EP2131205B1 - Magnetsensor und sensitivitätsmessverfahren - Google Patents

Magnetsensor und sensitivitätsmessverfahren Download PDF

Info

Publication number
EP2131205B1
EP2131205B1 EP08722634.6A EP08722634A EP2131205B1 EP 2131205 B1 EP2131205 B1 EP 2131205B1 EP 08722634 A EP08722634 A EP 08722634A EP 2131205 B1 EP2131205 B1 EP 2131205B1
Authority
EP
European Patent Office
Prior art keywords
sensitivity
magnetic field
magnetic
hall elements
magnetic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08722634.6A
Other languages
English (en)
French (fr)
Other versions
EP2131205A1 (de
EP2131205A4 (de
Inventor
Masaya Yamashita
Yo Yamagata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Microdevices Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Publication of EP2131205A1 publication Critical patent/EP2131205A1/de
Publication of EP2131205A4 publication Critical patent/EP2131205A4/de
Application granted granted Critical
Publication of EP2131205B1 publication Critical patent/EP2131205B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references

Definitions

  • the present invention relates to a magnetic sensor with a sensitivity measuring function and a sensitivity measuring method thereof, and more particularly to a magnetic sensor and a sensitivity measuring method thereof for providing a sensitivity measuring function to a magnetic sensor having a semiconductor substrate on which a plurality of Hall elements are provided separately from each other and a magnetic substance mounted on the semiconductor substrate.
  • a device As a magnetic sensor, a device has conventionally been well known which has Hall elements provided on a semiconductor substrate and a magnetic substance (magnetic flux concentrator) that is mounted on the Hall elements and has a magnetic convergence function, and which causes magnetic convergence and detects the magnetic field intensity thereof with the Hall elements.
  • a magnetic substance magnetic flux concentrator
  • FIG. 1 is a structural view for explaining this type of magnetic sensor.
  • a semiconductor circuit 1 comprises a semiconductor substrate 3 and Hall elements 4a and 4b provided in the semiconductor substrate 3.
  • a protective layer 5 and an adhesive layer 6 are formed successively, and a magnetic flux concentrator 2 is provided thereon.
  • Patent Document 1 As to the magnetic sensor consisting of a combination of the Hall elements with the magnetic substance (magnetic flux concentrator) having the magnetic convergence function, there is a Patent Document 1, for example.
  • the device described in Patent Document 1 relates to a magnetic field direction detecting sensor capable of deciding the directions of a magnetic field two dimensionally. It has a magnetic flux concentrator with a flat shape, a first Hall effect device, and a second Hall effect device, and the Hall effect devices are placed at edge regions of the magnetic flux concentrator.
  • a device described in Patent Document 2 is a magnetic sensor with the same structure as that shown FIG. 1 , and relates to a technique for matching the horizontal direction magnetic field sensitivity and the vertical direction magnetic field sensitivity.
  • a device described in Patent Document 3 has the following structure. It brings a probe card, which includes a coil for applying a magnetic field to a magnetic sensor, into contact with one of the magnetic sensor modules each having a magnetic sensor and a digital signal processing unit. A test of the magnetic sensor is made by checking the digital signal processing unit via the probe card while generating a magnetic field by supplying a current to the coil. Then, correction values of the magnetic sensor corresponding to the test result are stored in a storage of the magnetic sensor module via a probe card.
  • Non-Patent Document 1 a vertical direction magnetic field generating coil is placed right under a Hall element to generate a vertical magnetic field component, and the Hall element detects the vertical magnetic field component generated by the vertical direction magnetic field generating coil, thereby correcting the self-sensitivity of the Hall element. Concrete contents thereof are described in Non-Patent Document 1.
  • Patent Document 1 discloses the following. It has a construction that includes the Hall elements provided on the semiconductor substrate and the magnetic substance (magnetic flux concentrator) which has a magnetic convergence function and is mounted on the Hall elements, and that carries out magnetic convergence with the magnetic substance and detects the magnetic field intensity with the Hall elements.
  • the magnetic sensor that detects the magnetic fields in the horizontal direction and vertical direction to detect 2-axis or 3-axis magnetic signals orthogonal to each other, the magnetic sensitivity varies to the horizontal direction magnetic field and to the vertical direction magnetic field. Accordingly, it is necessary to match the sensitivity between the individual axes.
  • Patent Document 2 proposes in the foregoing Patent Document 2 a technique for matching the magnetic sensitivity in the horizontal direction and vertical direction by arranging a lot of elements for detecting magnetism in the vertical direction.
  • the method cannot correct sensitivity variations involved in the element sensitivity variations of the individual magnetic sensors or the misalignment of the magnetic substance.
  • Patent Document 3 discloses the following. It brings the probe card, which has the coil for applying the magnetic field to the magnetic sensor, into contact with one of the magnetic sensor modules each including the magnetic sensor and digital signal processing unit, and tests the digital signal processing unit via the probe card while generating the magnetic field by supplying the coil with the current, thereby checking the sensitivity of the magnetic sensor and carrying out the sensitivity correction.
  • Non-Patent Document 1 discloses the following, for example. It places the vertical direction magnetic field generating coil for generating the vertical magnetic field component right under the Hall element on the same silicon substrate, and detects the vertical magnetic field component generated by the vertical direction magnetic field generating coil with the Hall element, thereby measuring the sensitivity and carrying out correction.
  • Patent Documents 1 to 3 and Non-Patent Document 1 are the following. They achieve the sensitivity correction of the Hall element or magnetic sensor in various forms. All the documents have contents relating tomagnetic sensors capable of detecting 2-axis or 3-axis magnetic fields orthogonal to each other. However, they do not disclose any concrete configuration for measuring the sensitivity in the individual axial directions of the magnetic sensor without using the external coil, that is, any configuration of arranging internal coils for sensitivity measurement between the magnetic substance and Hall elements.
  • the present invention is implemented to solve the foregoing problems. Therefore it is an object of the present invention to provide a magnetic sensor and sensitivity measuring method thereof having a function of measuring the sensitivity in the individual axial directions of the magnetic sensor without using an external magnetic field source for sensitivity measurement in a 2-axis or 3-axis magnetic sensor including a semiconductor substrate having a plurality of Hall elements provided separately from each other and a magnetic substance placed on the semiconductor substrate.
  • Non-Patent Document 1 " Autocalibration of silicon Hall devices" (P. L. C. Simon et al. Sensors and Actuators A 52(1996) 203-207 .
  • Document JP 2006 275764 A relates to a three dimensions magnetic sensor comprising a coil for testing a Hall element which is located between GMR elements 12-18, on a hall element 7.
  • Document JP 2004 151056 A relates to a low magnetic field generating device comprising sensors for detecting a magnetic field and magnetic field generators located around the magnetic sensors.
  • Document EP 1 739 444 A2 relates to a magnetic sensor comprising magneto-resistive elements 1A, 1B and permanent magnets HM1, HM2 between the magneto-resistive elements and a magnetic sensor comprising the magneto-resistive elements 1A, 1B and solenoid coils BC1-BC4 surrounding the magneto-resistive elements.
  • Document JP H06 310776 A relates to a magnetic flux sensing device with malfunction detection function comprising a magnetic field detecting means and a magnetic field generating means allocated near the magnetic field detecting means.
  • the present invention is directed to a magnetic sensor as recited in claim 1 as well as to a sensitivity measuring method according to claim 15. Embodiments of the invention are described in the dependent claims.
  • a magnetic sensor in accordance with the present invention has a semiconductor substrate provided with a plurality of magnetic sensitivity surfaces placed separately from each other, and a magnetic substance provided above the semiconductor substrate, in which the magnetic sensitivity surfaces are placed at edge regions of the magnetic substance, the magnetic sensor comprising: a horizontal magnetic field generating unit for generating, for sensitivity measurement, a horizontal magnetic field component in a direction perpendicular to a magnetic sensitivity direction of the magnetic sensitivity surfaces in a region between the plurality of magnetic sensitivity surfaces and between the magnetic sensitivity surfaces and the magnetic substance, wherein the magnetic sensitivity surfaces detect the horizontal magnetic field component generated by the horizontal magnetic field generating unit.
  • the magnetic sensitivity surfaces and the horizontal magnetic field generating unit are placed on the same side with respect to the magnetic substance.
  • the horizontal magnetic field component generated by the horizontal magnetic field generating unit depends on a thickness of the magnetic substance and a distance between the magnetic substance and the magnetic sensitivity surfaces.
  • the magnetic sensitivity surfaces are Hall elements.
  • the horizontal magnetic field generating unit is a planar spiral coil.
  • vertical magnetic field generating units each provided close to each of the plurality of magnetic sensitivity surfaces for generating, for sensitivity measurement, vertical magnetic field component in a direction parallel to the magnetic sensitivity direction of the magnetic sensitivity surfaces, wherein the magnetic sensitivity surfaces detect the vertical magnetic field components generated by the vertical direction magnetic field generating units.
  • the vertical magnetic field generating units are placed right above the magnetic sensitivity surfaces on a plane at the same side as the horizontal magnetic field generating unit.
  • the vertical magnetic field generating units are placed at edge regions of the magnetic substance, and are placed right under the magnetic sensitivity surfaces on a plane different from the horizontal magnetic field generating unit.
  • flux density of the vertical magnetic field components generated by the vertical magnetic field generating units depends on the distance between the magnetic substance and the magnetic sensitivity surfaces.
  • the vertical magnetic field generating units are a loop coil each.
  • a sensitivity calculating unit for calculating sensitivity from magnetic field intensity information about individual axes at the plurality of magnetic sensitivity surfaces of the magnetic sensor.
  • the sensitivity calculating unit comprises: an axial component analyzing unit for separating the magnetic field intensity information from the magnetic sensor into components of the individual axes; a sensitivity decision unit for deciding the sensitivity by comparing the individual axial components of the magnetic field intensity information from the axial component analyzing unit with a prescribed reference value; and a sensitivity correction unit for carrying out sensitivity correction in accordance with sensitivity information from the sensitivity decision unit.
  • a sensor diagnostic unit for carrying out self-diagnosis of validity of the sensitivity of the magnetic sensor according to the sensitivity information from the sensitivity decision unit.
  • the magneticsensor is characterized by further comprising at least one current source for supplying current to the horizontal direction magnetic field generating units and the vertical direction magnetic field generating units of the magneticsensor.
  • a sensitivity measuring method in the magnetic sensor in accordance with the present invention is characterized by comprising: a step of generating a horizontal magnetic field component; a step of detecting the horizontal magnetic field component with the magnetic sensitivity surfaces; a step of calculating sensitivity from flux density at the magnetic sensitivity surfaces; a step of generating the vertical magnetic field components; a step of detecting the vertical magnetic field components with the magnetic sensitivity surfaces; and a step of calculating the sensitivity from the flux density at the magnetic sensitivity surfaces.
  • the step of calculating the sensitivity comprises: a step of separating, with an axial component analyzing unit, magnetic field intensity information from the magnetic sensor into components of the individual axes; a step of deciding, with a sensitivity decision unit, the sensitivity by comparing the individual axial components of the magnetic field intensity information from the axial component analyzing unit with a prescribed reference value; and a step of carrying out, with a sensitivity correction unit, sensitivity correction in accordance with sensitivity information from the sensitivity decision unit.
  • the magnetic sensor in accordance with the present invention its configuration is as follows. More specifically, it has a semiconductor substrate provided with a plurality of Hall elements placed separately from each other, and a magnetic substance provided above the semiconductor substrate. In a region between the plurality of Hall elements, and between the Hall elements and the magnetic substance, a horizontal magnetic field generating unit for generating a horizontal magnetic field component in a direction perpendicular to the magnetic sensitivity direction of the magnetic sensitivity surfaces. The horizontal magnetic field component generated by the horizontal magnetic field generating unit is detected by the Hall elements. At the same time, close to each of the plurality of Hall elements, each of vertical magnetic field generating units is provided for generating a vertical magnetic field component in a direction parallel to the magnetic sensitivity direction of the magnetic sensitivity surfaces. The vertical magnetic field components generated by the vertical direction magnetic field generating units are detected by the Hall elements. Thus, it can measure the sensitivity to the vertical direction magnetic field of the magnetic sensor and the sensitivity to the horizontal direction magnetic field.
  • the sensitivity in the 3-axis directions of the magnetic sensor orthogonal to each other can possess a function of correcting sensitivity deviation quantity resulting from variations in process dependence at a time of forming the Hall elements and the magnetic substance or from sensitivity variations of the integrated circuit.
  • the magnetic sensor includes the sensitivity calculating unit for calculating the sensitivity from the magnetic field intensity information about the individual axes from the plurality of magnetic sensitivity surfaces of the magnetic sensor. Accordingly, it enables self-sensitivity correction for the sensitivity deviation, and further it enables self-diagnosis in accordance with the validity of the sensitivity decision of the magnetic sensor.
  • magnetic sensitivity surfaces are described by way of example of Hall elements, the present invention is applicable not only to the Hall elements, but also to any magnetic sensitivity surfaces capable of detecting a magnetic field perpendicular to the magnetic substance (magnetoresistance element and the like).
  • FIG. 3 is a diagram showing magnetic flux distribution around Hall elements in a magnetic sensor in accordance with the present invention.
  • a curved line represented by a solid line shows horizontal-to-vertical magnetic transformation characteristics by the magnetic convergence function of a magnetic substance. It has peak values at edges of the semiconductor substrate 13, and has gentle slopes toward the center.
  • reference numerals 14a and 14b designate Hall elements, and 15 designates the magnetic substance.
  • locations of the arrangement of the Hall elements can be selected at optimum positions in accordance with the application of the magnetic sensor. For example, in the case of matching the sensitivity ratio between the magnetic fields in the horizontal direction and vertical direction, it is better to place the Hall elements a little to the center of the magnetic substance from its edges. In contrast, in the case of increasing the magnetic field sensitivity in the horizontal direction as much as possible, it is better to place the Hall elements at the edges of the magnetic substance.
  • the loop coils be placed close to right above or right under the magnetic sensitivity surfaces.
  • FIG. 4A and FIG. 4B are diagrams showing an embodiment of a magnetic sensor with a sensitivity measuring function in accordance with the present invention: FIG. 4A is a top view; and FIG. 4B is a cross-sectional view.
  • reference numerals 21a and 21b designate X-axis Hall elements
  • 21c and 21d designate Y-axis Hall elements
  • 22 designates a magnetic substance (magnetic flux concentrator: disk)
  • 23 designates a horizontal direction magnetic field generating coil
  • 24a to 24d designate vertical direction magnetic field generating coils.
  • the magnetic sensor has the following construction. It has the plurality of Hall elements 21a and 21b (X-axis Hall elements) and 21c and 21d (Y-axis Hall elements) mounted separately from each other on a semiconductor substrate (not shown), and the magnetic substance 22 with a magnetic convergence function provided in such a manner as to spread over the individual Hall elements on the semiconductor substrate.
  • the Hall elements 21a to 21d have a 2-axis coordinate system or a 3-axis coordinate system with two coordinate axes or three coordinate axes orthogonal to each other in accordance with a combination with the magnetic substance 22 having the magnetic convergence function, that is, have two or three detection axes orthogonal to each other.
  • the horizontal magnetic field generating coil 23 for generating a horizontal magnetic field component in the direction perpendicular to the magnetic sensitivity direction of the magnetic sensitivity surfaces, and for measuring the sensitivity.
  • the detection of horizontal magnetic field components it is carried out by generating the vertical magnetic field components having correlation with the horizontal magnetic field components near the edges of the magnetic substance as shown in FIG. 5B , and by detecting the vertical magnetic field components with the Hall elements.
  • the Hall elements 21a to 21d and the horizontal direction magnetic field generating coil 23 are arranged in such a manner as to be placed on the same side with respect to the magnetic substance 22.
  • the horizontal direction magnetic field generating coil 23 is preferably a planar spiral coil, various shapes are conceivable such as a circle, octagon and tetragon.
  • they can be selected in a variety of ways in accordance with efficiency of the magnetic field generated, the diameter of the magnetic flux concentrator and the arrangement of the Hall elements and so on.
  • the horizontal direction magnetic field generating coil 23 can be formed using a metal wiring layer in an ordinary IC process. In this case, whether to use a metal layer close to or distant from the substrate, or to use a plurality of wiring layers can be selected considering the amount of generation of the magnetic field and the coil efficiency.
  • the vertical direction magnetic field generating coils 24a to 24d are provided for generating vertical magnetic field components in the direction parallel to the magnetic sensitivity direction of the magnetic sensitivity surfaces.
  • the configuration is made in such a manner as to detect the vertical magnetic field components generated by the vertical direction magnetic field generating coils 24a to 24d with the Hall elements 21a to 21d provided at the edges of the magnetic substance 22.
  • the Hall elements 21a to 21d detect both the horizontal magnetic field component generated by the horizontal direction magnetic field generating coil 23, and the vertical magnetic field components generated by the vertical direction magnetic field generating coils 24a to 24d.
  • the vertical direction magnetic field generating coils 24a to 24d are arranged in such a manner that they are placed at the edge regions of the magnetic substance 22, and placed right above the Hall elements 21a to 21d on the same surface side of the substrate as the horizontal direction magnetic field generating coil 23.
  • the vertical direction magnetic field generating coils 24a to 24d are arranged in such a manner that they are placed at the edge regions of the magnetic substance 22, and placed right under the Hall elements 21a to 21d on the different surface side from the horizontal direction magnetic field generating coil 23.
  • the vertical direction magnetic field generating coils 24a to 24d are preferably loop coils, and their shape can be selected from various shapes such as a circle, square and rectangle in accordance with the shape, size and the number of the Hall elements.
  • the vertical direction magnetic field generating coils 24 can be formed using a metal wiring layer in an ordinary IC process. In this case, whether to use a metal layer close to or distant from the substrate, or to use a plurality of wiring layers can be selected considering the amount of generation of the magnetic fields and the coil efficiency.
  • FIG. 5A and FIG. 5B are schematic diagrams showing a state of the horizontal magnetic field component generated by the horizontal direction magnetic field generating coil of the magnetic sensor in accordance with the present invention: FIG. 5A is a top view; and FIG. 5B is a cross-sectional view.
  • the horizontal magnetic field components (X-axis components, and Y-axis components) are generated in the direction perpendicular to the magnetic sensitivity direction of the magnetic sensitivity surfaces, and the vertical magnetic field components (Z-axis components) are generated across the magnetic substance 22 and the Hall elements 21a to 21d as shown by arrows in FIG. 5B .
  • the intensity of the horizontal magnetic field components generated in the direction perpendicular to magnetic sensitivity direction of the magnetic sensitivity surfaces can be detected by detecting the vertical magnetic field components with the Hall elements 21a to 21d.
  • the Hall elements 21a to 21d can detect the horizontal magnetic field components in the direction perpendicular to the magnetic sensitivity direction of the magnetic sensitivity surfaces, which are generated by the horizontal direction magnetic field generating coil 23.
  • FIG. 6A and FIG. 6B are schematic diagrams showing a generated state of the vertical magnetic field components by the vertical direction magnetic field generating coils of the magnetic sensor in accordance with the present invention: FIG. 6A is a top view; and FIG. 6B is a cross-sectional view.
  • the vertical magnetic field components When passing a current through the vertical direction magnetic field generating coils 24a to 24d, the vertical magnetic field components (Z-axis components) are generated across the magnetic substance 22 and the Hall elements 21a to 21d as shown by arrows in FIG. 6B .
  • the intensity of the vertical magnetic field components can be detected by detecting the vertical magnetic field components with the Hall elements 21a to 21d.
  • the Hall elements 21a to 21d can detect the vertical magnetic field components across the magnetic substance 22 and the Hall elements 21a to 21d, which are generated by the vertical direction magnetic field generating coils 24a to 24d.
  • the horizontal magnetic field components generated by the horizontal direction magnetic field generating coil 23 depend on the thickness of the magnetic substance 22 of the magnetic sensor and on the distance between the magnetic substance 22 and the Hall elements 21a to 21d.
  • the vertical magnetic field components generated by the vertical direction magnetic field generating coils 24a to 24d depend on the distance between the magnetic substance 22 and the Hall elements 21a to 21d.
  • FIG. 7 is a block diagram showing a configuration of the magnetic sensor with a sensitivity measuring function in accordance with the present invention.
  • the reference numeral 31 designates magnetic sensitivity surfaces
  • 32 designates a switching unit
  • 33 designates an amplifier unit
  • 34 designates a sensitivity calculating unit
  • 34a designates an axial component analyzing unit
  • 34b designates a sensitivity decision unit
  • 34c designates a sensitivity correction unit
  • 35 designates an output unit
  • 36 designates a control unit
  • 37 and 38 each designate a current source
  • 39 designates a sensor diagnostic unit.
  • the configuration of the magnetic sensitivity surface 31 are exactly as that shown in FIG. 4 .
  • the switching unit 32 selects it in a time sharing manner in the form of including a magnetic signal corresponding to any one of or a combination of the Hall elements 21a to 21d, and inputs it to the sensitivity calculating unit 34 via the amplifier unit 33.
  • the sensitivity calculating unit 34 calculates the magnetic sensitivity (signal components) in the horizontal directions (X, Y) and vertical direction (Z) orthogonal to each other.
  • the sensitivity calculating unit 34 includes the axial component analyzing unit 34a for separating the magnetic signal from the magnetic sensitivity surfaces 31 into individual axial magnetic components; the sensitivity decision unit 34b for comparing each axial magnetic field intensity from the axial component analyzing unit 34a with a reference value to decide the sensitivity; and the sensitivity correction unit 34c for carrying out sensitivity correction in accordance with the sensitivity information from the sensitivity decision unit 34b.
  • control unit 36 controls not only the current supply from the first current source 37 for supplying a current to the horizontal direction magnetic field generating coil 23 of the magnetic sensor, and from the second current source 38 for supplying a current to the vertical magnetic field generating coils 24a to 24d of the magnetic sensor, but also the sensitivity calculating function of the sensitivity calculating unit 34.
  • the current sources 37 and 38 are separate in the configuration, they can be combined in practice.
  • the current sources 37 and 38 cause the currents to flow through the horizontal direction magnetic field generating coil 23 or/and the vertical magnetic field generating coils 24a to 24d, thereby generating the magnetic fields.
  • the generated magnetic fields pass through the magneto-sensitive surfaces of the Hall elements formed in the integrated circuit plane via the magnetic substance 22, and are detected.
  • the Hall elements are arranged at the positions facing each other across the magnetic substance 22 in the X and Y axial directions.
  • one side on the X-axis is denoted by X1 and the other side by X2, and one side on the Y-axis is denoted by Y1 and the other side by Y2.
  • each of X1, X2, Y1 and Y2 can comprise a plurality of magnetic sensitivity surfaces.
  • the magnetic sensitivity surfaces is not limited to the Hall elements.
  • the X1, X2, Y1 and Y2 are detected in time sharing via the switching unit 32 and amplifier unit 33. Then the axial component analyzing unit 34a of the sensitivity calculating unit 34 resolves into X-, Y-, and Z-axis components. The resolved X-, Y-, and Z-axis components are each compared with the reference value by the sensitivity decision unit 34b and diagnosed (self-diagnosis).
  • the horizontal direction magnetic field generated from the planar spiral coil enters the individual Hall elements at the magnetic substance edges just as the same vertical direction magnetic field, and the result of the foregoing calculation is obtained as the Z-axis direction signal.
  • the magnetic measurement values obtained have correlation with the sensitivity to the horizontal direction magnetic field generated from the planar spiral coil of the magnetic sensor, and at the same time have correlation with the sensitivity to the external uniform horizontal direction magnetic field.
  • the magnetic measurement values computed vary depending on whether it generates a magnetic field having the same direction for each of the foregoing X1 and X2, or a magnetic field having different directions for each of them.
  • the magnetic measurement values computed have correlation with the sensitivity to the vertical direction magnetic field generated from the loop coil of the magnetic sensor, and at the same time have the correlation with the sensitivity to the external uniform vertical direction magnetic field.
  • the loop coils placed right above the Hall elements and the planar spiral coil placed near the center of the magnetic flux concentrator.
  • a horizontal direction magnetic field is generated around the coil.
  • the horizontal direction magnetic field after passing through the magnetic substance, emits magnetic flux again to the space at the magnetic substance edges.
  • the direction of the magnetic field it has vertical direction components which can be detected by the magneto-sensitive surfaces of the Hall elements.
  • the sensitivity decision unit 34b decides the difference quantities between the sensitivity obtained at the functional operation of the self-diagnosis and the sensitivitytargetvalue.
  • the sensitivity correction unit 34c computes, from the difference quantities, correction quantities of the sensitivity to the external uniform magnetic field for the individual axes, and writes the sensitivity correction quantities into fuses or a nonvolatile memory within the same sensitivity correction unit 34.
  • the sensitivity correction quantities which are usually different for the three axes, can be set, for example, in the Y direction and Z direction with respect to the sensitivity in the X direction.
  • the difference quantities of the measurement values from the standard value for the individual axes can be set separately for the individual axes as the correction quantities.
  • the sensitivity correction unit 34 carries out the sensitivity correction, and the normal output signal is obtained via the output unit 35 (good item decision, shipment).
  • the sensor diagnostic unit 39 makes the self-diagnosis as to whether the sensitivity is good or bad based on the sensitivity information from the sensitivity decision unit 34b of the sensitivity calculating unit 34. If a decision of a defective item is made, the magnetic sensor is disused (scrapped).
  • the sensitivity measuring method in accordance with the present invention enables collective test of a lot of magnetic sensors at shipping, thereby reducing the test cost. In addition, it enables operation verification while a user is using.
  • the magnetic substance 22 is assumed to be a circle with a radius of 155 ⁇ m.
  • the Hall elements 21a, 21b, 21c and 21d are arranged in such a manner that the centers of the Hall elements are 150 ⁇ m from the center of the magnetic substance 22.
  • the size of the magneto-sensitive surface of each Hall element is 15 ⁇ m.
  • the vertical distance between the Hall element and the bottom surface of the magnetic flux concentrator is 10 ⁇ m with process variations of several micrometers around it, and that the radius R can have variations of about several micrometers for 155 ⁇ m, the thickness T can have variations of about several micrometers for 13 ⁇ m, and the position of the magnetic substance within the horizontal plane can have variations of about several micrometers from the central position.
  • the horizontal direction magnetic field is generated around the coil.
  • the horizontal direction magnetic field passes through the magnetic substance, and the magnetic flux is emitted to the space again at its edges.
  • the direction of the magnetic field it has a vertical direction component which can be detected at the magneto-sensitive surfaces of the Hall element.
  • the fluctuations of the vertical distance between the magnetic substance and the Hall elements, the fluctuations of the diameter of the magnetic substance, the positional discrepancy of the magnetic substance within the horizontal surface, the fluctuations of the thickness of the magnetic substance and so on can be detected in terms of the magnetic field intensity changes (sensitivity changes) on the magneto-sensitive surfaces.
  • the fluctuations of the vertical distance between the magnetic substance and the Hall elements, the fluctuations of the diameter of the magnetic substance, the positional discrepancy of the magnetic substance within the horizontal surface and so on can be mainly detected in terms of the magnetic field intensity changes (sensitivity changes) on the magneto-sensitive surfaces.
  • the sensitivity correction unit 34c carries out the sensitivity correction (sensitivity adjustment).
  • the correction quantity although a method is preferable which performs the correction numerically on the magnetic output data resolved into the individual axes and output to the output unit 35, it is not limited to the method, and other methods applied to other correction means are also applicable.
  • a gain difference in the post-stage circuit block basically causes sensitivity deviations as a whole of X, Y, and Z.
  • FIG. 9 is a diagram showing relationships between the distance between the Hall elements and the bottom of the magnetic flux concentrator ( ⁇ m) and the flux density (T) (absolute values) on the magneto-sensitive surface.
  • the thickness of the magnetic flux concentrator is used as a parameter.
  • FIG. 10 is a diagram showing relationships between the thickness of the magnetic flux concentrator T ( ⁇ m) and the flux density (T) (absolute values) on the magneto-sensitive surface.
  • the distance ( ⁇ m) across the Hall elements (He) and the bottom of the magnetic flux concentrator (Mc) is employed as a parameter.
  • FIG. 11 and FIG. 12 which correspond to FIG. 9 and FIG. 10 , are diagrams showing relative changes seen from the reference position for respective parameters.
  • the following structural example can be given.
  • the diameter of the magnetic flux concentrator (round shape) was 310 ⁇ m, and the Hall elements were placed at positions 5 ⁇ m inside (underside of the coil) from the edge of the magnetic flux concentrator. It was determined that the shape of coil was octagon, the wiring width of the coil was 4 ⁇ m, the wiring spacing was 1 ⁇ m, a current of 1 mA was passed through the coil, the coil had 20 turns across 120 to 20 ⁇ m from its center, and 10 turns across 120 to 70 ⁇ m.
  • the horizontal direction magnetic field generated by the planar spiral coil passes through the magnetic flux concentrator, is changed to the vertical direction component by the convergence plate edge, and is sensed by the Hall elements.
  • loop coils As for the loop coils, the following structural example can be given.
  • FIG. 13 is a diagram showing relationships between the distance between the Hall elements and the bottom of the magnetic flux concentrator ( ⁇ m) and the flux density (T) (absolute values) on the magneto-sensitive surface. The changes in the thickness of the magnetic flux concentrator are used as a parameter.
  • FIG. 14 is a diagram showing relationships between the thickness of the magnetic flux concentrator T ( ⁇ m) and the flux density (T) (absolute values) on the magneto-sensitive surface. Changes in the distance between the Hall elements (He) and the bottom of the magnetic flux concentrator (magnetic substance: Mc) is used as a parameter.
  • FIG. 15 and FIG. 16 which correspond to FIG. 13 and FIG. 14 , are diagrams showing relative changes seen from the reference position for respective parameters.
  • the diameter of the magnetic flux concentrator was 310 ⁇ m
  • the Hall elements were placed at positions 5 ⁇ m inside (underside of the coil) from the edge of the magnetic flux concentrator, the shape of the coils was rectangular, the wiring width of the coils was 4 ⁇ m, the wiring spacing was 1 ⁇ m, the coils each consisted of 1 turn, and a current of 1 mA was passed through the coil.
  • the vertical direction magnetic fields generated by the loop coils are sensed by the Hall elements right under the coils.
  • the magnetic field intensity on the magneto-sensitive surface of the Hall elements at the time of passing a current of 1 mA was about 64 ⁇ T.
  • the sensitivity changed about 5%.
  • the thickness of the magnetic flux concentrator varied from 10 to 16 ⁇ m, the sensitivity changes of about 1% or less were seen.
  • FIG. 8A and FIG. 8B are diagrams showing a flowchart for explaining a sensitivity measuring method in the sensitivity measuring device of the magnetic sensor in accordance with the present invention.
  • the sensitivity measuring method of the magnetic sensor in accordance with the present invention is a sensitivity measuring method of measuring the sensitivity of the magnetic sensor shown in FIG. 4 .
  • the sensitivity mode is set (step S1), and no current is supplied to the vertical magnetic field generating coils and the horizontal magnetic field generating coil (step S2).
  • the first to fourth magnetic sensors measure the magnetic field intensity (step S3).
  • the first measurement data is stored (step S4).
  • a current is passed through the vertical magnetic field generating coils to generate the magnetic fields (step S5).
  • the first to fourth magnetic sensors measure the magnetic field intensity (step S6).
  • the second measurement data is stored (step S7).
  • a reverse direction current is passed through the vertical magnetic field generating coils to generate reverse direction magnetic fields (step S8).
  • the first to fourth magnetic sensors measure the magnetic field intensity (step S9) .
  • the third measurement data is stored (step S10).
  • a current is passed through the horizontal magnetic field generating coil to generate the magnetic field (step S11).
  • the first to fourth magnetic sensors measure the magnetic field intensity (step S12).
  • the fourth measurement data is stored (step S13).
  • a reverse direction current is passed through the horizontal magnetic field generating coil to generate the reverse direction magnetic field (step S14).
  • the first to fourth magnetic sensors measure the magnetic field intensity (step S15).
  • the fifth measurement data is stored (step S16).
  • the magnetic field component data in the 2-axis or 3-axis directions orthogonal to each other are computed (step S17).
  • the magnetic field component data are stored as the first magnetic sensitivity data (step S18).
  • the magnetic field component data in the 2-axis or 3-axis directions orthogonal to each other are computed (step S19).
  • the magnetic field component data are stored as the second magnetic sensitivity data (step S20).
  • the correction coefficient of the 2-axis or 3-axis magnetic sensitivity is computed (step S21).
  • the correction coefficient is stored (step S22). In this way, the self-sensitivity correction for the sensitivity deviation becomes possible, and furthermore, the self-diagnosis based on the validity of the sensitivity decision of the magnetic sensor becomes possible.
  • the present invention relates to a magnetic sensor and sensitivity measuring method thereof for providing the sensitivity measuring function to the magnetic sensor having the semiconductor substrate which has a plurality of Hall elements provided separately from each other, and the magnetic substance mounted on the semiconductor substrate. It can measure the sensitivity of the magnetic sensor to the vertical direction magnetic field and to the horizontal direction magnetic field. In addition, as for the sensitivity in the 3-axis directions of the magnetic sensor orthogonal to each other, it can possess the function of correcting the sensitivity deviation resulting from the process dependence variations at the time of forming the Hall elements or magnetic substance or from the sensitivity variations of the integrated circuit. Furthermore, it enables the self-diagnosis based on the validity of the sensitivity decision of the magnetic sensor, and the self-sensitivity correction (adjustment) for the sensitivity deviation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Claims (17)

  1. Magnetsensor, der ein Halbleitersubstrat, das mit einer Vielzahl von Hall-Elementen (21a, 21b, 21c, 21d) bereitgestellt ist, die getrennt voneinander angeordnet sind, und eine magnetische Substanz (22) aufweist, die oberhalb des Halbleitersubstrats bereitgestellt ist, in welchem die Hall-Elemente an Randbereichen der magnetischen Substanz angeordnet sind, dadurch gekennzeichnet, dass der Magnetsensor weiter umfasst:
    eine Einheit zum Erzeugen eines horizontalen Magnetfelds (23), um zur Empfindlichkeitsmessung eine horizontale Magnetfeldkomponente in einer Richtung senkrecht zu der Richtung einer magnetischen Empfindlichkeit der Hall-Elemente zu erzeugen, wobei die Einheit zum Erzeugen eines horizontalen Magnetfelds (23) in einem Bereich zwischen der Vielzahl der Hall-Elemente und zwischen den Hall-Elementen und der magnetischen Substanz bereitgestellt wird, wobei die Hall-Elemente die Korrelation der vertikalen Magnetfeldkomponenten mit der horizontalen Magnetfeldkomponente detektieren, die durch die Einheit zum Erzeugen eines horizontalen Magnetfelds erzeugt werden.
  2. Magnetsensor nach Anspruch 1, wobei die Hall-Elemente und die Einheit zum Erzeugen eines horizontalen Magnetfelds in Bezug auf die magnetische Substanz auf der gleichen Seite angeordnet sind.
  3. Magnetsensor nach Anspruch 1 oder 2, wobei die Flussdichte der horizontalen Magnetfeldkomponente, die durch die Einheit zum Erzeugen eines horizontalen Magnetfelds (23) erzeugt wird, von einer Dicke der magnetischen Substanz und einem Abstand zwischen der magnetischen Substanz und den Hall-Elementen abhängt.
  4. Magnetsensor nach einem der Ansprüche 1 bis 3, wobei die Einheit zum Erzeugen eines horizontalen Magnetfelds eine planare Spiralspule ist.
  5. Magnetsensor nach einem der Ansprüche 1 bis 4, weiter umfassend:
    Einheiten zum Erzeugen eines vertikalen Magnetfelds (24a, 24b, 24c, 24d), die jeweils nahe an jeder der Vielzahl von Hall-Elementen (21a, 21b, 21c, 21d) bereitgestellt sind, um zur Empfindlichkeitsmessung vertikale Magnetfeldkomponenten in einer Richtung parallel zu der Richtung der magnetischen Empfindlichkeit der Hall-Elemente zu erzeugen, wobei
    die Hall-Elemente die vertikalen Magnetfeldkomponenten detektieren, die durch die Einheiten zum Erzeugen eines vertikalen Magnetfelds erzeugt werden.
  6. Magnetsensor nach Anspruch 5, wobei die Einheiten zum Erzeugen eines vertikalen Magnetfelds (24a, 24b, 24c, 24d) unmittelbar oberhalb der Hall-Elemente auf einer Ebene an der gleichen Seite wie die Einheit zum Erzeugen eines horizontalen Magnetfelds angeordnet sind.
  7. Magnetsensor nach Anspruch 5, wobei die Einheiten zum Erzeugen eines vertikalen Magnetfelds (24a, 24b, 24c, 24d) an Randbereichen der magnetischen Substanz angeordnet sind und unmittelbar unterhalb der Hall-Elemente auf einer Ebene angeordnet sind, die von der Einheit zum Erzeugen eines horizontalen Magnetfelds (23) verschieden ist.
  8. Magnetsensor nach Anspruch 5, 6 oder 7, wobei die Flussdichte der vertikalen Magnetfeldkomponenten, die durch die Einheiten zum Erzeugen des vertikalen Magnetfelds erzeugt wird, von einem Abstand zwischen der magnetischen Substanz und den Hall-Elementen abhängt.
  9. Magnetsensor nach einem der Ansprüche 5 bis 8, wobei die Einheiten zum Erzeugen eines vertikalen Magnetfelds (24a, 24b, 24c, 24d) jeweils eine Schleifenspule sind.
  10. Magnetsensor nach einem der Ansprüche 1 bis 9, umfassend: zweiachsige oder dreiachsige Detektionsachsen, die zueinander orthogonal sind.
  11. Magnetsensor nach einem der Ansprüche 5 bis 10, weiter umfassend eine Einheit zum Berechnen der Empfindlichkeit (34) zum Berechnen der Empfindlichkeit von Information der magnetischen Feldstärke über einzelnen Achsen an der Vielzahl von Hall-Elementen des Magnetsensors.
  12. Magnetsensor nach Anspruch 11, wobei die Einheit zum Berechnen der Empfindlichkeit umfasst:
    eine Einheit zum Analysieren der axialen Komponenten (34a) zum Aufteilen der Information der Magnetfeldstärke von dem Magnetsensor in Komponenten der einzelnen Achsen;
    eine Empfindlichkeit-Entscheidungseinheit (34b) zum Entscheiden der Empfindlichkeit durch Vergleichen der einzelnen axialen Komponenten der Information der Magnetfeldstärke aus der Einheit zum Analysieren der axialen Komponenten mit einem vorgegebenen Referenzwert; und
    eine Einheit für die Empfindlichkeitskorrektur (34c) zum Ausführen einer Empfindlichkeitskorrektur in Übereinstimmung mit einer Empfindlichkeitsinformation von der Empfindlichkeit-Entscheidungseinheit.
  13. Magnetsensor nach Anspruch 12, weiter umfassend eine Einheit für die Sensordiagnose (39) zum Ausführen einer Selbstdiagnose der Validität der Empfindlichkeit des Magnetsensors entsprechend der Empfindlichkeitsinformation von der Empfindlichkeit-Entscheidungseinheit.
  14. Magnetsensor nach einem der Ansprüche 5 bis 13, weiter umfassend mehr als eine Stromquelle (37, 38) für die Stromversorgung der Einheiten zum Erzeugen eines horizontalen Magnetfelds und der Einheiten zum Erzeugen eines vertikalen Magnetfelds des Magnetsensors.
  15. Verfahren zum Messen der Empfindlichkeit in dem Magnetsensor nach einem der Ansprüche 5 bis 14, wobei das Verfahren zum Messen der Empfindlichkeit umfasst:
    einen Schritt zum Erzeugen einer horizontalen Magnetfeldkomponente;
    einen Schritt zum Detektieren der Korrelation der vertikalen Magnetfeldkomponenten mit der horizontalen Magnetfeldkomponente mit den Hall-Elementen;
    einen Schritt zum Berechnen der Empfindlichkeit aus der Flussdichte an den Hall-Elementen;
    einen Schritt zum Erzeugen der vertikalen Magnetfeldkomponenten;
    einen Schritt zum Detektieren der vertikalen Magnetfeldkomponenten mit den Hall-Elementen; und
    einen Schritt zum Berechnen der Empfindlichkeit aus der Flussdichte an den Hall-Elementen.
  16. Verfahren zum Messen der Empfindlichkeit des Magnetsensors nach Anspruch 15, wobei der Schritt zum Berechnen der Empfindlichkeit umfasst:
    einen Schritt zum Aufteilen von Information der Magnetfeldstärke von dem Magnetsensor in Komponenten der einzelnen Achsen mit einer Einheit zum Analysieren der axialen Komponenten;
    einen Schritt zum Entscheiden mit einer Empfindlichkeit-Entscheidungseinheit der Empfindlichkeit durch Vergleichen der Information der einzelnen axialen Komponenten der Magnetfeldstärke aus der Einheit zum Analysieren der axialen Komponenten mit einem vorgegebenen Referenzwert; und
    einen Schritt zum Ausführen einer Empfindlichkeitskorrektur entsprechend der Empfindlichkeitsinformation von der Empfindlichkeit-Entscheidungseinheit mit einer Einheit für die Empfindlichkeitskorrektur.
  17. Verfahren zum Messen der Empfindlichkeit des Magnetfeldsensors nach Anspruch 15 oder 16, weiter umfassend einen Schritt zum Ausführen
    einer Selbstdiagnose der Validität der Empfindlichkeit des Magnetsensors entsprechend der Empfindlichkeitsinformation von der Empfindlichkeit-Entscheidungseinheit mit einer Einheit für die Sensordiagnose.
EP08722634.6A 2007-03-23 2008-03-21 Magnetsensor und sensitivitätsmessverfahren Active EP2131205B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007077742 2007-03-23
PCT/JP2008/055282 WO2008123144A1 (ja) 2007-03-23 2008-03-21 磁気センサ及びその感度測定方法

Publications (3)

Publication Number Publication Date
EP2131205A1 EP2131205A1 (de) 2009-12-09
EP2131205A4 EP2131205A4 (de) 2013-08-28
EP2131205B1 true EP2131205B1 (de) 2018-05-02

Family

ID=39830641

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08722634.6A Active EP2131205B1 (de) 2007-03-23 2008-03-21 Magnetsensor und sensitivitätsmessverfahren

Country Status (6)

Country Link
US (2) US9116195B2 (de)
EP (1) EP2131205B1 (de)
JP (3) JP5027217B2 (de)
KR (1) KR101124025B1 (de)
CN (3) CN103257325A (de)
WO (1) WO2008123144A1 (de)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9116195B2 (en) 2007-03-23 2015-08-25 Asahi Kasei Emd Corporation Magnetic sensor and sensitivity measuring method thereof
US9222992B2 (en) 2008-12-18 2015-12-29 Infineon Technologies Ag Magnetic field current sensors
WO2011011479A1 (en) * 2009-07-22 2011-01-27 Allegro Microsystems, Inc. Circuits and methods for generating a diagnostic mode of operation in a magnetic field sensor
US8717016B2 (en) 2010-02-24 2014-05-06 Infineon Technologies Ag Current sensors and methods
US8760149B2 (en) 2010-04-08 2014-06-24 Infineon Technologies Ag Magnetic field current sensors
DE102010028390B4 (de) * 2010-04-29 2012-12-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Bestimmung eines Erregerleiterabstandes von einem Magnetfeldsensor, Verfahren zum Kalibrieren des Magnetfeldsensors sowie ein kalibrierbarer Magnetfeldsensor und Verwendung einer Erregerleiterstruktur zur Bestimmung eines Erregerleiterabstandes
US8680843B2 (en) * 2010-06-10 2014-03-25 Infineon Technologies Ag Magnetic field current sensors
CH703405B1 (de) * 2010-07-05 2014-05-15 Melexis Tessenderlo Nv Magnetischer Winkelsensor.
JP5612398B2 (ja) * 2010-08-30 2014-10-22 旭化成エレクトロニクス株式会社 磁気センサ
US8283742B2 (en) 2010-08-31 2012-10-09 Infineon Technologies, A.G. Thin-wafer current sensors
US8669761B2 (en) * 2010-12-15 2014-03-11 Nxp B.V. Stray-field sensor circuit and method
US8975889B2 (en) 2011-01-24 2015-03-10 Infineon Technologies Ag Current difference sensors, systems and methods
JP5819627B2 (ja) * 2011-04-11 2015-11-24 国立大学法人豊橋技術科学大学 磁性金属異物を検出する方法およびそのための装置
US8963536B2 (en) 2011-04-14 2015-02-24 Infineon Technologies Ag Current sensors, systems and methods for sensing current in a conductor
US8890518B2 (en) * 2011-06-08 2014-11-18 Allegro Microsystems, Llc Arrangements for self-testing a circular vertical hall (CVH) sensing element and/or for self-testing a magnetic field sensor that uses a circular vertical hall (CVH) sensing element
CN102866374B (zh) * 2011-07-05 2016-02-24 美新半导体(无锡)有限公司 基于探针的磁传感器测试方法
US9201122B2 (en) 2012-02-16 2015-12-01 Allegro Microsystems, Llc Circuits and methods using adjustable feedback for self-calibrating or self-testing a magnetic field sensor with an adjustable time constant
TWI457583B (zh) * 2012-11-02 2014-10-21 Univ Nat Kaohsiung Applied Sci Three - axis magnetic field sensing device with magnetic flux guide
KR101876587B1 (ko) * 2013-03-08 2018-08-03 매그나칩 반도체 유한회사 자기 센서 및 그 제조 방법
WO2014172531A1 (en) * 2013-04-19 2014-10-23 Zetec, Inc. Eddy current inspection probe based on magnetoresistive sensors
CN103267520B (zh) * 2013-05-21 2016-09-14 江苏多维科技有限公司 一种三轴数字指南针
KR101768254B1 (ko) * 2013-06-12 2017-08-16 매그나칩 반도체 유한회사 반도체 기반의 자기 센서 및 그 제조 방법
KR102030189B1 (ko) * 2013-07-29 2019-11-11 매그나칩 반도체 유한회사 웨이퍼 상의 자기 센서 테스트 장치 및 방법
JP2015075465A (ja) * 2013-10-11 2015-04-20 旭化成エレクトロニクス株式会社 3次元磁界測定装置及び3次元磁界測定方法
CN103616649A (zh) * 2013-12-02 2014-03-05 暨南大学 基于光纤光栅激光器的磁场传感器灵敏度调谐方法
EP3203254A1 (de) 2013-12-26 2017-08-09 Allegro Microsystems, LLC Verfahren und vorrichtung zur sensordiagnose
JP6265419B2 (ja) * 2014-03-06 2018-01-24 旭化成エレクトロニクス株式会社 磁気検出装置、電流センサ及び磁気検出方法
JP6457192B2 (ja) * 2014-03-31 2019-01-23 旭化成エレクトロニクス株式会社 ホール起電力信号処理装置、電流センサ及びホール起電力信号処理方法
US9645220B2 (en) 2014-04-17 2017-05-09 Allegro Microsystems, Llc Circuits and methods for self-calibrating or self-testing a magnetic field sensor using phase discrimination
US9735773B2 (en) 2014-04-29 2017-08-15 Allegro Microsystems, Llc Systems and methods for sensing current through a low-side field effect transistor
JP2016017830A (ja) * 2014-07-08 2016-02-01 旭化成エレクトロニクス株式会社 磁気センサ
US9678169B2 (en) * 2014-07-09 2017-06-13 Voltafield Technology Corp. Testing assembly for testing magnetic sensor and method for testing magnetic sensor
CN104535087B (zh) * 2014-12-26 2017-06-09 上海集成电路研发中心有限公司 霍尔元件及霍尔元件结构
US9523745B2 (en) * 2015-02-19 2016-12-20 Sii Semiconductor Corporation Magnetic sensor and method of manufacturing the same
JP6831627B2 (ja) * 2015-02-19 2021-02-17 エイブリック株式会社 磁気センサおよびその製造方法
US9741924B2 (en) * 2015-02-26 2017-08-22 Sii Semiconductor Corporation Magnetic sensor having a recessed die pad
US9638764B2 (en) 2015-04-08 2017-05-02 Allegro Microsystems, Llc Electronic circuit for driving a hall effect element with a current compensated for substrate stress
CN104834021B (zh) * 2015-05-11 2018-06-22 上海集成电路研发中心有限公司 一种地磁传感器灵敏度的计算方法
US20170090003A1 (en) * 2015-09-30 2017-03-30 Apple Inc. Efficient testing of magnetometer sensor assemblies
CN105388441B (zh) * 2015-11-18 2018-04-06 深圳怡化电脑股份有限公司 一种磁性传感器的检测方法及系统
CN105548933B (zh) * 2015-12-10 2019-05-31 清华大学 恒定磁场测量仪器的分辨率检测系统和时变磁场屏蔽装置
CN105548935B (zh) * 2016-01-04 2018-11-09 清华大学 磁场测量仪分辨率的检测方法和装置
US10107873B2 (en) 2016-03-10 2018-10-23 Allegro Microsystems, Llc Electronic circuit for compensating a sensitivity drift of a hall effect element due to stress
JP6663259B2 (ja) * 2016-03-15 2020-03-11 エイブリック株式会社 半導体装置とその製造方法
US10132879B2 (en) 2016-05-23 2018-11-20 Allegro Microsystems, Llc Gain equalization for multiple axis magnetic field sensing
US10162017B2 (en) 2016-07-12 2018-12-25 Allegro Microsystems, Llc Systems and methods for reducing high order hall plate sensitivity temperature coefficients
WO2018012032A1 (ja) * 2016-07-15 2018-01-18 アルプス電気株式会社 電流センサ
EP3489697B1 (de) * 2016-07-22 2022-08-24 Asahi Kasei Microdevices Corporation Stromsensor
CN106125018A (zh) * 2016-07-29 2016-11-16 中国原子能科学研究院 一种超导线圈一次谐波的磁场测量装置及其测量方法
CN106291415A (zh) * 2016-07-29 2017-01-04 中国原子能科学研究院 一种定位超导线圈位置的磁场测量装置及其方法
JP6187652B2 (ja) * 2016-08-11 2017-08-30 愛知製鋼株式会社 磁界測定装置
JP7109249B2 (ja) * 2017-06-14 2022-07-29 エイブリック株式会社 磁気センサ回路
JP2019036581A (ja) * 2017-08-10 2019-03-07 株式会社東栄科学産業 電磁石
US10520559B2 (en) 2017-08-14 2019-12-31 Allegro Microsystems, Llc Arrangements for Hall effect elements and vertical epi resistors upon a substrate
JP6699635B2 (ja) * 2017-08-18 2020-05-27 Tdk株式会社 磁気センサ
EP3457154B1 (de) * 2017-09-13 2020-04-08 Melexis Technologies SA Streufeldabstossung in magnetischen sensoren
EP3467528B1 (de) 2017-10-06 2020-05-20 Melexis Technologies NV Kalibrierung der empfindlichkeitsanpassung eines magnetsensors
US20210190893A1 (en) 2017-10-06 2021-06-24 Melexis Technologies Nv Magnetic sensor sensitivity matching calibration
EP3477322B1 (de) 2017-10-27 2021-06-16 Melexis Technologies SA Magnetischer sensor mit integriertem solenoid
JP7011668B2 (ja) 2017-12-27 2022-01-26 旭化成エレクトロニクス株式会社 磁気センサモジュール及びこれに用いるicチップ
KR102412180B1 (ko) * 2018-03-01 2022-06-22 요코가와 덴키 가부시키가이샤 전류 측정 장치, 전류 측정 방법, 및 컴퓨터 판독 가능한 비일시적 기록 매체
JP7213622B2 (ja) * 2018-04-12 2023-01-27 愛知製鋼株式会社 磁気計測システム、及び磁気センサの校正方法
JP6965815B2 (ja) * 2018-04-12 2021-11-10 愛知製鋼株式会社 マーカ検出システム、及びマーカ検出システムの運用方法
US10955493B2 (en) 2018-05-02 2021-03-23 Analog Devices Global Unlimited Company Magnetic sensor systems
CN108957146B (zh) * 2018-08-02 2021-06-08 卢小丽 具有灵敏度系数自校准功能的脉冲电场探测器及使用方法
JP6998285B2 (ja) * 2018-10-11 2022-02-10 Tdk株式会社 磁気センサ装置
JP7115224B2 (ja) * 2018-11-02 2022-08-09 Tdk株式会社 磁気センサ
JP2020085668A (ja) * 2018-11-27 2020-06-04 エイブリック株式会社 磁気センサ
JP6993956B2 (ja) * 2018-12-12 2022-01-14 Tdk株式会社 磁気センサ装置
JP6947194B2 (ja) * 2019-02-13 2021-10-13 Tdk株式会社 信号処理回路および磁気センサシステム
JP7006633B2 (ja) 2019-02-13 2022-01-24 Tdk株式会社 磁気センサシステム
TWI693418B (zh) * 2019-03-22 2020-05-11 宇能電科技股份有限公司 校正磁場產生裝置及其具有自我校正磁場能力的磁場感測器與校正方法
CN111277231B (zh) * 2020-02-18 2022-02-18 江苏多维科技有限公司 一种增益可控的磁阻模拟放大器
JP7167954B2 (ja) * 2020-03-19 2022-11-09 Tdk株式会社 磁気センサ装置及びその製造方法、並びに回転動作機構
US11169223B2 (en) 2020-03-23 2021-11-09 Allegro Microsystems, Llc Hall element signal calibrating in angle sensor
US20230366956A1 (en) * 2020-09-30 2023-11-16 Shanghai Orient-Chip Technology Co., Ltd Three-axis hall magnetometer
EP3992652A1 (de) * 2020-11-03 2022-05-04 Melexis Technologies SA Magnetsensorvorrichtung
US11630130B2 (en) 2021-03-31 2023-04-18 Allegro Microsystems, Llc Channel sensitivity matching
US11550362B2 (en) 2021-03-31 2023-01-10 Microsoft Technology Licensing, Llc Rotatably coupled touch screen displays
CN113595255A (zh) * 2021-07-14 2021-11-02 Oppo广东移动通信有限公司 调整线圈位置的方法、移动终端及存储介质

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310776A (ja) * 1993-04-27 1994-11-04 Fujitsu Ltd 故障検出機能付き磁気検出素子
US6445187B1 (en) * 2000-04-10 2002-09-03 Jerry R. Montgomery System for the measurement of electrical characteristics of geological formations from within steel cased wells using magnetic circuits
JP4936299B2 (ja) 2000-08-21 2012-05-23 メレクシス・テクノロジーズ・ナムローゼフェンノートシャップ 磁場方向検出センサ
CN1369905A (zh) * 2001-02-16 2002-09-18 安普生科技股份有限公司 高准确度及灵敏度霍尔感测元件及集成电路的封装方法
JP2003130936A (ja) * 2001-10-26 2003-05-08 Asahi Kasei Corp 磁気センサーの製造方法
JP3982611B2 (ja) * 2001-12-25 2007-09-26 旭化成エレクトロニクス株式会社 集積化方位センサ
CN2566280Y (zh) * 2002-07-30 2003-08-13 武汉大学 磁场检测仪
JP2004151056A (ja) * 2002-11-01 2004-05-27 Hitachi Metals Ltd 弱磁界発生装置および磁界センサの検査方法
JP2004257995A (ja) 2003-02-27 2004-09-16 Asahi Kasei Electronics Co Ltd 3次元磁気検出装置および半導体装置
US6903429B2 (en) * 2003-04-15 2005-06-07 Honeywell International, Inc. Magnetic sensor integrated with CMOS
CN100454033C (zh) * 2004-07-16 2009-01-21 阿莫善斯有限公司 磁传感器组件、地磁检测装置、以及移动终端装置
KR100882051B1 (ko) * 2004-10-07 2009-02-09 야마하 가부시키가이샤 온도 센서 및 온도 센서의 보정 방법
JP2006126012A (ja) * 2004-10-28 2006-05-18 Asahi Kasei Microsystems Kk 磁電変換システム及び磁電変換装置並びにその制御回路
JP4613661B2 (ja) * 2005-03-29 2011-01-19 ヤマハ株式会社 3軸磁気センサの製法
JP4466487B2 (ja) * 2005-06-27 2010-05-26 Tdk株式会社 磁気センサおよび電流センサ
JP4857628B2 (ja) 2005-07-12 2012-01-18 ヤマハ株式会社 磁気センサモジュールの検査方法
US20070290282A1 (en) * 2006-06-15 2007-12-20 Nanochip, Inc. Bonded chip assembly with a micro-mover for microelectromechanical systems
US9116195B2 (en) 2007-03-23 2015-08-25 Asahi Kasei Emd Corporation Magnetic sensor and sensitivity measuring method thereof
JP5152495B2 (ja) * 2008-03-18 2013-02-27 株式会社リコー 磁気センサーおよび携帯情報端末装置

Also Published As

Publication number Publication date
EP2131205A1 (de) 2009-12-09
JP2012215579A (ja) 2012-11-08
JP5027217B2 (ja) 2012-09-19
US20150316638A1 (en) 2015-11-05
KR20090107546A (ko) 2009-10-13
CN101641609A (zh) 2010-02-03
JP2014098713A (ja) 2014-05-29
CN105589050B (zh) 2019-08-20
WO2008123144A1 (ja) 2008-10-16
CN105589050A (zh) 2016-05-18
CN101641609B (zh) 2013-06-05
JP6033801B2 (ja) 2016-11-30
US20100117638A1 (en) 2010-05-13
US9116195B2 (en) 2015-08-25
JPWO2008123144A1 (ja) 2010-07-15
KR101124025B1 (ko) 2012-03-27
EP2131205A4 (de) 2013-08-28
JP5616399B2 (ja) 2014-10-29
CN103257325A (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
EP2131205B1 (de) Magnetsensor und sensitivitätsmessverfahren
US9360533B2 (en) Reading circuit for a magnetic field sensor with sensititivy calibration, and related reading method
US8442787B2 (en) Apparatus, sensor circuit, and method for operating an apparatus or a sensor circuit
US20080106257A1 (en) Probe card and method for testing magnetic sensor
US9562954B2 (en) Maximization of target signal and elimination of backbias component for a differential upright position sensor
WO2017116615A1 (en) Sensing apparatus for sensing current through a conductor and methods therefor
US10533835B2 (en) Angle sensor arrangement and method for the angle sensor arrangement
CN110196073A (zh) 冗余传感器误差减少
JP2016517952A (ja) 磁気センシング装置及びその磁気誘導方法、製造プロセス
US11346898B2 (en) Magnetic sensor module and IC chip employed in same
JP2007057547A (ja) 磁気センサの検査方法
US20210103013A1 (en) Magnetic Sensor
CN111308403B (zh) 磁传感器装置
JP4709501B2 (ja) センサ位置検出方法、センサ位置検出制御プログラムを記録した媒体、および、磁気検出装置
US20230184865A1 (en) Hybrid hall-effect/magnetoresistance (mr) magnetometer with self-calibration
US20230090679A1 (en) Apparatus and method for calibrating a magnetic sensor system using an inhomogeneous magnetic field source
US20220082640A1 (en) Method for determining a sensitivity of a hall sensor element, and hall sensor with at least one hall sensor element
US8878527B2 (en) Magnetic field simulator for testing singulated or multi-site strip semiconductor device and method therefor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090922

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20130731

RIC1 Information provided on ipc code assigned before grant

Ipc: G01R 33/07 20060101AFI20130725BHEP

Ipc: G01R 33/02 20060101ALI20130725BHEP

Ipc: G01R 35/00 20060101ALI20130725BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 995838

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008055085

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180502

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180802

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180802

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180803

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 995838

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008055085

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190321

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190321

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190321

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080321

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240130

Year of fee payment: 17