EP3173624B1 - Pompe volumétrique avec soupape de réglage du volume d'alimentation - Google Patents

Pompe volumétrique avec soupape de réglage du volume d'alimentation Download PDF

Info

Publication number
EP3173624B1
EP3173624B1 EP16206318.4A EP16206318A EP3173624B1 EP 3173624 B1 EP3173624 B1 EP 3173624B1 EP 16206318 A EP16206318 A EP 16206318A EP 3173624 B1 EP3173624 B1 EP 3173624B1
Authority
EP
European Patent Office
Prior art keywords
valve
fluid
pressure
pump
adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16206318.4A
Other languages
German (de)
English (en)
Other versions
EP3173624A3 (fr
EP3173624A2 (fr
Inventor
Christof Lamparski
Jürgen Bohner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schwaebische Huettenwerke Automotive GmbH
Original Assignee
Schwaebische Huettenwerke Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39870297&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3173624(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Schwaebische Huettenwerke Automotive GmbH filed Critical Schwaebische Huettenwerke Automotive GmbH
Publication of EP3173624A2 publication Critical patent/EP3173624A2/fr
Publication of EP3173624A3 publication Critical patent/EP3173624A3/fr
Application granted granted Critical
Publication of EP3173624B1 publication Critical patent/EP3173624B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/185Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by varying the useful pumping length of the cooperating members in the axial direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • F04C14/223Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members using a movable cam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/14Lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/18Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/20Flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/86622Motor-operated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/8667Reciprocating valve
    • Y10T137/86694Piston valve
    • Y10T137/86702With internal flow passage

Definitions

  • the invention relates to a displacement pump with an adjustment valve which is arranged in a fluid circuit of the pump for adjusting the delivery volume of a fluid to be delivered by the pump.
  • Positive displacement pumps deliver fluids with a flow rate that is proportional to the pump speed.
  • the delivery volume per revolution or reciprocating stroke, the so-called specific volume flow is constant or can be regarded as constant in practice, at least to a good approximation.
  • the constancy per revolution or stroke and accordingly the proportionality to the pump speed is disruptive, for example, in applications in which the unit to be supplied by the respective pump has a fluid requirement that is lower in one or more speed range(s) of the pump than that resulting from the Volumetric flow resulting in proportionality. In the respective speed range, the pump accordingly conveys a volume flow that is higher than required, which is diverted with losses.
  • the problem becomes in the U.S. 6,126,420 B described, which already discloses an internal gear pump with adjustable delivery volume to solve the problem.
  • the U.S. 6,244,839 B1 also discloses an internal gear pump with variable displacement.
  • the inner gear is axially displaceable relative to the outer gear.
  • the inner gear is part of an axially displaceable adjustment unit, which is designed as a piston that acts on both sides.
  • the adjustment unit is charged with the fluid delivered by the pump via a 4/3 adjustment valve.
  • the adjusting valve has a valve housing and a valve piston which can be moved back and forth axially in the valve housing and which is acted upon at one axial end by the delivered fluid and at the other axial end by a force of a valve spring counteracting the pressure of the fluid.
  • the position of the valve piston adjusts according to the balance of the force of the valve spring and the force generated by the fluid pressure.
  • the adjustment valve is designed in such a way that the adjustment unit of the pump moves from an axial position for maximum Displacement moved toward an axial position for minimum displacement.
  • the preload force of the valve spring is set in advance on the adjustment valve.
  • a displacement pump with an adjustment valve is known, the movable valve piston of which is acted upon by a spring force in order to adjust the delivery volume of the pump in an axial direction with fluid on the high-pressure side of the pump and the fluid counteracting it.
  • a control device is provided for the adjusting valve, which exerts an additional force on the valve piston.
  • An electric stepper motor for adjusting the prestressing force of the valve spring and a magnetic coil for generating an additional magnetic force are mentioned as examples of control devices.
  • the fluid flow switched by means of the adjustment valve acts on a displacement unit of the pump only in the direction of the maximum delivery volume, while the pressure of the high-pressure side always acts in the opposite direction.
  • the FR 2 326 600 A1 discloses a generic displacement pump and its use in hydraulic systems.
  • the U.S. 6,244,839 B1 relates to a variable displacement positive displacement pump for maintaining a desired pressure in fluid systems.
  • From the EP 1 555 436 A2 discloses a lubricating oil pump for an internal combustion engine with a delivery volume that can be controlled.
  • the invention is based on a displacement pump for supplying a unit with fluid, which has a pump housing with a delivery chamber and a delivery member that can move in the delivery chamber and acts directly on the fluid in order to deliver it through the delivery chamber.
  • the conveying element can convey the fluid alone or in cooperation with one or optionally also several further conveying element(s) from an inlet of the conveying chamber while increasing the pressure through an outlet of the conveying chamber.
  • the inlet will be associated with a low pressure side and the outlet will be associated with a high pressure side of the pump.
  • the pump is preferably arranged in a closed fluid circuit, but can in principle also serve to convey the fluid in an open fluid circuit.
  • the pump When integrated in a closed fluid circuit, it sucks the fluid on the low-pressure side from a reservoir through the inlet into the delivery chamber and conveys it on the high-pressure side to the unit or units to be supplied with the fluid, if applicable. Downstream of the unit(s), the fluid returns to the reservoir, which closes the fluid circuit.
  • the pump is intended for installation in a motor vehicle in order to supply a lubricating fluid to an internal combustion engine which drives the motor vehicle or to supply hydraulic fluid to an automatic transmission.
  • the internal combustion engine preferably drives the pump.
  • the positive-displacement pump also includes an adjustment valve, by means of which the delivery volume of the pump can be adapted to the requirements of the at least one unit to be supplied and the energy required to drive the pump can preferably be correspondingly reduced.
  • the adjusting valve comprises a valve housing, a valve piston that can be moved in the valve housing, a valve spring and an adjusting device.
  • the valve piston has an effective area for a fluidic valve actuating pressure.
  • the valve spring is arranged in such a way that it acts on the valve piston in opposition to the total valve control pressure acting on the valve body.
  • the delivery volume is the specific volume flow of the pump as such, in the case of a rotary pump the volume flow per revolution and in the case of a reciprocating pump the volume flow per stroke.
  • the pump can also be a fixed displacement pump and the variable valve can be arranged on the high-pressure side of the pump as a bypass valve in order to pump excess fluid, bypassing the at least one unit, into the reservoir.
  • a bypass delivery does not reduce the energy consumption of the pump, it still ensures demand-based delivery.
  • it is not the delivery volume at the outlet of the delivery chamber that is controlled or regulated as required, but rather the delivery volume delivered to the at least one unit.
  • a pump that can be adjusted in terms of its delivery volume can also be combined with such a bypass valve, in that the volume flow per revolution or stroke is adjusted via an adjustment valve according to the invention or in some other way and downstream of the pump, but upstream of the unit to be supplied, a part of the diverted from the volume flow delivered by the pump and returned unused to a reservoir.
  • the delivery volume of the pump as such is adjusted by means of the adjustment valve.
  • an actuator is movably arranged in the pump housing, which can be acted upon in the direction of its mobility with an actuating force that is dependent on the requirement of the at least one unit.
  • the actuator can in particular be arranged on a front side of the conveyor member or surrounding the conveyor member.
  • the actuator and the conveyor member are in first variants part of an adjustment unit that can be moved back and forth as a whole in the pump housing, for example an adjustment unit that can be moved linearly or pivoted or otherwise moved transversely to an axis of rotation of the preferably rotatable conveyor member. Examples of such adjustment units describe, for example, the U.S.
  • the actuator can be adjusted relative to the conveying element and the pump housing.
  • the actuator of the second variant can in particular be an adjusting ring surrounding the conveying element, as is known from vane pumps including vane pumps, pendulum slide pumps and also internal gear pumps, in order to adjust the eccentricity to the conveying element, for example by a linear lifting or pivoting movement of the actuator.
  • the actuating force is preferably generated fluidly in that the actuating element forms an actuating piston which is acted upon by a pressurized fluid.
  • This pressurized fluid can in particular be branched off on the high-pressure side of the pump and fed back to the actuator via the adjusting valve as a partial flow of the total volume flow delivered by the pump.
  • the pressure fluid with which the actuator is acted upon can also be a different fluid, for example a fluid that is provided from a pressure reservoir or from another pump.
  • a partial flow of the fluid is fed via the adjusting valve into the delivery chamber back to the low-pressure side in order to increase the degree of filling of delivery cells there, as is the case, for example, in FIG U.S. 6,935,851 B2 is revealed.
  • the delivery volume is adjusted at the same time, and this type of adjustment can also be implemented in combination with one of the other types already mentioned.
  • the adjusting device is formed in such a way that it can adjust the valve piston in the direction of the force exerted on the valve body by the valve actuating pressure. It preferably acts electromagnetically.
  • the adjuster may be constructed to only act in the same direction and counter to the valve spring, and alternatively may be constructed to displace the valve piston both into and against the force of the valve actuating pressure.
  • valve actuating pressure and a force exerted by the adjusting device on the valve piston act together against the force of the valve spring. If the valve actuating pressure increases, the valve piston can be adjusted against the force of the valve spring by means of a correspondingly smaller force of the adjusting device.
  • the adjustment device is set up for an adjustment of the valve piston both in the direction of the valve setting pressure and against the valve setting pressure.
  • the adjusting device is a magnetic adjusting device with only a single magnetic coil, the polarity of the magnetic coil can be reversed in such embodiments.
  • a separate magnetic coil with one armature each can be provided for each of two directions of movability of the valve piston, and one of these armatures can exert a force on the valve piston in one direction and the other armature can exert a force in the other direction of movability of the valve piston to move the valve piston back and forth.
  • the position of the valve piston can be adjusted relative to the valve housing in the second embodiment and also in the first embodiment independently of the valve setting pressure acting on the effective area and the delivery volume of the pump can be adjusted accordingly.
  • the adjustment valve can thus adjust the delivery volume over a larger operating range of the unit to be supplied continuously or in any stepped manner and not just to a specific pressure, when the delivery volume is limited when it is reached.
  • a control or regulating device for the adjustment valve is preferably set up in such a way that the delivery volume can be adjusted in an adapted manner over the entire operating range of the unit by means of the adjustment valve.
  • the valve spring and the valve control pressure which constantly counteracts the force of the valve spring, ensure a reliable supply of the unit, even if in the event of a failure of the adjustment device, only as is known from conventional positive displacement pumps with a limitation of the delivery volume depending on the preload force and spring constant of the valve spring.
  • the invention combines precise and flexible adaptability to requirements with a security of supply that is guaranteed even if the adjusting device fails; it creates a so-called second-level control or regulation for the delivery volume.
  • the adjustment valve is preferably a proportional valve. It is electrically controlled.
  • the adjusting device preferably acts magnetically. It can have a proportional magnet coil which is controlled or regulated by voltage or current, ie by varying the applied voltage or the electric current in accordance with the requirements of the at least one unit.
  • the adjusting valve is controlled or regulated in a pulse-modulated manner.
  • the duration of the individual pulses or the time interval between two consecutive pulses of the manipulated variable can be varied, which also includes the case where both the pulse duration and the time duration between consecutive pulses are adjusted to suit the needs.
  • the period of the manipulated variable is preferably constant.
  • a pulse width modulated adjustment valve is preferably used.
  • the period of the manipulated variable for the adjustment valve is significantly smaller than the time constant of the displacement pump that determines the adjustment of the delivery volume.
  • the pulse modulation uses the low-pass character of the pump.
  • the adjusting valve is preferably a multi-way valve with at least three ports, preferably with four ports. It can preferably be switched between at least two switching positions, preferably between three switching positions.
  • the adjusting valve is controlled or regulated as a function of a desired value for the volume flow to be delivered by the positive displacement pump or a fluid supply pressure to be generated by the positive displacement pump.
  • a setpoint specification specifies the setpoint of a control or regulating device provided for the adjustment valve. The setpoint is preferably varied depending on the demand of the unit.
  • a characteristic map is preferably specified for the setpoint values that are dependent on the operating state of the unit.
  • the at least one setpoint or more preferably the multiple setpoints is or are specified as a function of a physical variable characterizing the operating state, which is determined by sensors during operation of the assembly using a detection device.
  • the at least one physical variable can in particular be a temperature, a speed or a load condition of the unit.
  • the setpoint or the are preferred Target values for the volume flow or the fluid supply pressure are specified as a function of at least two variables characterizing the operating state of the unit. If the displacement pump is used as a lubricating oil pump for an internal combustion engine, the temperature of the lubricating oil or the cooling liquid in the area of the internal combustion engine or the speed or, for the load condition, the accelerator pedal or a throttle valve position can be detected by sensors, and the associated setpoint value can be determined from this using the characteristic map and of the control or regulation device for the adjustment valve.
  • the adjustment valve is only controlled as a function of the respective desired value. There is no detection of an actual value, representative of the requirement, of the physical quantity forming the set point, namely the volume flow or the fluid supply pressure, nor is there any complex processing for regulation based on a set/actual comparison.
  • the adjustment valve is controlled as a function of a target/actual comparison of the respective target value and an actual value of the volume flow or of the fluid supply pressure measured continuously or at sufficiently short time intervals. Control is advantageous in cases where the volume flow requirement of the unit changes due to wear over the life of the unit.
  • a control device which can switch from a controller according to the first embodiment to a regulation according to the second embodiment.
  • the adjustment valve is initially controlled on the basis of the predetermined volumetric flow and is later switched over to pressure regulation when leakage losses increase as a result of wear on the unit.
  • an adaptive control device is provided, which detects increasing wear based on a sensory detection of the volume flow or fluid supply pressure and adjusts the setpoint or the setpoint characteristic map at least once or in several stages, optionally shifting it continuously during the service life of the unit.
  • the adjustment valve is based on a setpoint or a setpoint map for the fluid supply pressure or the Volume flow controlled and additionally flow regulated.
  • a particularly preferred embodiment is an adjustment valve that is controlled by means of a setpoint value or a plurality of setpoint values or a setpoint characteristic map for the fluid supply pressure or the volume flow by means of pulse width modulation and is additionally current-regulated.
  • the current regulation advantageously compensates for changes in the electrical resistance of a magnet adjustment device that are associated with temperature changes. The power consumption of the magnet adjustment device is recorded and the changes in the magnitude of the electric current due to changes in resistance are compensated for by the duty cycle of the variation in the power consumption being correspondingly regulated.
  • a corresponding procedure can be used not only for the preferred embodiment as a pulse-width-modulated adjustment valve, but also for adjustment valves that are controlled in a different way.
  • Flow control in addition to control based on a setpoint or setpoint map for the volume flow or the fluid supply pressure means that flow rate or pressure control can be dispensed with, although flow control or pressure control can also be used in the case of flow control.
  • the control or regulation device can be an integral part of the adjustment valve or installed separately from it.
  • the specified setpoint value can be a physical component of the control or regulation device or can be realized separately from the other parts of the control or regulation device.
  • the adjustment valve is preferably an integral part of the displacement pump, for example mounted on the pump housing.
  • the adjustment valve can advantageously also be arranged in the housing of the displacement pump, for example in a receiving bore or a receiving space of a different shape in a wall of the pump housing.
  • the connections of the adjustment valve can be formed as bores or differently shaped channels in the housing, in particular in said housing wall, to save space and weight. Accordingly, the pump housing can simultaneously also form the valve housing or just part of the valve housing.
  • the actuator is designed as a double-acting actuating piston with two piston surfaces facing away from one another axially, preferably opposite one another, and by means of the adjusting valve either one or the other piston surface can be acted upon by a pressurized fluid, optionally also both piston surfaces at the same time.
  • the actuator forms an actuating piston that can be acted upon by pressure fluid, for example a piston that can only be acted upon with pressure fluid on one side or preferably a double-acting piston, it is acted upon in preferred embodiments by a pump spring with a spring force, with the pump spring acting in the direction of increasing the delivery volume of the pump.
  • a pump spring is so weak that the adjustment dynamics of the pump are not significantly influenced by the pump spring, but exclusively or at least to a significantly greater extent by the adjustment valve.
  • a pump spring can also be dispensed with in such designs.
  • a weak pump spring is advantageous, with such a pump spring being designed in such a way that it only ensures that when the displacement pump is running at low speed, the maximum delivery volume for this pump speed is delivered.
  • a pump spring is sufficient, which exerts a spring force on the actuator corresponding to a fluid pressure of at most 1 bar.
  • the fluid guided by the adjustment valve to the displacement pump for the purpose of adjustment or, in the case of an adjustment valve used only as a bypass valve, the fluid branched off to a reservoir generates the valve control pressure as it flows through the adjustment valve.
  • no separate connection is required to generate the valve control pressure.
  • the same inlet through which the fluid stream flowing through the adjustment valve reaches the adjustment valve also forms the connection for the fluid that generates the valve setting pressure.
  • the valve control pressure is generated by means of a plurality of effective surfaces, preferably by means of exactly two effective surfaces which differ in size, so that the valve control pressure exerts a differential force on the valve piston corresponding to the difference in surface area of the effective surfaces.
  • the characteristic of the differential force is particularly preferably combined with the further characteristic, according to which the fluid simultaneously also generates the valve actuating pressure as it flows through the adjustment valve.
  • the prestressing force of the valve spring can be adjusted, preferably fluidically, while the displacement pump is delivering the fluid.
  • the adjustment valve can have another piston. which preferably only serves to set the prestressing force and is preferably acted upon by the fluid that also generates the valve actuating pressure.
  • a separate connection being provided for the piston for adjusting the prestressing force, or preferably a force acting on this adjusting piston can also be generated by the fluid flowing through.
  • figure 1 shows a positive displacement pump in a cross section.
  • a delivery chamber is formed with an inlet 2 on a low-pressure side and an outlet 3 on a high-pressure side.
  • a first conveying member 4 and a second conveying member 5 are movably arranged in the conveying chamber.
  • the conveying members 4 and 5 are in conveying engagement with each other. If the conveying elements 4 and 5 are driven, they carry out a conveying movement in the conveying engagement, as a result of which a fluid, for example lubricating oil or a hydraulic fluid, is sucked through the inlet 2 into the conveying chamber and is displaced through the outlet 3 at a higher pressure.
  • the conveying member 4 is driven and drives the conveying member 5 in conveying engagement.
  • the positive displacement pump of the embodiment is an external gear pump.
  • the conveying members 4 and 5 are accordingly conveying rotors which are toothed circumferentially on the outside and the conveying engagement is a toothed engagement.
  • the conveying members 4 and 5 are rotatably mounted about a respective axis of rotation R 4 and R 5 .
  • the fluid sucked in is transported from the inlet 2 in the conveying cells formed by the tooth gaps in each of the conveying elements 4 and 5 through the area of the so-called wrap 1a and ejected through the outlet 3 .
  • the axial length of the delivery engagement of the delivery members 4 and 5, the engagement length, measured along the axes of rotation R 4 and R 5 , is adjustable.
  • the conveying member 5 is axial relative to the conveying member 4 and the pump housing 1 between a position of maximum engagement length and corresponding maximum Delivery volume and a position of minimal engagement length and accordingly minimal delivery volume movable back and forth.
  • FIG 2 shows the displacement pump in a longitudinal section.
  • the conveyor member 4 is secured against rotation on a drive shaft which protrudes from the pump housing 1 and carries a drive wheel for driving the pump.
  • the conveying element 5 is part of an adjustment unit which, in addition to the conveying element 5 , also includes an actuator with two actuating pistons 6 and 7 .
  • This adjusting unit 5-7 can be moved back and forth axially as a whole in the pump housing 1 in order to be able to adjust the engagement length.
  • the conveying element 5 is arranged axially between the actuating pistons 6 and 7 .
  • the actuator 6, 7 supporting the conveying member 5 is rotatable about the axis of rotation R. 5
  • the adjusting unit 5-7 is accommodated in a cylindrical cavity of the pump housing 1.
  • the cavity forms an axial track for the movements of the adjustment unit 5-7.
  • it forms a pressure chamber 8 on one axial side of the adjustment unit 5-7 and another pressure chamber 9 on the other side.
  • the pressure chambers 8 and 9 can each be pressurized with a pressurized fluid, in the exemplary embodiment with the fluid conveyed by the displacement pump.
  • a pump spring 10 is arranged in the pressure chamber 9, the spring force of which acts on the adjustment unit 5-7, namely on the actuating piston 7, in the direction of the maximum engagement length.
  • FIG 3 shows the displacement pump integrated into a closed fluid circuit, for example a lubricating oil circuit of a motor vehicle.
  • the fluid circuit contains a reservoir 11, from which the pump sucks the fluid on the low-pressure side through the inlet 2 and at higher pressure on the high-pressure side through the outlet 3, a connected supply line 12 and via a cooling and cleaning device 13 with a cooler and a Filter to the unit to be supplied with the fluid 14, such as an internal combustion engine for driving a motor vehicle promotes. Downstream of the unit 14 the fluid is fed back into the reservoir 11 through a line 15 .
  • a partial flow 16 of the fluid is branched off and fed back to the pump via an adjusting valve 20.
  • the adjustment valve 20 has an inlet for the partial flow 16, an outlet short-circuited to the reservoir 11 and two further connections, one of which is connected to the pressure chamber 8 via a line 18 and the other to the pressure chamber 9 via a line 19 .
  • the adjustment valve 20 is a multi-way switching valve. In a first switching position, it leads the partial flow 16 into the pressure chamber 8 and connects the pressure chamber 9 to the reservoir 11, ie switches the pressure chamber 9 to ambient pressure.
  • the adjustment valve 20 of the embodiment can assume three switching positions. namely the two switching positions mentioned and also a central position in which it separates the pressure chambers 8 and 9 from one another and also from the reservoir 11 and the partial flow 16, so that the respective pressure in the pressure chambers 8 and 9 is maintained, one sees from leaks and associated leakage losses.
  • a 4/3-way valve was selected for the adjusting valve 20 in the exemplary embodiment.
  • FIG figure 4 shows the adjustment valve 20 as in FIG figure 3 as a circuit symbol, only in an enlarged representation.
  • the four connections of the adjustment valve 20 are entered, of which the inlet for the returned partial flow 16 is labeled I, the outlet to the reservoir 11 is labeled O, the connection for the pressure chamber 8 is labeled A and the connection for the pressure chamber 9 is labeled B.
  • the adjusting valve 20 is a proportional valve with a constantly acting fluidic valve control pressure P20, namely, the pressure of the recycled partial stream 16 the fluid, and a valve spring 25 which is disposed 20 counteracting the valve setting pressure P.
  • the adjustment valve 20 comprises, as a proportional valve, an adjustment device which reverses the adjustment valve 20 from one of the switching positions to another, adapted to the fluid requirement of the unit 14 .
  • the valve actuating pressure P 20 and the valve spring 25 give the adjustment valve 20 a fail-safe property if the proportional adjustment device fails.
  • the adjusting device is a magnetic adjusting device that is switched with a pulse width modulated electrical control signal.
  • the control signal is from a control device in the form of a square-wave signal with a constant upper and a constant lower signal level, such as voltage level, and a certain period t generated.
  • the duration of the upper signal level, the so-called switch-on time, and consequently the duration of the lower signal level, the switch-off time can be varied according to the pulse width modulation.
  • the magnetic force of the adjusting device changes according to the pulse duty factor of the control signal, ie the ratio of the switch-on time to the period t.
  • the switching position of the adjusting valve 20 results from the force balance of the force of the valve spring 25 and the two opposing forces, namely the fluidic force generated by the valve actuating pressure P 20 and the magnetic force.
  • the greater the valve actuating pressure P 20 the smaller the magnetic force corresponding to the balance of forces. If the sum of the fluidic force and the magnetic force exceeds the spring force, the valve piston 22 moves in the direction of the first switch position and the delivery volume of the displacement pump is limited. If the force of the valve spring 25 predominates, the valve piston 22 moves into the second switching position and the displacement unit 5-7 moves accordingly in the direction of the maximum delivery volume.
  • the switch-on time and the switch-off time are associated with the first and the second switching position of the adjustment valve 20 . If the adjusting device is functioning properly, the position of the valve piston 22 and, associated therewith, the switching position of the adjusting valve 20 are decoupled from the valve actuating pressure P 20 . As an example, it is assumed that the adjustment valve 20 assumes the first switch position during each switch-on time, in which the fluid of the partial flow 16 is returned to the pressure chamber 8, and assumes the second switch position during each switch-off time, in which the fluid is returned to the pressure chamber 9.
  • the flow through the adjustment valve 20 to the respective pressure chamber 8 or 9 can be varied practically continuously in both versions because the period t of the control signal is significantly shorter than the relevant time constant of the pump.
  • the pressure in the pressure chamber 8 and the pressure in the pressure chamber 9 can also be changed correspondingly continuously.
  • the adjustment unit 5-7 can be moved along its axial adjustment path to any desired axial position and also held there.
  • the delivery volume is thus flexible between the maximum and the minimum delivery volume and can be precisely and continuously adapted to the fluid requirement of the unit 14 .
  • the characteristic diagram contains a predetermined desired value for the fluid supply pressure P 14 or the volume flow V 14 that the unit 14 requires in the respective operating state.
  • These volume flow or pressure setpoints are stored in the characteristics map as a function of physical quantities that characterize the operating states that are to be distinguished with regard to the fluid requirement.
  • the temperature T, the speed D and the load L are mentioned as examples of the physical quantities.
  • the unit 14 has a detection device for detecting one or more physical variable(s) characterizing the different operating states.
  • the temperature T can be measured, for example, at a critical point of the unit 14, in a cooling fluid used to cool the unit 14, or in the fluid conveyed by the pump 3.
  • the speed D can be recorded very easily using a tachometer and the load L via the accelerator pedal or a throttle valve position.
  • a setpoint specification selects the assigned pressure or volumetric flow setpoint based on the characteristics map and gives it to the control device for the adjustment valve 20 .
  • the control device forms the control signal, namely the ratio of the switch-on time to the period t, corresponding to the current setpoint. Feedback by means of a controlled variable, in this case a measured actual value of the fluid supply pressure P 14 or of the volume flow V 14 , is not required as long as the actual fluid requirement of the unit 14 corresponds to the setpoint.
  • the control based on the target value can be supplemented in particular with a current control.
  • the current control is used in particular to compensate for changes in resistance of the magnetic adjusting device, which can take place primarily with temperature changes.
  • the current consumption of the adjusting device is recorded with a recording device and kept at a specific current value. If the detection device detects a change in the current consumption and accordingly in the electrical resistance of the adjusting device, the pulse duty factor is changed in such a way that the current consumption again corresponds to the current value before the resistance change.
  • a control device is also provided for adjusting valve 20.
  • the control device forms the actuating signal for the adjustment valve 20 as a function of a setpoint/actual comparison based on a fluid supply pressure P 14 or volume flow V 14 required for the unit 14 .
  • the control device has access to a memory in which other setpoint values of the pressure P 14 or volume flow V 14 are stored in the form of a characteristic map comparable to the characteristic map previously used for the control.
  • the characteristic diagrams of the desired pressure values or desired volume flow values can be stored in physically different memories or in different areas in the same memory.
  • a higher-level control device which can be part of the pressure or volume flow control device or the control device and switches from control to control if it is determined that the demand of the unit has changed to such an extent that the map of the setpoints no longer adequately describes the actual requirement because the requirement has increased, for example due to wear and tear.
  • the actually prevailing fluid supply pressure P 14 can be recorded, for example, at the most downstream point of consumption of the assembly 14 or, in the example of the internal combustion engine, at the engine gallery and compared with the pressure setpoint that is decisive for the respective operating state, for example by calculating the difference between the setpoint - and actual value.
  • the pressure or volume flow control described as non-feedback as an example can be developed into a pressure or volume flow control with a target/actual comparison of the respective pressure or volume flow target value with an actual value to be measured for the comparison.
  • characteristic diagrams for the volume flow V 14 or fluid supply pressure P 14 can be stored in advance, which describe the need for different times in the life cycle of the unit 14, for example a characteristic diagram for the first n kilometers of a motor vehicle or n hours of operation of the unit 14, the next m kilometers of the vehicle or m operating hours of the unit, etc. Based, for example, on the mileage of the vehicle or an operating time recording, it is possible to switch from the characteristic map used first to the next, etc., in such designs.
  • control device can also have the ability to change the target values of the characteristics map according to the state of the assembly 14 in order to better control the adjustment valve 20 in each case on the basis of the changed characteristics map to be able to control adapted to the respective state of the unit 14 .
  • the change in the setpoint values of the characteristic map or the selection of one of several predetermined characteristic maps is advantageously carried out automatically, for example on the basis of the already mentioned mileage or the operating time or a detection of the fluid supply pressure P 14 and comparison with one or in the form of a characteristic map predetermined pressure setpoint(s). ), in which case such a target/actual comparison could be used for pressure regulation of the adjustment valve 20, but preferably only for the selection of the pressure or volume flow characteristic map to be used or for changing the pressure or volume flow target values of a single predetermined characteristic map used for control.
  • FIG figure 5 shows a longitudinal section of an adjustment valve 20 that has been modified in relation to the generation of the valve adjustment pressure P 20 .
  • the valve adjustment pressure P 20 is different than in the adjustment valve of FIG figure 4 not by means of an additional partial flow in the Figures 3 and 4 the partial flow 17, but by means of the flow of the partial flow 16 to be controlled or regulated.
  • Apart from this modification apply to the adjustment valve 20 of Figures 3 and 4 statements made for the modified adjustment valve 20 and the statements made for this purpose also for the adjustment valve 20 of Figures 3 and 4 .
  • the adjustment valve 20 has a valve housing 21 and a valve piston 22 that can be moved back and forth axially in the valve housing 21 along a central valve axis S.
  • a magnetic coil 27 and an armature 28 made of soft iron are shown from the adjusting device. The electrical connections of the magnetic coil 27 are also indicated.
  • the magnetic coil 27 is firmly connected to the valve housing 21 and surrounds the armature 28.
  • the armature 28 is not connected to the valve piston 22 so that it can move axially, so that the valve piston 22 and the armature 28 can move axially like run a unit.
  • the valve piston 22 has a first effective surface 23 and a second effective surface 24 for the valve control pressure P 20 .
  • the active surfaces 23 and 24 axially jointly delimit a fluid chamber 26 and face one another axially.
  • the size difference is only slight, but defined such that the valve actuating pressure P 20 always exerts a differential force on the valve piston 22 that corresponds to the size difference of the effective surfaces 23 and 24 and counteracts the force of the valve spring 25 .
  • valve piston 22 can be manufactured very precisely to the difference in size of the active surfaces 23 and 24, the differential force can also be correspondingly small and the valve spring 25 advantageously softer than in the exemplary embodiment of FIG figure 4 being.
  • the adjusting device 27, 28 requires correspondingly small forces.
  • the adjusting valve 20 becomes more sensitive overall, and the switching times of the adjusting valve 20 can be shortened.
  • the inlet I for the fluid to be controlled or regulated opens into the fluid chamber 26 in all switching positions of the adjusting valve 20.
  • the switching position shown which corresponds to the switching position of the adjusting valve 4 in the Figures 3 and 4 corresponds
  • the port B opens into the fluid chamber 26, and the valve piston 22 separates the fluid chamber 26 and thus the inlet I from the other port A. Accordingly, the fluid of the partial flow 16 is returned to the pressure chamber 9, while the pressure chamber 8 via the port A is connected to the reservoir 11 and is thus depressurized.
  • the port A is connected to the outlet O via a space in the valve housing 21 in which the valve spring 25 is arranged, and via this to the reservoir 11 .
  • the magnetic coil 27 is energized and displaces the armature 28 against the force of the valve spring 25 in the axial direction, first into the middle switching position and, with a correspondingly long switch-on time, up to the other extreme switching position , the first switching position.
  • the valve piston 22 In the middle switching position, the valve piston 22 separates both connections A and B from the fluid chamber 26, into which the inlet I opens, as before.
  • valve piston 22 In the first switching position, valve piston 22 assumes an axial position such that fluid chamber 26 axially overlaps both inlet I and port A, while valve piston 22 in the relevant axial position separates port B from fluid chamber 26 fluidly separates.
  • the fluid of the partial flow 16 is conducted through the fluid chamber 26 and the port A into the pressure chamber 8, while the pressure chamber 9 is connected via the port B and a passage C of the valve piston 22 to the outlet O and finally to the reservoir 11 is.
  • the valve piston 22 is hollow.
  • the passage C is formed in a cylindrical jacket area of the valve piston 22, which adjoins the effective surface 24 in the direction of the armature 28 and forms a narrow sealing gap with the surrounding jacket of the valve housing 21, which separates the adjusting device 27, 28 fluidically from the fluid chamber 26 separates.
  • a cylindrical casing area of the valve piston 22 also adjoins the effective surface 23 radially on the outside and away from the adjustment device 27, 28, which forms another narrow sealing gap with the valve housing 21 as long as the adjustment valve 20 does not assume the first switching position in which the valve piston 22 occupies the axial position in which the fluid space 26 is in an axial overlap with port A.
  • the adjustment device 27, 28 with the assigned control device switches the adjustment valve 20 over the entire operating range of the unit 14 and controls or regulates the axial position of the adjustment unit 5-7 and consequently the delivery volume of the displacement pump over the entire volume flow range that is required for the adjusted supply of the unit 14 is required.
  • the fluidic valve actuating pressure P 20 and the valve spring 25 serve as backup pressure in the event that the adjusting device 27, 28 or the associated control device fails due to a defect, for example due to a broken cable or a loose electrical plug connection.
  • the adjustment valve 20 is designed so that in the event of a failure, the delivery volume of the pump is adjusted from maximum to minimum only when a fluid supply pressure P 14 is reached, which is greater than a maximum fluid supply pressure P 14 that occurs when the adjustment valve 20 is functioning properly .
  • the valve spring 25 is installed with a prestressing force that is greater than a force exerted on the valve piston 22 by a maximum valve actuating pressure P 20 that can occur when it is functioning properly.

Claims (19)

  1. Pompe volumétrique présentant un volume de refoulement réglable
    1.1 qui est destinée à être installée dans un véhicule automobile pour alimenter un moteur à combustion interne entraînant le véhicule automobile en huile lubrifiante ou alimenter une transmission automatique en fluide hydraulique, la pompe volumétrique comprenant :
    1.2 un carter de pompe (1) ;
    1.3 une chambre de refoulement formée dans le carter de pompe (1) et comprenant une entrée (2) pour un fluide sur un côté basse pression de la pompe et une sortie (3) pour le fluide sur un côté haute pression de la pompe ;
    1.4 un organe de refoulement (5) mobile dans la chambre de refoulement pour refouler le fluide ;
    1.5 une soupape de réglage (20) agencée dans un écoulement du fluide refoulé par l'organe de refoulement (5) pour régler le volume de refoulement et comprenant :
    1.5.1 un boîtier de soupape (21) ;
    1.5.2 un piston de soupape (22) monté de manière mobile dans le boîtier de soupape (21) et comprenant une surface active (23) pour une pression d'actionnement de soupape (P20) d'un fluide ; et
    1.5.3 un ressort de soupape (25) qui contrecarre une force exercée par la pression d'actionnement de soupape (P20) sur le piston de soupape (22),
    1.5.4 le piston de soupape (22) comportant une surface active supplémentaire (24) pour la pression d'actionnement de soupape (P20), les surfaces actives (23, 24) étant agencées de manière à se contrecarrer l'une et l'autre et étant de taille différente afin de générer une force différentielle qui agit sur le piston de soupape (22) à l'encontre du ressort de soupape (25) et en fonction de la différence de taille des surfaces actives (23, 24) ;
    1.6 et un dispositif de réglage (27, 28) au moyen duquel le piston de soupape (22) peut être réglé dans la direction de la force exercée par la pression d'actionnement de soupape (P20) ou contre cette force,
    1.7 caractérisée en ce que la soupape de réglage (20) comprend le dispositif de réglage (27, 28),
    1.8 la soupape de réglage (20) est pilotée électriquement,
    1.9 la pression d'actionnement de soupape (P20) et une force exercée par le dispositif de réglage (27, 28) sur le piston de soupape (22) agissent conjointement à l'encontre de la force du ressort de soupape (25), et
    1.10 la position du piston de soupape (22) par rapport au boîtier de soupape (21) peut être réglée indépendamment de la pression d'actionnement de soupape (P20) agissant sur les surfaces actives (23, 24).
  2. Pompe volumétrique selon la revendication précédente, dans laquelle les surfaces actives (23, 24) limitent le même espace de fluide (26) et sont dirigées l'une vers l'autre dans la direction de la mobilité du piston de soupape (22).
  3. Pompe volumétrique selon la revendication précédente, dans laquelle le piston de soupape (22) est mobile en va-et-vient entre une première position et une seconde position, et dans la première position du piston de soupape (22), une entrée (I) et un orifice (A) pour un fluide sous pression générant la pression d'actionnement de soupape (P20) débouchent dans l'espace de fluide (26) et le piston de soupape (22) sépare, dans la seconde position, l'orifice (A) de l'entrée (I) débouchant encore dans l'espace de fluide (26).
  4. Pompe volumétrique selon l'une quelconque des revendications précédentes, dans laquelle le boîtier de soupape (21) comporte une entrée (I), un premier orifice (A) et un second orifice (B) pour un fluide sous pression, le piston de soupape (22) est mobile en va-et-vient entre une première position et une seconde position, et l'entrée (I) est reliée au premier orifice (A) et séparée du second orifice (B) lorsque le piston de soupape (22) est dans la première position et est reliée au second orifice (B) et séparée du premier orifice (A) lorsque le piston de soupape (22) est dans la seconde position, afin de guider sélectivement le fluide sous pression jusqu'à la pompe soit par l'intermédiaire du premier orifice (A) soit par l'intermédiaire du second orifice (B).
  5. Pompe volumétrique selon l'une quelconque des revendications précédentes et présentant au moins une des caractéristiques suivantes :
    - le dispositif de réglage (27, 28) peut être actionné électriquement ;
    - le dispositif de réglage (27, 28) est formé comme un dispositif de réglage magnétique.
  6. Pompe volumétrique selon l'une quelconque des revendications précédentes et présentant au moins une des caractéristiques suivantes :
    - la soupape de réglage (20) est une soupape proportionnelle ;
    - la soupape de réglage (20) est commandée ou régulée à modulation d'impulsions, de préférence à modulation d'impulsions en largeur ;
    - la soupape de réglage (20) est commandée ou régulée en courant ou en tension.
  7. Pompe volumétrique selon l'une quelconque des revendications précédentes, comprenant :
    - un dispositif de commande ou de régulation pour commander ou réguler une pression d'alimentation en fluide (P14) à générer par la pompe volumétrique ou un débit volumique (V14) à refouler par la pompe volumétrique ;
    - et une valeur de consigne par défaut pour prédéterminer au moins une valeur de consigne pour la pression ou le débit volumique, de préférence une valeur de consigne variable de manière prédéterminée,
    - le dispositif de commande ou de régulation commandant ou régulant le dispositif de réglage (27, 28) en fonction de la valeur de consigne.
  8. Pompe volumétrique selon l'une quelconque des revendications précédentes, comprenant :
    - un dispositif de régulation pour réguler une pression d'alimentation en fluide (P14) à générer par la pompe volumétrique ;
    - une valeur de consigne par défaut pour prédéterminer une valeur de consigne pour la pression d'alimentation en fluide (P14), de préférence une valeur de consigne variable de manière prédéterminée; et
    - un capteur pour déterminer une valeur réelle de la pression d'alimentation en fluide (P14),
    - le dispositif de régulation comparant la valeur réelle à la valeur de consigne et commandant le dispositif de réglage (27, 28) en fonction du résultat de la comparaison.
  9. Pompe volumétrique selon une combinaison des deux revendications précédentes, comprenant un dispositif de vérification au moyen duquel la soupape de réglage (20) peut être basculée de la commande de la pression d'alimentation en fluide (P14) ou du débit volumique (V14) vers la régulation de la pression d'alimentation en fluide (P14) ou du débit volumique (V14).
  10. Pompe volumétrique selon l'une quelconque des revendications précédentes, dans laquelle le ressort de soupape (25) est précontrainte et exerce une force de précontrainte sur le piston de soupape (22) qui est plus grande qu'une force exercée sur le piston de soupape (22) par une pression d'actionnement de soupape (P20) maximale lorsque le dispositif de réglage (27, 28) fonctionne correctement.
  11. Pompe volumétrique selon l'une quelconque des revendications précédentes, dans laquelle :
    - un organe d'actionnement (6, 7) est agencé de manière mobile en faisant face à un côté frontal de l'organe de refoulement (5) ou en entourant l'organe de refoulement (5) pour régler le volume de refoulement dans le carter de pompe (1) ;
    - l'organe d'actionnement (6, 7) peut être sollicité, dans la direction de sa mobilité, par une force d'actionnement qui dépend de la demande d'un ensemble (14) à alimenter en fluide ;
    - l'organe d'actionnement (6, 7) et l'organe de refoulement (5) font partie d'une unité de réglage (5, 6, 7) mobile d'un seul tenant en va-et-vient dans le carter de pompe (1), ou l'un parmi l'organe d'actionnement (6, 7) et l'organe de refoulement (5) est réglable par rapport à l'autre et par rapport au carter de pompe (1).
  12. Pompe volumétrique selon la revendication précédente et présentant au moins une des caractéristiques suivantes :
    - la pompe est une pompe rotative, et l'organe de refoulement (5) est un rotor de refoulement agencé de façon à pouvoir tourner dans la chambre de refoulement autour d'un axe de rotation (R5) ;
    - un ressort de pompe (10) est agencé de manière à contrecarrer la force d'actionnement.
  13. Pompe volumétrique selon l'une quelconque des deux revendications précédentes, dans laquelle l'organe d'actionnement (6, 7) peut être sollicité par le fluide du côté haute pression de la pompe afin de générer la force d'actionnement.
  14. Pompe volumétrique selon la revendication précédente, dans laquelle l'organe d'actionnement (6, 7) forme un piston d'actionnement à double effet comprenant une première surface de piston et une seconde surface de piston opposée à la première surface de piston, la première surface de piston peut être sollicitée par un fluide sous pression, de préférence le fluide du côté haute pression de la pompe, par l'intermédiaire d'un premier orifice (A) de la soupape de réglage (20) et la seconde surface de piston peut être sollicitée par un fluide sous pression, de préférence le fluide du côté haute pression de la pompe, par l'intermédiaire d'un second orifice (B) de la soupape de réglage (20), et le piston de soupape (22) est mobile en va-et-vient entre une première position et une seconde position, la soupape de réglage (20) guidant le fluide sous pression uniquement jusqu'à la première surface de piston dans la première position du piston de soupape (22) et uniquement jusqu'à la seconde surface de piston dans la seconde position du piston de soupape (22).
  15. Pompe volumétrique selon l'une quelconque des quatre revendications précédentes et présentant au moins une des caractéristiques suivantes :
    - la pompe est une pompe à engrenage extérieur ;
    - la pompe est une pompe à ailettes, une pompe à palettes pendulaires ou une pompe à engrenage intérieur, et l'organe d'actionnement (6, 7) est une bague d'actionnement mobile transversalement à l'axe de rotation de l'organe de refoulement (5) et entourant l'organe de refoulement (5).
  16. Pompe volumétrique selon l'une quelconque des revendications précédentes, dans laquelle le fluide refoulé par la pompe volumétrique est dévié sur le côté haute pression de la pompe, de préférence en aval d'un dispositif de nettoyage (13), et redirigé vers la pompe par l'intermédiaire de la soupape de réglage (20) afin d'y générer la force d'actionnement.
  17. Pompe volumétrique selon la revendication précédente, dans laquelle le fluide redirigé génére la pression d'actionnement de soupape (P20), de préférence pendant la traversée de la soupape de réglage (20).
  18. Pompe volumétrique selon l'une des revendications précédentes, comprenant :
    - un dispositif de détection pour détecter au moins une grandeur physique (T, D, L) qui caractérise la demande de fluide d'un ensemble (14) à alimenter par la pompe ;
    - une valeur de consigne par défaut qui forme une valeur de consigne pour un débit volumique (V14) à refouler par la pompe volumétrique ou une pression d'alimentation en fluide (P14) à générer par la pompe volumétrique, en fonction de ladite au moins une grandeur physique (T, D, L) détectée ; et
    - un dispositif de commande ou de régulation qui commande ou régule le dispositif de réglage (27, 28) de la soupape de réglage (20) en fonction de la valeur de consigne.
  19. Pompe volumétrique selon la revendication précédente, comprenant un capteur pour déterminer une valeur réelle du débit volumique (V14) ou de la pression d'alimentation en fluide (P14), le dispositif de régulation formant une grandeur d'actionnement pour le dispositif de réglage (27, 28) de la soupape de réglage (20) en fonction d'une comparaison de la valeur de consigne et de la valeur réelle.
EP16206318.4A 2007-07-13 2008-07-09 Pompe volumétrique avec soupape de réglage du volume d'alimentation Active EP3173624B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710033146 DE102007033146B4 (de) 2007-07-13 2007-07-13 Verstellventil für die Verstellung des Fördervolumens einer Verdrängerpumpe
EP08159994.6A EP2014919B2 (fr) 2007-07-13 2008-07-09 Soupape de réglage pour le réglage du volume d'alimentation d'une pompe volumétrique

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP08159994.6A Division EP2014919B2 (fr) 2007-07-13 2008-07-09 Soupape de réglage pour le réglage du volume d'alimentation d'une pompe volumétrique
EP08159994.6A Division-Into EP2014919B2 (fr) 2007-07-13 2008-07-09 Soupape de réglage pour le réglage du volume d'alimentation d'une pompe volumétrique

Publications (3)

Publication Number Publication Date
EP3173624A2 EP3173624A2 (fr) 2017-05-31
EP3173624A3 EP3173624A3 (fr) 2017-06-21
EP3173624B1 true EP3173624B1 (fr) 2022-01-26

Family

ID=39870297

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08159994.6A Active EP2014919B2 (fr) 2007-07-13 2008-07-09 Soupape de réglage pour le réglage du volume d'alimentation d'une pompe volumétrique
EP16206318.4A Active EP3173624B1 (fr) 2007-07-13 2008-07-09 Pompe volumétrique avec soupape de réglage du volume d'alimentation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08159994.6A Active EP2014919B2 (fr) 2007-07-13 2008-07-09 Soupape de réglage pour le réglage du volume d'alimentation d'une pompe volumétrique

Country Status (5)

Country Link
US (1) US8523535B2 (fr)
EP (2) EP2014919B2 (fr)
JP (1) JP2009019773A (fr)
DE (1) DE102007033146B4 (fr)
HU (1) HUE035833T2 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009060189B4 (de) 2009-12-23 2017-07-13 Schwäbische Hüttenwerke Automotive GmbH Regelvorrichtung für die Verstellung des Fördervolumens einer Pumpe
DE102010038430B4 (de) * 2010-07-26 2012-12-06 Schwäbische Hüttenwerke Automotive GmbH Verdrängerpumpe mit Absaugnut
DE102010039657B4 (de) * 2010-08-23 2017-06-08 Schwäbische Hüttenwerke Automotive GmbH Bypassventil zur Regulierung eines Fluidflusses, zum Beispiel in einer Konstantpumpe
DE102011010835B4 (de) 2011-02-10 2014-01-30 Audi Ag Verdrängerpumpe
DE102011010834A1 (de) 2011-02-10 2012-08-16 Audi Ag Verstelleinrichtung für einer Verdrängerpumpe
DE102011013756A1 (de) * 2011-03-12 2012-09-13 Volkswagen Aktiengesellschaft Zahnradpumpe mit Verschiebeeinheit zur Einstellung einer Fördermenge
JP5950583B2 (ja) * 2011-03-27 2016-07-13 株式会社山田製作所 ポンプ装置
DE102011055406B4 (de) * 2011-08-05 2016-06-09 Hilite Germany Gmbh Ventileinrichtung für eine Ölversorgungseinrichtung einer Kraftfahrzeug-Brennkraftmaschine
CN104334881B (zh) * 2012-04-12 2017-04-26 Itt制造企业有限责任公司 确定旋转式容积泵中的泵流量的方法
US10451471B2 (en) 2012-04-12 2019-10-22 Itt Manufacturing Enterprises Llc Method of determining pump flow in twin screw positive displacement pumps
DE102013211900A1 (de) * 2013-06-24 2014-12-24 Zf Friedrichshafen Ag Kolbenventil und Ventilkolben für ein Kolbenventil
JP2015117638A (ja) * 2013-12-18 2015-06-25 株式会社山田製作所 オイルポンプ装置
DE102016212180A1 (de) 2016-07-05 2018-01-11 Volkswagen Aktiengesellschaft Pumpe, Fluidsystem und Brennkraftmaschine
DE102017200876A1 (de) * 2016-11-14 2018-05-17 Mahle International Gmbh Elektrische Kühlmittelpumpe
DE102017001318B4 (de) 2017-02-11 2022-02-24 Thomas Magnete Gmbh Druckregelventil für eine Verstellpumpe
DE102017206619A1 (de) 2017-04-20 2018-10-25 Bayerische Motoren Werke Aktiengesellschaft Kennfeld geregeltes Steuerventil für eine Schmiermittelpumpe
DE102017109061A1 (de) 2017-04-27 2018-10-31 Eto Magnetic Gmbh Schieberproportionalventil für die Fördervolumenverstellung einer Verdrängerpumpe, Montageverfahren sowie System
CN110821582A (zh) * 2019-11-18 2020-02-21 福建福清核电有限公司 一种汽轮机润滑油温度调节阀的稳定控制方法

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1990750A (en) * 1931-03-02 1935-02-12 Gulf Res & Dev Corp Variable volume pump and hydraulic transmission
DE1917488B2 (de) * 1969-04-05 1977-06-23 Robert Bosch Gmbh, 7000 Stuttgart Steuereinrichtung fuer eine hydromaschine
GB1555118A (en) 1975-10-04 1979-11-07 Lucas Industries Ltd Servo pressure control arrangements for variable stroke pumps
JPS57131890A (en) * 1981-02-06 1982-08-14 Tokyo Keiki Co Ltd Oil hydraulic controller
DE3109045A1 (de) * 1981-03-10 1982-09-16 Alfred Teves Gmbh, 6000 Frankfurt Regelbare hydraulikpumpe
US4600364A (en) 1983-06-20 1986-07-15 Kabushiki Kaisha Komatsu Seisakusho Fluid operated pump displacement control system
US4561521A (en) * 1984-12-06 1985-12-31 Ford Motor Company Variable assist power steering system
CN1010794B (zh) * 1986-01-11 1990-12-12 日立建机株式会社 液压泵输入功率控制系统
US4877099A (en) * 1986-09-02 1989-10-31 Ford Motor Company Electronically controlled variable assist power steering system
JPH0544626Y2 (fr) * 1988-05-25 1993-11-12
JPH02161184A (ja) * 1988-12-13 1990-06-21 Daikin Ind Ltd 可変容量形ポンプの制御回路
DE3905937A1 (de) 1989-02-25 1990-08-30 Bosch Gmbh Robert Verfahren und vorrichtung zur ansteuerung eines magnetventils
DE3931962A1 (de) * 1989-09-25 1991-04-04 Rexroth Mannesmann Gmbh Ansteuerelektronik fuer ein elektrisch verstellbares stellglied
US5029513A (en) * 1990-04-27 1991-07-09 Ford Motor Company Variable-orifice, servo-solenoid valve for a variable-assist power steering system
US5392875A (en) * 1991-12-23 1995-02-28 Ford Motor Company Hydraulic reaction variable assist power steering system
JPH0674206A (ja) * 1992-08-26 1994-03-15 Hitachi Constr Mach Co Ltd 油圧モータ容量制御装置
DE4308198C1 (de) * 1993-03-15 1994-07-28 Rexroth Mannesmann Gmbh Drehmomentregelung über Schwenkwinkel bzw. Exzentrizität bei hydrostatischen Maschinen mit axialer und radialer Kolbenanordnung
US5297647A (en) * 1993-03-18 1994-03-29 Ford Motor Company Variable assist power steering gear with hydraulic reaction controls
EP0636869B1 (fr) 1993-07-27 1999-01-13 Siemens Aktiengesellschaft Circuit pour déterminer la température d'une bobine électrique à courant contrÔle
JPH08177745A (ja) * 1994-12-21 1996-07-12 Hitachi Constr Mach Co Ltd 油圧ポンプ流量制御装置
JPH08210195A (ja) * 1995-02-06 1996-08-20 Nissan Motor Co Ltd ディーゼル機関の排気還流制御装置
US5876185A (en) 1996-11-20 1999-03-02 Caterpillar Inc. Load sensing pump control for a variable displacement pump
CA2219062C (fr) * 1996-12-04 2001-12-25 Siegfried A. Eisenmann Pompe a engrenages a couronne infiniment variable
GB2320955B (en) * 1997-01-03 1999-08-04 Hobourn Automotive Ltd Flow control valve
US6019441A (en) 1997-10-09 2000-02-01 General Motors Corporation Current control method for a solenoid operated fluid control valve of an antilock braking system
US6244839B1 (en) * 1997-11-14 2001-06-12 University Of Arkansas Pressure compensated variable displacement internal gear pumps
DE19847132C2 (de) 1998-10-13 2001-05-31 Schwaebische Huettenwerke Gmbh Außenzahnradpumpe mit Fördervolumenbegrenzung
DE19854766A1 (de) * 1998-11-27 2000-05-31 Bosch Gmbh Robert Kraftstoffeinspritzpumpe
DE19859281A1 (de) 1998-12-22 2000-06-29 Bosch Gmbh Robert Verfahren zur Kompensation der Temperaturabhängigkeit eines Spulenwiderstandes einer Ventilspule
JP4117588B2 (ja) * 1999-02-12 2008-07-16 株式会社デンソー 内燃機関の着火時期検出装置
JP2001149921A (ja) * 1999-11-25 2001-06-05 Japan Organo Co Ltd 水処理装置
JP2001271616A (ja) * 2000-01-18 2001-10-05 Unisia Jecs Corp 可変動弁機構の制御装置
GB0001711D0 (en) 2000-01-25 2000-03-15 Btg Int Ltd Data compression having improved compression speed
JP2001271758A (ja) * 2000-03-24 2001-10-05 Komatsu Ltd エンジン回転数センシング機能を有する油圧回路
US6896489B2 (en) 2000-12-12 2005-05-24 Borgwarner Inc. Variable displacement vane pump with variable target regulator
JP3861594B2 (ja) * 2000-12-15 2006-12-20 ユニシア ジェーケーシー ステアリングシステム株式会社 オイルポンプ
JP2002286151A (ja) * 2001-03-26 2002-10-03 Denso Corp 電磁弁
JP2002350199A (ja) * 2001-05-24 2002-12-04 Samson Co Ltd 演算によって流量を算出する流量算出部を持った通水装置
JP4381816B2 (ja) * 2002-01-12 2009-12-09 フォイクト・ディーター 液圧ポンプの圧力調節のための装置
JP2004251267A (ja) * 2002-04-03 2004-09-09 Borgwarner Inc 可変容積ポンプ及びその制御システム
US7726948B2 (en) 2002-04-03 2010-06-01 Slw Automotive Inc. Hydraulic pump with variable flow and variable pressure and electric control
DE10239558B4 (de) 2002-08-28 2005-03-17 SCHWäBISCHE HüTTENWERKE GMBH Außenzahnradpumpe mit Druckfluidvorladung
DE10324092B4 (de) * 2003-05-27 2010-07-01 Voigt, Dieter, Dipl.-Ing. Regelbare Schmierölpumpe mit einem Fördermengenregler
DE102004002062A1 (de) * 2004-01-15 2005-08-04 Volkswagen Ag Zahnradpumpe mit Fördermengenregelung
JP4202297B2 (ja) * 2004-05-20 2008-12-24 株式会社日立製作所 内燃機関のバルブタイミング制御装置
JP4214965B2 (ja) * 2004-07-22 2009-01-28 株式会社デンソー 蒸発燃料処理装置の漏れ検出装置
US7130721B2 (en) * 2004-10-29 2006-10-31 Caterpillar Inc Electrohydraulic control system
DE102005029086B4 (de) * 2005-06-23 2016-06-16 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Ölpumpe für eine Brennkraftmaschine
US7993111B2 (en) * 2008-01-03 2011-08-09 Ford Global Technologies, Llc Power steering pump flow control

Also Published As

Publication number Publication date
JP2009019773A (ja) 2009-01-29
DE102007033146A1 (de) 2009-01-15
DE102007033146B4 (de) 2012-02-02
EP2014919A3 (fr) 2010-09-01
HUE035833T2 (en) 2018-05-28
EP3173624A3 (fr) 2017-06-21
EP2014919A2 (fr) 2009-01-14
EP3173624A2 (fr) 2017-05-31
EP2014919B2 (fr) 2020-01-08
US20090041605A1 (en) 2009-02-12
EP2014919B1 (fr) 2017-01-04
US8523535B2 (en) 2013-09-03

Similar Documents

Publication Publication Date Title
EP3173624B1 (fr) Pompe volumétrique avec soupape de réglage du volume d'alimentation
DE60317399T3 (de) Regelbare Verdrängerpump sowie Steursystem dafür
DE112012000961B4 (de) Hydraulische Einrichtung zur Betätigung einer Kupplung
DE102005051098B4 (de) Gerotorpumpe mit veränderlicher Förderleistung
DE10237801C5 (de) Vorrichtung zur Druckregelung von Hydraulikpumpen
WO1995013474A1 (fr) Dispositif de commande pour une pompe a volume de remplissage variable
EP1537335A1 (fr) Dispositif de regulation de la puissance de pompage d'une pompe a lubrifiant d'automobile
DE3144500C2 (de) Mit einem hydraulischen Spritzversteller versehene Verteilereinspritzpumpe
DE102013224112A1 (de) Hydromaschine in Axialkolbenbauweise
WO1990002876A1 (fr) Pompe a piston radiaux
WO2002063170A1 (fr) Systeme de pompage comprenant une pompe hydraulique, destine notamment a un systeme de direction
DE102010054100A1 (de) Hydraulisches System
WO1985004455A1 (fr) Systeme hydraulique pour vehicules
DE60305812T2 (de) Hydraulische Pumpe mit doppeltem Auslass und System mit derselben
EP0225338B1 (fr) Pompe a capacite variable
EP1463888A1 (fr) Dispositif pour reguler la pression de pompes hydrauliques
EP1048879B1 (fr) Alimentation en fluide sous pression d' une transmission de type CVT
DE102013224113A1 (de) Hydromotor
WO2008077674A1 (fr) Procédé de détermination d'un taux d'impulsions pour une soupape d'un dispositif de réglage d'arbre à cames
DE102009060189B4 (de) Regelvorrichtung für die Verstellung des Fördervolumens einer Pumpe
DE102012223920A1 (de) Rotationskolbenpumpe
EP0609233B1 (fr) Organe de reglage hydraulique
EP1831573B1 (fr) Dispositif de commande hydraulique
DE19702381A1 (de) Servolenkeinheit für ein Fahrzeug
DE4337210A1 (de) Zentralhydraulikanlage für ein Kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502008017241

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F04C0002180000

Ipc: F04C0014180000

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 20161222

AC Divisional application: reference to earlier application

Ref document number: 2014919

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F04C 14/22 20060101ALI20170515BHEP

Ipc: F04C 14/18 20060101AFI20170515BHEP

Ipc: F04C 2/18 20060101ALI20170515BHEP

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LAMPARSKI, CHRISTOF

Inventor name: BOHNER, JUERGEN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190717

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210823

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHWAEBISCHE HUETTENWERKE AUTOMOTIVE GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2014919

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1465483

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008017241

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220526

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220426

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008017241

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20221027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220709

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220709

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220709

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220709

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1465483

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220709

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230719

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126