EP2014919B2 - Soupape de réglage pour le réglage du volume d'alimentation d'une pompe volumétrique - Google Patents

Soupape de réglage pour le réglage du volume d'alimentation d'une pompe volumétrique Download PDF

Info

Publication number
EP2014919B2
EP2014919B2 EP08159994.6A EP08159994A EP2014919B2 EP 2014919 B2 EP2014919 B2 EP 2014919B2 EP 08159994 A EP08159994 A EP 08159994A EP 2014919 B2 EP2014919 B2 EP 2014919B2
Authority
EP
European Patent Office
Prior art keywords
valve
pump
fluid
adjusting
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08159994.6A
Other languages
German (de)
English (en)
Other versions
EP2014919B1 (fr
EP2014919A3 (fr
EP2014919A2 (fr
Inventor
Christof Dr. Lamparski
Jürgen Bohner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schwaebische Huettenwerke Automotive GmbH
Original Assignee
Schwaebische Huettenwerke Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39870297&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2014919(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Schwaebische Huettenwerke Automotive GmbH filed Critical Schwaebische Huettenwerke Automotive GmbH
Priority to EP16206318.4A priority Critical patent/EP3173624B1/fr
Publication of EP2014919A2 publication Critical patent/EP2014919A2/fr
Publication of EP2014919A3 publication Critical patent/EP2014919A3/fr
Publication of EP2014919B1 publication Critical patent/EP2014919B1/fr
Application granted granted Critical
Publication of EP2014919B2 publication Critical patent/EP2014919B2/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/185Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by varying the useful pumping length of the cooperating members in the axial direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • F04C14/223Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members using a movable cam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/14Lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/18Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/20Flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/86622Motor-operated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/8667Reciprocating valve
    • Y10T137/86694Piston valve
    • Y10T137/86702With internal flow passage

Definitions

  • the invention relates to an adjustment valve for adjusting the delivery volume of a positive displacement pump and a displacement pump with the adjustment valve which is arranged for adjusting the delivery volume of a fluid to be delivered by the pump in a fluid circuit of the pump.
  • the invention accordingly also relates to the adjusting valve as such, insofar as it is provided for adjusting the delivery volume of a positive displacement pump.
  • Positive displacement pumps deliver fluids with a volume flow proportional to the pump speed.
  • the delivery volume per revolution or reciprocating stroke, the so-called specific volume flow is constant or can be regarded as constant in practice, at least to a good approximation.
  • the constancy per revolution or stroke and, accordingly, the proportionality to the pump speed is disruptive, for example, in applications in which the unit to be supplied by the respective pump has a fluid requirement that is lower in one or more speed range (s) of the pump than that resulting from the Volume flow resulting in proportionality. In the respective speed range, the pump accordingly conveys a volume flow that is higher than required and that is derived with loss.
  • the problem is in the US 6,126,420 B described, which already discloses an internal gear pump with adjustable delivery volume to solve the problem.
  • the US 6 244 839 B1 also discloses an internal gear pump with adjustable delivery volume.
  • the inner gear is axially displaceable relative to the outer gear.
  • the inner gear is part of an axially displaceable adjustment unit, which is formed as a piston acting on both sides.
  • the adjustment unit is acted upon by a 4/3 adjustment valve with the fluid conveyed by the pump.
  • the adjusting valve has a valve housing and a valve piston which can be moved axially back and forth in the valve housing and is acted upon at one axial end with the fluid conveyed and at the other axial end with a force of a valve spring counteracting the pressure of the fluid.
  • the position of the valve piston is adjusted according to the balance of the force of the valve spring and the force generated by the fluid pressure.
  • the adjustment valve is designed in such a way that the adjustment unit of the pump moves from an axial position for maximum delivery volume towards an axial position for minimum delivery volume when a fluid pressure predetermined by the valve spring is reached.
  • the preload force of the valve spring is set in advance on the adjusting valve.
  • a positive displacement pump with a variable valve is known, the movable valve piston of which acts to counteract the spring pressure of the pump and the fluid in an axial direction to adjust the delivery volume of the pump in an axial direction with a spring force.
  • a control device is provided for the adjusting valve, which exerts an additional force on the valve piston. Examples of control devices include an electric stepper motor for adjusting the biasing force of the valve spring and a solenoid for generating an additional magnetic force.
  • the fluid flow switched by means of the adjustment valve acts on a displacement unit of the pump only in the direction of the maximum delivery volume, while the pressure on the high pressure side always acts in the opposite direction.
  • the flow rate controller comprises a valve with a control piston that is axially movable.
  • the control piston works against the force of a spring, which is supported on the side facing away from the control piston on a device which allows the spring travel of the control piston to be extended or the spring force to be adjusted.
  • the EP 1 555 436 A2 describes a gear pump with flow control with a valve, the passage opening can be changed by a control unit.
  • the valve is a pulse-width-modulated solenoid valve which is operatively connected to a control unit coupled to it for the purpose of regulating the delivery rate via a pressure converter connected to the first pressure chamber of the pump.
  • the valve is an electrically controllable valve and comprises a valve body which is axially movable in the valve and has sections of different diameters, the displacement of which opens or closes elongated control openings in the valve.
  • the DE 31 09 045 A1 describes a controllable hydraulic pump with a control valve.
  • the valve is a 3/2-way valve, the switching of which is effected by the action of fluid pressure on the end face of a slide piston movably mounted in the valve.
  • the JP 57 131890 A describes a controllable feed pump with an adjustable pressure valve.
  • Other relevant pumps are also in the US 7 726948 B2 .
  • the invention is based on a positive displacement pump for supplying an aggregate with fluid, which has a pump housing with a delivery chamber and a delivery member movable in the delivery chamber, which acts directly on the fluid to deliver it through the delivery chamber.
  • the conveying member can convey the fluid alone or in cooperation with one or possibly also a plurality of further conveying members from an inlet of the conveying chamber while increasing the pressure through an outlet of the conveying chamber.
  • the inlet is assigned to a low pressure side and the outlet is assigned to a high pressure side of the pump.
  • the pump is preferably arranged in a closed fluid circuit, but can in principle also be used to convey the fluid in an open fluid circuit.
  • the pump When integrated in a closed fluid circuit, it sucks the fluid on the low-pressure side from a reservoir through the inlet into the delivery chamber and conveys it on the high-pressure side to one or more units (s) to be supplied with the fluid. Downstream of the aggregate (s), the fluid returns to the reservoir, which closes the fluid circuit.
  • the pump can, for example, be used to supply a hydraulic press with pressurized fluid. In preferred embodiments, it is installed in a motor vehicle or is intended for installation in order to supply an internal combustion engine driving the motor vehicle with lubricating fluid or an automatic transmission with hydraulic fluid. The internal combustion engine preferably drives the pump.
  • the positive displacement pump further comprises an adjusting valve, by means of which the delivery volume of the pump can be adjusted to the needs of the at least one unit to be supplied and the energy required to drive the pump can preferably be reduced accordingly.
  • the adjustment valve comprises a valve housing, a valve piston movable in the valve housing, a valve spring and an adjustment device.
  • the valve piston has an active surface for a fluidic valve control pressure.
  • the valve spring is arranged in such a way that it counteracts the valve actuating pressure acting overall on the valve body on the valve piston.
  • the delivery volume is understood to mean the specific volume flow of the pump as such, in the case of a rotary pump the volume flow per revolution and in the case of a reciprocating piston pump the volume flow per stroke.
  • the pump can also be a constant pump and the adjustment valve can be arranged on the high-pressure side of the pump as a bypass valve in order to convey excess fluid into the reservoir bypassing the at least one unit.
  • Such bypass conveyance does not reduce the energy consumption of the pump, but it still ensures that it is conveyed as required. In such designs, it is not the delivery volume at the outlet of the delivery chamber, but the delivery volume delivered to the at least one unit that is controlled or regulated as required.
  • a pump adjustable in its delivery volume with such a bypass valve, in that the volume flow per revolution or stroke is adjusted via an adjusting valve according to the invention or in some other way and downstream of the pump, but upstream of the unit to be supplied, part of the the pumped volume flow is branched off and returned unused to a reservoir.
  • the delivery volume of the pump as such is adjusted by means of the adjustment valve.
  • an actuator is movably arranged in the pump housing, which can be acted upon in the direction of its movability with an actuating force which is dependent on the requirement of the at least one unit.
  • the actuator can in particular be arranged on an end face of the conveying member or surrounding the conveying member.
  • the actuator and the conveying element are part of an adjusting unit that can be moved back and forth in the pump housing as a whole, for example a linearly movable or pivotable or otherwise adjustable adjusting unit that is movable transversely to an axis of rotation of the preferably rotatable conveying element.
  • adjusting unit for example, the US 6 28.3 735 B1 for off-axis who US 6,126,420 B. and US 6 244 8.39 B1 for internal-axis pumps
  • the actuator can be adjusted relative to the delivery element and the pump housing.
  • the actuator of the second variant can in particular be an adjusting ring surrounding the delivery element, as is known from vane pumps including vane pumps, Pcndelschieberpumpen and also from internal gear pumps to adjust the eccentricity to the delivery member, for example by a linear stroke or a pivoting movement of the actuator.
  • the actuating force is preferably generated fluidically by the actuator forming an actuating piston which is acted upon by a pressure fluid.
  • This pressure fluid can be branched off, in particular, on the high-pressure side of the pump and can be returned to the actuator as a partial flow of the volume flow conveyed by the pump as a whole via the adjustment valve.
  • the pressure fluid with which the actuator is acted on can also be another fluid, for example a fluid that is provided from a pressure reservoir or from another pump.
  • a partial flow of the fluid is fed via the adjustment valve into the delivery chamber back to the low-pressure side in order to increase the degree of filling of delivery cells there, as is the case, for example, in US 6 9.35 851 B2
  • the delivery volume is also adjusted at the same time, this type of adjustment being able to be implemented in combination with one of the other types already mentioned.
  • the adjusting device is formed in such a way that it can adjust the valve piston in the direction of the force exerted by the valve actuating pressure on the valve body or against the valve actuating pressure. It preferably acts electromagnetically
  • the word "or” here as well as attack includes the meaning of "either ......... or” and also the meaning of "and” as far as is clear from the respective context does not necessarily encompass a restricted meaning.
  • the adjusting device can accordingly be constructed in such a way that it only counteracts the force of the valve control pressure or preferably only in the same direction and counteracts the valve spring, and alternatively it can also be constructed in such a way that it counteracts the valve piston both in and against the force of the valve control pressure can adjust.
  • valve actuating pressure and a force exerted by the adjusting device on the valve piston act together against the force of the valve spring. If the valve actuating pressure increases, the valve piston can be adjusted against the force of the valve spring by means of a correspondingly smaller force of the adjusting device.
  • the adjusting device is set up for adjusting the valve piston both in the direction of the valve actuating pressure and against the valve actuating pressure.
  • the adjusting device is a magnetic adjusting device with only a single magnetic coil, the magnetic coil can be reversed in such embodiments.
  • a separate solenoid coil with one armature each can be provided for each of two directions of movement of the valve piston, and one of these armatures exerts a force on the valve piston in one direction and the other armature exerts a force in the other direction on the movement of the valve piston to move the valve piston back and forth.
  • the position of the valve piston can thus be adjusted relative to the valve housing, at least in the second embodiment, but preferably also in the first embodiment, independently of the valve actuating pressure acting on the active surfaces, and the delivery volume of the pump can be adjusted accordingly.
  • the adjusting valve can thus adjust the delivery volume over a larger operating range of the unit to be supplied, continuously or in any step, and not only to a certain pressure, when the delivery volume is regulated.
  • a control or regulating device for the adjusting valve is set up in such a way that the delivery volume can be adjusted over the entire operating range of the unit by means of the adjusting valve.
  • the valve spring and the valve actuating pressure which constantly counteracts the force of the valve spring, ensure a reliable supply to the unit, even if the adjusting device fails only as known from conventional positive displacement pumps with a reduction of the delivery volume depending on the preload force and spring constants of the valve spring.
  • the invention combines an exact and flexible adaptability to the demand with a security of supply guaranteed even in the event of a failure of the adjusting device, it creates a so-called second-level control or regulation for the delivery volume.
  • the adjustment valve is preferably a proportional valve. It is preferably controlled electrically.
  • the adjusting device preferably acts magnetically. It can have a proportional magnetic coil that is voltage or current controlled or regulated, that is to say by a variation of the applied voltage or of the electrical current that is oriented towards the requirement of the at least one unit.
  • the variable valve is controlled or regulated in a pulse-modulated manner.
  • the duration of the individual pulses or the time interval between two successive pulses of the manipulated variable can be varied, which also includes the case that both the pulse duration and the Time between successive pulses is varied according to the need.
  • the period of the manipulated variable is preferably constant.
  • a pulse width modulated adjustment valve is preferably used.
  • the period of the manipulated variable for the variable valve is significantly smaller than the time constant of the displacement pump that determines the displacement of the delivery volume.
  • the pulse modulation uses the low-pass character of the pump.
  • the adjusting valve is preferably a multi-way valve with at least three connections, preferably with four connections. It is preferably switchable between at least two switching positions, preferably between three switching positions.
  • the adjustment valve is controlled or regulated as a function of a setpoint for the volume flow to be delivered by the displacement pump or a fluid supply pressure to be generated by the displacement pump.
  • a setpoint specification specifies the setpoint of a control or regulating device provided for the adjusting valve. The setpoint is preferably varied depending on the needs of the unit.
  • a characteristic diagram is preferably specified for the setpoints which are dependent on the operating state of the unit. The at least one setpoint or, more preferably, the plurality of setpoints is or are predefined as a function of a physical variable which is characteristic of the operating state and which is during operation of the unit is sensed by means of a detection device.
  • the at least one physical variable can in particular be a temperature, a speed or a load state of the unit.
  • the setpoint or the setpoints for the volume flow or the fluid supply pressure are preferably predetermined as a function of at least two variables which characterize the operating state of the unit. If the displacement pump is used as a lubricating oil pump for an internal combustion engine, the temperature of the lubricating oil or the coolant in the area of the internal combustion engine or the speed or, for the load condition, the accelerator pedal or throttle valve position can be sensed and the associated setpoint can be determined and determined based on the map the control or regulating device for the variable valve can be specified.
  • the adjustment valve is only controlled as a function of the respective setpoint.
  • the acquisition of an actual value representative of the requirement of the physical quantity forming the target value, namely the volume flow or the fluid supply pressure, is dispensed with, as is complex processing for regulation on the basis of a target / actual comparison.
  • the adjusting valve is regulated as a function of a target / actual comparison of the respective target value and an actual value of the volume flow or the fluid supply pressure measured continuously or at sufficiently small time intervals. Regulation is advantageous in cases where the volume flow requirement of the unit changes due to wear over the course of the unit's service life.
  • a control device which can switch from a controller according to the first embodiment to a regulation according to the second embodiment. It is preferred if the adjusting valve is initially controlled on the basis of the predetermined volume flow and, if the leakage losses increase as a result of wear on the unit, the pressure control is changed over later.
  • a conductive control device is provided which determines increasing wear on the basis of a sensory detection of the volume flow or fluid supply pressure and adjusts the setpoint or the setpoint map at least once or in several stages, possibly continuously during the service life of the unit.
  • the adjustment valve is controlled on the one hand on the basis of a setpoint or a setpoint map for the fluid supply pressure or the volume flow and is additionally flow-controlled.
  • a particularly preferred embodiment is one on the basis of a setpoint or several setpoints or a setpoint map for the fluid supply pressure or the volume flow controlled by pulse width modulation and additionally flow-controlled adjustment valve.
  • the current control advantageously compensates for changes in the electrical resistance of a magnet adjustment device that are associated with temperature changes. The current consumption of the magnet adjustment device is recorded and the changes in the size of the electrical current due to changes in resistance are compensated for by regulating the pulse duty factor according to the variation in the current consumption.
  • a flow control in addition to the control based on a setpoint or setpoint map for the volume flow or the fluid supply pressure means that a volume flow or pressure control can be dispensed with, although in the case of a flow control an additional volume flow or pressure control can also be used.
  • the control or regulating device can be an integral part of the adjustment valve or installed separately from it.
  • the setpoint specification can be realized as a part of the control or regulating device or separately from the other parts of the control or regulating device.
  • the adjustment valve is preferably an integral part of the positive displacement pump, for example mounted on the pump housing.
  • the adjustment valve can advantageously also be arranged in the housing of the positive displacement pump, for example in a receiving bore or a differently shaped receiving space in a wall of the pump housing.
  • the connections of the adjusting valve can be shaped as bores or other-shaped channels in the housing, in particular in said housing wall, in a space- and weight-saving manner.
  • the pump housing can accordingly also simultaneously form the valve housing or only part of the valve housing.
  • the actuator is formed as a double-acting adjusting piston with two axially facing, preferably facing opposite piston surfaces and by means of the adjusting valve either one or the other piston surface with one pressurized pressurized fluid can be applied, possibly also both piston surfaces simultaneously.
  • the actuator forms an actuating piston that can be pressurized with pressure fluid, for example a piston that can only be pressurized with pressure fluid on one side or preferably a double-acting piston
  • a pump spring acts on it with a spring force, the pump spring acting in the direction of an increase in the delivery volume of the Pump works.
  • the pump spring is so weak that the adjustment dynamics of the pump are not significantly influenced by the pump spring, but exclusively or at least to a large extent by the adjustment valve.
  • a pump spring of this type can also be dispensed with.
  • a weak pump spring is advantageous, such a pump spring being designed in such a way that it only ensures that the maximum delivery volume for this pump speed is delivered when the displacement pump is running at low speed.
  • a pump spring is sufficient, which exerts a spring force on the actuator corresponding to a fluid pressure of at most 1 bar.
  • the fluid which is guided or regulated to the displacement pump by means of the adjustment valve, or in the case of an adjustment valve used only as a bypass valve, the fluid branched off to a reservoir generates the valve control pressure when it flows through the adjustment valve.
  • the fluid branched off to a reservoir generates the valve control pressure when it flows through the adjustment valve.
  • no separate connection is required to generate the valve control pressure.
  • the same inlet through which the fluid flow flowing through the adjustment valve reaches the adjustment valve also forms the connection for the fluid generating the valve actuating pressure.
  • valve control pressure is generated by means of a plurality of active surfaces, preferably by means of exactly two active surfaces, which differ in size, so that the valve control pressure on the valve piston exerts a differential force corresponding to the area difference of the active surfaces.
  • the characteristic of the differential force is particularly preferably combined with the further characteristic, according to which the fluid also generates the valve actuating pressure when it flows through the adjusting valve.
  • the biasing force of the valve spring can be adjusted, preferably fluidly, while the displacement pump conveys the fluid.
  • the adjusting valve can thus have a further piston, which is preferably only used to adjust the pretensioning force and is preferably acted upon by the fluid, which also generates the valve actuating pressure. wherein a separate connection is provided for the piston for adjusting the prestressing force, or preferably a force acting on this adjusting piston can also be generated by the fluid flowing through.
  • Figure 1 shows a positive displacement pump in a cross section, in a pump housing 1, a delivery chamber is formed with an inlet 2 on a low pressure side and an outlet 3 on a high pressure side.
  • a first conveying member 4 and a second conveying member 5 are movably arranged in the conveying chamber.
  • the conveying members 4 and 5 are in a conveying engagement with one another. If the conveying members 4 and 5 are driven, they carry out a conveying movement in the conveying engagement, through which a fluid, for example lubricating oil or a hydraulic fluid, is drawn into the conveying chamber through the inlet 2 and carried out at a higher pressure the outlet 3 is displaced.
  • the conveying member 4 is driven and drives the conveying member 5 in the conveying engagement.
  • the positive displacement pump of the exemplary embodiment is an external gear pump.
  • the conveying members 4 and 5 are externally toothed conveying rotors and the conveying engagement is a tooth engagement.
  • the conveyor members 4 and 5 are rotatably mounted about an axis of rotation R 4 and R 5 . In the case of a rotary drive, the sucked-in fluid is transported from the inlet 2 into the conveying cells formed by the tooth gaps in each of the conveying members 4 and 5 through the region of the so-called wrap 1a and expelled through the outlet 3.
  • the axial length of the delivery engagement of the delivery members 4 and 5, the engagement length, measured along the axes of rotation R 4 and R 5 is adjustable.
  • the conveying member 5 can be moved axially relative to the conveying member 4 and the pump housing 1 between a position of maximum engagement length and correspondingly maximum delivery volume and a position of minimum engagement length and accordingly minimum delivery volume.
  • FIG. 2 shows the positive displacement pump in a longitudinal section.
  • the conveyor member 4 is secured against rotation on a drive shaft which protrudes from the pump housing 1 and carries a drive wheel for driving the pump.
  • the conveying member 5 is part of an adjusting unit which, in addition to the conveying member 5, comprises an actuator with two actuating pistons 6 and 7.
  • This adjusting unit 5-7 can be moved axially back and forth as a whole in the pump housing 1 in order to be able to adjust the engagement length.
  • the conveying member 5 is arranged axially between the actuating pistons 6 and 7.
  • the actuator 6, 7 supports the conveying member 5 so as to be rotatable about the axis of rotation R 5 .
  • the adjustment unit 5-7 is in a cylindrical Cavity of the pump housing 1 added.
  • the cavity forms an axial track for the movements of the adjustment unit, 5-7. Furthermore, it forms a pressure chamber 8 on one axial side of the adjusting unit 5-7 and a further pressure chamber 9 on the other side.
  • the actuating pistons 6 and 7 fluidically separate the two pressure chambers 8 and 9 from one another and also from the delivery chamber, apart from unavoidable leakage losses.
  • the pressure chambers 8 and 9 can each be printed with a pressurized fluid, in the exemplary embodiment with the fluid delivered by the displacement pump.
  • a pump spring 10 is arranged in the pressure chamber 9, the spring force of which acts on the adjusting unit 5-7, namely on the actuating piston 7, in the direction of the maximum engagement length.
  • Figure 3 shows the positive displacement pump integrated in a closed fluid circuit, for example a lubricating oil of a motor vehicle
  • the fluid circuit contains a reservoir 11 from which the pump sucks the fluid on the low pressure side through the inlet 2 and with a higher pressure on the high pressure side through the outlet 3, a connected one Supports supply line 12 and via a cooling and cleaning device 13 with a cooler and a filter to the unit 14 to be supplied with the fluid, for example a bee engine for driving a motor vehicle. Downstream of the unit 14, the fluid is fed back into the reservoir 11 through a line 15.
  • a partial flow 16 of the fluid is branched off and returned to the pump via an adjustment valve 20.
  • the adjustment valve 20 has an inlet for the partial flow 16, an outlet short-circuited with the reservoir 11 and two further connections, one of which is connected to the pressure chamber 8 via a line 18 and the other is connected to the pressure chamber 9 via a line 19.
  • the adjusting valve 20 is a multi-way switching valve. In a first switching position, it leads the partial flow 16 into the pressure chamber 8 and connects the pressure chamber 9 to the reservoir II, thus switching the pressure chamber 9 to ambient pressure.
  • the adjustment valve 20 of the exemplary embodiment can assume three switch positions, namely the two switch positions mentioned and also a middle position in which it separates the pressure chambers 8 and 9 from one another and also from the reservoir 11 and the partial flow 16, so that the respective pressure in the pressure chambers 8 and 9 is retained, one ignores leaks and the associated leakage losses.
  • a 4/3-way valve was selected for the adjusting valve 20.
  • FIG 4 shows the adjustment valve 20 as in Figure 3 as a circuit symbol, only in an enlarged cooking position.
  • the four connections of the adjustment valve 20 are entered, of which the inlet for the recirculated partial flow 16 is identified by I, the outlet to the reservoir 11 by O, the connection for the pressure chamber 8 by A and the connection for the pressure chamber 9 by B.
  • the adjustment valve 20 is a proportional valve with a constantly acting fluidic valve actuating pressure P20, namely the pressure of the fluid returned in the partial flow 16, and a valve spring 25 which is arranged to counteract the valve actuating pressure P 20 .
  • the adjusting valve 20 comprises, as a proportional valve, an adjusting device which reverses the adjusting valve 20 from one of the switching positions into another, adapted to the fluid requirement of the unit 14.
  • the valve actuating pressure P 20 and the valve spring 25 give the adjusting valve 20 a fail-safe property in the event of failure of the proportional adjusting device.
  • the adjustment device is a magnetic adjustment device that is switched with a pulse-width-modulated electrical control signal.
  • the control signal is generated by a control device in the form of a square-wave signal with a constant upper and a constant lower signal level, for example voltage level, and a specific period duration.
  • the duration of the upper signal level, the so-called switch-on time, and subsequently the time period of the lower signal level, the switch-off time can be varied.
  • the magnetic force of the adjusting device changes in accordance with the duty cycle of the control signal, ie the ratio of the switch-on time to the period t.
  • the switching position of the adjusting valve 20 results from the balance of forces between the force of the valve spring 25 and the two opposing forces, namely the fluidic force generated by the valve actuating pressure P 20 and the magnetcraft.
  • the greater the valve control pressure P 20 the smaller the magnetic force corresponding to the balance of forces. If the sum of the fluidic force and the magnetic force exceeds the spring force, the valve piston 22 moves in the direction of the first switching position, and the delivery volume of the displacement pump is reduced. If the force of the valve spring 25 predominates, the valve piston 22 moves into the second switching position, and the displacement unit 5-7 accordingly moves in the direction of the maximum delivery volume.
  • the switch-on time and the switch-off time are assigned to the first and the second switching position of the adjusting valve 20.
  • the position of the valve piston 22 and the associated switching position of the adjusting valve 20 are decoupled from the valve actuating pressure P 20 .
  • the adjusting valve 20 assumes the first switching position, in which the fluid of the partial flow, during each switch-on time 16 is returned to the pressure chamber 8, and during each switch-off time assumes the second switching position in which the fluid is returned to the pressure chamber 9.
  • the flow through the adjusting valve 20 to the respective pressure chamber 8 or 9 can be varied practically continuously in both versions because of the significantly shorter period t of the control signal compared to the relevant time constant of the pump.
  • the pressure in the pressure chamber 8 and the pressure in the pressure chamber 9 can also be changed correspondingly continuously.
  • the adjustment unit 5-7 can be moved along its axial adjustment path into any axial position and can also be held there.
  • the delivery volume is thus flexible between the maximum and the minimum delivery volume and can be continuously and precisely adapted to the fluid requirement of the unit 14.
  • a map is stored in an electronic or optical memory in a controller for the unit 14, in the exemplary embodiment of a motor controller, for the supply of the unit 14 in accordance with requirements.
  • the characteristic diagram contains in each case a predetermined target value for the fluid supply pressure P 14 or the volume flow V 14 which the unit 14 requires in the respective operating state.
  • These volume flow or pressure setpoints are stored in the map as a function of physical variables that characterize the operating states that are to be differentiated with regard to the fluid requirement.
  • the temperature T, the speed D and the load L may be mentioned as examples of the physical quantities.
  • the unit 14 has a detection device for detecting one or more physical quantity (s) that characterize the different operating states.
  • the temperature T can be, for example, at a critical point of the unit 14, in a cooling fluid that serves to cool the unit 14, or in that of the pump 3 pumped fluid can be measured.
  • the speed D can be detected very easily by means of a tachometer and the load L via the accelerator pedal or a throttle valve position.
  • a setpoint specification selects the assigned pressure or volume flow setpoint on the basis of the characteristic diagram and gives it to the control device for the adjusting valve 20.
  • the control device forms the control signal, namely the ratio of the switch-on time to the period t, in accordance with the current setpoint.
  • a feedback by means of a controlled variable in the present case a measured actual value of the fluid supply pressure P 14 or the volume flow V 14 , is not necessary as long as the actual eluid requirement of the unit 14 corresponds to the target value.
  • the control based on the setpoint can in particular be supplemented by a current control.
  • the current control is used, in particular, to compensate for changes in resistance of the magnetic adjusting device, as can occur especially when there are changes in temperature.
  • the current consumption of the adjustment device is detected by a detection device and kept at a specific current value. If a change in the current consumption and accordingly the electrical resistance of the adjusting device is determined by means of the detection device, the pulse duty factor is changed in such a way that the current consumption corresponds again to the current value before the resistance change.
  • a regulating device is also provided for the adjusting valve 20.
  • the control device forms the control signal for the adjusting valve 20 as a function of a target / actual comparison based on a fluid supply pressure P 14 or volume flow V 14 required for the unit 14 .
  • the control device has access to a memory in which other setpoints of the pressure P 14 or volume flow V 14 are stored in the form of a map comparable to the map previously used for the control.
  • the maps of the pressure setpoints or volume flow setpoints can be stored in physically different memories or in the same memory in different areas.
  • a higher-level control device which can be a component of the pressure or volume flow control device or the control device and changes from the control to a control if it is determined that the demand of the unit has changed to such an extent that the characteristic diagram of the setpoints no longer adequately describes the actual demand because the demand has increased due to wear, for example.
  • the actually prevailing fluid supply pressure P 14 can be recorded, for example, at the most downstream consumption point of the unit 14 or, in the example of the internal combustion engine, at the engine gallery and compared with the pressure target value relevant for the respective operating state, for example by forming the difference between the target - and actual value.
  • the pressure or volume flow control described by way of example as not being feedback can be further developed to a pressure or volume flow control with a target / actual comparison of the respective pressure or volume flow target value with an actual value to be measured for the comparison.
  • Several maps for the volume flow V 14 or fluid supply pressure P 14 can be stored in advance, which describe the need for different times in the life cycle of the unit 14, for example one map for the first n kilometers of a motor vehicle or n operating hours of the unit 14, the next m kilometers of the vehicle or m hours of operation of the unit etc. Based on, for example, the mileage of the vehicle or an operating date recording can be switched from the map used first to the next etc. in such embodiments.
  • control device can also delay the ability to change the setpoint values of the map according to the state of the unit 14, in order to be able to control the adjusting valve 20 in a better adapted manner to the respective state of the unit 14 on the basis of the changed map.
  • the change in the setpoint values of the map or the selection of one of a number of predefined guy fields is advantageously carried out automatically, for example on the basis of the already mentioned mileage or the operating time or a detection of the fluid supply pressure P 14 and comparison with or in the form of a map setpoint pressure setpoint (s) ), such a target / actual comparison could be used for pressure control of the adjusting valve 20, but preferably only for the selection of the pressure or volume flow map to be used or the change in the pressure or volume flow setpoints of a single predetermined map is used for control.
  • Figure 5 shows in a longitudinal section a modified with respect to the generation of the valve actuating pressure P 20 valve 20.
  • the valve actuating pressure P 20 is different from that of the adjusting valve Figure 4 not by means of an additional partial flow into which Figures 3 and 4 the partial flow 17, but by means of the flow of the partial flow 16 to be controlled or regulated.
  • the adjusting valve 20 has a valve housing 21 and a valve piston 22, which can move axially back and forth in the valve housing 21 along a central valve axis S.
  • a magnetic coil 27 and an armature 28 made of soft iron are shown by the adjusting device.
  • the electrical connections of the solenoid 27 are also indicated.
  • the solenoid 27 is fixedly connected to the valve housing 21 and surrounds the armature 28.
  • the armature 28 is connected to the valve piston 22 so that it cannot move axially, so that the valve piston 22 and the armature 28 have axial movements such as execute a unit.
  • the valve piston 22 has a first active surface 2.3 and a second active surface 24 for the valve control pressure P 20 .
  • the active surfaces 2, 3 and 24 axially jointly delimit a fluid space 26 and face each other axially.
  • the active surface 23, on which the valve actuating pressure P 20 of the valve spring 25 counteracts, is larger than the active surface 24, wherein in Figure 5 the conditions are exaggerated.
  • the difference in size is actually only slight, but is defined in such a way that the valve actuating pressure P 20 on the valve piston 22 always exerts a differential force corresponding to the difference in size of the active surfaces 23 and 24, which counteracts the force of the valve spring 25.
  • valve piston 22 can be manufactured very precisely to the size difference of the active surfaces 23 and 24, the differential force can also be correspondingly small and the valve spring 25 advantageously softer than in the exemplary embodiment in FIG Figure 4 his.
  • the adjusting device 27, 28 requires correspondingly low forces.
  • the adjusting valve 20 becomes more sensitive overall, and the switching times of the adjusting valve 20 can be shortened.
  • the inlet I for the fluid to be controlled or regulated opens into the fluid space 26 in all switching positions of the adjusting valve 20.
  • the port B opens into the fluid chamber 26, and the valve piston 22 separates the fluid chamber 26 and thus the inlet I from the other port A. Accordingly, the fluid of the partial flow 16 is returned to the pressure chamber 9, while the pressure chamber 8 via the port A is connected to the reservoir 11 and is therefore depressurized.
  • the connection A is connected to the outlet O via a space of the valve housing 21, in which the valve spring 25 is arranged, and to the outlet 11 via this.
  • the solenoid 27 is energized and moves the armature 28 against the force of the valve spring 25 in the axial direction initially into the middle switching position and, with a correspondingly long switch-on time, into the other extreme switching position , the first switch position.
  • the valve piston 22 separates both ports A and B from the fluid chamber 26, into which the inlet I continues to open.
  • the valve piston 2.2 assumes an axial position such that the fluid chamber 26 is in axial overlap with both the inlet I and the port A, while the valve piston 22 in the relevant axial position is the port B of the fluid chamber 26 separates fluidically.
  • the fluid of the partial flow 16 is conducted through the fluid chamber 26 and the connection A into the pressure chamber 8, while the pressure chamber 9 is connected to the outlet O and finally to the reservoir 11 via the connection B and a passage C of the valve piston 22 is.
  • the valve piston 22 is hollow.
  • the passage C is formed in a cylindrical jacket region of the valve piston 22, which adjoins the active surface 24 in the direction of the armature 28 and forms a narrow sealing gap with the surrounding jacket of the valve housing 21, which fluidically separates the adjusting device 27, 28 from the fluid chamber 26 ,
  • the adjusting device 27, 28 with the associated control device switches the adjusting valve 20 over the entire operating range of the unit 14 and controls or regulates the axial position of the adjusting unit 5-7 and consequently the delivery volume of the displacement pump over the entire volume flow range, which is necessary for the adapted supply of the unit 14 is required.
  • the fluidic valve actuating pressure P 20 and the valve spring 25 serve as backup in the event that the adjusting device 27, 28 or the associated control device fails due to a defect, for example due to a cable break or a loose electrical plug connection.
  • the adjusting valve 20 is designed such that, in the event of a failure, the delivery volume of the pump from maximum to minimum is only adjusted when a fluid supply pressure P 14 is reached that is greater than a maximum fluid supply pressure P 14 , which is set when the adjusting valve 20 functions properly ,
  • the valve spring 25 is installed with a pretensioning force which is greater than a force exerted on the valve piston 22 by a greatest valve actuating pressure P 20 , which can occur when the valve is functioning properly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Safety Valves (AREA)
  • Sliding Valves (AREA)
  • Fluid-Driven Valves (AREA)
  • Multiple-Way Valves (AREA)
  • Magnetically Actuated Valves (AREA)

Claims (21)

  1. Soupape de réglage pour le réglage du volume de refoulement d'une pompe volumétrique, la soupape de réglage comportant :
    (a) un boîtier de soupape (21),
    (b) un piston de soupape (22) monté de manière mobile dans le boîtier de soupape (21), ayant une surface active (23) pour une pression de réglage de soupape (P20) d'un fluide,
    (c) un ressort de soupape (25) qui contrecarre une force exercée par la pression de réglage de soupape (P20) sur le piston de soupape (22),
    (d) et un dispositif de réglage (27, 28) au moyen duquel le piston de soupape (22) peut être réglé dans la direction de la force exercée par la pression de réglage de soupape (P20),
    (e) dans laquelle le ressort de soupape (25) est préchargé et exerce une force élastique sur le piston de soupape (22) qui est plus grande qu'une force exercée sur le piston de soupape (22) par une pression de réglage de soupape (P20) maximale lorsque le dispositif de réglage (27, 28) fonctionne correctement,
    (f) dans laquelle le ressort de soupape (25) est monté avec une force de précharge qui est plus grande que la force que la pression de réglage de soupape (P20), qui peut être réglée lorsque le fonctionnement est correct, exerce sur le piston de soupape (22).
  2. Soupape de réglage selon la revendication précédente et présentant au moins une des caractéristiques suivantes :
    - le dispositif de réglage (27, 28) peut être actionné électriquement,
    - le dispositif de réglage (27, 28) est formé comme un dispositif de réglage magnétique,
    - le dispositif de réglage (27, 28) contrecarre la force du ressort de soupape (25).
  3. Soupape de réglage selon l'une des revendications précédentes et présentant au moins une des caractéristiques suivantes :
    - la soupape de réglage (20) est une soupape proportionnelle,
    - la soupape de réglage (20) est modulée en impulsions, de préférence modulée en largeur d'impulsion, commandée ou régulée,
    - la soupape de réglage (20) est commandée ou régulée par un courant,
    - la soupape de réglage (20) est commandée ou régulée par une tension,
    - la soupape de réglage (20) comporte au moins trois orifices (I, O, A, B), de préférence quatre orifices pour le fluide,
    - la soupape de réglage (20) peut être commutée entre au moins deux positions de commutation, de préférence trois positions de commutation,
    - la soupape de réglage (20) est un distributeur,
  4. Soupape de réglage selon l'une des revendications précédentes, comportant :
    - un dispositif de commande ou de régulation pour la commande ou la régulation d'une pression d'alimentation en fluide (P14) à générer par la pompe volumétrique ou d'un débit volumique (V14) à refouler par la pompe volumétrique,
    - et une valeur de consigne par défaut pour prédéterminer au moins une valeur de consigne pour la pression ou le débit volumique, de préférence une valeur de consigne variable de manière prédéfinie,
    - dans laquelle le dispositif de commande ou de régulation commande ou régule le dispositif de réglage (27, 28) en fonction de la valeur de consigne.
  5. Soupape de réglage selon l'une des revendications précédentes, comportant :
    - un dispositif de régulation pour la régulation d'une pression d'alimentation en fluide (P14) à générer par la pompe volumétrique,
    - une valeur de consigne par défaut pour prédéterminer une valeur de consigne pour la pression d'alimentation en fluide (P14), de préférence une valeur de consigne variable de manière prédéfinie,
    - et un capteur pour la détermination d'une valeur réelle de la pression d'alimentation en fluide (P14),
    - dans laquelle le dispositif de régulation compare la valeur réelle à la valeur de consigne et commande le dispositif de réglage (27, 28) en fonction du résultat de la comparaison.
  6. Soupape de réglage selon une combinaison des deux revendications précédentes, comportant un dispositif de contrôle au moyen duquel la soupape de réglage (20) peut être basculée de la commande de la pression d'alimentation en fluide (P14) ou du débit volumique (V14) vers la régulation de la pression d'alimentation en fluide (P14) ou du débit volumique (V14) .
  7. Soupape de réglage selon l'une des revendications précédentes, dans laquelle le piston de soupape (22) comporte une surface active supplémentaire (24) pour la pression de réglage de soupape (P20), et les surfaces actives (23, 24) sont agencées de manière à se contrecarrer l'une et l'autre et sont de taille différente afin de produire une force différentielle qui agit sur le piston de soupape (22) à l'encontre du ressort de soupape (25) et qui correspond à la différence de taille des surfaces actives (23, 24).
  8. Soupape de réglage selon la revendication précédente, dans laquelle les surfaces actives (23, 24) limitent le même espace de fluide (26) et sont dirigées l'une vers l'autre dans la direction de la mobilité du piston de soupape (22).
  9. Soupape de réglage selon la revendication précédente, dans laquelle le piston de soupape (22) est mobile en va-et-vient entre une première position et une seconde position, et dans la première position du piston de soupape (22), une entrée (I) et un orifice (A) pour un fluide sous pression produisant une pression de réglage de soupape (P20) débouchent dans l'espace de fluide (26), et le piston de soupape (22) sépare, dans la seconde position, l'orifice (A) de l'entrée (I) débouchant encore dans l'espace de fluide (26).
  10. Soupape de réglage selon l'une des revendications précédentes, dans laquelle le boîtier de soupape (21) comporte une entrée (I), un premier orifice (A) et un second orifice (B) pour un fluide sous pression, le piston de soupape (22) est mobile en va-et-vient entre une première position et une seconde position, et l'entrée (I) est reliée au premier orifice (A) lorsque le piston de soupape (22) est dans la première position et est séparée du second orifice (B), et est reliée au second orifice (B) lorsque le piston de soupape (22) est dans la seconde position et est séparée du premier orifice (A), afin de guider sélectivement le fluide sous pression jusqu'à la pompe soit par le premier orifice (A) soit par le second orifice (B).
  11. Pompe volumétrique ayant un volume de refoulement réglable, comportant :
    (a) un carter de pompe (1),
    (b) une chambre de refoulement formée dans le carter de pompe (1) avec une entrée (2) pour un fluide sur un côté basse pression et une sortie (3) pour le fluide sur un côté haute pression de la pompe,
    (c) un organe de refoulement (5) mobile dans la chambre de refoulement pour le refoulement du fluide,
    (d) et une soupape de réglage (20) selon l'une des revendications précédentes, agencée dans un écoulement du fluide refoulé par l'organe de refoulement (5) pour régler le volume de refoulement.
  12. Pompe volumétrique selon la revendication précédente, dans laquelle :
    - un organe de réglage (6, 7) est agencé de manière mobile en faisant face à un côté avant de l'organe de refoulement (5) ou en entourant l'organe de refoulement pour régler le volume de refoulement dans le carter de pompe (1),
    - l'organe de réglage (6, 7) peut être soumis, dans la direction de sa mobilité, à une force de réglage qui dépend de la demande d'un ensemble (14) à alimenter en fluide,
    - dans laquelle l'organe de réglage (6, 7) et l'organe de refoulement (5) font partie d'une unité de réglage (5, 6, 7) mobile d'un seul tenant en va-et-vient dans le carter de pompe (1), ou un organe parmi l'organe de réglage et l'organe de refoulement est réglable par rapport à l'autre et au carter de pompe.
  13. Pompe volumétrique selon la revendication précédente et présentant au moins une des caractéristiques suivantes :
    - la pompe est une pompe rotative, et l'organe de refoulement (5) est un rotor de refoulement agencé de façon à pouvoir tourner dans la chambre de refoulement autour d'un axe de rotation (R5),
    - un ressort de pompe (10) est agencé de manière à contrecarrer la force de réglage.
  14. Pompe volumétrique selon l'une des deux revendications précédentes, dans laquelle l'organe de réglage (6, 7) peut être soumis au fluide du côté haute pression de la pompe afin de produire la force de réglage.
  15. Pompe volumétrique selon la revendication précédente, dans laquelle l'organe de réglage (6, 7) forme un piston de réglage à double effet avec une première surface de piston et une seconde surface de piston opposée à la première surface de piston, la première surface de piston peut être soumise à un fluide sous pression, de préférence le fluide du côté haute pression de la pompe, via un premier orifice (A) de la soupape de réglage (20), et la seconde surface de piston peut être soumise à un fluide sous pression, de préférence le fluide du côté haute pression de la pompe, via le second orifice (B) de la soupape de réglage (20), et le piston de soupape (22) est mobile en va-et-vient entre une première position et une seconde position, dans laquelle la soupape de réglage (20) conduit le fluide sous pression, dans la première position du piston de soupape (22), uniquement jusqu'à la première surface de piston et, dans la seconde position, uniquement jusqu'à la seconde surface de piston.
  16. Pompe volumétrique selon l'une des quatre revendications précédentes et présentant au moins une des caractéristiques suivantes :
    - l'organe de réglage (6, 7) est mobile axialement ou transversalement par rapport à l'axe de rotation (R5) conjointement avec l'organe de refoulement (5) ou rapport à l'organe de refoulement (5),
    - l'organe de refoulement (5) est en prise de refoulement avec un organe de refoulement supplémentaire (4) de la pompe volumétrique afin de guider le fluide,
    - la pompe est une pompe à engrenage extérieur ou à engrenage intérieur,
    - l'organe de réglage (6, 7) comporte un premier piston de réglage (6) et un second piston de réglage (7), et l'organe de refoulement (5) est agencé axialement entre les pistons de réglage (6, 7) et est axialement mobile en va-et-vient avec les pistons de réglage (6, 7) comme une unité de réglage (5, 6, 7) en prise de refoulement par rapport à l'organe de refoulement supplémentaire (4),
    - la pompe est une pompe à ailettes, une pompe à palettes pendulaires ou une pompe à engrenage intérieur, et l'organe de réglage est une bague de réglage mobile transversalement à l'axe de rotation de l'organe de refoulement et entourant l'organe de refoulement.
  17. Pompe volumétrique selon l'une des revendications précédentes, dans laquelle le fluide refoulé par la pompe volumétrique est dévié du côté haute pression de la pompe, de préférence en aval d'un dispositif de nettoyage (13), et peut être redirigé vers la pompe par l'intermédiaire de la soupape de régulation (20) afin d'y produire la force de réglage.
  18. Pompe volumétrique selon la revendication précédente, dans laquelle le fluide redirigé produit la pression de réglage de soupape (P20), de préférence pendant la traversée de la soupape de réglage (20).
  19. Pompe volumétrique selon l'une des revendications précédentes, comportant :
    - un dispositif de détection pour détecter au moins une grandeur physique (T, D, L) qui caractérise la demande de fluide d'un ensemble (14) à alimenter par la pompe,
    - une valeur de consigne préétablie qui forme une valeur de consigne pour un débit volumique (V14) à refouler par la pompe volumétrique ou une pression d'alimentation en fluide (P14) à produire par la pompe volumétrique, en fonction de la au moins une grandeur physique (T, D, L) détectée,
    - et un dispositif de commande ou de régulation qui commande ou régule le dispositif de réglage (27, 28) de la soupape réglage (20) en fonction de la valeur de consigne.
  20. Pompe volumétrique selon la revendication précédente, comportant un capteur pour déterminer une valeur réelle du débit volumique (V14) ou de la pression d'alimentation en fluide (P14), dans laquelle le dispositif de régulation forme une grandeur de réglage pour le dispositif de réglage (27, 28) de la soupape de réglage (20) en fonction d'une comparaison de la valeur de signe et de la valeur réelle.
  21. Pompe volumétrique selon l'une des revendications précédentes et présentant au moins une des caractéristiques suivantes :
    - la pompe est utilisée comme une pompe à huile lubrifiante dans un véhicule pour fournir de l'huile lubrifiante à un moteur à combustion interne (14) ou du liquide hydraulique à une transmission automatique,
    - la pompe est entraînée par le moteur à combustion interne (14).
EP08159994.6A 2007-07-13 2008-07-09 Soupape de réglage pour le réglage du volume d'alimentation d'une pompe volumétrique Active EP2014919B2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16206318.4A EP3173624B1 (fr) 2007-07-13 2008-07-09 Pompe volumétrique avec soupape de réglage du volume d'alimentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200710033146 DE102007033146B4 (de) 2007-07-13 2007-07-13 Verstellventil für die Verstellung des Fördervolumens einer Verdrängerpumpe

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP16206318.4A Division EP3173624B1 (fr) 2007-07-13 2008-07-09 Pompe volumétrique avec soupape de réglage du volume d'alimentation
EP16206318.4A Division-Into EP3173624B1 (fr) 2007-07-13 2008-07-09 Pompe volumétrique avec soupape de réglage du volume d'alimentation

Publications (4)

Publication Number Publication Date
EP2014919A2 EP2014919A2 (fr) 2009-01-14
EP2014919A3 EP2014919A3 (fr) 2010-09-01
EP2014919B1 EP2014919B1 (fr) 2017-01-04
EP2014919B2 true EP2014919B2 (fr) 2020-01-08

Family

ID=39870297

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16206318.4A Active EP3173624B1 (fr) 2007-07-13 2008-07-09 Pompe volumétrique avec soupape de réglage du volume d'alimentation
EP08159994.6A Active EP2014919B2 (fr) 2007-07-13 2008-07-09 Soupape de réglage pour le réglage du volume d'alimentation d'une pompe volumétrique

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP16206318.4A Active EP3173624B1 (fr) 2007-07-13 2008-07-09 Pompe volumétrique avec soupape de réglage du volume d'alimentation

Country Status (5)

Country Link
US (1) US8523535B2 (fr)
EP (2) EP3173624B1 (fr)
JP (1) JP2009019773A (fr)
DE (1) DE102007033146B4 (fr)
HU (1) HUE035833T2 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009060189B4 (de) 2009-12-23 2017-07-13 Schwäbische Hüttenwerke Automotive GmbH Regelvorrichtung für die Verstellung des Fördervolumens einer Pumpe
DE102010038430B4 (de) * 2010-07-26 2012-12-06 Schwäbische Hüttenwerke Automotive GmbH Verdrängerpumpe mit Absaugnut
DE102010039657B4 (de) * 2010-08-23 2017-06-08 Schwäbische Hüttenwerke Automotive GmbH Bypassventil zur Regulierung eines Fluidflusses, zum Beispiel in einer Konstantpumpe
DE102011010834A1 (de) 2011-02-10 2012-08-16 Audi Ag Verstelleinrichtung für einer Verdrängerpumpe
DE102011010835B4 (de) 2011-02-10 2014-01-30 Audi Ag Verdrängerpumpe
DE102011013756A1 (de) * 2011-03-12 2012-09-13 Volkswagen Aktiengesellschaft Zahnradpumpe mit Verschiebeeinheit zur Einstellung einer Fördermenge
JP5950583B2 (ja) * 2011-03-27 2016-07-13 株式会社山田製作所 ポンプ装置
DE102011055407B4 (de) * 2011-08-05 2018-10-04 Hilite Germany Gmbh Ventileinrichtung für eine Ölversorgungseinrichtung einer Kraftfahrzeug-Brennkraftmaschine
US9678511B2 (en) 2012-04-12 2017-06-13 Itt Manufacturing Enterprises Llc. Method of determining pump flow in rotary positive displacement pumps
US10451471B2 (en) 2012-04-12 2019-10-22 Itt Manufacturing Enterprises Llc Method of determining pump flow in twin screw positive displacement pumps
DE102013211900A1 (de) * 2013-06-24 2014-12-24 Zf Friedrichshafen Ag Kolbenventil und Ventilkolben für ein Kolbenventil
JP2015117638A (ja) * 2013-12-18 2015-06-25 株式会社山田製作所 オイルポンプ装置
DE102016212180A1 (de) 2016-07-05 2018-01-11 Volkswagen Aktiengesellschaft Pumpe, Fluidsystem und Brennkraftmaschine
DE102017200874A1 (de) * 2016-11-14 2018-05-17 Mahle International Gmbh Elektrische Kühlmittelpumpe
DE102017001318B4 (de) 2017-02-11 2022-02-24 Thomas Magnete Gmbh Druckregelventil für eine Verstellpumpe
DE102017206619A1 (de) 2017-04-20 2018-10-25 Bayerische Motoren Werke Aktiengesellschaft Kennfeld geregeltes Steuerventil für eine Schmiermittelpumpe
DE102017109061A1 (de) 2017-04-27 2018-10-31 Eto Magnetic Gmbh Schieberproportionalventil für die Fördervolumenverstellung einer Verdrängerpumpe, Montageverfahren sowie System
CN110821582A (zh) * 2019-11-18 2020-02-21 福建福清核电有限公司 一种汽轮机润滑油温度调节阀的稳定控制方法

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1990750A (en) * 1931-03-02 1935-02-12 Gulf Res & Dev Corp Variable volume pump and hydraulic transmission
DE1917488B2 (de) * 1969-04-05 1977-06-23 Robert Bosch Gmbh, 7000 Stuttgart Steuereinrichtung fuer eine hydromaschine
GB1555118A (en) 1975-10-04 1979-11-07 Lucas Industries Ltd Servo pressure control arrangements for variable stroke pumps
JPS57131890A (en) * 1981-02-06 1982-08-14 Tokyo Keiki Co Ltd Oil hydraulic controller
DE3109045A1 (de) * 1981-03-10 1982-09-16 Alfred Teves Gmbh, 6000 Frankfurt Regelbare hydraulikpumpe
US4600364A (en) 1983-06-20 1986-07-15 Kabushiki Kaisha Komatsu Seisakusho Fluid operated pump displacement control system
US4561521A (en) * 1984-12-06 1985-12-31 Ford Motor Company Variable assist power steering system
CN1010794B (zh) * 1986-01-11 1990-12-12 日立建机株式会社 液压泵输入功率控制系统
US4877099A (en) * 1986-09-02 1989-10-31 Ford Motor Company Electronically controlled variable assist power steering system
JPH0544626Y2 (fr) * 1988-05-25 1993-11-12
JPH02161184A (ja) * 1988-12-13 1990-06-21 Daikin Ind Ltd 可変容量形ポンプの制御回路
DE3905937A1 (de) 1989-02-25 1990-08-30 Bosch Gmbh Robert Verfahren und vorrichtung zur ansteuerung eines magnetventils
DE3931962A1 (de) * 1989-09-25 1991-04-04 Rexroth Mannesmann Gmbh Ansteuerelektronik fuer ein elektrisch verstellbares stellglied
US5029513A (en) * 1990-04-27 1991-07-09 Ford Motor Company Variable-orifice, servo-solenoid valve for a variable-assist power steering system
US5392875A (en) * 1991-12-23 1995-02-28 Ford Motor Company Hydraulic reaction variable assist power steering system
JPH0674206A (ja) * 1992-08-26 1994-03-15 Hitachi Constr Mach Co Ltd 油圧モータ容量制御装置
DE4308198C1 (de) * 1993-03-15 1994-07-28 Rexroth Mannesmann Gmbh Drehmomentregelung über Schwenkwinkel bzw. Exzentrizität bei hydrostatischen Maschinen mit axialer und radialer Kolbenanordnung
US5297647A (en) * 1993-03-18 1994-03-29 Ford Motor Company Variable assist power steering gear with hydraulic reaction controls
EP0636869B1 (fr) 1993-07-27 1999-01-13 Siemens Aktiengesellschaft Circuit pour déterminer la température d'une bobine électrique à courant contrÔle
JPH08177745A (ja) * 1994-12-21 1996-07-12 Hitachi Constr Mach Co Ltd 油圧ポンプ流量制御装置
JPH08210195A (ja) * 1995-02-06 1996-08-20 Nissan Motor Co Ltd ディーゼル機関の排気還流制御装置
US5876185A (en) 1996-11-20 1999-03-02 Caterpillar Inc. Load sensing pump control for a variable displacement pump
CA2219062C (fr) 1996-12-04 2001-12-25 Siegfried A. Eisenmann Pompe a engrenages a couronne infiniment variable
GB2320955B (en) * 1997-01-03 1999-08-04 Hobourn Automotive Ltd Flow control valve
US6019441A (en) 1997-10-09 2000-02-01 General Motors Corporation Current control method for a solenoid operated fluid control valve of an antilock braking system
US6244839B1 (en) 1997-11-14 2001-06-12 University Of Arkansas Pressure compensated variable displacement internal gear pumps
DE19847132C2 (de) 1998-10-13 2001-05-31 Schwaebische Huettenwerke Gmbh Außenzahnradpumpe mit Fördervolumenbegrenzung
DE19854766A1 (de) * 1998-11-27 2000-05-31 Bosch Gmbh Robert Kraftstoffeinspritzpumpe
DE19859281A1 (de) 1998-12-22 2000-06-29 Bosch Gmbh Robert Verfahren zur Kompensation der Temperaturabhängigkeit eines Spulenwiderstandes einer Ventilspule
JP4117588B2 (ja) * 1999-02-12 2008-07-16 株式会社デンソー 内燃機関の着火時期検出装置
JP2001149921A (ja) * 1999-11-25 2001-06-05 Japan Organo Co Ltd 水処理装置
JP2001271616A (ja) * 2000-01-18 2001-10-05 Unisia Jecs Corp 可変動弁機構の制御装置
GB0001711D0 (en) 2000-01-25 2000-03-15 Btg Int Ltd Data compression having improved compression speed
JP2001271758A (ja) * 2000-03-24 2001-10-05 Komatsu Ltd エンジン回転数センシング機能を有する油圧回路
DE10161131B4 (de) 2000-12-12 2013-11-07 Slw Automotive Inc. Flügelpumpe veränderlicher Verdrängung
JP3861594B2 (ja) * 2000-12-15 2006-12-20 ユニシア ジェーケーシー ステアリングシステム株式会社 オイルポンプ
JP2002286151A (ja) * 2001-03-26 2002-10-03 Denso Corp 電磁弁
JP2002350199A (ja) * 2001-05-24 2002-12-04 Samson Co Ltd 演算によって流量を算出する流量算出部を持った通水装置
AU2002367332A1 (en) 2002-01-12 2003-07-24 Dieter Voigt Device for pressure regulation of hydraulic pumps
DE60333503D1 (de) * 2002-04-03 2010-09-02 Slw Automotive Inc Pumpe mit variabler Förderleistung und Steuerung dafür
US7726948B2 (en) 2002-04-03 2010-06-01 Slw Automotive Inc. Hydraulic pump with variable flow and variable pressure and electric control
DE10239558B4 (de) 2002-08-28 2005-03-17 SCHWäBISCHE HüTTENWERKE GMBH Außenzahnradpumpe mit Druckfluidvorladung
DE10324092B4 (de) * 2003-05-27 2010-07-01 Voigt, Dieter, Dipl.-Ing. Regelbare Schmierölpumpe mit einem Fördermengenregler
DE102004002062A1 (de) * 2004-01-15 2005-08-04 Volkswagen Ag Zahnradpumpe mit Fördermengenregelung
JP4202297B2 (ja) * 2004-05-20 2008-12-24 株式会社日立製作所 内燃機関のバルブタイミング制御装置
JP4214965B2 (ja) * 2004-07-22 2009-01-28 株式会社デンソー 蒸発燃料処理装置の漏れ検出装置
US7130721B2 (en) * 2004-10-29 2006-10-31 Caterpillar Inc Electrohydraulic control system
DE102005029086B4 (de) * 2005-06-23 2016-06-16 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Ölpumpe für eine Brennkraftmaschine
US7993111B2 (en) * 2008-01-03 2011-08-09 Ford Global Technologies, Llc Power steering pump flow control

Also Published As

Publication number Publication date
EP3173624A3 (fr) 2017-06-21
JP2009019773A (ja) 2009-01-29
DE102007033146A1 (de) 2009-01-15
EP2014919B1 (fr) 2017-01-04
EP3173624A2 (fr) 2017-05-31
EP2014919A3 (fr) 2010-09-01
EP2014919A2 (fr) 2009-01-14
EP3173624B1 (fr) 2022-01-26
DE102007033146B4 (de) 2012-02-02
HUE035833T2 (en) 2018-05-28
US20090041605A1 (en) 2009-02-12
US8523535B2 (en) 2013-09-03

Similar Documents

Publication Publication Date Title
EP2014919B2 (fr) Soupape de réglage pour le réglage du volume d'alimentation d'une pompe volumétrique
DE60317399T3 (de) Regelbare Verdrängerpump sowie Steursystem dafür
DE112012000961B4 (de) Hydraulische Einrichtung zur Betätigung einer Kupplung
WO1995013474A1 (fr) Dispositif de commande pour une pompe a volume de remplissage variable
DE3333647C2 (de) Schmiermittelpumpe für die Druckerzeugung bei einem druckumlaufgeschmierten Verbrennungsmotor
EP1537335A1 (fr) Dispositif de regulation de la puissance de pompage d'une pompe a lubrifiant d'automobile
DE112008000978T5 (de) Hydraulische Pumpe mit variablem Durchfluss und Druck und verbesserter elektrischer Steuerung mit offenem Regelkreis
WO2015062565A1 (fr) Pompe à réfrigérant réglable
WO2002063170A1 (fr) Systeme de pompage comprenant une pompe hydraulique, destine notamment a un systeme de direction
WO1990002876A1 (fr) Pompe a piston radiaux
DE102010054100A1 (de) Hydraulisches System
EP0724068A1 (fr) Système d'amenée d'huile
WO2012149929A2 (fr) Pompe à cylindrée variable
DE3410071C2 (de) Hydraulikanlage
WO1985004455A1 (fr) Systeme hydraulique pour vehicules
EP1463888B1 (fr) Dispositif pour reguler la pression de pompes hydrauliques
DE60305812T2 (de) Hydraulische Pumpe mit doppeltem Auslass und System mit derselben
EP0225338B1 (fr) Pompe a capacite variable
EP0097230B1 (fr) Commande du ventilateur pour une installation de refroidissement, notamment pour véhicules sur rails
DE102009060189B4 (de) Regelvorrichtung für die Verstellung des Fördervolumens einer Pumpe
DE102012223920A1 (de) Rotationskolbenpumpe
EP1831573B1 (fr) Dispositif de commande hydraulique
EP0259619B1 (fr) Pompe à huile de lubrification
DE10023330C1 (de) Regelbare Pumpe
DE3407747A1 (de) Druckregler fuer eine verstellbare pumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHWAEBISCHE HUETTENWERKE AUTOMOTIVE GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20110118

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

17Q First examination report despatched

Effective date: 20150218

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160726

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 859517

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008014928

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170504

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170404

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502008014928

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: BONTAZ CENTRE R&D

Effective date: 20171002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170709

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E035833

Country of ref document: HU

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170709

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 859517

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170709

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190627 AND 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170104

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20200108

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502008014928

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230724

Year of fee payment: 16

Ref country code: GB

Payment date: 20230720

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20230721

Year of fee payment: 16

Ref country code: FR

Payment date: 20230725

Year of fee payment: 16

Ref country code: DE

Payment date: 20230719

Year of fee payment: 16