EP2031218B1 - Steuervorrichtung für einen Verbrennungsmotor - Google Patents

Steuervorrichtung für einen Verbrennungsmotor Download PDF

Info

Publication number
EP2031218B1
EP2031218B1 EP08252847.2A EP08252847A EP2031218B1 EP 2031218 B1 EP2031218 B1 EP 2031218B1 EP 08252847 A EP08252847 A EP 08252847A EP 2031218 B1 EP2031218 B1 EP 2031218B1
Authority
EP
European Patent Office
Prior art keywords
ignition
unit
voltage
power supply
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08252847.2A
Other languages
English (en)
French (fr)
Other versions
EP2031218A2 (de
EP2031218A3 (de
Inventor
Kazuhito c/o Keihin Corporation Tokugawa
Shinichi c/o Keihin Corporation Ishikawa
Tomoo c/o Keihin Corporation Shimokawa
Katsuaki c/o Keihin Corporation Wachi
Satoshi c/o Keihin Corporation Chida
Hiroyuki c/o Keihin Corporation Utsumi
Takayuki c/o Keihin Corporation Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Publication of EP2031218A2 publication Critical patent/EP2031218A2/de
Publication of EP2031218A3 publication Critical patent/EP2031218A3/de
Application granted granted Critical
Publication of EP2031218B1 publication Critical patent/EP2031218B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P1/00Installations having electric ignition energy generated by magneto- or dynamo- electric generators without subsequent storage
    • F02P1/08Layout of circuits
    • F02P1/086Layout of circuits for generating sparks by discharging a capacitor into a coil circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3082Control of electrical fuel pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0862Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/06Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of circuit-makers or -breakers, or pick-up devices adapted to sense particular points of the timing cycle
    • F02P7/067Electromagnetic pick-up devices, e.g. providing induced current in a coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2013Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost voltage source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2250/00Problems related to engine starting or engine's starting apparatus
    • F02N2250/02Battery voltage drop at start, e.g. drops causing ECU reset
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N3/00Other muscle-operated starting apparatus
    • F02N3/04Other muscle-operated starting apparatus having foot-actuated levers

Definitions

  • the present invention relates to a control apparatus for an internal combustion engine, and, in particular, to a control apparatus for an internal combustion engine that is used to control a four-stroke engine serving as an internal combustion engine.
  • Techniques to control the startup of a conventional batteryless vehicle are the techniques described in (1) and (2) (see below) in which power consumption is controlled so that startability is guaranteed.
  • an ECU Engine Control Unit
  • a generator that is driven by the rotation of a crankshaft.
  • Prior art document JP 2005 330815 A discloses a batteryless fuel injection device for an internal combustion engine which is capable of injecting sufficient fuel from a fuel injection valve without using a large size generator at a time of engine start.
  • a generator is provided which is driven by the internal combustion engine and power of the generator is supplied to an electric fuel pump which is then driven to supply fuel from a fuel tank to a fuel injection valve arranged at the internal combustion engine.
  • a reciprocating pump is provided which is driven by a kick pedal of the kick starter to supply fuel from the fuel tank to the fuel injection valve when an operation to start the internal combustion engine is performed.
  • the invention was conceived in view of the above-described circumstances and it is an object thereof to provide a control apparatus for an internal combustion engine that, when an internal combustion engine is being started, prevents any stopping of electronic control functions which is caused by a drop in the power supply voltage, and that is able to ensure startability.
  • the control apparatus for an internal combustion engine includes: a fuel injection unit provided in the internal combustion engine; an ignition unit provided in the internal combustion engine; a crank angle detection unit that is provided in the internal combustion engine, and that outputs a crank signal each time a crankshaft rotates by a predetermined angle; a fuel pump used to supply fuel to the fuel injection unit; a booster unit that boosts a power supply voltage; an ignition discharge unit that charges an .ignition condenser using the boosted power suppy voltage, and discharges power with which the ignition condenser has been charged to the ignition unit at the ignition timings; and a control unit that controls the fuel injection unit, the ignition unit, and the fuel pump, that ascertains ignition timings based on the crank signals output from the crank angle detection unit, and that performs a startup control sequence that is made up of: fuel injection processing in which the fuel injection unit is driven so as to perform the initial fuel injection; voltage boosting processing in which, after the fuel
  • the control unit determine based on the crank signals whether or not a period between the crank signal from the previous crank signal detection and the crank signal from the current crank signal detection is equal to or less than a predetermined value, and when the period between the crank signals is equal to or less than the predetermined value, the control unit perform the voltage boosting processing.
  • control apparatus for an internal combustion engine further include: a power supply voltage measuring unit that measures the power supply voltage.
  • the control unit determines whether or not the power supply voltage is equal to or greater than a fuel pump drive permitting voltage, and when the power supply voltage is equal to or greater than the fuel pump drive permitting voltage, the control unit performs the fuel supply processing.
  • the control apparatus for an internal combustion engine includes: a fuel injection unit provided in the internal combustion engine; an ignition unit provided in the internal combustion engine; a crank angle detection unit that is provided in the internal combustion engine, and that outputs a crank signal each time a crankshaft rotates by a predetermined angle; a fuel pump used to supply fuel to the fuel injection unit; a booster unit that boosts a power supply voltage; an ignition discharge unit that charges an ignition condenser using the boosted power supply voltage, and discharges power with which the ignition condenser has been charged to the ignition unit at the ignition timings; a power supply voltage measuring unit that measures the power supply voltage; a control unit that controls the fuel injection unit, the ignition unit, and the fuel pump, that ascertains ignition timings based on the crank signals output from the crank angle detection unit, and that performs a startup control sequence that is made up of: fuel injection processing in which the fuel injection unit is driven so as to perform the initial fuel injection; voltage
  • the control unit determine based on the crank signals whether or not a period between the crank signal from the previous crank signal detection and the crank signal from the current crank signal detection is equal to or less than a predetermined value,-and when the period between the crank signals is equal to or less than the predetermined value; the control unit perform the voltage boosting processing.
  • the control unit when the-period between the crank signals is greater than the predetermined value, the control unit does not perform the voltage boosting processing.
  • the control unit when the power supply voltage-is equal to or greater than the fuel pump drive permitting voltage, the control unit performs the fuel supply processing.
  • the control unit determine whether or not the voltage boosting processing has been executed, and when the voltage boosting processing has been executed, the control unit control the ignition discharge unit so as to discharge to the ignition unit the power with which the ignition condenser has been charged.
  • control unit when the power supply voltage is greater than the fuel pump drive permitting voltage, the control unit omit the fuel supply processing, and when the ignition timing arrives, the control unit determine whether or not the voltage boosting processing has been executed, and when the voltage boosting processing has been executed, the control unit perform the ignition processing.
  • control unit determine whether or not the fuel supply processing has been executed, and when the fuel supply processing has not been executed, and when the power supply voltage is equal to orgreater than the fuel pump drive permitting voltage, the control unit the fuel supply processing.
  • control unit perform battery existence determination processing to determine whether a battery that supplies the power supply voltage is present, and if the control unit determined that no battery is present, the control unit execute the startup control sequence.
  • control apparatus for an internal combustion engine further include: a power supply voltage measuring unit that measures the power supply voltage.
  • a power supply voltage measuring unit that measures the power supply voltage.
  • the control unit determines that no battery is present.
  • the driving of the fuel pump i.e., the fuel supply processing which consurnes the largest amount of power is performed last in the startup control sequence, at the top dead center of the initial compression that requires an ignition output, it is possible to prevent the power supply voltage dropping below the minimum operating voltage of the control unit.
  • the-limited voltage i.e., the power supply voltage
  • FIG. 1 is a structural schematic view showing an engine control system that is provided with the internal combustion engine control apparatus (referred to below as an ECU) of the embodiment
  • the engine control system of the embodiment is schematically formed by an engine 1, a power supply unit 2, a fuel supply unit 3, and an ECU (Engine Control Unit) 4.
  • the engine (i.e., internal combustion engine) 1 is a four-stroke single-cylinder engine, and schematically includes a cylinder 10, a piston 11, a conrod 12, a crankshaft 13, an intake valve 14, an exhaust valve 15, a spark plug 16, an ignition coil 17, an intake pipe 18, an exhaust pipe 19, an air cleaner 20, a throttle valve 21, an injector 22, an intake pressure sensor 23, an intake temperature sensor 24, a throttle opening angle sensor 25, a cooling water temperature sensor 26, and a crank angle sensor 27.
  • the cylinder 10 is a hollow circular cylinder shaped component that is used to make the piston 11 that is located inside it undergo a reciprocating motion by repeating a four stroke cycle consisting of intake, compression, combustion (i.e., expansion), and exhaust.
  • the cylinder 10 has an intake port 10 a, a combustion chamber 10b, and an exhaust port 10c.
  • the intake port 10a is a flow path that is used to supply a mixture formed from air and fuel to the combustion chamber 10b.
  • the combustion chamber 10b is a space that is used to store the aforementioned mixture and cause mixture that has been compressed in the compression stroke to be combusted in the combustion stroke.
  • the exhaust port 10c is a flow path that is used to discharge exhaust gas from the combustion chamber 10b to the outside in the exhaust stroke.
  • a water cooling path 10d that is used to circulate cooling water is provided in an outer wall of the cylinder 10.
  • crankshaft 13 that is used to convert the reciprocating motion of the piston 11 into rotational motion is joined via the conrod 12 to the piston 11.
  • the crankshaft 13 extends in a direction that is orthogonal to the reciprocation direction of the piston 11.
  • a flywheel (not shown), a mission gear, a kick gear that is joined to a kick pedal that is used to start the engine 1 manually, and a rotor 30a of the power supply unit 2 (described below) are joined to the crankshaft 13.
  • the intake valve 14 is a valve component that is used to open and close an aperture portion of the air intake port 10a which is near to the combustion chamber 10b, and is joined to a camshaft (not shown). The intake valve 14 is driven to open and close in accordance with the respective strokes by this camshaft.
  • the exhaust valve 15 is a valve component that is used to open and close an aperture portion of the air exhaust port 10c which is near to the combustion chamber 10b, and is joined to a camshaft (not shown). The exhaust valve 15 is driven to open and close in accordance with the respective strokes by this camshaft.
  • the spark plug 16 has electrodes that face towards the interior of the combustion chamber 10b, and is provided in a topmost portion of the combustion chamber 10b.
  • the spark plug 16 generates a spark between the electrodes by a high-voltage ignition voltage signal that is supplied from the ignition coil 17.
  • the ignition coil 17 is a transformer that is formed by a primary coil and a secondary coil.
  • the ignition coil 17 boosts an ignition voltage signal that is supplied from the ECU 4 to the primary coil, and supplies an ignition voltage signal from the secondary coil to the spark plug 16.
  • the spark plug 16 and the ignition coil 17 correspond to an ignition unit of the invention.
  • the intake pipe 18 is an air supply pipe, and has an intake flow path 18a provided inside it.
  • the intake pipe 18 is joined to the cylinder 10 so that the intake flow path 18a is connected to the intake port 10a.
  • the exhaust pipe 19 is a pipe for discharging exhaust gas, and has an exhaust flow path 19a provided inside it.
  • the exhaust pipe 19 is joined to the cylinder 10 so that the exhaust flow path 19a is connected to the exhaust port 10c.
  • the air cleaner 20 is located upstream from the air flowing through the interior of the intake pipe 18.
  • the air cleaner 20 purifies air taken in from the outside and supplies it to the intake flow path 18a.
  • the throttle valve 21 is provided inside the intake flow path 18a, and pivots by a throttle (not shown) or an accelerator.
  • the cross-sectional area of the intake flow path 18a is changed by the pivoting of the throttle valve 21, and the air intake quantity is accordingly changed.
  • the injector 22 i,e., a fuel injection unit 22 has an injection aperture that-injects fuel that is supplied from the fuel supply unit 3 in accordance with injector drive signals that are supplied from the ECU 4.
  • the injector 22 is provided inside the intake pipe 18 so that the injection aperture faces the intake port 10a.
  • the intake pressure sensor 23 is, for example, a semiconductor pressure sensor that utilizes a piezoresistive effect.
  • the intake pressure sensor 23 is provided in the intake pipe 18 at a position downstream from the airflow passing through the throttle valve 21 so that a sensitive surface of the intake pressure sensor 23 is oriented towards the intake flow path 18a.
  • the intake pressure sensor 23 outputs intake pressure signals that correspond to the intake pressure inside the intake pipe 18 to the ECU 4.
  • the intake temperature sensor 24 is provided in the intake pipe 18 at a position upstream from the airflow passing through the throttle valve 21 so that a sensitive portion of the intake temperature sensor 24 is oriented towards the intake flow path 18a.
  • the intake temperature sensor 24 outputs intake temperature signals that correspond to the intake air temperature inside the intake pipe 18 to the ECU 4,
  • the throttle opening angle sensor 25 outputs throttle opening angle signals-that correspond to the opening angle of the throttle valve 21 to the ECU 4,
  • the cooling-water temperature sensor 26 is provided so that a sensitive portion of the cooling water temperature sensor 26 is oriented towards the cooling water path 10d of the cylinder 10.
  • the cooling water temperature sensor 26 outputs cooling water temperature signals that correspond to the temperature of the cooling water flowing through the cooling water path 10d to the ECU 4.
  • the crank angle sensor 27 (i.e., a crank angle detection unit) 27 outputs a crank signal each time the crankshaft 13 rotates by a predetermined angle in synchronization with the rotation of the crankshaft 13.
  • the crank angle sensor 27 is described in detail below.
  • the power supply unit 2 includes a generator 30, a regulate rectifier 32, and a condenser 33.
  • the generator 30 is a magnetic AC generator and includes a rotor 30a, permanent magnets 30b, and 3-phase stator coils 30c, 30d, and 30e.
  • the rotor 30a is joined to the crankshaft 13 of the engine 1 and rotates in synchronization therewith.
  • the permanent magnets 30b are mounted on an inner circumferential side of the rotor 30a.
  • the 3-phase stator coils 30c, 30d, and 30e are coils that are used to obtain generated output,
  • 3-phase AC voltage is generated by electromagnetic induction from the stator coils 30c, 30d; and 30e.
  • the generated 3-phase AC voltage is output to the regulate rectifier 32.
  • a plurality of projections is formed on an outer circumference of the rotor 30a extending. in the rotation direction of the rotor 30a.
  • the length of the crank angle reference projection 30a 1 is, as an example, approximately twice the length of the auxiliary projections 30a 2 .
  • the plurality of auxiliary projections 30a 2 and the crank angle reference projection 30a 1 are provided so that the respective rear ends of each of the plurality of auxiliary projections 30a 2 and the crank angle reference projection 30a 1 are located at the same angular interval (for example, at 20 b intervals).
  • the crank angle reference position is a position to the front in the rotation direction of a position corresponding to the top dead center TDC, for example, the position TDC 10° which is a position 10° before the top dead center.
  • the permanent magnets 30b are mounted on the inner circumferential side of the rotor 30a.
  • the permanent magnets 30b that are constructed with an N pole and an S pole forming one set are placed every 60° along the inner circumferential side of the rotor 30a.
  • crank angle sensor 27 is, for example, an electromagnetic pickup sensor and, as shown in FIG. 2 , is provided in the vicinity of the outer circumference of the rotor 30a.
  • the crank angle sensor 27 outputs a pair of pulse signals having mutually different polarities each time the crank angle reference projection 30a 1 and the auxiliary-projections 30a 2 pass the vicinity of the crank angle sensor 27.
  • crank angle sensor 27 outputs a pulse signal having a negative polarity amplitude when the front end of each projection goes past in the rotation direction, and outputs a pulse signal having a positive polarity amplitude when the rear end of each projection goes past in the rotation direction,
  • the regulate rectifier 32 includes a rectifier circuit 32a and an output voltage regulator circuit 32b.
  • the rectifier circuit 32a includes six rectifier circuits that are connected in a 3-phase bridge structure and are used to rectify the 3-phase AC voltage input from the respective stator coils 30c, 30d, and 30e.
  • the rectifier circuit 32a rectifies this 3-phase AC voltage to DC voltage and outputs it to the output voltage regulator circuit 32b,
  • the output voltage regulator circuit 32b rectifies the DC voltage input from the rectifier circuit 32a, and generates power supply voltage for the ECU 4 which it then supplies to the ECRU 4.
  • the condenser 33 is a smoothing condenser for stabilizing the power supply, and both ends thereof are connected between the output terminals of the output voltage regulator circuit 32b.
  • the fuel supply unit 3 is formed by a fuel tank 40 and a fuel pump 41.
  • the fuel tank 40 is a container that is used to hold fuel such as, for example, gasoline.
  • the fuel pump 41 is provided inside the fuel tank 40, and pumps out fuel inside the fuel tank 40 and supplies it to the injector 22 in accordance with pump drive signals input from the ECU 4.
  • the ECU 4 includes a waveform shaping circuit 50, a rotation counter 51, an A/D converter 52, a CPU (Central Processing Unit) 53, an oscillation circuit 54, a DC converter 55, an ignition circuit 56, an injector drive circuit 57, a pump drive circuit 58, ROM (Read Only Memory) 59, RAM (Random Access Memory) 60, a timer 61, and a power supply voltage measuring circuit 62.
  • a waveform shaping circuit 50 As shown in FIG. 3 , the ECU 4 includes a waveform shaping circuit 50, a rotation counter 51, an A/D converter 52, a CPU (Central Processing Unit) 53, an oscillation circuit 54, a DC converter 55, an ignition circuit 56, an injector drive circuit 57, a pump drive circuit 58, ROM (Read Only Memory) 59, RAM (Random Access Memory) 60, a timer 61, and a power supply voltage measuring circuit 62.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the ECU 4 which is constructed in this manner is driven by power supply voltage that is supplied from the power supply unit 2, A V IG terminal of the ECRU 4 is connected to an output terminal on a positive pole side of the output voltage regulator circuit 32b.
  • a GND terminal of the ECU 4 is connected to a ground line and to an output terminal on a negative pole side of the output voltage regulator circuit 32b.
  • the waveform shaping circuit 50 performs waveform shaping to change pulse form crank signals that are input from the crank angle sensor 27 into rectangular wave pulse signals (for example, to change negative polarity crank signals into high level signals, and change positive polarity crank and ground level crank signals into low level signals), and outputs the waveform-shaped signals to the rotation counter 51 and the CPU 53.
  • these rectangular wave pulse signals are rectangular wave pulse signals whose cycle is the length of time it takes for the crankshaft 13 to rotate 20°.
  • the rotation counter 51 calculates the engine speed based on the rectangular wave pulse signals that are output from the above-described waveform shaping circuit 50, and outputs a rotation count signal that shows the relevant engine speed to the CPU 53.
  • the A/D converter 52 converts into digital signals intake pressure sensor outputs that are output from the intake pressure sensor 23, intake temperature sensor outputs that are output from the intake temperature sensor 24, throttle opening angle sensor outputs that are output from the throttle opening angle sensor 25, and cooling water temperature sensor outputs that are output from the cooling water temperature sensor 26, and then outputs these digital signals to the CPU 53.
  • the CPU 53 executes an engine control program that is stored in the ROM 59, and performs control of the fuel injection, ignition, and fuel supply of the engine 1 based on the crank signals, the rotation count signals that are output from the rotation counter 51, the intake pressure values that have been converted by the A/D converter 52, the throttle opening angle values and cooling water temperature values, and on the power supply voltage values that are output from the power supply voltage measuring circuit 62.
  • the CPU 53 outputs fuel injection control signals to the injector drive circuit 57 in order to cause a predetermined quantity of fuel to be injected from the injector 22 at the fuel injection timing.
  • the CPU 53 also outputs voltage boost control signals to the oscillation circuit 54 prior to the ignition timing in order to start a voltage boosting operation by the DC converter 55, and also outputs ignition control signals to the ignition circuit 56 (more specifically, to an electrical discharge switch 56b) in order to cause the spark plug 16 to spark at the ignition timing.
  • the CPU 53 outputs fuel supply control signals to the pump drive circuit 58 in order for fuel to be supplied to the injector 22.
  • the oscillation circuit 54 generates PWM (pulse width modulation) signals of a predetermined frequency in accordance with the voltage boost control signals input from the CPU 53, and outputs these PWM signals to the DC converter 55.
  • PWM pulse width modulation
  • the DC converter (i.e., booster unit) 55 performs switching operations in accordance with the PWM signals that are input from the above described oscillation circuit 54, As result, the DC converter (i.e., booster unit) 55 boosts the V IG voltage, namely, the power supply voltage that is supplied from the regulate rectifier 32 to a predetermined voltage (for example, 250 V), and supplies this boosted power supply voltage (referred to below as a boosted power supply voltage) to the ignition circuit 56 (more specifically, to an ignition condenser 56a).
  • a predetermined voltage for example, 250 V
  • the ignition circuit (i.e., an ignition discharge unit which is used for ignition) 56 includes the ignition condenser 56a and the electrical discharge switch 56b.
  • the ignition condenser 56a is used to charge the boosted power supply voltage that is supplied from the above-described DC converter 55.
  • One terminal (a first terminal) of the ignition condenser 56a is connected to a voltage output terminal of the DC converter 55.
  • Another terminal (a second terminal) of the ignition condenser 56a is connected to a ground line.
  • the electrical discharge switch 56b is a switch (for example, a transistor) that switches on and off a connection between two terminals in accordance with ignition control signals that are input from the above-described CPU 53.
  • One terminal of the electrical discharge switch 56b is connected to one terminal of the ignition condenser 56a.
  • the other terminal of the electrical discharge switch 56b is connected to a primary coil of the ignition coil 17.
  • the electrical discharge switch 56b is controlled by the CPU 53 so as to be in an OFF (i.e., non-connected) state when the ignition condenser 56a is being charged, and is controlled so as to be in an ON (i.e., connected) state at the ignition timings.
  • the power with which the ignition condenser 56a has been charged is discharged to the primary coil of the ignition coil 17 as an ignition voltage signal.
  • a DC-CDI system is used for the ignition system.
  • the injector drive circuit 57 In accordance with fuel injection control signals that are input from the above-described CPU 53, the injector drive circuit 57 generates injector drive signals in order to cause a predetermined quantity of fuel to be injected from the injector 22, and outputs these injector drive signals to the injector 22.
  • the pump drive circuit 58 In accordance with fuel supply control signals that are input from the CPU 53, the pump drive circuit 58 generates pump drive signals for causing fuel to be supplied from the fuel pump 41 to the injector 22, and-outputs these pump drive signals to the fuel pump 41.
  • the ROM 59 is non-volatile memory in which engine control programs that are executed by the CPU 53 and various types of data are stored in advance.
  • the RAM 60 is working memory that is used to temporarily hold data when the CPU 53 is executing an engine control program and performing various operations.
  • the timer 61 performs predetermined timer (i.e., clock) operations under the control of the CPU 53.
  • the power supply voltage measuring circuit (power supply voltage measuring unit) 62 measures voltage values of the V IG voltage, namely, the power supply voltage that is supplied from the regulate rectifier 32, and outputs the measurement results to the CPU 53 as power supply voltage values.
  • the engine control system is assumed to be a batteryless system, it is not possible for power supply voltage to be supplied to the ECU 4 unless 3-phase AC voltage from the generator 30 is generated by the rotation of the crankshaft 13.
  • This battery existence determination processing is executed immediately after a starting operation has begun and the power supply-voltage that is supplied from the power supply unit 2 reaches a voltage value (for example, 6V) that is required in order to activate the ECU 4, thereby activates the ECU 4.
  • a voltage value for example, 6V
  • a first type in which the existence or otherwise of a battery is determined based on the power supply voltage values that are supplied from the power supply unit 2
  • a second type in which the existence or otherwise of a battery is determined based on the crank signal (i.e., the crank signals after they have undergone waveform shaping) input situation, and either of these methods may be selected and used.
  • step S1 the CPU 53 determines whether or not the battery existence determination processing has been completed. If the battery existence determination processing has been completed (i.e., if the determination result is YES), the battery existence determination processing is ended and the routine moves to the fuel/ignition control switching determination processing shown in FIG. 7 (FIG. 7 is described in detail below).
  • step S1 determines whether or not the power supply voltage value that is supplied from the power supply voltage unit 2 is less than or equal to a predetermined value (for example, 10 V) (step S2) based on the power supply voltage values that are obtained from the power supply voltage measuring circuit 62.
  • a predetermined value for example, 10 V
  • step S2 if the power supply voltage value-is less than or equal to the predetermined value (i.e., if the determination result is YES), the CPU 53 determines that there is no battery (step S3) and, as the battery existence determination processing has been completed, ends the battery existence determination processing and the routine moves to the fuel/ignition control switching determination processing shown in FIG. 7 (step S4).
  • step S2 If, however, in step S2, the power supply voltage value is greater than the predetermined value (i.e., if the determination result is NO), the CPU 53 determines that there is a battery (step S5) and performs the initial energizing of the fuel pump 41 for two seconds (step S6).
  • the CPU 53 controls the timer 61 so as to set the initial energizing time (two seconds), and outputs a fuel supply control signal to the pump drive circuit 58.
  • a pump drive signal is supplied from the pump drive circuit 58 to the fuel pump 41, and the fuel pump 41 supplies fuel to the injector 22 for two seconds.
  • step S6 the CPU 53 moves to step S4 and, as the battery existence determination processing has been completed, ends the battery existence determination processing and the routine moves to the fuel/ignition control switching determination processing shown in FIG. 7 .
  • the value of the power supply voltage when the ECU 4 i.e., the CPU 53
  • a predetermined value because no battery is present, it is possible to determine that the ECU 4 has been started by power generated by a manual operation, namely, without the use of a battery.
  • Second type Battery existence.determination processing based on crank signal input situation
  • step S10 the CPU 53 determines whether or not the battery existence determination processing has been completed. If the battery existence determination processing has been completed (i.e., if the determination result is YES), the battery existence determination processing is ended and the routine moves to the fuel/ignition control switching determination processing shown in FIG. 7 .
  • step S10 determines whether or not a crank signal (namely, a crank signal that has undergone waveform shaping) input has been made within a predetermined time (for example, within 20 milliseconds) after startup (step S11).
  • a crank signal namely, a crank signal that has undergone waveform shaping
  • step S 11 if a waveform-shaped crank signal has been input within a predetermined time after startup (i.e., if the determination result is YES), the CPU 53 determines that no battery is present (step S 12) and, as the battery existence determination processing has been completed, ends the battery existence determination processing and the routine moves to the fuel/ignition control switching determination processing shown in FIG. 7 (step S13).
  • step S11 determines that a battery is present (step S14), and performs the initial energizing of the fuel pump 41 for two seconds (step S 15).
  • step S15 the CPU 53 moves to step S 13 and, as the battery existence determination processing has been completed, ends the battery existence determination processing and the routine moves to the fuel/ignition control switching determination processing shown in FIG. 7 .
  • FIG. 6A is a timing chart showing a mutual relationship between a crank signal and a power supply voltage when startup cranking is performed by manual operation when no battery is installed.
  • FIG. 6B is a timing chart showing a mutual relationship between a crank signial and a power supply voltage when startup cranking is performed by a self-starter when a battery is installed.
  • a crank signal is generated within a predetermined time after the startup operation (i,e., the kick-starting) has begun and the power supply voltage has reached 6 V, and the ECU 4 (i.e., the CPU 53) has started up.
  • the crank signal is generated after a predetermined time has elapsed.
  • crank signal is not generated within a predetermined time after the ECU startup.
  • the CPU 53 firstly determines whether or not the engine is fully firing (step S20).
  • the CPU 53 determines whether or not the engine is fully firing by determining whether or not the rotation count of the engine I (namely, of the crankshaft 13) is equal to or greater than a predetermined rotation count (for example, 1300 rpm).
  • step S20 if the engine is not fully firing, namely, if the rotation count of the engine 1 is less than 1300 rpm (i.e., if the determination result is NO), the CPU 53 determines whether or not the result of the battery existence determination processing determined that a battery was present (step S21).
  • step S21 if the result of the battery existence determination processing determined that a battery was not present (i.e., if the determination result-was NO), the CPU 53 moves to a batteryless startup control sub routine (step S22).
  • This batteryless startup control is performed when no battery is installed.
  • By controlling the energization sequence to each device associated with fuel injection, ignition, and fuel supply it is possible to prevent any stopping of the electronic control functions of the CPU 53 that is caused by a reduction in the power supply voltage during startup, and ensure startability.
  • the CPU 53 firstly gives permission for an initial fuel injection (step S30).
  • a table showing mutual relationships between power supply voltage values and fuel injection quantities is stored in the ROM 59.
  • the CPU 53 extracts from this table a fuel injection quantity that corresponds to the power supply voltage value obtained from the power supply voltage measuring circuit 62, and calculates the ultimate fuel injection quantity by amending the extracted fuel injection quantity based on a cooling water temperature value obtained from the A/D converter 52.
  • the CPU 53 controls the timer 61 so as to set an initial injection injector drive time, and outputs a fuel injection control signal to the injector drive circuit 57 in order to cause fuel corresponding to the fuel injection quantity calculated in the manner described above to be injected.
  • an injector drive signal that corresponds to the fuel injection control signal is output from the injector drive circuit 57 to the injector 22 for the length of an initial injection injector-drive time, and the initial fuel injection from the injector 22 is performed at engine startup.
  • the CPU 53 determines whether or not a time between crank signals, namely, the time between falling edges of waveform-shaped crank signals which corresponds to the time it takes the crankshaft 13 to rotate 20° is less than or equal to a predetermined time (for example, 5.55 msec) (step S31).
  • a predetermined time for example, 5.55 msec
  • step S31 if the time between crank signals is less than or equal to 5.55 msec, namely, if the rotation count of the crankshaft 13 is equal to or greater than the high rate of 600 rpm (i.e., if the determination result is YES), the CPU 53 begins a voltage boosting operation by the DC converter 55 (step S32).
  • the CPU 53 outputs to the oscillation circuit 54 a voltage boost control signal in order to start a voltage boosting operation by the DC converter 55, and the oscillation circuit 54 outputs a PWM signal having a predetermined frequency to the DC converter 55.
  • the DC converter 55 boosts the power supply voltage to 250 V and supplies it to the ignition condenser 56a by performing a switching operation in accordance with the PWM signals.
  • the ignition condenser 56a is charged, and when the condenser voltage reaches 250 V (i.e., when the ignition condenser 56a is saturated), the CPU 53 stops outputting the voltage booster control signal and stops the voltage boosting of the DC converter 55.
  • step S31 If, however, in step S31, the time between crank signals is greater than 5.55 msec, namely, if the rotation count is less than 600 rpm (i.e., if the determination result is NO), the CPU 53 repeats the processing of step S31.
  • the CPU 53 determines whether or not the ignition timing has arrived (i.e., -whether the-crank-angle reference position has been detected), based on the waveform-shaped cranks signals, (step S33).
  • this rectangular wave pulse signal having a long high level period When the fall edge of this rectangular wave pulse signal having a long high level period is detected, it is possible to determine that the crank angle reference position has been detected (i.e., that the ignition timing has arrived).
  • the CPU 53 performs processing in parallel to detect the crank angle reference position based on the crank signals that have undergone waveform shaping (i.e., on the rectangular wave pulse signals).
  • step S33 when the crank angle reference position has been detected, namely, when the ignition timing has arrived (i.e., if the determination result is YES), the CPU 53 permits ignition output (step S34).
  • the CPU 53 outputs an ignition control signal in order to cause the spark plug 16 to generate a spark at the ignition timings, and switches the electrical discharge switch 56b to ON.
  • the CPU 53 also causes the power with which the ignition condenser 56a has been charged to be discharged to the primary coil of the ignition coil 17.
  • the spark plug 16 generates a spark and the engine 1 is placed in a fully firing state.
  • step S33 If, however, in step S33, the ignition timing has not arrived (i.e., if the determination result is NO), the CPU 53 repeats the processing of step S33.
  • the CPU 53 determines whether or not the power supply voltage value is equal to or greater than the drive permitting voltage of the fuel pump 41 (step S35). If the-power supply voltage value is equal to or greater than this drive-permitting voltage-(i.e., if the determination result is YES), permission to energize the fuel pump 41 is given (step S36).
  • the CPU 53 outputs a fuel supply control signal to the pump drive circuit 58, and the pump drive circuit 58 outputs a pump drive signal to the fuel pump 41 to cause fuel to be supplied to the injector 22.
  • step S36 the CPU 53 ends the batteryless startup control and the routine returns to the fuel/ignition control switching determination processing shown in FIG.7 .
  • step S35 If, however, in step S35, the power supply voltage is less than the drive permitting voltage (i.e., if the determination result is NO), the CPU 53 returns to the processing of step S35.
  • each of the devices associated with fuel injection, ignition, and fuel supply are energized in an energization sequence made up of initial fuel injection, voltage boosting operation performed by the DC converter 55 (i.e., charging of the ignition condenser 56a), ignition output, and driving of the fuel pump 41, in order.
  • FIG. 10 shows temporal changes in the power supply voltage that is supplied from the power supply unit 2 in a period from the commencement of a startup operation until the crankshaft has made three rotations.
  • reference numeral 100 shows changes in the power supply voltage in a non-load state.
  • Reference numeral 200 shows changes in the power supply voltage when normal (i.e., conventional) startup-control is performed; and
  • Reference numeral 300 shows changes in the power supply voltage when the first type of batteryless startup control is performed.
  • each of the devices associated with fuel injection, ignition, and fuel supply are energized in an energization sequence made up of voltage boosting operation performed by the DC converter 55 (i.e., charging of the ignition condenser 56a), driving of the fuel pump 41, initial fuel injection, and ignition output, in order.
  • the limited voltage i.e., the power supply voltage
  • the generator 30 it is possible to effectively use the limited voltage (i.e., the power supply voltage) generated by the generator 30 during a period from the commencement of the startup operation until the top dead center TDC of the initial compression.
  • the limited voltage i.e., the power supply voltage
  • the CPU 53 firstly gives permission fuel injection (step S40).
  • step S40 is the same as the processing of step S30 shown in FIG. 8 .
  • the CPU 53 determines whether or not a time between crank signals is less than or equal to a predetermined time (for example, 5.55 msec) (step S41).
  • a predetermined time for example, 5.55 msec
  • step S41 if the time between crank signals is less than or equal to 5.55 msec, namely, if the rotation count of the crankshaft 13 is equal to or greater than the high rate of 600 rpm (i,e., if the determination result is YES), the CPU 53 begins a voltage boosting operation by the DC converter 55 (step S42).
  • step S42 is the same as the processing of step S32 shown in FIG. 8 .
  • step S41 If, however, in step S41, the time between crank signals is greater than 5.55 msec, namely, if the rotation count is less than 600 rpm (i.e., if the determination result is NO), the CPU 53 moves to the processing of step S43.
  • the CPU 53 determines whether or not the power supply voltage value is equal to or greater than the drive permitting voltage of the fuel pump 41 (step S43). If the power supply voltage value is equal to or greater than this drive permitting voltage (i.e., if the determination result is YES), permission to energize the fuel pump 41 is given (step S44).
  • step S44 is the same as the processing of step S36 shown in FIG. 8 .
  • step S43 If, however, in step S43. the power supply voltage is less than the drive permitting voltage (i.e., if the determination result is NO), the CPU 53 moves to the processing of step S45.
  • the CPU 53 determines whether or not the ignition timing has arrived (i.e., whether the crank angle reference position has been detected), based on the waveform shaped crank signals (step S45).
  • step S45 when the crank angle reference position has been detected, namely, when the ignition timing has arrived (i.e., if the determination result is YES), the CPU 53 determines whether or not the commencement of voltage boosting by the DC converter 55 has been completed (step S46).
  • step S46 if it is determined that the commencement of voltage boosting by the DC converter 55 has been completed (i.e., if the determination result is YES), the CPU 53 permits ignition output (step S47).
  • step S47 is the same as the processing of step S34 shown in FIG. 8 .
  • step S45 the ignition timing has not arrived (i.e., if the determination result is NO)
  • the CPU 53 returns to the processing of step S40.
  • step S46 if it is determined that the commencement of voltage boosting by the DC converter 55 has not been completed (i.e., if the determination result is NO), the CPU 53 returns to the processing of step S40.
  • the CPU 53 determines whether or not the energizing of the fuel pump 4.1. has been completed (step S48). If the energizing of the fuel pump 41 has been completed (i.e., if the determination result is YES), the CPU 53 ends the batteryless startup control and returns to the fuel/ignition control switching determination processing shown in FIG. 7 .
  • step S48 it is determined that the energizing of the fuel pump 41 has not been completed (i.e., if the determination result is NO)
  • the CPU 53 determines whether or not the power supply voltage value is equal to or greater than the drive permitting voltage of the fuel pump 41 (step S49).
  • step S49 the power supply voltage value is equal to or geater than, this drive permitting voltage (i.e., if the determination result is YES), the CPU 53 gives permission to energize the fuel pump 41. (step S50), and the CPU 53 ends the batteryless startup control and returns to the fuel/ignition control switching determination processing shown in FIG 7 .
  • step S49 the power supply voltage value is less than the drive permitting voltage (i.e., if the determination result is NO)
  • the CPU 53 ends the batteryless startup control and returns to the fuel/ignition control switching determination processing shown in FIG. 7 .
  • each of the devices associated with fuel injection, ignition, and fuel supply are energized in an energization sequence in which (1) initial fuel injection, (2)voltage boosting operation performed by the DC converter 55 (i.e., charging of the ignition condenser 56a) are performed first, and if the power supply voltage is equal to or greater than the drive permitting voltage of the fuel pump 41, these are followed by driving of the fuel pump 41, and (3) ignition output are performed, in order.
  • FIG. 12 shows experimental data showing temporal changes after the commencement of a startup (i.e., kick-starting) operation in the intake pressure signal, the crank signal, the power supply voltage, the injector output voltage, the ignition output voltage; and-the fuel pump output voltage when the second type of batteryless control is implemented, and also temporal changes in the power supply voltage when normal (i.e., conventional) startup control is performed.
  • a startup i.e., kick-starting
  • step S22 in FIG. 7 has been described above. The description will now return to FIG. 7 .
  • step S21 in FIG. 7 if the result of the battery existence determination processing is that a battery is present (i.e., if the determination result is YES), the CPU 53 moves to a normal startup control sub-routine (step S23).
  • each of the devices associated with fuel injection, ignition, and fuel supply are energized in an energization sequence made up of voltage boosting operation performed by the DC converter 55 (i.e., charging of the ignition condenser 56a), driving of the fuel pump 41, initial fuel injection, and ignition output, in order.
  • FIG. 13 is an operational flowchart showing normal startup control.
  • step S60 when the CPU 53 proceeds to normal startup control, firstly, the CPU 53 causes a voltage boosting operation to be started by the DC converter 55 (step S60).
  • the CPU 53 determines whether or not the power supply voltage is equal to or greater than the drive permitting voltage of the fuel pump 41 (step S61).
  • step S61 if the power supply voltage is equal to or greater than the drive permitting voltage (i.e., if the determination result is YES), the CPU 53 gives permission for the fuel pump 41 to be energized (step S62). If, however, the power supply voltage is less than the drive permitting voltage (Le., if the determination result is NO), the routine moves to the processing of step S63.
  • the CPU 53 determines whether or not the crank angle reference position has been detected (step S63).
  • step S63 if the crank angle reference position has not been detected (i.e., if the determination result is NO), the CPU 53 ends the normal startup control and returns to the fuel/ignition control switching determination processing shown in FIG 7 .
  • step S64 if the timing for fuel injection during startup has arrived (i.e., if the determination result is YES), the CPU 53 gives permission for startup fuel injection to be performed (step S65),
  • step S64 if the timing for fuel injection during startup has not arrived (i.e., if the determination result is NO), the CPU 53 moves to the processing of step S66.
  • the CPU 53 determines whether or not the timing for ignition output has arrived (step S66). If the timing for ignition output has arrived (i,e., if the determination result is YES), the CPU 53 gives permission for ignition output to be performed (step S67), and ends the normal startup control and returns to the fuel/ignition control switching determination processing shown in FIG. 7 .
  • step S67 the timing for ignition output has not arrived (i.e., if the determination result is NO)
  • the CPU 53 ends the normal startup control and returns to the fuel/ignition control switching determination processing shown in FIG. 7 .
  • step S23 in FIG. 7 The normal startup control of step S23 in FIG. 7 has been described above. The description will now return to FIG. 7 .
  • step S20 in FIG. 7 if the engine 1 is in a fully firing state (i.e., if the determination result is YES), the CPU 53 performs normal running control (step S24).
  • normal running control refers to performing fuel injection, ignition, and fuel supply in accordance with the engine speed, the throttle opening angle, and the intake pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Claims (11)

  1. Steuervorrichtung für einen Verbrennungsmotor, die Motorenstart durch manuelles Kurbeln ausführt, wobei die Steuervorrichtung aufweist:
    eine Kraftstoffeinspritzeinheit (22), die in dem Verbrennungsmotor (1) vorgesehen ist;
    eine Zündeinheit (16, 17), die in dem Verbrennungsmotor (1) vorgesehen ist;
    eine Kurbelwinkelerfassungseinheit (27), die in dem Verbrennungsmotor (1) vorgesehen ist, und die jedes Mal ein Kurbelsignal ausgibt, wenn eine Kurbelwelle (13) um einen vorbestimmten Winkel rotiert;
    eine Kraftstoffpumpe (41), die zum Zuführen von Kraftstoff zu der Kraftstoffeinspritzeinheit (22) verwendet wird;
    eine Verstärkereinheit (55), die eine Energiezuführspannung verstärkt;
    eine Zündungsentladeeinheit (56), die einen Zündkondensator (56a) unter Verwendung der verstärkten Energiezuführspannung lädt, und Leistung entlädt, mit welcher der Zündkondensator (56a) zu der Zündeinheit (16, 17) zu Zündzeitpunkten geladen wurde; und
    eine Steuereinheit (4, 56), die dazu konfiguriert ist, die Kraftstoffeinspritzeinheit (22), die Zündeinheit (16, 17) und die Kraftstoffpumpe (41) zu steuern, zum Sicherstellen der Zündzeitpunkte basierend auf den Kurbelsignalausgaben von der Kurbelwinkelerfassungseinheit (27), und zum Ausführen einer Startsteuersequenz, wobei die Startsteuersequenz aufweist:
    Zulassen einer initialen Kraftstoffeinspritzung, wenn die batterielose Startsteuerroutine beginnt;
    nach dem Zulassen der initialen Kraftstoffeinspritzung, Bestimmen, ob oder nicht eine Zeit zwischen dem Kurbelsignalen geringer oder gleich einer vorbestimmten Zeit ist;
    Beginnen einer Spannungsverstärkungsoperation durch einen DC Konverter, falls die Zeit zwischen den Kurbelsignalen geringer oder gleich zu der vorbestimmten Zeit ist;
    nach dem Beginnen der Spannungsverstärkungsoperation, Bestimmen, ob oder nicht, der Zündzeitpunkt basierend auf den Kurbelsignalen, welche wellenförmig geformt sind, angekommen ist;
    Zulassen einer Zündausgabe, wenn die Kurbelwinkelreferenzposition erfasst wurde;
    nach dem Zulassen der Zündausgabe, Bestimmen, ob oder nicht, die Leistungszuführungsspannung gleich oder größer als eine antriebserlaubende Spannung der Kraftstoffpumpe (41) ist; und
    Zulassen der Anregung der Kraftstoffpumpe (41), falls die Leistungszuführungsspannung gleich oder größer als die den Antrieb erlaubende Spannung ist.
  2. Steuervorrichtung für einen Verbrennungsmotor nach Anspruch 1, wobei
    nachdem die Steuereinheit (4, 56) einen Kraftstoffeinspritzvorgang ausführt, in welchem die Kraftstoffeinspritzeinheit (22) angetrieben ist, um die initiale Kraftstoffeinspritzung auszuführen, die Steuereinheit (4, 56) basierend auf den Kurbelsignalen bestimmt, ob oder nicht, eine Periode zwischen dem Kurbelsignal von der vorherigen Kurbelsignalerfassung und dem Kurbelsignal von der aktuellen Kurbelsignalerfassung gleich einem oder weniger als ein vorbestimmter Wert ist, und wenn die Periode zwischen den Kurbelsignalen gleich einem oder weniger als der vorbestimmte Wert ist, die Steuereinheit (4, 56) einen Spannungsverstärkungsvorgang ausführt, in welchem die Verstärkereinheit (55) gesteuert ist, um die Leistungszuführungsspannung zu verstärken.
  3. Steuervorrichtung für einen Verbrennungsmotor gemäß einem der Ansprüche 1 und 2, ferner aufweisend:
    eine Leistungszuführungsspannungsmesseinheit (62), die die Leistungszuführungsspannung misst, wobei
    nachdem die Steuereinheit (4, 56) einen Zündvorgang ausführt, in welchem die Zündentladeeinheit (56) gesteuert ist, um zu der Zündeinheit (16, 17) die Leistung, mit welcher der Zündkodensator (56a) aufgeladen wurde wenn die Zündzeitpunkte ankommen, zu entladen, die Steuereinheit (4, 56) bestimmt, ob oder nicht, die Leistungszuführungsspannung gleich eineroder größer als eine einen Kraftstoffpumpenantrieb erlaubende Spannung ist, und wenn die Leistungszuführungsspannung gleich oder größer als die den Kraftstoffpumpenantrieb erlaubende Spannung ist, die Steuereinheit (4, 56) einen Kraftstoffzuführvorgang ausführt, in welchem die Kraftstoffpumpe (41) zum Zuführen von Kraftstoff zu der Kraftstoffeinspritzeinheit (22) angetrieben ist.
  4. Steuervorrichtung für einen Verbrennungsmotor, der Motorstart durch manuelles Kurbeln ausführt, wobei die Steuervorrichtung aufweist:
    eine Kraftstoffeinspritzeinheit (22), die in dem Verbrennungsmotor (1) vorgesehen ist;
    eine Zündeinheit (16, 17), die in dem Verbrennungsmotor (1) vorgesehen ist;
    eine Kurbelwinkelerfassungseinheit (27), die in dem Verbrennungsmotor (1) vorgesehen ist, und die jedes Mal wenn eine Kurbelwelle (13) um einen vorbestimmten Winkel rotiert ein Kurbelsignal ausgibt;
    eine Kraftstoffpumpe (41), die zum Zuführen von Kraftstoff zu der Kraftstoffeinspritzeinheit (22) verwendet wird;
    eine Verstärkereinheit (55), die eine Leistungszuführungsspannung verstärkt;
    eine Zündentladeeinheit (56), die einen Zündkondensator (56a) unter Verwendung der verstärkten Leistungszuführungsspannung lädt, und die Leistung, mit welcher der Zündkondensator (56) geladen wurde, zu der Zündeinheit (16, 17) zu Zündzeitpunkten entlädt;
    eine Leistungszuführungsspannungsmessungseinheit (62), die eine Leistungszuführungsspannung misst; und
    eine Steuereinheit (4, 56), die dazu konfiguriert ist, die Kraftstoffeinspritzeinheit (22), die Zündeinheit (16, 17) und die Kraftstoffpumpe (41) zu steuern, zum Sicherstellen der Zündzeitpunkte basierend auf den Kurbelsignalausgaben von der Kurbelwinkelerfassungseinheit (27), und zum Ausführen einer Startsteuersequenz, wobei die Startsteuersequenz aufweist:
    Zulassen einer initialen Kraftstoffeinspritzung wenn die batterielose Startsteuerroutine beginnt;
    nach dem Zulassen der initialen Kraftstoffeinspritzung, Bestimmen, ob oder nicht eine Zeit zwischen Kurbelsignalen geringer oder gleich zu einer vorbestimmten Zeit ist;
    Beginnen einer Spannungsverstärkungsoperation durch einen DC Konverter, falls die Zeit zwischen den Kurbelsignalen geringer oder gleich zu der vorbestimmten Zeit ist;
    nach dem Beginnen der Spannungsverstärkungsoperation, Bestimmen, ob oder nicht die Leistungszuführungsspannung gleich oder größer als eine antriebserlaubende Spannung der Kraftstoffpumpe (41) ist;
    Zulassen der Anregung der Kraftstoffpumpe (41), falls die Leistungszuführungsspannung gleich oder größer als die den antrieberlaubende Spannung ist;
    nach dem Zulassen der Anregung der Kraftstoffpumpe (41), Bestimmen, ob oder nicht der Zündzeitpunkt gekommen ist, basierend auf den Kurbelsignalen, welche wellenförmig geformt sind;
    Bestimmen, ob oder nicht der Beginn der Spannungsverstärkung durch den DC Konverter komplettiert wurde, wenn der Zündzeitpunkt gekommen ist;
    Zulassen eines an der Zündausgabe, falls bestimmt wurde, dass der Beginn der Spannungsverstärkung durch den DC Konverter vervollständigt wurde;
    nach dem Zulassen der Zündausgabe, Bestimmen, ob oder nicht die Anregung der Kraftstoffpumpe (41) komplettiert wurde;
    Beenden der batterielosen Startsteuerrung, falls die Anregung der Kraftstoffpumpe (41) nicht komplettiert wurde;
    Bestimmen, ob oder nicht der Leistungszuführungsspannungswert gleich oder größer als die den antrieberlaubende Spannung der Kraftstoffpumpe (41) ist, falls es bestimmt wurde, dass die Anregung der Kraftstoffpumpe (41) nicht komplettiert wurde;
    Zulassen der Anregung der Kraftstoffpumpe (41), falls der Leistungszuführungsspannungswert gleich oder größer als die den antrieberlaubende Spannung ist; und
    Nach dem Zulassen der Anregung der Kraftstoffpumpe (41), Beenden der batterielosen Startsteuerung.
  5. Steuervorrichtung für einen Verbrennungsmotor nach Anspruch 4, wobei
    nach einem Kraftstoffeinspritzvorgang, in welchem die Kraftstoffeinspritzeinheit (22) zum Ausführen der initialen Kraftstoffeinspritzung angetrieben ist, die Steuereinheit (4, 56) basierend auf den Kurbelsignalen bestimmt, ob oder nicht eine Periode zwischen den Kurbelsignalen von einem vorherigen Kurbelsignal von einer vorherigen Kurbelsignalerfassung und dem Kurbelsignal von einer gegenwärtigen Kurbelsignalerfassung gleich oder geringer als ein vorbestimmter Wert ist, und wenn die Periode zwischen den Kurbelsignalen gleich oder kleiner als der vorbestimmte Wert ist, die Steuereinheit (4, 56) einen Spannungsverstärkungsvorgang ausführt, in welchem die Verstärkereinheit (55) zum Verstärken der Leistungszuführungsspannung gesteuert ist, wobei
    wenn die Periode zwischen den Kurbelsignalen größer ist als der vorbestimmte Wert, die Steuereinheit (4, 56) den Spannungsverstärkungsvorgang nicht ausführt, und wobei, wenn die Leistungszuführungsspannung gleich oder größer als eine den kraftstoffpumpenantrieberlaubende Spannung ist, die Steuereinheit (4, 56) einen Kraftstoffzuführvorgang ausführt, in welchem die Kraftstoffpumpe (41) zum Zuführen von Kraftstoff zu der Kraftstoffeinspritzeinheit (22) angetrieben ist.
  6. Steuervorrichtung für einen Verbrennungsmotor gemäß einem der Ansprüche 4 und 5, wobei
    nach dem Kraftstoffzuführvorgang, wenn der Zündzeitpunkt kommt, die Steuereinheit (4, 56) bestimmt, ob oder nicht der Spannungsverstärkungsvorgang ausgeführt wurde, und wenn der Spannungsverstärkungsvorgang ausgeführt wurde, die Steuereinheit (4, 56) einen Zündvorgang ausführt, in welchem die Zündentladeeinheit (56) gesteuert ist um zu der Zündeinheit (16, 17) die Leistung mit welcher der Zündkondensator (56) geladen wurde zu entladen.
  7. Steuervorrichtung für einen Verbrennungsmotor nach Anspruch 6, wobei
    wenn die Leistungszuführungsspannung geringer ist als die den kraftstoffpumpenantrieberlaubende Spannung, die Steuereinheit (4, 56) den Kraftstoffzuführvorgang verhindert, und wenn der Zündzeitpunkt kommt, die Steuereinheit (4, 56) bestimmt, ob oder nicht der Spannungsverstärkungsvorgang ausgeführt wurde, und wenn der Spannungsverstärkungsvorgang ausgeführt wurde, die Steuereinheit (4, 56) den Zündvorgang ausführt.
  8. Steuereinheit für eine Verbrennungsmotor nach Anspruch 7, wobei
    nach dem Zündvorgang, die Steuereinheit (4, 56) bestimmt, ob oder nicht, der Kraftstoffzuführvorgang ausgeführt wurde, und wenn der Kraftstoffzuführvorgang nicht ausgeführt wurde, und wenn die Leistungszuführungsspannung gleich oder größer ist als die den pumpenantrieberlaubende Spannung, die Steuereinheit (4, 56) den Kraftstoffzuführvorgang ausführt.
  9. Steuervorrichtung für einen Verbrennungsmotor gemäß einem der Ansprüche 1 bis 8, wobei
    nachdem die Steuereinheit (4, 56) aktiviert wurde, die Steuereinheit (4, 56) einen Batterieexistenzbestimmungsvorgang ausführt, zum Bestimmen, ob eine Batterie, die Leistungszuführungsspannung bereitstellt, vorhanden ist, und falls die Steuereinheit (4, 56) bestimmt, dass keine Batterie vorhanden ist, die Steuereinheit (4, 56) die Startsteuersequenz ausführt.
  10. Steuervorrichtung für einen Verbrennungsmotor gemäß Anspruch 9, ferner aufweisend:
    eine Leistungszuführungsspannungsmesseinheit (62), die die Leistungszuführungsspannung misst, wobei
    in dem Batterieexistenzbestimmungsvorgang, wenn die Steuereinheit (4, 56) bestimmt, dass die Leisturigszuführungsspannung bei Aktivierung gleich oder geringer als ein vorbestimmter Wert ist, die Steuereinheit (4, 56) bestimmt, dass keine Batterie vorhanden ist.
  11. Steuervorrichtung für einen Verbrennungsmotor nach Anspruch 9, wobei
    in dem Batterieexistenzbestimmungsvorgang, wenn das Kurbelsignal innerhalb einer vorbestimmten Zeit nach Aktivierung eingegeben ist, die Steuereinheit (4, 56) bestimmt, dass keine Batterie vorhanden ist.
EP08252847.2A 2007-08-29 2008-08-28 Steuervorrichtung für einen Verbrennungsmotor Active EP2031218B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007223192A JP4925976B2 (ja) 2007-08-29 2007-08-29 内燃機関制御装置

Publications (3)

Publication Number Publication Date
EP2031218A2 EP2031218A2 (de) 2009-03-04
EP2031218A3 EP2031218A3 (de) 2011-10-12
EP2031218B1 true EP2031218B1 (de) 2016-04-13

Family

ID=40058018

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08252847.2A Active EP2031218B1 (de) 2007-08-29 2008-08-28 Steuervorrichtung für einen Verbrennungsmotor

Country Status (3)

Country Link
US (1) US7930092B2 (de)
EP (1) EP2031218B1 (de)
JP (1) JP4925976B2 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4533404B2 (ja) * 2007-05-24 2010-09-01 日立オートモティブシステムズ株式会社 エンジン制御装置
JP2009167977A (ja) * 2008-01-18 2009-07-30 Yamaha Motor Co Ltd エンジンの動作制御装置およびそれを備えた車両
US8490593B2 (en) * 2009-06-19 2013-07-23 Tai-Her Yang Split-type auxiliary power combustion and emergency starting system
JP5331663B2 (ja) * 2009-11-30 2013-10-30 日立オートモティブシステムズ株式会社 電磁式燃料噴射弁の駆動回路
JP5910943B2 (ja) * 2012-08-27 2016-04-27 本田技研工業株式会社 バッテリレスエンジンの点火装置
DE102013013628B4 (de) * 2013-08-16 2022-11-10 Andreas Stihl Ag & Co. Kg Verfahren zum Starten eines Verbrennungsmotors mit einer Startvorrichtung
US10774765B2 (en) 2013-08-16 2020-09-15 Andreas Stihl Ag & Co. Kg Method for starting a combustion engine having a starter apparatus
JP6329039B2 (ja) * 2014-09-17 2018-05-23 株式会社ケーヒン 燃料噴射制御装置
US10240552B2 (en) * 2016-09-26 2019-03-26 Mahle Electric Drives Japan Corporation Fuel injection system for engine
JP2018178757A (ja) * 2017-04-04 2018-11-15 本田技研工業株式会社 エンジンシステム
JP6815260B2 (ja) * 2017-04-04 2021-01-20 本田技研工業株式会社 エンジンシステム
JP2020084862A (ja) 2018-11-21 2020-06-04 本田技研工業株式会社 エンジンシステム
JP7490482B2 (ja) 2020-07-20 2024-05-27 本田技研工業株式会社 燃料噴射方法および燃料噴射装置
JP2023088091A (ja) * 2021-12-14 2023-06-26 本田技研工業株式会社 エンジン駆動発電機

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3154503B2 (ja) * 1991-04-16 2001-04-09 三菱電機株式会社 内燃機関制御装置
JP3201684B2 (ja) * 1993-10-05 2001-08-27 本田技研工業株式会社 バッテリレス車の始動時電装品負荷軽減制御装置
JP3827059B2 (ja) * 2000-07-11 2006-09-27 本田技研工業株式会社 エンジンの始動制御装置
JP2002256962A (ja) * 2001-02-26 2002-09-11 Mikuni Corp 内燃機関用電源装置
JP2004068792A (ja) * 2002-08-09 2004-03-04 Kokusan Denki Co Ltd 内燃機関用燃料噴射・点火装置
US7279855B2 (en) * 2003-04-04 2007-10-09 Hitachi, Ltd. Electric drive device for vehicle and hybrid engine/motor-type four wheel drive device
JP2004316451A (ja) * 2003-04-11 2004-11-11 Keihin Corp エンジンの始動制御装置及び始動制御方法
JP4337410B2 (ja) * 2003-06-06 2009-09-30 国産電機株式会社 コンデンサ放電式内燃機関用点火装置
JP2005261047A (ja) * 2004-03-10 2005-09-22 Denso Corp 車両用電源装置
JP4415779B2 (ja) * 2004-03-25 2010-02-17 株式会社デンソー 二次空気導入システム用駆動装置
JP2005330815A (ja) * 2004-05-18 2005-12-02 Kokusan Denki Co Ltd 内燃機関用燃料噴射装置
US7021255B2 (en) * 2004-06-21 2006-04-04 Ford Global Technologies, Llc Initialization of electromechanical valve actuator in an internal combustion engine
JP4173502B2 (ja) * 2005-08-05 2008-10-29 株式会社ケーヒン 電子燃料噴射制御装置
JP4188964B2 (ja) * 2005-11-08 2008-12-03 三菱電機株式会社 燃料噴射装置
JP2007170204A (ja) * 2005-12-19 2007-07-05 Kokusan Denki Co Ltd 内燃機関用燃料噴射装置
JP2008005649A (ja) * 2006-06-23 2008-01-10 Denso Corp ピエゾアクチュエータの駆動装置
US7949457B2 (en) * 2007-08-29 2011-05-24 Keihin Corporation Control apparatus for internal combustion engine

Also Published As

Publication number Publication date
EP2031218A2 (de) 2009-03-04
JP2009057833A (ja) 2009-03-19
US7930092B2 (en) 2011-04-19
JP4925976B2 (ja) 2012-05-09
US20090063014A1 (en) 2009-03-05
EP2031218A3 (de) 2011-10-12

Similar Documents

Publication Publication Date Title
EP2031218B1 (de) Steuervorrichtung für einen Verbrennungsmotor
US7949457B2 (en) Control apparatus for internal combustion engine
JP2009024540A (ja) エンジン始動装置
US8056536B2 (en) Ignition device for internal combustion engine
JP3596382B2 (ja) 筒内直噴形2サイクル内燃機関用燃料噴射装置及びその制御方法
US7472688B2 (en) Ignition device for internal combustion engine
US20060169249A1 (en) Ignition device for internal combustion engine
US7997245B2 (en) Fuel injection control apparatus
US6854450B2 (en) Electronic control system for engine
JP2001193540A (ja) 内燃機関の停止位置制御方法及び装置
JP4822543B2 (ja) エンジン制御装置およびそのイニシャル処理方法
JP4881817B2 (ja) 内燃機関制御装置
JP6724247B2 (ja) 内燃機関用制御装置及び内燃機関の制御方法
US7841318B2 (en) Control apparatus for internal combustion engine
EP2146079A2 (de) Motorsteuerungsvorrichtung
JP2004084577A (ja) 2サイクルエンジンの制御装置
JP6952183B2 (ja) エンジン用制御装置
JP2005030250A (ja) 内燃エンジンの電子制御式燃料噴射装置
JP4949171B2 (ja) 内燃機関制御装置
JP6720045B2 (ja) エンジン始動装置
JP4367230B2 (ja) コンデンサ放電式内燃機関用点火装置
JP4396489B2 (ja) 内燃機関用燃料噴射装置
JP2021080842A (ja) エンジン始動制御装置
JP2004084579A (ja) 2サイクル直噴エンジンの制御装置
JP2004084578A (ja) 2サイクル直噴エンジンの制御装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F02P 1/08 20060101ALI20110907BHEP

Ipc: F02N 3/04 20060101ALN20110907BHEP

Ipc: F02D 41/34 20060101ALN20110907BHEP

Ipc: F02N 11/08 20060101ALI20110907BHEP

Ipc: F02D 37/02 20060101ALI20110907BHEP

Ipc: F02P 15/00 20060101ALI20110907BHEP

Ipc: F02P 7/067 20060101ALI20110907BHEP

Ipc: F02D 41/06 20060101AFI20110907BHEP

Ipc: F02D 41/30 20060101ALI20110907BHEP

17P Request for examination filed

Effective date: 20120412

AKX Designation fees paid

Designated state(s): DE FR GB IT

RIC1 Information provided on ipc code assigned before grant

Ipc: F02P 7/067 20060101ALI20150904BHEP

Ipc: F02P 15/00 20060101ALI20150904BHEP

Ipc: F02D 41/34 20060101ALN20150904BHEP

Ipc: F02D 37/02 20060101ALI20150904BHEP

Ipc: F02N 3/04 20060101ALN20150904BHEP

Ipc: F02N 11/08 20060101ALI20150904BHEP

Ipc: F02D 41/06 20060101AFI20150904BHEP

Ipc: F02D 41/30 20060101ALI20150904BHEP

Ipc: F02P 1/08 20060101ALI20150904BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008043464

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008043464

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170116

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210715

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210722

Year of fee payment: 14

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20211210 AND 20211215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602008043464

Country of ref document: DE

Owner name: HITACHI ASTEMO, LTD., HITACHINAKA-SHI, JP

Free format text: FORMER OWNER: KEIHIN CORPORATION, TOKYO, JP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220712

Year of fee payment: 15

Ref country code: DE

Payment date: 20220712

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008043464

Country of ref document: DE