Publication Publication Date Title
EP2131993A2 (de) Methode zum laserritzen von solarzellen
EP1166358B1 (de) Verfahren zum abtragen von dünnen schichten auf einem trägermaterial
EP1332039B1 (de) Vorrichtung zum sintern, abtragen und/oder beschriften mittels elektromagnetischer gebündelter strahlung sowie verfahren zum betrieb der vorrichtung
EP2139049B1 (de) Vorrichtung zur Strukturierung eines Solarmoduls
DE102004025707B4 (de) Verfahren zum Teilen eines nicht-metallischen Substrats
DE102010015739B4 (de) Laserstrahlbearbeitungsvorrichtung
DE69410900T2 (de) Verfahren und Vorrichtung zur Überwachung von Oberflächen-Laserreinigung
EP3600726B1 (de) Vorrichtung und verfahren zum herstellen von dreidimensionalen werkstücken
EP1598121A2 (de) Lasergestütztes Entschichtungsverfahren
DE112010000963T5 (de) Verfahren und Vorrichtung zum maschinellen Bearbeiten einer Dünnfilmschicht eines Werkstücks
DE102008052006A1 (de) Verfahren und Vorrichtung zur Herstellung von Proben für die Transmissionselektronenmikroskopie
DE102017120087B4 (de) Bandsägemaschine
DE112019000301T5 (de) Kombinationsverarbeitungseinrichtung mittels von Laser und einer durch einen Flüssigkeitsstrahl selbst erzeugten, mit Schleifmittel beladenen Flüssigkeit und zugehöriges Verfahren
DE102017222490A1 (de) Hochvakuumkammer
DE19933703A1 (de) Vorrichtung und Verfahren zum Abtragen von Schichten auf einem Werkstück
DE10029110B4 (de) Verfahren für die Materialbearbeitung und Verwendung desselben
DE102010039798B4 (de) Waferbearbeitungsverfahren
DE102004059154A1 (de) Verfahren zum Überprüfen einer laserbearbeiteten verschlechterten Schicht
DE102006032303A1 (de) Oberflächenbearbeitungsvorrichtung
DE102005039430A1 (de) Lasermarkierung nahe der Oberfläche bei innenbearbeiteten transparenten Körpern
DE102013010771A1 (de) Schutzvorrichtung für generative Fertigungsverfahren, damit versehene Fertigungsvorrichtung sowie damit durchführbares generatives Fertigungsverfahren
DE102004017114B4 (de) Vorrichtung zur Handhabung eines scheibenartigen Elements, insbesondere zur Handhabung eines Wafers
DE112015005875B4 (de) Maskenpositionseinstellverfahren zum ionenfräsen, elektronenmikroskop zum einstellen der maskenposition, auf probenbühne montierte maskeneinstellvorrichtung und probenmaskenkomponente einer ionenfräsvorrichtung
DE19964443B4 (de) Vorrichtung zum Abtragen von Schichten auf einem Werkstück
DE102009031233A1 (de) Vorrichtung zur Strukturierung von Dünnschichtsolarzellenmodulen mittels Laser

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090829

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OERLIKON SOLAR AG, TRUEBBACH

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130311

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TEL SOLAR AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151001