EP2029872A1 - Verfahren zum betreiben einer brennkraftmaschine - Google Patents
Verfahren zum betreiben einer brennkraftmaschineInfo
- Publication number
- EP2029872A1 EP2029872A1 EP07728784A EP07728784A EP2029872A1 EP 2029872 A1 EP2029872 A1 EP 2029872A1 EP 07728784 A EP07728784 A EP 07728784A EP 07728784 A EP07728784 A EP 07728784A EP 2029872 A1 EP2029872 A1 EP 2029872A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cylinder
- torque
- differences
- combustion position
- specific
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1497—With detection of the mechanical response of the engine
- F02D41/1498—With detection of the mechanical response of the engine measuring engine roughness
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/008—Controlling each cylinder individually
- F02D41/0085—Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D43/00—Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/10—Parameters related to the engine output, e.g. engine torque or engine speed
- F02D2200/1012—Engine speed gradient
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/005—Controlling exhaust gas recirculation [EGR] according to engine operating conditions
- F02D41/0057—Specific combustion modes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3017—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
- F02D41/3035—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/401—Controlling injection timing
Definitions
- the invention relates to a method for operating an internal combustion engine according to the preamble of claim 1.
- the present invention has the object, a method of the type mentioned in such a way that it allows quiet and consumption and emission-optimal operation of the internal combustion engine in as many operating conditions without great effort.
- Rotary variable is understood to mean that the rotational variable from one cylinder to another, so “local”, differs. Under the concept of a “fluctuation” of Rotary variable, however, understood that the rotational size of the same cylinder varies over time.
- the rotational variable is usually a rotational acceleration of the crankshaft and / or a rotational speed of the crankshaft detected individually for each cylinder and detected for a multiplicity of times within a working cycle.
- the combustion position may be optimized to reduce said differences and / or variations, which improves comfort in the operation of the internal combustion engine and optimizes emissions and fuel consumption of the internal combustion engine.
- Rotary variable depend essentially on a combustion position, is a mode with partially homogeneous mixture formation and / or a regeneration mode for an exhaust aftertreatment device. This is based on the following considerations:
- combustion processes have been developed to meet the ever-increasing requirements in terms of consumption, exhaust emissions, noise and ride comfort - in the case of installation in a motor vehicle, for which high exhaust gas recirculation rates are characteristic.
- combustion processes are called “partially homogeneous” because, in contrast to conventional combustion processes, they have a greater thorough mixing and homogenization of the cylinder filling. Operation of the internal combustion engine with such a "non-conventional" combustion process is not possible in the entire speed and load range, but in a relatively large emission-relevant area.
- the method according to the invention it is possible by an adaptation of the timing of the fuel injection and / or a fresh air amount and / or an exhaust gas recirculation rate to influence the ignition delay and thus also the combustion position and thus to reduce the said differences and / or variations in the rotational size.
- This is possible in contrast to the prior art without a pressure measurement in a master cylinder or the complex evaluation of a structure-borne noise signal, whereby the costs are low when using the method according to the invention.
- the cost of calculating a heating process can be omitted. Instead, the already present rotary variable is evaluated accordingly.
- a torque, a torque derived from a cylinder pressure in a guide cylinder, a torque determined from a lambda value and an air charge, or a torque determined from the torque be used as the reference value for the absolute value.
- the adaptation of the time of the fuel injection and / or the amount of fresh air and / or the exhaust gas recirculation rate can be effected by the cylinder-specific combustion position or the cylinder-specific torque is tracked to a desired value. This is programmatically easy to implement.
- the combustion position can be set to a temporal and / or local mean value, for example, by the difference between a cylinder-specific actual rotary variable and an average over the cylinder actual rotary variable is fed directly to a controller.
- Figure 1 is a schematic representation of an internal combustion engine with several
- FIG. 2 shows a diagram in which a high-temporal signal of a speed sensor of the internal combustion engine of FIG. 1 is plotted over time;
- FIG. 3 is a block diagram for explaining a method of operating the
- FIG. 4 is a further block diagram for explaining a method for
- FIG. 5 is another block diagram for explaining a method of operating the internal combustion engine of FIG. 1.
- an internal combustion engine bears the reference numeral 10 as a whole.
- it comprises a total of four cylinders 12a, 12b, 12c and 12d. These are in turn provided with combustion chambers 14a to d, into which fresh air passes via an inlet valve 16a to d and an intake pipe 18.
- Fuel is injected into the combustion chambers 14a-d through injectors 20a-d which are connected to a common high-pressure fuel accumulator 22, also referred to as "RaM".
- Combustion exhaust gases are directed from the combustion chambers 14a-d via exhaust valves 24a-d to an exhaust pipe 26 to an exhaust aftertreatment device 28.
- a fresh air mass flowing via the intake pipe 18 to the combustion chambers 14a to d is detected by an HFM sensor 34.
- a combustion chamber pressure sensor 36 is arranged, which detects the pressure in the combustion chamber 14d.
- the corresponding cylinder 12d is so far a "master cylinder".
- a lambda sensor 37 is arranged before the exhaust aftertreatment device 28 arranged.
- the internal combustion engine 10 can be operated with exhaust gas recirculation.
- an exhaust gas recirculation valve (not shown in the drawing) may be present (external exhaust gas recirculation), or it may be possible to work with internal exhaust gas recirculation through appropriate valve opening times.
- the operation of the internal combustion engine 10 is controlled and regulated by a control and regulating device 38.
- This receives signals from, inter alia, the crankshaft sensor 32, the HFM sensor 34 and the combustion chamber pressure sensor 36.
- the high-temporal signal n (rotational speed or rotational speed) of the crankshaft sensor 32 is plotted over the time t. It can be seen that even with “global” constant speed n, the "microscopically”, ie temporally high resolution, considered n varies cyclically. This results from the individual burns in the individual cylinders 12, which each lead to a brief rotational acceleration of the crankshaft 30. It can be seen from FIG. 2 that these rotational accelerations and the maximum or minimum rotational speeds vary from cylinder 12 to cylinder 12, but also from working cycle to working cycle (designated by reference numbers 40a and 40b in FIG. 2).
- the acceleration which is indicated by the dot-dash line 42c in Figure 2
- the acceleration 42d in the working cycle 40a for the cylinder 12d is lower than for the same cylinder 12d in the working cycle 40b.
- the variation of the rotational acceleration from one cylinder 12 to the other cylinder 12 is referred to as “difference”, the variation of Spin of the same cylinder 12 from one working game 40 to another referred to as "fluctuation”.
- a first operating state comprises a "conventional" operating mode, in which a comparatively low exhaust gas recirculation rate of at most 30% is used.
- Another operating state includes a "non-conventional" mode of operation in which a comparatively high exhaust gas recirculation rate of usually more than 35% is present.
- Such a high exhaust gas recirculation rate leads to a so-called “partially homogeneous” operation, in which there is a comparatively strong mixing and homogenization of the cylinder charge, with a comparatively high ignition delay (the ignition delay is the time elapsing from the injection of the fuel until it ignites ).
- combustion position is understood to be the crank angle at which a certain proportion, usually 50%, of the total heat is converted during fuel combustion.
- a conventional "leveling control” can be applied.
- the injected fuel masses for each injector 20a to 20d are adapted so that the most uniform possible speed or torque curve is achieved.
- corresponding fuel correction amounts are determined and applied for each injector 20a to 20d.
- This "learning process” is operating point dependent and takes place continuously, so that changes that occur during the lifetime of the Set internal combustion engine 10, can be compensated.
- changes in the cylinder 12a to d for example in the form of different leakages and friction losses, can also occur.
- the combustion position in turn, depends mainly on the time (usually expressed by a crank angle) of a fuel injection and the amount of fresh air supplied via the intake pipe 18 and the intake valves 16a to d and the exhaust gas recirculation rate.
- FIG. 3 A general method for operating the internal combustion engine 10 of FIG. 1 is shown in FIG. 3. Thereafter, in block 44, the fuel correction amounts are first adapted in the conventional operating mode in the sense of a quantity compensation control, so that as uniform a course of the rotational speed signal as possible is obtained in this operating mode. In 46, these correction values are applied, and in subsequent block 48 determines the torque contribution for each individual cylinder 12a to d for each working cycle, for example, from the detected cylinder-individual and work-game-individual rotational acceleration of the crankshaft 30. In 50 it is queried whether to continue working in the conventional operating mode or in the non-conventional operating mode, ie for example, a partially homogeneous
- Combustion process is to be changed. If the system is changed to the non-conventional operating mode, a desired uniformity of the rotational speed signal is brought about individually by adapting the time of the fuel injection, the supplied fresh air quantity or the exhaust gas recirculation rate, ie ultimately by an at least indirect regulation of the combustion position. The corresponding correction values are then applied again in 46, and so on.
- a very simple method for the combustion position control results from FIG. 4: In this method, the combustion position is not determined directly at all. Instead, a measured cylinder-individual rotational acceleration dn / dt_ist is fed to a mean value generator 54, which forms a temporal and spatial mean value. This is set equal to the desired spin, ie the setpoint dn / dt_soll. In 56, the difference between this setpoint dn / dt_soll and the cylinder-specific actual value dn / dt_ist is formed and supplied to a controller 58.
- a correction value AB_korr as the manipulated variable, which is added in 62 to an activation start AB_St for the respective injector 20a to d.
- the actuation start AB_St is determined in 64 on the basis of the current operating point, for example the current rotational speed n and the current torque MD.
- the method shown in Figure 4 basically corresponds to the principle of a "compensation control", because by this method ultimately the combustion position of all cylinders 12a to d is equalized. This is based on the consideration that the deviation of the actual rotational acceleration dn / dt_ist from the target rotational acceleration dn / dt_soll is equal to the deviation of the cylinder-specific combustion positions from an average value.
- Reference torque used as a reference point Reference torque used.
- This reference torque may be an applied value for the respective operating point, if it can be assumed that the sum of the cylinder-specific deviations from the setpoint torque is equal to zero, ie the actual engine torque actual torque coincides with the setpoint torque.
- the absolute "global" engine torque can also be calculated, for example, based on the signal of the combustion chamber pressure sensor 36 by calculating the indicated torque from the measured pressure, or from the detected by the crankshaft sensor 32 crankshaft rotational speed and - spin, or on the basis of Signals from the lambda sensor 37 and the HFM sensor 34 and recalculation of the fuel mass actually injected from the injectors 20a to d.
- the signal of the crankshaft sensor 32 that is, for example, the rotational acceleration dn / dt_act
- an actual value calculation block 66 which determines an explicit actual combustion position VLJst using the torque M determined in the manner just described.
- a target combustion position VL soll is determined.
- FIG. 56 here and below, functionally equivalent regions are provided with the same reference symbols for FIG. 4
- the difference between the actual combustion position VLJst and the desired combustion position VL_soll is formed and fed to the controller 58, which outputs a correction value AB corr.
- a target torque of the entire internal combustion engine 10th specifies the actual torque and supplies the difference to a controller.
- the controller could, for example, by a change in the amount of fuel, the fresh air mass, the exhaust gas mass, a boost, etc., balance the difference.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006026640A DE102006026640A1 (de) | 2006-06-08 | 2006-06-08 | Verfahren zum Betreiben einer Brennkraftmaschine |
PCT/EP2007/054331 WO2007141096A1 (de) | 2006-06-08 | 2007-05-04 | Verfahren zum betreiben einer brennkraftmaschine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2029872A1 true EP2029872A1 (de) | 2009-03-04 |
EP2029872B1 EP2029872B1 (de) | 2012-10-31 |
Family
ID=38229880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07728784A Not-in-force EP2029872B1 (de) | 2006-06-08 | 2007-05-04 | Verfahren zum betreiben einer brennkraftmaschine |
Country Status (7)
Country | Link |
---|---|
US (1) | US8141540B2 (de) |
EP (1) | EP2029872B1 (de) |
JP (1) | JP4971439B2 (de) |
KR (2) | KR20110088582A (de) |
CN (1) | CN101460727B (de) |
DE (1) | DE102006026640A1 (de) |
WO (1) | WO2007141096A1 (de) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI122489B (fi) * | 2008-05-26 | 2012-02-15 | Waertsilae Finland Oy | Menetelmä ja järjestelmä dieselmoottorin sylintereiden tasapainottamiseksi |
US8646435B2 (en) | 2008-07-11 | 2014-02-11 | Tula Technology, Inc. | System and methods for stoichiometric compression ignition engine control |
US8336521B2 (en) * | 2008-07-11 | 2012-12-25 | Tula Technology, Inc. | Internal combustion engine control for improved fuel efficiency |
US8402942B2 (en) * | 2008-07-11 | 2013-03-26 | Tula Technology, Inc. | System and methods for improving efficiency in internal combustion engines |
US8701628B2 (en) | 2008-07-11 | 2014-04-22 | Tula Technology, Inc. | Internal combustion engine control for improved fuel efficiency |
US8616181B2 (en) * | 2008-07-11 | 2013-12-31 | Tula Technology, Inc. | Internal combustion engine control for improved fuel efficiency |
US9020735B2 (en) | 2008-07-11 | 2015-04-28 | Tula Technology, Inc. | Skip fire internal combustion engine control |
US8131447B2 (en) * | 2008-07-11 | 2012-03-06 | Tula Technology, Inc. | Internal combustion engine control for improved fuel efficiency |
DE102009023045B4 (de) * | 2009-05-28 | 2019-09-12 | Man Energy Solutions Se | Verfahren zum Betreiben einer Otto-Brennkraftmaschine |
US8511281B2 (en) | 2009-07-10 | 2013-08-20 | Tula Technology, Inc. | Skip fire engine control |
JP5058239B2 (ja) * | 2009-10-30 | 2012-10-24 | 日立オートモティブシステムズ株式会社 | 内燃機関の燃料噴射制御装置 |
FR2956161B1 (fr) * | 2010-02-09 | 2012-02-03 | Peugeot Citroen Automobiles Sa | Procede de regulation d'un parametre de fonctionnement d'un moteur et systeme de commande mettant en oeuvre un tel procede |
DE102010014320B4 (de) * | 2010-04-09 | 2016-10-27 | Continental Automotive Gmbh | Verfahren zum Anpassen der tatsächlichen Einspritzmenge, Einspritzvorrichtung und Brennkraftmaschine |
US9726103B2 (en) * | 2010-06-07 | 2017-08-08 | Toyota Jidosha Kabushiki Kaisha | Fuel injection amount control apparatus for an internal combustion engine |
DE102010038779A1 (de) * | 2010-08-02 | 2012-02-02 | Robert Bosch Gmbh | Verfahren zum Betreiben einer Brennkraftmaschine mit mehreren Brennräumen und Brennkraftmaschine mit mehreren Brennräumen |
US8869773B2 (en) | 2010-12-01 | 2014-10-28 | Tula Technology, Inc. | Skip fire internal combustion engine control |
DE102010063097B4 (de) * | 2010-12-15 | 2018-10-11 | Robert Bosch Gmbh | Verfahren zum Betreiben einer Brennkraftmaschine |
DE102011111412A1 (de) * | 2011-08-23 | 2013-02-28 | Volkswagen Aktiengesellschaft | Verfahren zum Betreiben einer Brennkraftmaschine |
US8401764B2 (en) * | 2012-01-18 | 2013-03-19 | Ford Global Technologies, Llc | Fuel identification based on crankshaft acceleration |
DE102012201601A1 (de) | 2012-02-03 | 2013-08-08 | Robert Bosch Gmbh | Verfahren zur Steuerung einer Brennkraftmaschine |
CN104295388B (zh) * | 2014-08-14 | 2017-02-15 | 吉林大学 | 一种基于指示转矩的发动机各缸不均匀性补偿控制方法 |
KR101628106B1 (ko) * | 2014-10-20 | 2016-06-08 | 현대자동차 주식회사 | 연소압 센서를 이용한 엔진 제어 방법 및 시스템 |
DE102016208195A1 (de) * | 2016-05-12 | 2017-11-16 | Robert Bosch Gmbh | Verfahren zur Fehlerdiagnose bei einer Brennkraftmaschine |
DE102016222066A1 (de) * | 2016-11-10 | 2018-05-17 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Diagnose einer Kühlmitteleinspritzung eines Verbrennungsmotors |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3336028C3 (de) * | 1983-10-04 | 1997-04-03 | Bosch Gmbh Robert | Einrichtung zur Beeinflussung von Steuergrößen einer Brennkraftmaschine |
US4883038A (en) * | 1986-10-31 | 1989-11-28 | Japan Electronic Control Systems Co., Ltd. | Fuel supply control system for multi-cylinder internal combustion engine with feature of suppression of output fluctuation between individual engine cylinders |
JPH0737789B2 (ja) * | 1988-10-17 | 1995-04-26 | 株式会社日立製作所 | 複数気筒エンジンの電子式制御装置 |
DE3929746A1 (de) * | 1989-09-07 | 1991-03-14 | Bosch Gmbh Robert | Verfahren und einrichtung zum steuern und regeln einer selbstzuendenden brennkraftmaschine |
JP3071799B2 (ja) * | 1990-02-15 | 2000-07-31 | ヤマハ発動機株式会社 | 多気筒ディーゼルエンジンの燃料噴射装置 |
JP2606019B2 (ja) * | 1991-09-18 | 1997-04-30 | 三菱電機株式会社 | 内燃機関の失火検出装置 |
JP3357091B2 (ja) * | 1992-07-21 | 2002-12-16 | 富士重工業株式会社 | エンジンの失火検出方法 |
DE19527218B4 (de) | 1994-12-23 | 2004-03-18 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Regelung der Laufruhe einer Brennkraftmaschine |
JPH09151772A (ja) * | 1995-12-01 | 1997-06-10 | Nippon Soken Inc | 燃料噴射制御装置 |
JP3913785B2 (ja) * | 1996-08-23 | 2007-05-09 | カミンス エンジン カンパニー インコーポレイテッド | 最適燃焼制御を有する予混合給気圧縮点火エンジン |
JP3409704B2 (ja) * | 1998-08-27 | 2003-05-26 | トヨタ自動車株式会社 | 内燃機関 |
KR100325224B1 (ko) * | 1999-06-11 | 2002-03-04 | 이계안 | 차량의 엔진 실린더 불균형 방지장치 |
JP3900755B2 (ja) * | 1999-09-10 | 2007-04-04 | いすゞ自動車株式会社 | エンジンの燃料着火時期検出方法及びその装置 |
JP2002210540A (ja) | 2001-01-16 | 2002-07-30 | Sintokogio Ltd | 生型造型設備における圧縮空気の流気監視システム |
JP2006046252A (ja) * | 2004-08-06 | 2006-02-16 | Isuzu Motors Ltd | 排気ガス浄化方法及び排気ガス浄化装置を備えたエンジン |
DE102004046083B4 (de) * | 2004-09-23 | 2016-03-17 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine |
DE102004046082A1 (de) * | 2004-09-23 | 2006-03-30 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine |
DE102006018958A1 (de) * | 2006-04-24 | 2007-10-25 | Robert Bosch Gmbh | Verfahren zum Betreiben einer Brennkraftmaschine und Steuergerät hierfür |
DE102008000552A1 (de) * | 2008-03-07 | 2009-09-10 | Robert Bosch Gmbh | Verfahren zum Betreiben eines selbstzündenden Verbrennungsmotors und entsprechende Steuervorrichtung |
-
2006
- 2006-06-08 DE DE102006026640A patent/DE102006026640A1/de not_active Withdrawn
-
2007
- 2007-05-04 WO PCT/EP2007/054331 patent/WO2007141096A1/de active Application Filing
- 2007-05-04 CN CN2007800208366A patent/CN101460727B/zh not_active Expired - Fee Related
- 2007-05-04 JP JP2009513624A patent/JP4971439B2/ja active Active
- 2007-05-04 EP EP07728784A patent/EP2029872B1/de not_active Not-in-force
- 2007-05-04 KR KR1020117014160A patent/KR20110088582A/ko not_active Application Discontinuation
- 2007-05-04 US US12/300,744 patent/US8141540B2/en not_active Expired - Fee Related
- 2007-05-04 KR KR1020087029740A patent/KR101070937B1/ko active IP Right Grant
Non-Patent Citations (1)
Title |
---|
See references of WO2007141096A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2007141096A1 (de) | 2007-12-13 |
EP2029872B1 (de) | 2012-10-31 |
JP2009540177A (ja) | 2009-11-19 |
CN101460727B (zh) | 2011-11-16 |
US8141540B2 (en) | 2012-03-27 |
KR20090015109A (ko) | 2009-02-11 |
JP4971439B2 (ja) | 2012-07-11 |
DE102006026640A1 (de) | 2007-12-13 |
KR20110088582A (ko) | 2011-08-03 |
US20090320787A1 (en) | 2009-12-31 |
KR101070937B1 (ko) | 2011-10-06 |
CN101460727A (zh) | 2009-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2029872B1 (de) | Verfahren zum betreiben einer brennkraftmaschine | |
DE112009001000B4 (de) | Verbesserungen einer HCCI-Verbrennungssteuerung bei leichter Last und im Leerlauf durch Modifikation des Kraftstoffdrucks | |
DE102011118269B4 (de) | Verfahren zum steuern der verbrennung in einem mehrzylinder-verbrennungsmotor mit zündfunkenunterstützung und direkteinspritzung | |
DE102011109482B4 (de) | Verfahren zur Steuerung der Startzeit der Kraftstoffeinspritzung bei einem Übergang | |
DE102012209382B4 (de) | Verfahren zur Steuerung der Verbrennungsphasenlage bei einerHCCI-Verbrennung | |
WO2007065573A1 (de) | Verfahren zur regelung einer brennkraftmaschine, insbesondere einer selbstzündenden brennkraftmaschine | |
DE112008004250B4 (de) | Steuerungsgerät einer brennkraftmaschine | |
DE102007013119A1 (de) | Einspritzverfahren und zugehörige Verbrennungskraftmaschine | |
DE102006019894B3 (de) | Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine | |
WO2009143858A1 (de) | Verfahren zur regelung eines einspritzvorgangs einer verbrennungskraftmaschine, steuergerät für eine verbrennungskraftmaschine und eine verbrennungskraftmaschine | |
DE102006016484A1 (de) | Verfahren zum Betrieb einer Brennkraftmaschine | |
EP1431557B1 (de) | Verfahren zur Zylindergleichstellung | |
EP1921295B1 (de) | Verfahren zum Betreiben einer Brennkraftmaschine | |
DE102009028638A1 (de) | Verfahren zum Ausgleichen von Gaswechsel-Verlusten zwischen Brennräumen eines Ottomotors | |
DE10356257B4 (de) | Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine | |
DE102005046952B4 (de) | Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine | |
DE102011004068B3 (de) | Verfahren und Steuervorrichtung zum Gleichstellen mehrerer Zylinder einer Brennkraftmaschine | |
DE10315817B4 (de) | Verfahren und Vorrichtung zum Betrieb eines eine Mengenausgleichsregelung aufweisenden Einspritzsystems einer Brennkraftmaschine an der thermodynamischen Wirkgrenze für Voreinspritzungen | |
EP1003960B1 (de) | Verfahren zum betreiben einer brennkraftmaschine | |
DE10064652B4 (de) | Verfahren und Vorrichtung zur schnellen Veränderung eines Drehmoments einer Brennkraftmaschine | |
EP2809928A1 (de) | Verfahren zur steuerung einer brennkraftmaschine | |
DE10033946B4 (de) | Kraftstoffeinspritzsteuersystem für eine Brennkraftmaschine mit Direkteinspritzung | |
DE102006021090B3 (de) | Verfahren zur Gleichstellung von Zylindern einer Brennkraftmaschine | |
DE102004047622B4 (de) | Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine | |
DE102017215566A1 (de) | Verfahren zum Betreiben eines Verbrennungsmotors während eines Warmlaufens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090108 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20090804 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F02D 41/14 20060101ALI20120702BHEP Ipc: F02D 41/00 20060101ALI20120702BHEP Ipc: F02D 41/04 20060101AFI20120702BHEP Ipc: F02D 41/34 20060101ALI20120702BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502007010807 Country of ref document: DE Effective date: 20121227 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130801 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502007010807 Country of ref document: DE Effective date: 20130801 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20160523 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160524 Year of fee payment: 10 Ref country code: FR Payment date: 20160523 Year of fee payment: 10 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170504 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170504 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190716 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502007010807 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201201 |