EP2100912B1 - Verwendung von Polymeren zur Modifizierung der Oberflächenladung fester Teilchen - Google Patents

Verwendung von Polymeren zur Modifizierung der Oberflächenladung fester Teilchen Download PDF

Info

Publication number
EP2100912B1
EP2100912B1 EP08004248A EP08004248A EP2100912B1 EP 2100912 B1 EP2100912 B1 EP 2100912B1 EP 08004248 A EP08004248 A EP 08004248A EP 08004248 A EP08004248 A EP 08004248A EP 2100912 B1 EP2100912 B1 EP 2100912B1
Authority
EP
European Patent Office
Prior art keywords
polymer
particles
acid
monomers
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08004248A
Other languages
English (en)
French (fr)
Other versions
EP2100912A1 (de
Inventor
Manfred Weuthen
Sabine Both
Frederic Bauer
Rüdiger Dr. Hartung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis IP Management GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis IP Management GmbH filed Critical Cognis IP Management GmbH
Priority to AT08004248T priority Critical patent/ATE507259T1/de
Priority to ES08004248T priority patent/ES2363107T3/es
Priority to DE502008003350T priority patent/DE502008003350D1/de
Priority to EP08004248A priority patent/EP2100912B1/de
Publication of EP2100912A1 publication Critical patent/EP2100912A1/de
Application granted granted Critical
Publication of EP2100912B1 publication Critical patent/EP2100912B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials

Definitions

  • the present invention relates to the change in the surface charge of solid particles measured on their zeta potential, and the use of such modified particles for the preparation of stable suspensions, for example in galvanic processes and as additives in lubricant compositions, in organic solvents, in polymeric materials, as flotation or as Auxiliary in aqueous slurries of clay minerals or in cosmetic or pharmaceutical compositions.
  • solid particles which are dispersed in liquid, preferably aqueous media.
  • liquid preferably aqueous media.
  • dyes which contain dispersed pigments, but also dispersed fillers in polymers or dispersions in the field of pharmaceuticals, cosmetics or detergents and cleaners are known.
  • clay dispersions the so-called slip
  • flotation for example of ores also dispersions are used.
  • a further technical example of dispersions occurs in the galvanization of metal surfaces (or according prepare other surfaces):
  • boron nitride (BN) is used in the galvanic nickel plating of metal surfaces in dispersed form in the galvanic bath, as the BN then together with the nickel the metal surface precipitates and improves the physical properties of the nickel layer.
  • Dispersions are systems of several phases, one of which is dispersed continuously (dispersing agent ) and at least one more (dispersed phase, dispersant ).
  • Examples of dispersions are emulsions (liquid phases insoluble in one another), aerosols or the suspensions in question in the form of dispersed solid, preferably non-metallic, inorganic particles in a liquid phase.
  • a molar dispersion is the molar-disperse distribution of one substance in another, ie here is a real solution.
  • the energy for producing a dispersion can be supplied, for example, chemically, electrochemically, electrically or mechanically (by grinding, by means of ultrasound, etc.).
  • dispersions are prone to phase separation (sedimentation), so that stabilization with emulsifiers or protective colloids is carried out during their preparation and storage.
  • the electrostatic repulsion in the same direction charged pigment or polymer particles is also exploited (electrostatic stabilization).
  • water-soluble polymers are suitable for improving the dispersing properties of solid particles, preferably inorganic particles, in liquid, preferably in aqueous media.
  • the polymers are known compounds known in the art EP 1 767 554 A1 the applicant are described, wherein in the document, a manufacturing method for these polymers is disclosed.
  • the weight fraction of monomers c) is less than 15 wt.% And in particular equal to or less than 10 wt .-%.
  • a preferred weight range for the monomer c) is 5 to 25, preferably 5 to 15 and in particular from 5 to 10 wt .-%, each based on the total weight of the polymer.
  • the polymers of the invention comprise as polymerized monomers at least three different monomers a) to d). In this case, all polymers are included which contain either the monomer units a), b) and c), or a), b) and d) or a), b), c) and d) side by side. It is also within the meaning of the present invention possible to use mixtures of the listed polymers.
  • R 1 is a methyl radical
  • R 2 is a CH 2 -CH 2 -CH 2 group
  • R 3 , R 4 and R 5 are each methyl.
  • X - represents a suitable counterion such as halide, hydroxide, sulfate, hydrogen sulfate, phosphate, formate or acetate, preferably chloride.
  • MATAC 3-trimethylammoniumpropylmethacrylamidchlorid
  • ethylenically unsaturated acids and their salts such as acrylic or methacrylic acid are suitable.
  • Acrylic acid (AA) is the most preferred monomer here.
  • Particularly suitable salts are their alkali metal and ammonium salts.
  • DMAC dimethyldiallylammonium chloride
  • DMAE 2-dimethylaminoethyl (meth) acrylate
  • DMAP 2-diethylaminoethyl (meth) acrylate
  • DMADMPA 3-dimethylamino-2, 2-dimethylpropyl acrylamide
  • the polymers used according to the invention are water-soluble, ie that at least 0.1 g of the polymer in 100 ml of water at 20 ° C are soluble.
  • the polymers are ampholytic, ie the polymers have both acidic and basic hydrophilic groups and behave acidic or basic depending on the condition.
  • the polymers of the invention preferably have a mean molecular weight (weight average molecular weight, M w), measured by gel permeation chromatography aqueous (GPC) with light scattering detection (SEC-MALLS), in the range of 10,000 to 500,000 Da.
  • M w weight average molecular weight
  • SEC-MALLS light scattering detection
  • the molecular weight of the polymers is between 50,000 and 350,000 Da and in particular between 100,000 and 250,000 Da.
  • a particularly preferred range may be between 110,000 and 140,000 Da.
  • the various monomer building blocks a) to d) preferably coexist in certain selected proportions. Preference is given in each case to those polymers which contain the component b) in excess (both based on moles and on Weight of the components) to components a) and c). Preference is given here to polymers in which the molar ratio between the monomers a), b) and c) is in the range from 1: 10: 1 to 5: 10: 5 and preferably in the range from 4: 10: 1 to 4: 10: 3 and especially in the range of 3: 8: 2 to 3: 8: 1.
  • the monomer component of type d) is present, the same conditions apply analogously.
  • particularly preferred polymers may be those which contain both monomers of type c) and of type d) side by side.
  • the monomer units c) and d) are then present in a molar ratio of 2: 1 to 1: 2, more preferably in a ratio of 1: 1, side by side.
  • Particularly preferred polymers with four different monomer building blocks have molar ratios a): b): c): d) of 2: 4: 1: 1 to 1: 10: 1: 1.
  • a particularly preferred ratio is 3: 8: 1: 1.
  • Preferred polymers are in particular those in which the monomer a) is selected from those compounds of the general formula in which R 1 is a methyl group, R 2 is an alkylene radical having 3 C atoms, R 3 , R 4 and R 5 are each methyl radicals and X is chloride, the monomer b) is selected from those compounds of the general formula in which R 6 and R 7 are a hydrogen atom and R 8 is an isopropyl radical and monomer c) is acrylic acid.
  • polymers in which the monomer a) is selected from those compounds of the general formula in which R 1 is a methyl group, R 2 is an alkylene radical having 3 C atoms, R 3 , R 4 and R 5 are each methyl and X is are chloride, the monomer b) is selected from those compounds of the general formula in which R 6 and R 7 are a hydrogen atom and R 8 is an isopropyl radical and monomer c) for H 2 C CR-CO-NH-CR ' R "R"'- SO 3 H and salts thereof, in particular the alkali metal and ammonium salts, where R, R', R "and R '" independently of one another represent a hydrogen atom or an alkyl (ene) radical having 1 to 4C -Atoms stands, is.
  • the monomers a) and b) must necessarily be present in a molar ratio of 1: 1 to 1:10 and in addition the monomers c) and / or d), wherein as monomer a) the 3-trimethylammonium-propylmethacrylamidchlorid (MAPTAC), as monomer b) the N-isopropylacrylamide (NIP AM), as monomer c) acrylic acid (AA) and / or methacrylic acid (MA), as monomer d) 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) are selected, with the proviso that in the water-soluble polymer, the monomer c) in amounts of at most 25 wt.% Based on the total weight of the water-soluble polymer is.
  • MA 3-trimethylammonium-propylmethacrylamidchlorid
  • a preferred weight range for the monomer c) is 5 to 25, preferably 5 to 15 and in particular from 5 to 10 wt .-%, each based on the total weight of the polymer.
  • the indices m, n, p and q represent the number of monomer building blocks NIPAM, MAPTAC, AA and AMPS in the polymer molecule.
  • sequence of the building blocks in the polymers according to the invention is generally not necessarily predetermined; rather, all sequences of the individual building blocks, whether blocks of the individual monomers or their purely statistical sequence in the molecule, are encompassed.
  • those derivatives are particularly preferred which contain the monomers MAPTAC, NIPAM and AMPS in weight ratios of from 25 to 50% MAPTAC, 40 to 75% NIPAM and 1 to 15% AMPS polymerized, with the proviso that the percent summer gives 100.
  • An independently preferred polymer is one which contains the monomers MAPTAC, NIPAM and AA polymerized in the weight ratios of 25 to 50% MAPTAC, 40 to 75% NIPAM and 1 to 15% AA, with the proviso that the percentages of the percents are 100 results.
  • a water-soluble polymer at 20 ° C. is also preferred in that it contains the monomers MAPTAC, NIPAM, AA and AMPAS in a weight ratio of 25 to 45% MAPTAC, 40 to 70% NIPAM, 1 to 15% AA and 1 to 15% AMPS contains, provided that the sum of the percentage shares 100.
  • Polymers as described above can be made by polymerization processes known to those skilled in the art. They can be prepared, for example, by solution polymerization or bulk polymerization. Preferably, they are prepared by solution polymerization, ie, a polymerization of monomers in solvents and / or water, in which both the monomers and the polymers resulting from them are soluble. Furthermore, the polymerization can be carried out with presentation of the total amount of monomer or with monomer feed, batchwise, semicontinuously or continuously. Preferably, the polymerization is carried out as a batch polymerization with or without monomer feed.
  • the above-described water-soluble polymers have the property of measuring the surface charge of solid particles measured e.g. via their zeta potential of an aqueous dispersion of the particles to reload.
  • the measurement of the zeta potential is a common method for the characterization of solid / liquid dispersions.
  • Dispersed particles can become electrically charged, for example by adsorption of ions on their surface.
  • an electric double layer forms on the surface of these electrically charged particles, which is firmly bound to the particles and causes an apparent volume increase.
  • This solid layer is enveloped by a mobile and diffused ion layer.
  • the potential ⁇ 0 at the particle surface now drops linearly within the solid ion layer with the thickness ⁇ to the value ⁇ ⁇ in order to return approximately exponentially in the diffuse layer to the value 0.
  • the potential difference between the inner solid ion layer ⁇ ⁇ and the Point within the diffused ion layer, where the potential has decreased to 1 / e ⁇ ⁇ ⁇ is called the zeta potential.
  • the migration rate is measured either by light microscopic observation or, in particular in the case of smaller particles, by means of laser correlation spectroscopy.
  • the polymers used according to the invention cause the respective treated particles to undergo a transloading to the surface, for example from a positive to a negative charge value, or vice versa.
  • Preferred are changes from a negative to a positive zeta potential of the particles.
  • An object of the present application relates to solid particles preparable by contacting a carrier particle in an aqueous medium with a polymer as described above.
  • the solid particles in an aqueous medium are contacted with a polymer as described above with the polymer itself in the aqueous solution and the polymer solution mixed with the solid particles.
  • the solid particles are separated from the solution, for example by filtration and the separated particles are then dried.
  • the polymer solution in the treatment of the solid particles is carried out at a temperature of 10 to 90 ° C, preferably 15 to 35 ° C and especially at 18 to 30 ° C.
  • the pH during the process is preferably in the range of ⁇ 1 to 14, preferably between 1 and 14 and can, especially in Galavin baths particularly preferably in the acidic range, in particular in the range of 1 to 5 and advantageously in the range of 1 to 3 lie.
  • the method according to the invention advantageously differs from the prior art, which uses surfactants which are generally no longer stable under such extreme conditions.
  • the particles which are preferably treated with the polymers preferably have a diameter between 10 and 0.00001 mm, with particles with diameters of 1 to 0.0001 mm or 0.1 to 0.001 mm being preferred. Preference is furthermore given to those particles in which an aqueous solution of the polymer is used which has a weight fraction of polymer of from 0.01 to 30% by weight, preferably from 0.1 to 15 and in particular from 1 to 10% by weight , in each case based on the total weight of the aqueous solution.
  • the particles are preferably non-metallic, inorganic particles.
  • the solid particles thus translocated on the surface which are also the subject of the present invention, and the aqueous dispersions of such particles can preferably be used in galvanic processes (electrolytic or chemical) or as additives in lubricant compositions, or in organic solvents or in polymeric materials.
  • galvanic processes electrolytic or chemical
  • additives in lubricant compositions, or in organic solvents or in polymeric materials.
  • such particles according to the invention can also be used as flotation auxiliaries or as aids for the slurry of clay minerals.
  • Electroplating is generally understood to mean the electrochemical surface treatment of materials, ie the electrolytic deposition of metallic (or even non-metallic) thin layers for the purpose of beautification, protection against corrosion, the production of composite materials with improved properties and the like. Electroplating encompasses the two main areas of galvanostasis and electroforming. Electroforming is used to manufacture or reproduce articles by electrolytic deposition. For this purpose, the original form first an impression (negative, mold) of gypsum, wax, gutta-percha, silicone rubber, low-melting metal alloys, etc. produced.
  • the casting is rendered superficially electrically conductive (by chemical precipitation or vapor deposition of metals) and then coated as a negative pole in the plating liquid with the metal to be deposited (eg Cu, Ni, Ag, etc., plus pole).
  • the metal to be deposited eg Cu, Ni, Ag, etc., plus pole.
  • the metal layer formed can be lifted off the mold u. if necessary pour out with filler for reinforcement.
  • Galvanostegie a method of coating objects with mostly very thin, protective and beautifying coatings of compliment, gold, nickel, chromium, copper and the like on less valuable documents (eg iron) with the help of electric current. Examples are silvering, gilding, chrome plating, etc. It is between electroless, ie with chem. Reducing agents working methods and electrolytic processes (“electroplating") distinguished.
  • the article to be plated is electrically nonconductive, it must be made conductive.
  • the metallization of the article can also be done in vacuum (ion plating) or melting. It is also known that surface cavities of electrically non-conductive materials are provided with nucleating agents, for example palladium chloride.
  • Galvanization in the broadest sense also includes preparatory processes, such as chemical and electrolytic degreasing, pickling, polishing (in particular so-called electropolishing) and dyeing, and in particular the chemical deposition of metal and oxide layers.
  • the workpieces to be plated must be thoroughly cleaned before being introduced into the plating bath and treated with the means of metal degreasing.
  • the galvanic baths are divided into acidic and alkaline baths.
  • the acid baths contain sulfates, chlorides, fluoroborates and sulfamates of the metals to be deposited, while the alkaline baths are based on hydroxo- or cyano complexes or diphosphates.
  • gloss galvanization is obtained as a result of using certain additives that have a leveling effect (brighteners), immediately a shiny galvanic coating, the subsequent polishing often redundant.
  • the workup of spent galvanizing u. the removal of surfactant, metal, salt and acid residues from the Wastewater not only serves to recover valuable raw materials (recycling), but also to clean water and thus protect the environment.
  • a further subject of the application is therefore directed to a preferably surfactant-free process for galvanic or autocatalytic metal deposition on metallic surfaces, for example for the nickel plating of metallic surfaces, which comprises adding to an aqueous nickel solution containing at least one Ni salt, an organic acid and a inorganic phosphorus compound is an aqueous dispersion of boron nitride particles (preferably hexagonal BN) prepared as described above and then contacting this solution with the metallic surface until a metal-boron nitride particle dispersion layer has been deposited thereon ,
  • boron nitride particles preferably hexagonal BN
  • the solid particles for the purposes of the present invention are to be used as additives in lubricant compositions, in organic solvents, in pharmaceutical preparations, in cosmetic compositions or as flotation auxiliaries. Furthermore, such particles may find application in the matrix of polymeric materials (duroplastic or thermoplastic polymers), preferably dispersed fillers in polymers, or they may find utility as an aid to the aqueous slurry of clay minerals.
  • the latter enters the production of the so-called slip, which is used to produce ceramic materials, preferably porcelain.
  • Flotation is known to be a separation process for the treatment of ores, coal, salts or wastewaters.
  • the flotation makes the different interfacial tension of solids to liquids (mostly water) and gases (mostly air) - i. the different wetting in the water of suspended particles - use; Phenomena of adhesion, zeta potential and, in general, electrochemical double layer play a role at the interfaces.
  • metal sulfides many metal oxides, heavy metals, carbon and diamond are readily wetted by water repellent (hydrophobic) species such as aliphatic or aromatic hydrocarbons, gait (dead rock), namely quartz, silicates, phosphates, sulfates, carbonates, halides and the like. Like. However, slightly of water u. hydrophilic substances.
  • the flotation is based on the fact that wetted particles sink, but not wetted - with a grain size between 10 and 500 microns - to accumulate on the suspension (turbid) led air bubbles, to the surface migrate (creaming) and can be removed together with the foam ,
  • the wettability of the substances to be separated can be selectively influenced by the addition of flotation auxiliaries. These are chemicals that improve the wettability of various mineral surfaces. This function can also be used according to the invention polymers according to the above Description exercise. Solid, wetted with the polymers particles are suitable to improve flotation, for example, by facilitating the separation of the solids from the aqueous phase, and thus increase, for example, the yield of floated materials.
  • a terpolymer according to the invention was prepared as follows: 12.4 g of MAPTAC, 1.4 g of acrylic acid and 50 g of water were mixed. The pH of the aqueous mixture was adjusted in the range of 6.5 to 7.5. Then, 8.5 g of NIPAM and 23 g of isopropanol were added, and this mixture was heated to 65 ° C. Then, as a starter, 0.15 g of 2,2'-azobis (2-amidinopropane) dihydrochloride was added and the reaction started. The mixture is heated to about 80 ° C. After the reaction had elapsed, the azeotrope water / isopropanol was distilled off at 80-100 ° C. The concentration of the resulting polymer solution was about 22 wt .-%. The pH of the solution was 5 to 7.5. The polymer had a molecular weight of 130,000 Da (measured by SEC-MALLS).
  • Specimens of boronitride, silicon carbide, and boron carbide powders were tested: To this was added an aqueous solution containing 5% by weight of a polymer according to the synthesis under "1.” produced. Each 1.0 g of the powder samples were suspended in each 99.0 g of the aqueous polymer solution and stirred for 72 hours. Subsequently, the suspension was filtered off. The residue was washed with water and dried at 80 ° C for 12 hours. The dry residue was subsequently suspended in 100 ml of water.
  • the treated samples agglomerated only very weakly in the aqueous suspension.
  • Exemplary is in illustration 1 this effect is shown photographically for a boron nitride powder with a particle diameter of 0.5 ⁇ m.
  • the polymer-treated boron nitride powder is much more stable in levitation than the untreated boron nitride powder.
  • the zeta potential of the aqueous suspensions of boron nitride, silicon carbide, and boron carbide powders was determined (see Figure 2 ). The measurement was carried out with a Coulter DELSA 440 SX measuring device. It can be seen that the untreated particles have a negative surface charge, whereas the particles treated according to the invention have been reloaded and have a positive charge. A transhipment of the original surface charge has succeeded.
  • the polymer-treated boron nitride from Example 1 was used in a chemical galvanization.
  • the chemical Ni electrolyte was used to study, composed of: nickel sulfate, acetic acid, sodium hypophosphite monohydrate and a stabilizer (commercial product. SurTech ® 835).
  • 10 g of treated boron nitride were used per liter of nickel bath. Scanning electron micrographs show that there is no boron nitride in the deposited nickel layer without treatment ( Figure 3 ).
  • Boron nitride pretreated with the polymer contains about 10- 20% BN ( Figure 4 ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

  • Die vorliegenden Erfindung betrifft die Veränderung der Oberflächenladung fester Teilchen gemessen über deren Zeta-Potential, sowie die Verwendung derartig modifizierter Teilchen zur Herstellung stabiler Suspensionen, beispielsweise in galvanischen Verfahren und als Additive in Schmierstoffzusammensetzungen, in organischen Lösungsmitteln, in polymeren Werkstoffen, als Flotationshilfsmittel oder als Hilfsmittel in wässrigen Aufschlämmungen von Tonmineralien oder in kosmetischen oder pharmazeutischen Mitteln.
  • In der Technik sind vielfältige Einsatzmöglichkeiten für feste Partikel bekannt, die in flüssigen, vorzugsweise wässerigen Medien dispergiert werden. Dazu zählen beispielsweise Farbstoffe, die dispergierte Pigmente enthalten, aber auch dispergierte Füllstoffe in Polymeren oder Dispersionen im Bereich von Pharmaka, Kosmetika bzw. Wasch- und Reinigungsmitteln sind bekannt. Auch bei der Keramik-Herstellung werden Ton-Dispersionen (der sog. Schlicker) eingesetzt. Bei der Flotation, z.B. von Erzen werden ebenfalls Dispersionen verwendet. Ein weiteres technisches Beispiel für Dispersionen tritt bei der Galvanisierung von Metalloberflächen (oder entsprechend vorbereiter anderer Oberflächen) auf: So wird z.B. Bornitrid (BN) bei der galvanischen Vernickelung von Metalloberflächen in dispergierter Form im Galvanikbad eingesetzt, da das BN dann zusammen mit dem Nickel auf der Metalloberfläche ausfällt und die physikalischen Eigenschaften der Nickelschicht verbessert. Dispersionen sind Systeme aus mehreren Phasen, von denen eine kontinuierlich (Dispersionsmittel) und mindestens eine weitere fein verteilt ist (dispergierte Phase, Dispergens). Beispiele für Dispersionen sind Emulsionen (flüssige ineinander unlösliche Phasen), Aerosole oder die hier in Rede stehenden Suspensionen in Form von dispergierten festen, vorzugsweise nichtmetallischen, anorganischen Partikel in einer flüssigen Phase. Eine molare Dispersion ist die molar-disperse Verteilung eines Stoffes in einem anderen, d.h. hier liegt eine echte Lösung vor. Die Energie zur Herstellung einer Dispersion kann z.B. chemisch, elektrochemisch, elektrisch oder mechanisch (durch Mahlen, mittels Ultraschall etc.) zugeführt werden. Prinzipiell neigen Dispersionen zur Phasentrennung (Sedimentation), so dass eine Stabilisierung mit Emulgatoren oder Schutzkolloiden während ihrer Herstellung und Lagerung vorgenommen wird. Alternativ oder in Ergänzung hierzu wird auch gezielt die elektrostatische Abstoßung gleichsinnig geladener Pigment- bzw. Polymerteilchen ausgenutzt (elektrostatische Stabilisierung).
  • In der Praxis stellt sich häufig das Problem, dass sich die Teilchen nur schlecht oder gar nicht in einem wässrigen oder sonstigen flüssigen Medium dispergieren lassen. In vielen Fällen benutzt man grenzflächenaktive Stoffe als Dispergiermittel zur Herstellung oder Stabilisierung der Dispersionen. Es besteht daher ein ständiger Bedarf, feste anorganische Partikel besser in Flüssigkeiten, vorzugsweise in wässrigen Medien zu dispergieren. Die Grund für die Schwierigkeiten, die bei der Dispergierung, d. h. der Feinverteilung der festen Partikel in dem flüssigen Medium auftritt ist darin zu sehen, dass die Oberflächenladung an der Oberfläche der Partikel einen gleichmäßigen Einbau in das Lösungsmittel, vorzugsweise Wasser nicht oder nur teilweise zulassen.
  • Im Stand der Technik sind allerdings bereits Lösungsansätze bekannt. So beschreiben die US 4,098,654 und US 4,302,374 die Verwendung von nichtionischen Tensiden um PTFE-Teilchen zu stabilisieren. Die WO 03/097721 A1 beschreibt die Verwendung von wasserlöslichen Polymeren als Trocknungshilfsmittel für die Herstellung von Dispergiermitteln. Die Schrift offenbart eine Vielzahl von möglichen Monomeren, die zu wasserlöslichen Polymeren umgesetzt werden können, wobei diese wasserlöslichen Polymere dann geeignet sind, zusammen mit Vinylacetatethylencopolymerisaten oder Ethylenvinylchloridvinyllauratterpolymerisaten als Dispergiermittel eingesetzt zu werden. Die Schrift offenbart nicht die Verwendung von solchen wasserlöslichen Polymeren als alleiniges Dispersionshilfsmittel. In der US 145,517 werden chemische Galvanisierverfahren beschrieben, in denen Tenside auf Basis von organischen nichtfluorierten Verbindungen benutzt werden, um feinverteilte Feststoffe in einem Galvanisierbad zu stabilisieren. Es besteht allerdings nach wie vor der Bedarf, die Stabilisierung fester Teilchen nicht nur im Bereich galvanischer Bäder zu verbessern sondern generell das Dispergierverhalten fester Stoffe in flüssigen Medien zu optimieren.
  • Es wurde überraschend gefunden, dass bestimmte wasserlösliche Polymere geeignet sind, die Dispergiereigenschaften von festen Teilchen, vorzugsweise anorganischen Teilchen, in flüssigen vorzugsweise in wässrigen Medien zu verbessern.
  • Ein erster Gegenstand der vorliegenden Anmeldung betrifft die Verwendung eines Polymeren, wobei mindestens 0,1 g des Polymers in 100 ml Wasser bei 20° C löslich sind, und die in Form polymerisierter Einheiten mindestens jeweils ein Monomer
    1. a) H2C=CR1-CO-NH-R2-N+R3R4R5 X-
      wobei R1 für ein Wasserstoffatom oder einen Alkylrest mit 1 bis 4 C-Atomen steht, R2 für einen linearen oder verzweigten Alkylenrest mit 1 bis 12 C-Atomen und R3, R4, R5
      unabhängig voneinander ein Wasserstoffatom, einen Alkylrest mit 1 bis 18 C-Atomen oder einen Phenylrest bedeuten, und X- für ein Anion aus der Gruppe der Halogene, Sulfate bzw. Alkylsulfate, für Hydroxid, Phosphat, Acetat, Formiat oder Ammonium steht, und
    2. b) H2C=CR6-CO-NR7R8
      wobei R6 für ein Wasserstoffatom oder einen Alkylrest mit 1 bis 4 C-Atomen steht und R7 und R8 jeweils unabhängig voneinander für ein Wasserstoffatom, einen Alkylrest mit 1 bis 4 C-Atomen oder einen C3-C6 Cycloalkylrest stehen, mit der Maßgabe, dass R7 und R8 nicht gleichzeitig für ein Wasserstoffatom stehen, und
    3. c) Acryl- und/oder Methacrylsäure und / oder
    4. d) weitere Monomere aus der Gruppe der C3-C6 einfach ethylenisch ungesättigten Carbonsäuren wie Crotonsäure, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, Itaconsäure, sowie deren Halbester, und Salze oder H2C=CR-CO-NH-CR'R"R'"-SO3H sowie deren Salze, insbesondere die Alkalimetall- und Ammoniumsalze, wobei R, R', R" und R"' unabhängig voneinander für ein Wasserstoffatom oder einen Alkyl(en)rest mit 1 bis 4 C-Atomen steht,
    enthalten, mit der Maßgabe, dass in dem Polymer das Monomere c) in Mengen von höchstens 25 Gew.-% bezogen auf das Polymer enthalten ist, zur Dispergierung fester Teilchen in flüssigen, vorzugsweise wässerigen Medien.
  • Die Polymere sind an sich bekannte Verbindungen, die in der EP 1 767 554 A1 der Anmelderin beschrieben werden, wobei in der Schrift auch ein Herstellverfahren für diese Polymere offenbart wird.
  • Es sind nun solche Polymere gemäß der obigen Beschreibung bevorzugt, deren Gewichtsanteil an Monomeren c) weniger als 15 Gew.% und insbesondere gleich oder weniger als 10 Gew.-% beträgt. Ein bevorzugter Gewichtsbereich für das Monomer c) liegt bei 5 bis 25, vorzugsweise 5 bis 15 und insbesondere von 5 bis 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Polymers.
  • Die erfindungsgemäßen Polymeren enthalten als polymerisierte Monomeren mindestens drei voneinander unterschiedliche Monomeren a) bis d). Dabei sind alle Polymeren umfasst, die entweder die Monomerbausteine a), b) und c), oder a), b) und d) oder a), b), c) und d) nebeneinander enthalten. Es ist auch im Sinne der vorliegenden Erfindung möglich, Mischungen aus den aufgeführten Polymeren einzusetzen.
  • Monomer-Komponente a)
  • Die Monomeren dieses Typs folgen der allgemeinen Formel

            H2C=CR1-CO-NH-R2-N+R3R4R5 X-

    wobei R1 für ein Wasserstoffatom oder einen Alkylrest mit 1 bis 4 C-Atomen steht, R2 für einen linearen oder verzweigten Alkylenrest mit 1 bis 12 C-Atomen und R3, R4, R5 unabhängig voneinander ein Wasserstoffatom, einen Alkylrest mit 1 bis 18 C-Atomen oder einen Phenlyrest bedeuten, und X für ein Anion aus der Gruppe der Halogene, Sulfate bzw. Alkylsulfate, für Hydroxid, Phosphat, Acetat, Formiat oder Ammonium steht. Besonders bevorzugt werden solche Monomeren des Typs a), bei denen R1 für einen Methylrest steht, R2 für eine Gruppe CH2-CH2-CH2 steht, und die Reste R3, R4 und R5 jeweils einen Methylrest darstellen. X- steht für ein geeignetes Gegenion wie z.B. Halogenid, Hydroxid, Sulfat, Hydrogensulfat, Phosphat, Formiat oder Acetat, vorzugsweise Chlorid. Diese sind dem Fachmann unter dem Namen 3-Trimethylammoniumpropylmethacrylamidchlorid (MAPTAC) bekannt.
  • Monomer-Komponente b)
  • Der zweite, zwingend in den erfindungsgemäßen Polymeren enthaltene Monomerbaustein ist eine stickstoffhaltige ethylenisch ungesättigte Verbindung der folgenden allgemeinen Formel:

            H2C=CR6-CO-NR7R8

    wobei R6 für ein Wasserstoffatom oder einen Alkylrest mit 1 bis 4 C-Atomen steht und R7 und R8, jeweils unabhängig voneinander für ein Wasserstoffatom, einen Alkylrest mit 1 bis 4 C-Atomen oder einen C3-C6 Cycloalkylrest steht, mit der Maßgabe, dass R7 und R8 nicht gleichzeitig für ein Wasserstoffatom stehen. Es handelt sich also um Alkylacrylamide. Besonders bevorzugt ist das N-Isopropylacrylamid, auch unter der Abkürzung NIPAM bekannt.
  • Monomer-Komponente c)
  • Als dritte Komponente c) sind ethylenisch ungesättigte Säuren und deren Salze, wie Acryl- oder Methacrylsäure geeignet. Acrylsäure (AA) ist hierbei das besonders bevorzugte Monomer. Besonders geeignete Salze stellen deren Alkalimetall- und Ammoniumsalze dar.
  • Monomer-Komponente d)
  • Weitere Monomere können zusätzlich oder anstatt der Komponente c) in den erfindungsgemäßen Polymeren als Bausteine enthalten sein. Sie sind ausgewählt aus der Gruppe der C3-C6 einfach ethylenisch ungesättigten Carbonsäuren wie Crotonsäure, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, Itaconsäure, sowie deren Halbestern, und Salzen oder H2C=CR-CO-NH-CR'R"R"'-SO3H und deren Salzen, insbesondere den Alkalimetall- und Ammoniumsalzen, wobei R, R', R" und R"' unabhängig voneinander für ein Wasserstoffatom oder einen Alkyl(en)rest mit 1 bis 4 C-Atomen steht. Besonders bevorzugt ist dabei als Monomerbaustein vom Typ d) das Molekül mit der allgemeinen Formel H2C=CR-CO-NH-CRR"R"'-SO3H, wobei insbesondere ein Derivat, die 2-Acrylamido-2-methylpropansulfonsäure (AMPS) hervorzuheben ist.
  • Es können noch weitere Monomerbausteine neben den oben bezeichneten a) bis d) in den erfindungsgemäßen Polymeren enthalten sein, wobei hier insbesondere stickstoffhaltige Monomere bevorzugt sind. Beispiele sind Dimethyldiallylammoniumchlorid (DADMAC), 2-Dimethylaminoethyl(meth)acrylat (DMAE(M)A), 2-Diethylaminoethyl(meth)acrylat 3-Dimethylaminopropyl(meth)acrylamid (DMAP(M)A), 3-Dimetyhlamino-2,2-dimethylpropyl acrylamid (DMADMPA), sowie die daraus gegebenenfalls jeweils durch Protonierung oder Quaternierung hervorgehenden Derivate, insbesondere 2-Trimethylammonium-ethyl(meth)acrylatehlorid und 3-Diethylmethylammoniumpropylacrylamidchlorid.
  • Die erfindungsgemäß verwendeten Polymeren sind wasserlöslich, d.h. dass mindestens 0,1 g des Polymers in 100 ml Wasser bei 20 °C löslich sind. Die Polymeren sind ampholytisch, d.h. dass die Polymere sowohl saure als auch basische hydrophile Gruppen besitzen und sich je nach Bedingung sauer oder basisch verhalten. Die erfindungsgemäßen Polymere weisen vorzugsweise ein mittleres Molekulargewicht (weight average molecular weight, Mw), gemessen mittels wässeriger Gelpermeationschromatographie (GPC) mit Lichtstreudetektion (SEC-MALLS), im Bereich von 10.000 bis 500.000 Da auf. Vorzugsweise liegt die Molmasse der Polymeren zwischen 50.000 und 350.000 Da und insbesondere zwischen 100.000 und 250.000 Da. Ein besonders bevorzugter Bereich kann zwischen 110.000 und 140.000 Da liegen.
  • Die verschiedenen Monomer-Bausteine a) bis d) kommen vorzugsweise in bestimmten ausgewählten Mengenverhältnissen nebeneinander vor. Bevorzugt sind jeweils solche Polymeren, die die Komponente b) im Überschuss (sowohl bezogen auf Mol als auch auf Gewicht der Komponenten) zu den Komponenten a) und c) enthalten. Bevorzugt sind hier Polymere, in denen das Molverhältnis zwischen den Monomeren a), b) und c) im Bereich von 1 : 10 : 1 bis 5 : 10 : 5 und vorzugsweise im Bereich von 4 : 10 : 1 bis 4 : 10 : 3 und insbesondere im Bereich von 3 : 8 : 2 bis 3 : 8 : 1 liegt.
  • Besonders bevorzugt sind insbesondere solche Polymere, bei denen das Molverhältnis zwischen den Komponenten a) und b) 1 : 10 bis 1 : 1 und insbesondere bei 1 : 5 bis 1 : 1 liegt.
  • Bezogen auf Mol-% der jeweiligen Monomere sind vorzugsweise 20 bis 30 % an Monomer a), 50 bis 70 % an Monomer b) und 10 bis 20 % an Monomer c) enthalten. Sofern statt der Komponente c) der Monomerbaustein vom Typ d) enthalten ist, gelten die gleichen Verhältnisse analog. Besonders bevorzugt können aber solche Polymeren sein, die sowohl Monomeren des Typs c) als auch vom Typ d) nebeneinander enthalten. Vorzugsweise liegen die Monomerbausteine c) und d) dann im molaren Verhältnis von 2 : 1 bis 1 : 2, besonders bevorzugt aber im Verhältnis 1 : 1 nebeneinander vor. Besonders bevorzugte Polymere mit vier unterschiedlichen Monomerbausteinen weisen dabei molare Verhältnisse a) : b) : c) : d) von 2 : 4 : 1 : 1 bis 1 : 10 : 1 : 1 auf. Ein besonders bevorzugtes Verhältnis liegt bei 3 : 8 : 1 : 1.
  • Bevorzugte Polymere sind insbesondere solche, bei denen das Monomer a) ausgewählt ist aus solchen Verbindungen der allgemeinen Formel in der R1 für eine Methylgruppe, R2 für einen Alkylenrest mit 3 C-Atomen, R3, R4 und R5 jeweils für Methylreste und X für Chlorid, stehen, das Monomer b) ausgewählt ist aus solchen Verbindungen der allgemeinen Formel in der R6 und R7 für ein Wasserstoffatom und R8 für einen Isopropylrest stehen und Monomer c) Acrylsäure ist. Weiterhin bevorzugt sind Polymere bei denen das Monomer a) ausgewählt ist aus solchen Verbindungen der allgemeinen Formel in der R1 für eine Methylgruppe, R2 für einen Alkylenrest mit 3 C-Atomen, R3, R4 und R5 jeweils für Methylreste und X für Chlorid stehen, das Monomer b) ausgewählt ist aus solchen Verbindungen der allgemeinen Formel in der R6 und R7 für ein Wasserstoffatom und R8 für einen Isopropylrest stehen und Monomer c) für H2C=CR-CO-NH-CR'R"R"'-SO3H und deren Salze steht, insbesondere die Alkalimetall- und Ammoniumsalze, wobei R, R', R" und R'" unabhängig voneinander für ein Wasserstoffatom oder einen Alkyl(en)rest mit 1 bis 4 C-Atomen steht, ist.
  • Besonders bevorzugt und daher ein gesonderter und unabhängiger Gegenstand der vorliegenden Erfindung ist ein bei 20 °C wasserlösliches Polymer, enthaltend mindestens drei unterschiedliche Monomeren a), b), c) und/oder d), wobei gilt, dass die Monomeren a) und b) zwingend im molaren Verhältnis von 1 : 1 bis 1 : 10 enthalten sein müssen und zusätzlich die Monomeren c) und/oder d) enthalten sind, wobei als Monomeres a) das 3-Trimethylammonium-propylmethacrylamidchlorid (MAPTAC), als Monomeres b) das N-Isopropylacrylamid (NIP AM), als Monomeres c) Acrylsäure (AA) und/oder Methacrylsäure (MA), als Monomeres d) 2-Acrylamido-2-methyl-1-propansulfonsäure (AMPS) ausgewählt sind, mit der Maßgabe, dass in dem wasserlöslichen Polymer das Monomer c) in Mengen von höchstens 25 Gew.% bezogen auf das Gesamtgewicht des wasserlöslichen Polymers enthalten ist. Es sind solche Polymere gemäß der obigen Beschreibung bevorzugt, deren Gewichtsanteil an Monomeren c) weniger als 15 Gew.-% und insbesondere gleich oder weniger als 10 Gew.-% beträgt. Ein bevorzugter Gewichtsbereich für das Monomer c) liegt bei 5 bis 25, vorzugsweise 5 bis 15 und insbesondere von 5 bis 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Polymers.
  • Diese Polymeren können auch durch das folgende Formelschema beschrieben werden:
    Figure imgb0001
  • Die Indices m, n, p und q geben die Anzahl der Monomerbausteine NIPAM, MAPTAC, AA und AMPS im Polymermolekül wieder. Allerdings ist die Reihenfolge der Bausteine bei den erfindungsgemäßen Polymeren generell nicht zwingend vorgegeben, vielmehr sind alle Abfolgen der einzelnen Bausteine, seien es nun Blöcke der einzelnen Monomere oder deren rein statistische Abfolge im Molekül umfasst.
  • Bei diesem vorab definierten Polymer-Typ sind diejenigen Derivate besonders bevorzugt, welche die Monomeren MAPTAC, NIPAM und AMPS in Gewichtsverhältnissen von 25 bis 50 % MAPTAC, 40 bis 75 % NIPAM und 1 bis 15 % AMPS polymerisiert enthalten, mit der Maßgabe, dass die Summer der prozentualen Anteile 100 ergibt.
  • Ein unabhängig davon ebenfalls bevorzugtes Polymer ist eines, welches die Monomeren MAPTAC, NIPAM und AA im Gewichtsverhältnissen von 25 bis 50 % MAPTAC, 40 bis 75 % NIPAM und 1 bis 15 % AA polymerisiert enthält mit der Maßgabe, dass die Summer der prozentualen Anteile 100 ergibt. Schließlich ist unabhängig davon ebenfalls bevorzugt ein bei 20 °C wasserlösliches Polymer, dass es die Monomeren MAPTAC, NIPAM, AA und AMPAS im Gewichtsverhältnis von 25 bis 45 % MAPTAC, 40 bis 70 % NIPAM, 1 bis 15 % AA und 1 bis 15 % AMPS enthält, mit der Maßgabe, dass die Summe der prozentualen Anteile 100 ergibt.
  • Polymere gemäß der obigen Beschreibung können durch Polymerisationsverfahren hergestellt werden, die dem Fachmann bekannt sind. Sie können beispielsweise durch Lösungspolymerisation oder Massepolymerisation hergestellt werden. Vorzugsweise werden sie durch Lösungspolymerisation hergestellt also einer Polymerisation von Monomeren in Lösungsmitteln und/oder Wasser, in denen sowohl die Monomeren als auch die aus ihnen resultierenden Polymeren löslich sind. Ferner kann die Polymerisation unter Vorlegen der gesamten Monomermenge oder unter Monomerenzulauf, batchweise, semikontinuierlich oder kontinuierlich erfolgen. Vorzugsweise wird die Polymerisation als Batchpolymerisation mit oder ohne Monomerenzulauf durchgeführt.
  • Die oben beschriebenen wasserlöslichen Polymere haben die Eigenschaft, die Oberflächenladung fester Teilchen, gemessen z.B. über deren Zeta-Potential einer wässrigen Dispersion der Teilchen, umzuladen.
  • Die Messung des Zeta-Potentials stellt eine übliche Methode zur Charakterisierung von fest/flüssig-Dispersionen dar. Dispergierte Teilchen können sich, beispielsweise durch Adsorption von Ionen auf ihrer Oberfläche, elektrisch aufladen. An der Oberfläche dieser elektrisch geladenen Teilchen bildet sich dadurch eine elektrische Doppelschicht, die fest mit den Partikeln verbunden ist und eine scheinbare Volumenzunahme bewirken. Diese feste Schicht wird von einer beweglichen und diffusen Ionenschicht umhüllt. Das Potential ψ0 an der Partikeloberfläche fällt nun innerhalb der festen Ionenschicht mit der Dicke δ linear auf den Wert ψδ ab, um in der diffusen Schicht annähernd exponentiell bis auf den Wert 0 zurückzugehen. Die Potentialdifferenz zwischen der inneren festen Ionenschicht ψδ und dem Punkt innerhalb der diffusen Ionenschicht, bei der das Potential auf 1/e · ψδ zurückgegangen ist, bezeichnet man als Zeta-Potential.
  • Das Zeta-Potential kann aus der Wanderungsrichtung und -geschwindigkeit der dispergierten Teilchen im elektrischen Feld direkt ermittelt wobei man folgende Beziehung zugrunde legt: ζ = f π v η E ε
    Figure imgb0002
  • ζ =
    Zeta-Potential (in mV)
    ε =
    Dielektrizitätskonstante des Dispersionsmittels
    ν =
    elektrophoretische Wanderungsgeschwindigkeit (in cm/s)
    η =
    Viskosität des Dispersionsmittels (Poise, 1 Poise = 0,1 Pa • s)
    E =
    Feldstärke (in mV)
    f =
    Zahlenfaktor (Reibungsfaktor), der von der Form der Teilchen, ihrer Leitfähigkeit und der Größe der Teilchen im Vergleich zur Dicke der diffusen Doppelschicht abhängt
  • Die Messung der Wanderungsgeschwindigkeit erfolgt dabei, je nach Größe der zu untersuchenden Teilchen entweder mittels lichtmikroskopischer Beobachtung oder, insbesondere bei kleineren Teilchen, mittels Laser-Korrelations-Spektroskopie.
  • Die erfindungsgemäß verwendeten Polymere führen dazu, dass die jeweils behandelten Teilchen an die Oberfläche eine Umladung erfahren, beispielsweise von einer positiven hin zu einem negativen Ladungswert, oder umgekehrt. Bevorzugt sind Veränderungen von einem negativen hin zu einem positiven Zeta-Potential der Teilchen.
  • Ein Gegenstand der vorliegenden Anmeldung betrifft feste Teilchen, herstellbar indem man ein Trägerteilchen in einem wässerigen Medium mit einem Polymeren gemäß der obigen Beschreibung in Kontakt bringt. Zu diesem Zweck werden die festen Teilchen in einem wässrigen Medium mit einem Polymer gemäß der obigen Beschreibung in Kontakt gebracht, wobei das Polymer selbst in der wässrigen Lösung vorliegt und man die Polymerlösung mit den festen Teilchen vermischt. Nach der Behandlung werden die festen Teilchen aus der Lösung abgetrennt, beispielsweise durch Filtration und die abgetrennten Teilchen danach getrocknet. Es ist aber auch denkbar und erfindungsgemäß die Teilchen dispergiert in der wässrigen Polymerlösung zu belassen und so weiter zu verwenden.
  • Vorzugsweise wird die Polymerlösung bei der Behandlung der festen Teilchen bei einer Temperatur von 10 bis 90°C, vorzugsweise 15 bis 35° C und insbesondere bei 18 bis 30° C durchgeführt.
  • Der pH-Wert während des Verfahrens liegt vorzugsweise im Bereich von < 1 bis 14, vorzugsweise zwischen 1 und 14 und kann, insbesondere in Galavinischen Bädern besonders bevorzugt im sauren Bereich, hier insbesondere im Bereich von 1 bis 5 und vorteilhafter weise im Bereich von 1 bis 3 liegen. Darin unterscheidet sich das erfindungsgemäße Verfahren vorteilhaft vom Stand der Technik, der Tenside einsetzt, die in der Regel bei derartig extremen Bedingungen nicht mehr stabil sind.
  • Die Teilchen, die vorzugsweise mit den Polymeren behandelt werden, zeigen vorzugsweise einen Durchmesser zwischen 10 und 0,00001 mm, wobei Teilchen mit Durchmessern von 1 bis 0,0001 mm bzw. 0,1 bis 0,001 mm bevorzugt sein können. Bevorzugt sind weiterhin solche Teilchen, bei denen zur Herstellung eine wässerige Lösung des Polymeren eingesetzt wird, die einen Gewichtsanteil an Polymer von 0,01 bis 30 Gew.%, vorzugsweise von 0,1 bis 15 und insbesondere von 1 bis 10 Gew.% aufweist, jeweils bezogen auf das Gesamtgewicht der wässerigen Lösung enthält.
  • Es handelt sich bei den erfindungsgemäßen Teilchen vorzugsweise um anorganische, (vorzugsweise bei Raumtemperatur = 21°C) feste Teilchen, ausgewählt insbesondere aus der Gruppe der Oxide, Hydroxide, Carbide, Boride, Sulfide oder Nitride. Besonders bevorzugt sind die Nitride und Carbide, wobei ganz besonders bevorzugt sind das Bornitrid (BN), das Siliciumcarbid (SiC) und das Borcarbid (B4C). Bei den Teilchen handelt es sich vorzugsweise um nicht-metallische, anorganische Partikel.
  • Die so an der Oberfläche umgeladenen festen Teilchen, die ebenfalls Gegenstand der vorliegenden Erfindung sind und die wässrigen Dispersionen solcher Teilchen können vorzugsweise in galvanischen Verfahren (elektrolytisch oder chemisch) oder als Additiv in Schmierstoffzusammensetzungen, oder in organischen Lösungsmitteln bzw. in polymeren Werkstoffen eingesetzt werden. Solche erfindungsgemäßen Teilchen können aber auch als Flotationshilfsmittel oder als Hilfsmittel zur Aufschlämmung von Tonmineralien Verwendung finden.
  • Unter Galvanotechnik allgemein versteht man die elektrochemische Oberflächenbehandlung von Werkstoffen, d.h. die elektrolytische Abscheidung von metallischen (seltener auch nichtmetallischen) dünnen Schichten zum Zwecke der Verschönerung, des Schutzes vor Korrosion, der Erzeugung von Verbundwerkstoffen mit verbesserten Eigenschaften und dergleichen. Die Galvanotechnik umfasst die beiden Hauptgebiete Galvanostegie und Galvanoplastik. Die Galvanoplastik dient der Herstellung oder Reproduktion von Artikeln durch elektrolytische Abscheidung. Dazu wird von der Urform zunächst ein Abdruck (Negativ, Hohlform) aus Gips, Wachs, Guttapercha, Siliconkautschuk, niedrigschmelzenden Metall-Legierungen usw. hergestellt. Der Abguss wird oberflächlich elektrisch leitend gemacht (durch chem. Niederschlagung od. Aufdampfung von Metallen) und dann als Minuspol in der Galvanisierflüssigkeit mit dem abzuscheidenden Metall (z.B. Cu, Ni, Ag etc.; Pluspol) überzogen. Nach Beendigung der Elektrolyse lässt sich die gebildete Metallschicht von der Form abheben u. ggf. mit Füllmaterial zur Verstärkung ausgießen. Verw. zur Herst. von Druckträgern im Hochdruck, zum Kopieren von Kunstgegenständen, Herst. von Schallplatterunatrizen u.a. technische Gießformen. Dagegen ist die ungleich wichtigere, auch als Elektroplattierung bekannte Galvanostegie ein Verfahren der Beschichtung von Gegenständen mit zumeist sehr dünnen, schützenden und verschönernden Überzügen von Selber, Gold, Nickel, Chrom, Kupfer und dergleichen auf weniger wertvollen Unterlagen (z.B. aus Eisen) mit Hilfe des elektrischen Stroms. Beispiele sind Versilbern, Vergolden, Verchromen usw. Es wird zwischen stromlosen ("electroless"), d.h. mit chem. Reduktionsmitteln arbeitenden Verfahren und elektrolytischen Verfahren ("electroplating") unterschieden.
  • Wenn der zu plattierende Gegenstand elektrisch nicht-leitend ist, muss er leitend gemacht werden. Die Metallisierung der Artikel kann auch im Vakuum (Ionenplattierung) oder aus Schmelzen erfolgen. Auch ist bekannt, dass Oberflächenkavitäten von elektrisch nicht leitenden Materialien mit Keimbildnern, beispielsweise Palladiumchlorid, versehen werden. Zur Galavanisierung im weitesten Sinne gehören auch vorbereitende u.a. Verfahren, wie z.B. das chemische und elektrolytische Entfetten, Beizen, Polieren (insbesondere das sog. Elektropolieren) und Färben, und insbesondere die chemische Abscheidung von Metall- und Oxid-Schichten. Zur Erzielung eines gut haftenden galvanischen Niederschlags müssen die zu galvanisierenden Werkstücke vor dem Einbringen in das Galvanisierbad gründlich gereinigt und mit den Mitteln der Metallentfettung behandelt werden. Die galvanischen Bäder teilt man in saure und alkalische Bäder ein. Die sauren Bäder enthalten Sulfate, Chloride, Fluoroborate und Sulfamate der abzuscheidenden Metalle, während die alkalischen Bäder auf Basis von Hydroxo- bzw. Cyanokomplexen oder Diphosphaten aufgebaut sind. Bei der weiter entwickelten Glanzgalvanisierung erhält man infolge Verwendung bestimmter Zusätze, die eine einebnende Wirkung aufweisen (Glanzzusätze), sofort einen glänzenden galvanischen Überzug, der nachheriges Polieren vielfach überflüssig macht. Die Aufarbeitung verbrauchter Galvanisierbäder u. die Entfernung von Tensid-, Metall-, Salz- und Säurerückständen aus dem Abwasser dient nicht nur der Rückgewinnung wertvoller Rohstoffe (Recycling), sondern auch der Gewässerreinhaltung und damit dem Umweltschutz. Da die Dispersionsabscheidung von Partikeln in Metallschichten unter chemisch extremen Bedingungen, beispielsweise sehr niedrige oder sehr hohe pH-Werte und hohe Salzfrachten im Elektrolyt, abläuft, scheiden die meisten oberflächeaktiven Tenside von vorneherein aus. Insbesondere die zur Herstellung von Dispersionsabscheidungen notwendigen Tenside sind daher oftmals aromatische Tenside oder fluorierte Tenside und stellen gerade aufgrund ihrer Robustheit eine erhebliche Belastung der Umwelt dar.
  • Ein weiterer Gegenstand der Anmeldung ist daher gerichtet auf ein vorzugsweise tensidfreies Verfahren zur galvanischen oder autokatalytischen Metallabscheidung auf metallischen Oberflächen, beispielsweise zur Vernickelung von metallischen Oberflächen, wobei man zu einer wässerigen Nickel-Lösung, enthaltend mindestens ein Ni-Salz, eine organische Säure und eine anorganische Phosphorverbindung eine wässerige Dispersion von Bornitrid-Teilchen (vorzugsweise dem hexagonalen BN) gibt, die gemäß obiger Beschreibung hergestellt worden sind, und dann diese Lösung mit der metallischen Oberfläche in Kontakt bringt, bis sich darauf eine Dispersionsschicht aus Metall und Bornitrid-Teilchen abgeschieden hat.
  • Weiterhin sind die festen Teilchen im Sinne der vorliegenden Erfindung als Additive in Schmierstoffzusammensetzungen, in organischen Lösungsmitteln, in pharmazeutischen Zubereitungen, in kosmetischen Mittel oder als Flotationshilfsmittel zu verwenden. Weiterhin können solche Teilchen Anwendung finden in der Matrix von polymeren Werkstoffen (duro- oder thermoplastischen Polymeren), vorzugsweise bei dispergierten Füllstoffen in Polymeren, oder sie können als Hilfsmittel zur wässrigen Aufschlämmung von Tonmineralien Einsatz finden.
  • Letzteres betritt die Herstellung des so genannten Schlickers, der eingesetzt wird um keramische Werkstoffe, vorzugsweise Porzellane herzustellen. Hauptrohstoffe für Keramik sind Tonmineralien (Ton, Kaolin). Während die Kaoline, meist aus primären Lagerstätten, vor der Verarbeitung durch Schlämmen von groben Anteilen befreit werden müssen, können die Tone, aus sekundären Lagerstätten bereits von der Natur geschlämmt, oft so verarbeitet werden wie aus der Erde gewonnen. Als Zusätze dienen Magerungsmittel zur Minderung der Schwindung bei Trocknung und Brand (z.B. Quarz, Sand, gemahlener gebrannter Ton = Schamotte), Flussmittel zur Senkung der Sintertemperatur (z.B. Feldspat) und gegebenenfalls Färbungsmittel (bestimmte Metalloxide, siehe keramische Pigmente). Bei der Trocken- und Halbnassaufbereitung werden alle Mischungskomponenten getrocknet, gegebenenfalls zerkleinert, gemischt und für die Formgebung nach Bedarf mit Wasser oder Nassdampf wieder angefeuchtet. Bei der Nassaufbereitung werden die Rohstoffe in Trommelmühlen nassvermahlen oder durch Verrühren mit Wasser in Mischquirlen in wässrige, Suspensionen überführt. Dieser fließfähige sog. Schlicker kann durch Gießen weiterverarbeitet oder z.B. in Kammerfilterpressen bis zum plastisch verformbaren Zustand entwässert werden. Die Verwendung der wasserlöslichen Polymere im Sinne der hier beschriebenen technischen Lehre führt zu einer verbesserten Stabilisierung der Ton-Teilchen im Schlicker, wobei das erfindungsgemäße Verfahren beispielsweise eine Sprühtrocknung zur Reduzierung der Transportmenge und eine Redispergierung am Verwendungsort der so beschichteten Tone erlaubt. Weiterhin können mit so beschichten Teilchen bei gleicher Fliessfähigkeit höhere Feststoffgehalte in der Suspension eingestellt werden, was sowohl die zu verdampfende Wassermenge und damit den Energieverbrauch bei der Trocknung senkt als auch die Verarbeitung verbessert.
  • Ein weiteres Anwendungsfeld für die erfindungsgemäße Lehre stellt die Flotation dar. Flotation ist bekanntlich ein Trennverfahren zur Aufbereitung von Erzen, Kohle, Salzen oder Abwässern. Die Flotation macht sich die unterschiedliche Grenzflächenspannung von Feststoffen gegenüber Flüssigkeiten (meist Wasser) und Gasen (meist Luft) - d.h. die unterschiedliche Benetzung im Wasser suspendierter Teilchen - zunutze; an den Grenzflächen spielen Phänomene der Adhäsion, des Zeta-Potentials und allgemein der elektrochemischen Doppelschicht eine Rolle. Beispielsweise werden Metallsulfide, viele Metalloxide, Schwermetalle, Kohle und Diamant von wasserabstoßenden (hydrophoben) Stoffen wie aliphatischen oder aromatischen Kohlenwasserstoffen leicht benetzt, die Gangart (taubes Gestein), nämlich Quarz, Silicate, Phosphate, Sulfate, Carbonate, Halogenide u. dgl. dagegen leicht von Wasser u. hydrophilen Stoffen.
  • Die Flotation beruht darauf, dass benetzte Teilchen absinken, nicht benetzte aber - bei einer Korngröße zwischen 10 und 500 µm - sich an durch die Suspension (Trübe) geleitete Luftblasen anlagern, an die Oberfläche wandern (Aufrahmen) und zusammen mit dem Schaum entfernt werden können. Die Benetzbarkeit der zu trennenden Stoffe lässt sich durch Zusätze von Flotationshilfsmitteln gezielt beeinflussen. Unter diesen versteht man Chemikalien, die die Benetzbarkeit der verschiedenen Mineraloberflächen verbessern. Diese Funktion können auch die erfindungsgemäß zu verwendenden Polymeren gemäß der obigen Beschreibung ausüben. Feste, mit den Polymeren benetzte Teilchen eignen sich dazu, Flotationsverfahren zu verbessern, indem sie z.B. die Trennung der Feststoffe von der wässerigen Phase erleichtern, und so z.B. die Ausbeute an flotierten Stoffen erhöhen.
  • Beispiele 1. Herstellung eines erfindungsgemäßen Polymers
  • Ein erfindungsgemäßes Terpolymer wurde wie folgt hergestellt: Es wurden 12,4 g MAPTAC, 1,4 g Acrylsäure und 50 g Wasser vermischt. Der pH-Wert der wässerigen Mischung wurde im Bereich von 6,5 bis 7,5 eingestellt. Dann wurden 8,5 g NIPAM und 23 g Isopropanol zugegeben und diese Mischung auf 65 °C erhitzt. Anschließend wurde als Starter 0, 15 g 2,2'-Azobis(2-amidinopropane)dihydrochlorid zugesetzt und die Reaktion gestartet. Dabei erwärmt sich das Gemisch auf ca. 80 °C. Nachdem die Reaktion abgelaufen war, wurde bei 80 -100°C das Azeotrop Wasser/Isopropanol abdestilliert. Die Konzentration der resultierenden Polymerlösung betrug ca. 22 Gew.-%. Der pH-Wert der Lösung lag bei 5 bis 7,5. Das Polymer wies ein Molekulargewicht von 130.000 Da auf (gemessen mittels SEC-MALLS).
  • 2. Herstellung von erfindungsgemäßen anorganischen Teilchen
  • Es wurden Proben von Bomitrid-, Siliziumcarbid-, und Borcarbid-Pulver untersucht: Dazu wurde eine wässrige Lösung mit 5 Gew.-% eines Polymers gemäß der Synthese unter "1." hergestellt. Je 1,0 g der Pulver-Proben wurden in jeweils 99,0 g der wässerigen Polymer-Lösung suspendiert und 72 Stunden gerührt. Anschließend wurde die Suspension abfiltriert. Der Rückstand wurde mit Wasser gewaschen und bei 80 °C 12 Stunden getrocknet. Der Trockenrückstand wurde im Anschluss in 100mL Wasser suspendiert.
  • 3. Anwendungstechnische Untersuchungen Agglomeration
  • Im Vergleich zu unbehandeltem Pulver-Proben agglomerierten die behandelten Proben in der wässrigen Suspension nur sehr schwach. Beispielhaft ist in Abbildung 1 dieser Effekt photographisch für ein Bornitrid-Pulver mit 0,5 µm Komgrößendurchmesser dargestellt. Das mit Polymer behandelte Bornitrid-Pulver ist deutlich stabiler in Schwebe zu halten, als das unbehandelte Bornitrid-Pulver.
  • Zeta-Potential-Messung
  • Zusätzlich wurde das Zeta-Potential der wässrigen Suspensionen von Bornitrid-, Siliziumcarbid-, und Borcarbid-Pulver bestimmt (siehe Abbildung 2). Die Messung erfolgte mit einem Messgerät des Typs Coulter DELSA 440 SX. Man erkennt, dass die unbehandelten Teilchen eine negative Oberflächenladung aufweisen wohingegen die erfindungsgemäß behandelten Teilchen umgeladen worden sind und eine positive Ladung aufweisen. Eine Umladung der ursprünglichen Oberflächenladung ist gelungen.
  • Galvanisierung
  • Das aus Bsp. 1 mit Polymer behandeltem Bornitrid wurde in einer chemischen Galvanisierung eingesetzt. Der chemische Ni- Elektrolyt, der zur Untersuchung verwendet wurde, besteht aus: Nickelsulfat, Essigsäure, Natriumhypophosphit-Monohydrat und einem Stabilisator (Handelsprodukt: SurTech®. 835). Zur Abscheidung wurden 10 g behandeltes Bornitrid auf 1 Liter Nickelbad eingesetzt. Rasterelektronenmikroskopische Aufnahmen zeigen, dass sich ohne Behandlung in der abgeschiedenen Nickelschicht kein Bornitrid befindet (Abbildung 3). Mit dem Polymer vorbehandeltes Bornitrid enthält ca. 10- 20 % BN (Abbildung 4).

Claims (20)

  1. Verwendung eines Polymeren, wobei mindestens 0.1 g des Polymers in 100 ml Wasser bei 20°C löslich sind, und diese Polymere in Form polymerisierter Einheiten mindestens jeweils ein Monomer
    a) H2C=CR1-CO-NH-R2-N+R3R4R5 X-
    wobei R1 für ein Wasserstoffatom oder einen Alkylrest mit 1 bis 4 C-Atomen steht, R2 für einen linearen oder verzweigten Alkylenrest mit 1 bis 12 C-Atomen und R3, R4, R5 unabhängig voneinander ein Wasserstoffatom, einen Alkylrest mit 1 bis 18 C-Atomen oder einen Phenylrest bedeuten, und X- für ein Anion aus der Gruppe der Halogene, Sulfate bzw. Alkylsulfate, für Hydroxid, Phosphat, Acetat, Formiat oder Ammonium steht, und
    b) H2C=CR6-CO-NR7R8
    wobei R6 für ein Wasserstoffatom oder einen Alkylrest mit 1 bis 4 C-Atomen steht und R7 und R8 jeweils unabhängig voneinander für ein Wasserstoffatom, einen Alkylrest mit 1 bis 4 C-Atomen oder einen C3-C6 Cycloalkylrest stehen, mit der Maßgabe, dass R7 und R8 nicht gleichzeitig für ein Wasserstoffatom stehen, und
    c) Acryl- und/oder Methacrylsäure und/oder
    d) weitere Monomere aus der Gruppe der C3-C6 einfach ethylenisch ungesättigten Carbonsäuren wie Crotonsäure, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, Itaconsäure, sowie deren Halbester, und Salze oder H2C=CR-CO-NH-CR'R"R"'-SO3H sowie deren Salze, insbesondere die Alkalimetall- und Ammoniumsalze, wobei R, R', R" und R'" unabhängig voneinander für ein Wasserstoffatom oder einen Alkyl(en)rest mit 1 bis 4 C-Atomen steht,
    enthalten, mit der Maßgabe, dass in dem Polymer das Monomere c) in Mengen von höchstens 25 Gew.-% bezogen auf das Polymer enthalten ist, zur Dispergierung fester Teilchen in flüssigen, vorzugsweise wässerigen Medien.
  2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass ein bei 20 °C wasserlösliches Polymer verwendet wird, enthaltend mindestens drei unterschiedliche Monomeren a), b), c) und/oder d), wobei gilt, dass die Monomeren a) und b) zwingend im molaren Verhältnis von 1 : 1 bis 1 : 10 enthalten sein müssen und zusätzlich die Monomeren c) und/oder d) enthalten sind, wobei
    als Monomeres a) das 3-Trimethylammoniumpropylmethacrylamidchlorid (MAPTAC),
    als Monomeres b) das N-Isopropylacrylamid (NIPAM),
    als Monomeres c) Acrylsäure (AA) und/oder Methacrylsäure (MA),
    als Monomeres d) 2-Acrylamido-2-methyl-1-propansulfonsäure (AMPS)
    ausgewählt sind, mit der Maßgabe, dass in dem wasserlöslichen Polymer das Monomer c) in Mengen von höchstens 25 Gew.% bezogen auf das Gesamtgewicht des wasserlöslichen Polymers enthalten ist.
  3. Verwendung nach mindestens einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass in dem Polymer die Monomeren MAPTAC, NIPAM und AMPS im Gewichtsverhältnissen von 25 bis 50 % MAPTAC, 40 bis 75 % NIPAM und 1 bis 15 % AMPS polymerisiert enthält, mit der Maßgabe, dass die Summe der prozentualen Anteile 100 ergibt.
  4. Verwendung nach mindesten einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in dem Polymer die Monomeren MAPTAC, NIPAM und AA im Gewichtsverhältnissen von 25 bis 50 % MAPTAC, 40 bis 75 % NIPAM und 1 bis 15 % AA polymerisiert enthält mit der Maßgabe, dass die Summe der prozentualen Anteile 100 ergibt.
  5. Verwendung nach mindesten einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in dem Polymer die Monomeren MAPTAC, NIPAM, AA und AMPS im Gewichtsverhältnis von 25 bis 45 % MAPTAC, 40 bis 70 % NIPAM, 1 bis 15 % AA und 1 bis 15 % AMPS enthält, mit der Maßgabe, dass die Summe der prozentualen Anteile 100 ergibt.
  6. Verwendung nach mindesten einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in dem Polymer das Molverhältnis zwischen den Monomeren a), b) und c) oder d) im Bereich von 1 : 10 : 1 bis 5 : 10 : 5 und vorzugsweise im Bereich von 4 : 10 : 1 bis 4:10 : 3 und insbesondere im Bereich von 3 : 8 : 2 bis 3 : 8 : 1 liegt.
  7. Verwendung nach mindesten einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in dem Polymer das Molverhältnis zwischen den Monomeren a), b), c) und d) 3 : 8 : 1 : 1 beträgt.
  8. Verwendung nach mindesten einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass in dem Polymer 20 bis 30 Gew.% an Monomer a), 50 bis 70 Gew.% an Monomer b) und 10 bis 20 Gew.-% an Monomeren c) und oder d) enthalten sind mit der Maßgabe, dass die Summe der Anteile 100 ergibt.
  9. Verwendung nach mindesten einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass in dem Polymer die Monomeren c) und d) im Gewichtsverhältnis von 1 : 1 nebeneinander vorliegen.
  10. Verwendung nach mindesten einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass dem die Polymeren eine mittlere Molmasse im Bereich von 10.000 bis 500.000 Da, vorzugsweise von 50.000 bis 350.000 Da und insbesondere von 100.000 bis 250.000 Da aufweisen.
  11. Verwendung nach mindestens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Teilchen ausgewählt sind aus anorganischen Verbindungen, vorzugsweise aus der Gruppe der Oxide, Hydroxide , Carbide, Boride, Sulfide oder Nitride.
  12. Verwendung nach mindestens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die festen Teilchen ausgewählt sind aus der Gruppe Bornitrid (BN), Siliziumcarbid (SiC), oder Borcarbid (B4C).
  13. Verwendung nach mindestens einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die festen Teilchen Durchmesser zwischen 10 und 0,00001 mm aufweisen.
  14. Feste Teilchen, herstellbar indem man ein Trägerteilchen in einem wässerigen Medium mit einem Polymeren gemäß der Beschreibung des Anspruchs 1 in Kontakt bringt, wobei das Polymere in einer wässerigen Lösung vorliegt und nach der Behandlung die festen Teilchen abtrennt und trocknet oder diese Teilchen direkt in der Lösung belässt.
  15. Teilchen nach Anspruch 14, dadurch gekennzeichnet, dass man zur Herstellung eine wässerige Lösung des Polymeren einsetzt, die einen Gewichtsanteil an Polymer von 0,01 bis 30 Gew.-%, vorzugsweise von 0,1 bis 15 und insbesondere von 1 bis 10 Gew.-% aufweist, jeweils bezogen auf das Gesamtgewicht der wässerigen Lösung.
  16. Teilchen nach mindestens einem der Ansprüche 14 bis 15, dadurch gekennzeichnet, dass man bei der Herstellung den Schritt der Inkontaktbringens der Teilchen mit der Polymerlösung bei Temperaturen von 10 bis 90 °C, vorzugsweise von 15 bis 35 °C und insbesondere von 18 bis 30 °C durchführt.
  17. Teilchen nach mindestens einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass die festen Teilchen bei der Herstellung in der Polymerlösung dispergiert werden.
  18. Verwendung von festen Teilchen, hergestellt gemäß dem Anspruch 14, in galvanischen Verfahren (elektrolytisch oder chemisch) oder als Additiv in Schmierstoffzusammensetzungen, in organischen Lösungsmitteln, in polymeren Werkstoffen, oder als Flotationshilfsmittel bzw. als Hilfsmittel zur Aufschlämmung von Tonmineralien.
  19. Verwendung nach Anspruch 18, dadurch gekennzeichnet, dass als feste Teilchen Bornitrid Verwendung findet.
  20. Verfahren zur galvanischen oder autokatalytischen Metallabscheidung auf metallischen Oberflächen, beispielsweise zur Vernickelung von metallischen Oberflächen, dadurch gekennzeichnet, dass man zu einer wässerigen Nickel-Lösung, enthaltend mindestens ein Ni-Salz, eine organische Säure und eine anorganische Phosphorverbindung eine wässerige Dispersion von Bornitrid-Teilchen gibt, die gemäß Anspruch 14 hergestellt worden sind, und dann diese Lösung mit der metallischen Oberfläche in Kontakt bringt, bis sich darauf eine Dispersionsschicht aus Metall und Bornitrid-Teilchen abgeschieden hat
EP08004248A 2008-03-07 2008-03-07 Verwendung von Polymeren zur Modifizierung der Oberflächenladung fester Teilchen Active EP2100912B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT08004248T ATE507259T1 (de) 2008-03-07 2008-03-07 Verwendung von polymeren zur modifizierung der oberflächenladung fester teilchen
ES08004248T ES2363107T3 (es) 2008-03-07 2008-03-07 Empleo de polímeros para la modificación de la carga superficial de partículas sólidas.
DE502008003350T DE502008003350D1 (de) 2008-03-07 2008-03-07 Verwendung von Polymeren zur Modifizierung der Oberflächenladung fester Teilchen
EP08004248A EP2100912B1 (de) 2008-03-07 2008-03-07 Verwendung von Polymeren zur Modifizierung der Oberflächenladung fester Teilchen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08004248A EP2100912B1 (de) 2008-03-07 2008-03-07 Verwendung von Polymeren zur Modifizierung der Oberflächenladung fester Teilchen

Publications (2)

Publication Number Publication Date
EP2100912A1 EP2100912A1 (de) 2009-09-16
EP2100912B1 true EP2100912B1 (de) 2011-04-27

Family

ID=39620208

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08004248A Active EP2100912B1 (de) 2008-03-07 2008-03-07 Verwendung von Polymeren zur Modifizierung der Oberflächenladung fester Teilchen

Country Status (4)

Country Link
EP (1) EP2100912B1 (de)
AT (1) ATE507259T1 (de)
DE (1) DE502008003350D1 (de)
ES (1) ES2363107T3 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2707051C2 (ru) * 2014-10-24 2019-11-21 Басф Се Неамфолитные, кватернизируемые и водорастворимые полимеры для модифицирования поверхностного заряда твердых частиц
WO2016062879A1 (de) * 2014-10-24 2016-04-28 Basf Se Schleifelemente und verfahren zu deren herstellung von schleifelementen

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US145517A (en) 1873-12-16 Improvement in agricultural boilers
NL176436C (nl) 1975-10-04 1985-04-16 Akzo Nv Werkwijze voor de bereiding van positief geladen, stabiele suspensies van polyfluorkoolstofverbindingen.
CH623851A5 (de) 1975-10-04 1981-06-30 Akzo Nv
JP2534208B2 (ja) * 1988-03-17 1996-09-11 三井サイテック 株式会社 推進工法
US5391359A (en) * 1993-01-29 1995-02-21 Phillips Petroleum Company Water dispersible thickeners comprising hydrophilic polymers coated with particulate fatty acids or the salts thereof
FR2774994B1 (fr) * 1998-02-13 2000-05-05 Rhodia Chimie Sa Particules composites comprenant un coeur a base d'un polymere organique contenant une matiere active et un revetement externe a base d'au moins un oxyde et/ou un hydroxyde, leur procede de preparation et leurs utilisations
WO1999048953A1 (en) * 1998-03-23 1999-09-30 Nippon Zeon Co., Ltd. Polymer dispersion composition
FR2804046B1 (fr) * 2000-01-21 2002-07-05 Bio Merieux Procede de preparation de particules colloidales stables fonctionnalisees et particules obtenues
WO2002096954A1 (fr) * 2001-05-28 2002-12-05 Atofina Preparation de poudres de polymeres hydrophiles de faible granulometrie
JP4386831B2 (ja) * 2002-05-22 2009-12-16 ビーエーエスエフ コンストラクション ポリマース ゲゼルシャフト ミット ベシュレンクテル ハフツング ポリマー分散剤の製造のための乾燥助剤としての水溶性ポリマーの使用
SE525758C2 (sv) * 2002-08-16 2005-04-19 Perstorp Specialty Chem Ab Vattenburen homo- eller sampolymerdispersion, förfarande för dess framställning samt dess användning i bindemedel för dess framställning samt dess användning i bindemedel för ytbeläggningar
SE526998C2 (sv) * 2003-07-01 2005-12-06 Celanese Emulsions Norden Ab Förfarande för framställning av en vattenburen sampolymerdispersion, samt användning därav
US7807766B2 (en) 2005-09-21 2010-10-05 Cognis Ip Management Gmbh Polymers for use in cleaning compositions

Also Published As

Publication number Publication date
ES2363107T3 (es) 2011-07-20
DE502008003350D1 (de) 2011-06-09
ATE507259T1 (de) 2011-05-15
EP2100912A1 (de) 2009-09-16

Similar Documents

Publication Publication Date Title
EP2616191B1 (de) Verfahren zur beschichtung von oberflächen und verwendung der nach diesem verfahren beschichteten gegenstände
DE60013317T2 (de) Magnetteilchen-zusammenstellung
EP2147061B1 (de) Nichtionische wasserlösliche additive
DE2644035C3 (de) Verfahren zur galvanischen Abscheidung einer Dispersionsschicht
DE2613099B2 (de) Wäßrige Dispersionsbeschichtungsmassen
DE3201079A1 (de) Kationische latices, verfahren zu ihrer herstellung und ihre verwendung
EP1989263A1 (de) Bariumsulfat
CN109516536A (zh) 一种纳米絮凝剂的制备及其污水处理应用
EP2100912B1 (de) Verwendung von Polymeren zur Modifizierung der Oberflächenladung fester Teilchen
DE1047425B (de) Verfahren zur Herstellung homogener, mit Kieselsaeure gefuellter Polyamide
DE60109677T2 (de) Herstellung von gut dispergierten Suspensionen zum Sprühtrocknen
WO2006092228A1 (de) Verfahren zur abtrennung suspendierter feststoffe
WO2016062879A1 (de) Schleifelemente und verfahren zu deren herstellung von schleifelementen
WO2002086173A1 (de) Entfernung nicht-wasserlöslicher substanzen aus lösungen wässriger metallaufschlüsse
DE2808144A1 (de) Kolloidale magnetische fluessigkeit
EP1177223B1 (de) Wässrige kunststoff-dispersionen mit erhöhter stabilität
DE2156180A1 (de) Verfahren zur Vorbehandlung von elektrisch ablagerbaren Zubereitungen
DE2229426A1 (de) Festes ausflockungshilfsmittel sowie verfahren zu dessen herstellung
DE2158668A1 (de) Arbeitsweise bei der Durchführung eines elektrischen Ablagerungsverfahrens
DE2016627B2 (de) Verfahren zur Steuerung der Zusammensetzung eines Bades für die elektrische Ablagerung eines organischen Kunstharzes
DE1914109A1 (de) Verfahren zum UEberziehen elektrisch leitender Flaechen mit einem duennen Polymerisatfilm
DE69010738T2 (de) Verfahren zur Herstellung von gereinigten Pigmenten und gereinigte Pigmente.
EP2742001B1 (de) Verfahren zur herstellung von hochreinem aluminiumoxid durch reinigung von tonerde
DE102022108533B4 (de) Verfahren zur Herstellung einer chemisch NiP-Elektrolytdispersion mit einzulagernden Feststoffpartikeln
KR960006598B1 (ko) 도금 용액의 불순물 제거방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090529

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502008003350

Country of ref document: DE

Date of ref document: 20110609

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008003350

Country of ref document: DE

Effective date: 20110609

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2363107

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110720

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110427

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110829

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110827

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110728

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008003350

Country of ref document: DE

Effective date: 20120130

BERE Be: lapsed

Owner name: COGNIS IP MANAGEMENT G.M.B.H.

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 507259

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130307

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160330

Year of fee payment: 9

Ref country code: GB

Payment date: 20160331

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160422

Year of fee payment: 9

Ref country code: DE

Payment date: 20160531

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160325

Year of fee payment: 9

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20170710

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008003350

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170307

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170307

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170307

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20170710

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170308