EP1978055B1 - Matériau nanostructuré particulier, comme revêtement protecteur de surfaces métalliques. - Google Patents

Matériau nanostructuré particulier, comme revêtement protecteur de surfaces métalliques. Download PDF

Info

Publication number
EP1978055B1
EP1978055B1 EP08154099.9A EP08154099A EP1978055B1 EP 1978055 B1 EP1978055 B1 EP 1978055B1 EP 08154099 A EP08154099 A EP 08154099A EP 1978055 B1 EP1978055 B1 EP 1978055B1
Authority
EP
European Patent Office
Prior art keywords
groups
alkyl
nanostructured material
material according
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP08154099.9A
Other languages
German (de)
English (en)
Other versions
EP1978055A1 (fr
Inventor
Elisa Campazzi
Emmanuelle Lancelle-Beltran
Clément Sanchez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National Pour La Recherche Scientifique (cn
Universite Pierre et Marie Curie Paris 6
Airbus SAS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite Pierre et Marie Curie Paris 6
European Aeronautic Defence and Space Company EADS France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38698384&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1978055(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Centre National de la Recherche Scientifique CNRS, Universite Pierre et Marie Curie Paris 6, European Aeronautic Defence and Space Company EADS France filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1978055A1 publication Critical patent/EP1978055A1/fr
Application granted granted Critical
Publication of EP1978055B1 publication Critical patent/EP1978055B1/fr
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/58Metal-containing linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3063Treatment with low-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/407Aluminium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5455Silicon-containing compounds containing nitrogen containing at least one group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to nanostructured materials as constituents of protective coatings for metal surfaces, in particular for aeronautical and aerospace applications, and processes for their preparation.
  • protection against corrosion is generally provided by chromium VI surface treatments, for example, by means of a chromic anodic oxidation process, or a conversion layer.
  • Coatings having, for example, abrasion resistance and prepared by sol-gel are known from the documents US 2005/0020758 and US 2003/0157344 .
  • the document US 2005/0020758 discloses an abrasion resistant transparent coating obtained from an epoxy functional silane, a polysilane, a strong acid and a solvent. This coating is particularly intended to be used in the optical field.
  • the document US 2003/024432 discloses a coating having anti-corrosion properties, prepared sol-gel from an organometallic salt such as an alkoxyzirconium, an organosilane, and one or more compounds carrying a borate, zinc or phosphate function in the presence of an organic catalyst such as acetic acid.
  • an organometallic salt such as an alkoxyzirconium, an organosilane, and one or more compounds carrying a borate, zinc or phosphate function in the presence of an organic catalyst such as acetic acid.
  • these materials have the disadvantage of not being micro- or nanostructured, that is to say that the distribution of organic and inorganic domains in the material can not be controlled at the micrometer or nanometer scale. This random distribution can lead to non-reproducible properties from one material to another.
  • An advantage of the sol-gel process consists in constructing a three-dimensional network from starting precursors under so-called mild conditions, that is to say at a temperature below 200 ° C., and in a water or water / solvent medium. less harmful to the environment than those used for conventional surface treatments.
  • the starting precursors generally used in said sol-gel process are metal alkoxides comprising one or more hydrolyzable groups.
  • metal alkoxides there may be mentioned alkoxides of silicon or zirconium, alone or in mixture.
  • Article The self-assembled nanophase particle (SNAP) process a nanoscience approach to coatings, MS Donley et al, Progress in Organic Coatings, 47, 401-415, 2003 discloses amorphous material coatings, obtained under mild conditions, from an aqueous solution comprising tetramethoxysilane and glycidopropyltrimethoxysilane. A corrosion inhibitor is then introduced into the material.
  • SNAP self-assembled nanophase particle
  • the patent US 6,929,826 discloses a method of treating metal surfaces from an aqueous composition comprising an alkoxysilane, an epoxyalkoxysilane and water. This process comprises in particular the steps of mixing the ingredients of the composition, the aging of said composition, the addition of a crosslinking agent, a surfactant and optionally water, and then the application of the final composition to a composition. metal substrate and drying said substrate.
  • a nanoscale structure control allows to obtain new macroscopic properties that are not only the sum of the properties of each of the components such as mechanical strength, thickness and quality of the film, density, color and hydrophobic character can be modulated at will, but actually new properties. They result from the synergy of these components at the nanoscale. In addition, this control of the nanoscale structure leads to a reproducibility of the properties.
  • nanostructured materials we mean materials whose structure is controlled at the nanoscale. This structure can be verified in particular by X-ray diffraction and small-angle X-ray scattering, transmission microscopy (or TEM) or atomic force microscopy (AFM).
  • Such materials are known from the article " Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks "by C. Sanchez et al, Chem Mater, 2001, 13, 3061-3083 and are synthesized from well defined, preferably pre- or postfunctional, nanoparticles (or elementary nanoblocks or NBBs (Nano-Building Blocks)) and an organic or inorganic polymer or hybrid resin.
  • Some of these materials such as the matrix obtained by the sol / gel route, are amorphous, while the other part consists of crystalline domains of nanometric size.
  • These materials may comprise various functionalities that make it possible to confer on a substrate (or surface), in particular an alloy of aluminum or titanium, for example, a protection against corrosion, a scratch resistance, a good mechanical strength and / or a staining while ensuring good adhesion to the metal substrate.
  • these materials can allow the coexistence of several different functionalities that do not coexist in normal times, and can be applied by any conventional technique such as, for example, by dipping in a bath, deposit on rotating substrate (or spin -coating), spraying, spraying, laminar coating and brush coating.
  • Individual components may be designed to have a life time compatible with industrial cycles, for example, greater than or equal to 12 months, and to be mixed just prior to their application.
  • Their formulation has the additional advantage of using components compatible with environmental regulations, and in particular to be predominantly in aqueous medium.
  • the present invention relates to new nanostructured materials for imparting better properties such as protection against corrosion, scratch resistance, good mechanical strength and / or color while ensuring good adhesion to a metal substrate.
  • each ((R ') p -F) and ((R') p -F ') are non-hydrolyzable groups, F being a function preferably having an affinity for a possible organic or hybrid matrix, and F 'being a function preferably having an affinity for the surface of the elementary nanoblocks.
  • (LF) and (L-F ') each represent a group complexing the metal M via L and respectively have a function F preferably having an affinity for a possible organic or hybrid matrix, and a function F preferably having an affinity for the surface of the elementary nanoblocks.
  • the elementary nanoblock (s) may be in the form of clusters or nanoparticles, preferably nanoparticles of size ranging from 2 to 100 nm, better still from 2 to 50 nm, and even more preferably from 2 to 20 nm, the diameter of these nanoparticles. can be measured by X-ray diffraction and X-ray scattering at small angles, transmission (or TEM) microscopy or light scattering.
  • These elementary nanoblocks are essentially based on at least one metal oxide, the metal oxide being chosen, for example, from aluminum, cerium IV, silicon, zirconium and titanium oxides. Several synthetic methods can be used to prepare them.
  • a first method consists of synthesizing them from metal salts by precipitation.
  • Complexing agents may be introduced into the reaction medium to control the size of the elementary nanoblocks formed and ensure their dispersion in the solvent by functionalization of 80 to 100% of the surface of the nanoblocks with monodentate or polydentate complexing agents, such as, for example, carboxylic acid, ⁇ -diketone, ⁇ -ketoester, ⁇ - or ⁇ -hydroxy acid, phosphonate, polyamine and amino acid.
  • monodentate or polydentate complexing agents such as, for example, carboxylic acid, ⁇ -diketone, ⁇ -ketoester, ⁇ - or ⁇ -hydroxy acid, phosphonate, polyamine and amino acid.
  • the weight ratio between the mineral and organic components is in particular between 20 and 95%.
  • R 1 represents a methyl or ethyl group
  • R 1 ' represents a non-hydrolyzable group selected from methyl, ethyl, propyl, butyl, vinyl, 1-propenyl, 2-propenyl, butenyl, acetylenyl, propargyl, phenyl, naphthyl, methacryl, methacryloxypropyl, glycidyl and glycidyloxy (alkyl) groups.
  • C 1-10 and L 1 is a complexing ligand chosen from carboxylic acids, ⁇ -diketones, ⁇ -keto esters, ⁇ and ⁇ -hydroxy acids, amino acids and phosphonates.
  • Controlled hydrolysis is understood to mean a limitation of the growth of the species formed by controlling the amount of water introduced into the medium and possibly by introducing a complexing agent of the metallic central atom, in order to reduce the reactivity of the precursors .
  • the elementary nanoblocks are preferably in the form of amorphous or crystalline nanoparticles.
  • Their functionalization is carried out either directly during their synthesis, or during a second step following their synthesis, in the presence of a functionalizing agent as defined above, and preferably during a second step. We speak respectively of pre- or post-functionalization.
  • the degree of functionalization is preferably greater than 50%, better still greater than 80%.
  • the nanostructured materials according to the invention may further comprise an inorganic / organic polymer or hybrid matrix, preferably a hybrid of sol / gel type.
  • This matrix will serve as a connector through which the elementary blocks will form a three-dimensional network.
  • the proportion of the precursor R 2 Si (OR 1 ) 3 is the majority, while that of the precursor R 3 R 4 Si (OR 1 ) 2 is minor, for example from 5 to 30% by weight relative to the total weight mixture of precursors.
  • the matrix can be prepared from the three alkoxides of silicon R 3 R 4 Si (OR 1 ) 2 , R 2 Si (OR 1 ) 3 and Si (OR 1 ) 4 , for example in one proportion of 10%, 60% and 30% by weight relative to the total weight of the precursor mixture.
  • the solvent consists mainly of water. Preferably, it comprises 80 to 100% by weight of water relative to the total weight of the solvent, and optionally a C 1-4 alcohol, preferably ethanol or isopropanol.
  • the catalyst is preferably an acid, more preferably acetic acid, or CO 2 .
  • the solution to be deposited may be composed mainly of a mixture of silanes, for example from 5 to 30% by weight, preferably of the order of 20% by weight relative to the total weight of the solution.
  • the molar ratio of acid to silicon is preferably around 1%.
  • the molar ratios of the functionalized elemental nanoblocks added with respect to the silicon are preferably less than 20%. For example, they are preferably 5% and 10% for cerium oxide and zirconium oxide respectively.
  • Nanostructured materials as described above may further comprise other elemental nanoblocks functionalized or not, different from those defined above.
  • Another object of the invention consists of a process for the preparation of nanostructured materials according to the invention.
  • At least one additive as described above may optionally be added during step a) or during step d) or during both steps a) and d).
  • step d) In the case where an additive is added during step a), it is possible to form a final material of step d) of core / shell type, the core being constituted by the additive and the envelope being constituted by an elementary nanoblock.
  • the additives that can be used in the invention include surfactants for improving the wettability of the soil on the metal substrate, such as the fluorinated nonionic polymers sold under the trademarks FC 4432 and FC4430 by the 3M company; colorants, for example rhodamine, fluorescein, methylene blue and ethyl-violet; crosslinking agents such as (3-trimethoxysilylpropyl) diethylenetriamine (or DETA); coupling agents such as aminopropyltriethoxysilane (APTS); nanopigments; corrosion inhibitors such as benzotriazole; or their mixtures
  • surfactants for improving the wettability of the soil on the metal substrate such as the fluorinated nonionic polymers sold under the trademarks FC 4432 and FC4430 by the 3M company
  • colorants for example rhodamine, fluorescein, methylene blue and ethyl-violet
  • crosslinking agents such as (3-trimethoxysilylprop
  • This process is carried out under so-called mild conditions, that is to say at ambient temperature of the order of 20 to 25 ° C, and under atmospheric pressure.
  • the invention also relates to an article comprising a metal substrate, for example titanium, aluminum or one of their alloys, and at least one coating consisting of at least one nanostructured material as defined above.
  • metal substrates used to be coated by the nanostructured material described above are titanium, aluminum and their respective alloys, such as, for example, TA6V titanium, aluminum of the 2000 family, more particularly Al 2024 veneered or unplated, the aluminum of the 7000 family, more particularly the Al 7075 or 7175 and the aluminum of the 6000 or 5000 family.
  • the coatings of such metal surfaces obtained from the nanostructured materials as described above, make it possible in particular to obtain protection against corrosion, scratch resistance, coloration and hydrophobic character which can be modulated as desired, while adhering well to the surface. of the metal substrate.
  • these coatings are deposited by means of simple techniques to be used on the metal surfaces, for example by dipping in a bath, spin-coating, spin coating, laminar coating or brush coating.
  • these techniques use products that are compatible with the environment.
  • the article according to the invention can be prepared by a conventional coating process which comprises a step of dipping in a bath, deposition on a rotating substrate, spraying, coating. laminar or brush deposit of at least one nanostructured material as defined above.
  • the pH of the aluminum oxide suspension was adjusted to 4 by addition of a solution of HNO 3 (1 M). Then a mixture of 30.3 g was added dropwise. of GPTMS and 4 g. from DMDES to the suspension. Then it was left stirring at room temperature for 24 hours.
  • Example 7 Preparation of a Solution for the Preparation of Nanoparticles from Al 2 O 3 / GPTMS / DMDES + CeO 2 -NH 2 (NBB 7)
  • Example 8 Preparation of a Solution for the Preparation of Nanoparticles from ZrO 2 / GPTMS / DMDES + CeO 2 -NH 2 (NBB 8)
  • TPO 2 tetrapropoxyzirconium
  • CH 3 COOH / H 2 O mixture 9.75 g / 5 g / 3.75 g
  • Example 10 Preparation of a solution for the production of nanoparticles from SiO 2 / GPTMS / DMDES + CeO 2 -NH 2 + ZrO 2 + DETA + dye.
  • An unplated Al 2024 T3 alloy substrate of dimensions 125 mm ⁇ 80 mm ⁇ 1.6 mm was prepared for a total surface area of 1 dm 2 just prior to deposition, according to a methodology known to those skilled in the art such as alkaline degreasing followed by acidic etching.
  • the film was deposited on the substrate by immersion (dip-coating) for 2 minutes and with a shrinkage rate of 0.68 cm.sup.- 1 , then it was dried in an oven for 1 hour at 110.degree.
  • TMOS tetramethoxysilane
  • GTMS 3-glycidoxypropyltrimethoxysilane
  • DMDES dimethyldiethoxysilane
  • a substrate was prepared just prior to deposition in the same manner as in Example 10.
  • a film was deposited on the substrate by immersion (dip-coating) for 2 minutes and with a shrinkage rate of 0.68 cm.sup.- 1 , then it was dried in an oven for 1 h. at 110 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicon Polymers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Description

  • La présente invention concerne des matériaux nanostructurés comme constituants de revêtements protecteurs de surfaces métalliques, en particulier pour des applications aéronautiques et aérospatiales, et leurs procédés de préparation.
  • Dans le domaine aéronautique, la protection contre la corrosion est généralement assurée par des traitements de surface à base de chrome VI, par exemple, au moyen d'un procédé d'oxydation anodique chromique, ou d'une couche de conversion.
  • Cependant, on a trouvé que le chrome VI était toxique, cancérigène et dangereux pour l'environnement. A terme son utilisation va être interdite.
  • Il existe donc un besoin de trouver un autre système assurant une protection, par exemple, contre la corrosion mais aussi contre les rayures ou autres, qui soit au moins aussi performant que ceux existant.
  • Des matériaux hybrides organiques/inorganiques préparés par voie sol-gel ont déjà été envisagés dans la technique.
  • Des revêtements présentant par exemple une résistance à l'abrasion et préparés par voie sol-gel sont connus des documents US 2005/0020758 et US 2003/0157344 . Le document US 2005/0020758 décrit un revêtement transparent résistant à l'abrasion, obtenu à partir d'un silane à fonction époxy, d'un polysilane, d'un acide fort et d'un solvant. Ce revêtement est notamment destiné à être utilisé dans le domaine optique.
  • Le document US 2003/0157344 décrit un revêtement résistant aux chocs et à l'abrasion, obtenu à partir d'un époxysilane hydrolysable, d'un durcisseur de type silane hydrolysable, d'une charge éventuelle, d'un acide et d'un catalyseur.
  • Par exemple, le document US 2003/024432 décrit un revêtement ayant des propriétés anti-corrosion, préparé par voie sol-gel à partir d'un sel organométallique tel qu'un alcoxyzirconium, d'un organosilane, et d'un ou de plusieurs composés portant une fonction borate, zinc ou phosphate, en présence d'un catalyseur organique tel que l'acide acétique.
  • Les documents US 6 261 638 et EP 1 097 259 décrivent quant à eux des procédés pour empêcher la corrosion de métaux, comprenant l'application d'une solution de traitement à base de silanes polyfonctionnels et de silanes difonctionnels comportant dans leur chaîne, plusieurs atomes de soufre, respectivement.
  • Cependant, ces matériaux présentent l'inconvénient de ne pas être micro- ou nanostructurés, c'est-à-dire que la répartition des domaines organiques et inorganiques dans le matériau ne peut pas être maîtrisée à l'échelle micrométrique ou nanométrique. Cette répartition aléatoire peut conduire à des propriétés non reproductibles d'un matériau à un autre.
  • Un avantage du procédé sol-gel consiste à construire un réseau tridimensionnel à partir de précurseurs de départ dans des conditions dites douces, c'est-à-dire à une température inférieure à 200 °C, et dans un milieu eau ou eau/solvant moins nocif pour l'environnement que ceux utilisés pour les traitements de surface classiques.
  • Les précurseurs de départ généralement utilisés dans ledit procédé sol-gel sont des alcoxydes métalliques comprenant un ou plusieurs groupes hydrolysables. A titre d'exemples d'alcoxydes métalliques, on peut notamment citer les alcoxydes de silicium ou de zirconium, seuls ou en mélange.
  • L'article « The self-assembled nanophase particle (SNAP) process : a nanoscience approach to coatings », M. S. Donley et al, Progress in Organic Coatings, 47, 401-415, 2003, décrit des revêtements en un matériau amorphe, obtenus dans des conditions douces, à partir d'une solution aqueuse comprenant du tétraméthoxysilane et du glycidopropyltriméthoxysilane. Un inhibiteur de corrosion est ensuite introduit dans le matériau.
  • Le brevet US 6 929 826 décrit un procédé de traitement de surfaces métalliques à partir d'une composition aqueuse comprenant un alcoxysilane, un époxyalcoxysilane et de l'eau. Ce procédé comprend notamment les étapes de mélange des ingrédients de la composition, le vieillissement de ladite composition, l'addition d'un agent de réticulation, d'un tensioactif et éventuellement d'eau, puis l'application de la composition finale sur un substrat métallique et séchage dudit substrat.
  • Le demandeur a découvert de manière surprenante qu'un contrôle de structure à l'échelle nanométrique permet d'obtenir de nouvelles propriétés macroscopiques qui ne sont pas seulement la somme des propriétés de chacune des composantes telles que tenue mécanique, épaisseur et qualité du film, densité, coloration et caractère hydrophobe modulable à souhait, mais réellement des propriétés nouvelles. Elles résultent de la synergie de ces composantes à l'échelle nanométrique. En outre, cette maîtrise de la structure à l'échelle nanométrique conduit à une reproductibilité des propriétés.
  • Ce contrôle est atteint grâce à des matériaux nanostructurés.
  • Par matériaux nanostructurés, on entend des matériaux dont la structure est contrôlée à l'échelle nanométrique. Cette structure peut être vérifiée notamment par diffraction des rayons X et diffusion des rayons X aux petits angles, microscopie à transmission (ou TEM) ou microscopie à force atomique (ou AFM).
  • De tels matériaux sont connus de l'article "Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks" de C. Sanchez et al, Chem. Mater., 2001, 13, 3061-3083, et sont synthétisés à partir de blocs élémentaires de taille nanométrique (ou nanoblocs élémentaires ou NBB (Nano-Building Blocks)) bien définis, de préférence pré- ou post-fonctionnalisés, et d'une résine polymère ou hybride organique/inorganique.
  • Une partie de ces matériaux, telle que la matrice obtenue par voie sol/gel, est amorphe, tandis que l'autre partie est constituée de domaines cristallins de taille nanométrique.
  • Ces matériaux peuvent comporter des fonctionnalités diverses qui permettent de conférer à un substrat (ou surface) notamment un alliage d'aluminium ou de titane, par exemple, une protection contre la corrosion, une résistance aux rayures, une bonne tenue mécanique et/ou une coloration tout en assurant une bonne adhérence sur le substrat métallique.
  • En outre, ces matériaux peuvent permettre la coexistence de plusieurs fonctionnalités différentes qui ne coexistent pas en temps normal, et peuvent être appliqués par une quelconque technique classique telle que, par exemple, par trempage dans un bain, dépôt sur substrat en rotation (ou spin-coating), aspersion, pulvérisation, enduction laminaire et dépôt au pinceau. Les composants individuels peuvent être conçus de manière à avoir une durée de vie compatible avec les cycles industriels, par exemple, supérieure ou égale à 12 mois, et être mélangés juste avant leur application. Leur formulation présente l'avantage supplémentaire d'utiliser des composants compatibles avec la réglementation environnementale, et notamment d'être majoritairement en milieu aqueux.
  • La présente invention a pour objet de nouveaux matériaux nanostructurés permettant de conférer de meilleures propriétés telles qu'une protection contre la corrosion, une résistance aux rayures, une bonne tenue mécanique et/ou une coloration tout en assurant une bonne adhérence sur un substrat métallique.
  • Les matériaux nanostructurés selon l'invention comprennent au moins un nanobloc élémentaire à base de silice, d'alumine, de zircone, d'oxyde de titane ou de cérium (IV), fonctionnalisé avec au moins deux agents de fonctionnalisation de formule (1), (2) ou (3) :

            Z4-xSi((R')p-F)x     (1)

            Z4-x-y(F'-(R')p)ySi((R')p -F)x.     (2)

            Zn-ma-mb(F'-L)maM(L-F)mb     (3)

    dans lesquelles :
    • chaque Z représente, indépendamment l'un de l'autre, un atome d'halogène tel que F, Cl, Br ou I, de préférence Cl ou Br, ou un groupement -OR ;
    • R représente un groupe alkyle de préférence en C1-4, tel que méthyle, éthyle, n-propyle, i-propyle, n-butyle, s-butyle ou t-butyle, de préférence méthyle ou éthyle ;
    • x et y sont des nombres entiers allant de 1 à 3 à condition que 4-x≥1 pour la formule (1) et 4-x-y≥0 pour la formule (2) ;
    • chaque R' représente, indépendamment l'un de l'autre, un groupe espaceur organique choisi parmi les groupes alkylène de préférence en C1-4, par exemple, méthylène, éthylène, propylène ou butylène ; alcénylène notamment en C2-4 tels que vinylène, 1-propénylène et buténylène ; et arylène en C6-10 tels que phénylène et naphtylène ;
    • p est égal à 0 ou 1 ;
    • chaque F est choisi parmi les groupes alkyle notamment en C1-4, par exemple, méthyle, éthyle, propyle ou butyle ; les groupes alcényle en particulier en C2-4, tels que vinyle, 1-propényle, 2-propényle et butényle ; les groupes alcynyle en particulier en C2-4, tels que acétylényle et propargyle ; les groupes aryle en particulier en C6-10, tels que phényle et naphthyle ; les groupes méthacryle ou méthacryloxy(alkyle en C1-10) tel que méthacryloxypropyle ; les groupes époxyalkyle ou époxyalcoxyalkyle dans lesquels le groupe alkyle est linéaire, ramifié ou cyclique, en C1-10, et le groupe alcoxy comporte de 1 à 10 atomes de carbone, tels que glycidyle et glycidyloxy(alkyle en C1-10) ; les groupes halogénoalkyle en C2-10 tels que chloropropyle ; les groupes perhalogénoalkyle en C2-10 tels que perfluoropropyle ; les groupes mercaptoalkyle en C2-10 tels que mercaptopropyle ; les groupes aminoalkyle en C2-10 tels que 3-aminopropyle ; les groupes amino(alkyle en C2-10)amino(alkyle en C2-10) tels que 3-[(2-aminoéthyl)amino]propyle ; les groupes di(alkylène en C2-10)triamino(alkyle en C2-10) tel que 3-[diéthylènetriamino]propyle et les groupes imidazolyl(alkyle en C2-10) ;
    • chaque F' et L sont chacun un ligand complexant monodentate ou polydentate, de préférence polydentate, par exemple, un acide carboxylique comme l'acide acétique, une β-dicétone comme l'acétylacétone, un β-cétoester comme l'acétoacétate de méthyle, un α- ou β-hydroxyacide comme l'acide lactique, un acide aminé comme l'alanine, une polyamine comme la (3-triméthoxysilyl-propyl)diéthylènetriamine (ou DETA), l'acide phosphonique et un phosphonate ;
    • M représente Al(III), Ce(III), Ce(IV), Zr(IV), Ti(IV), Sn(IV), Nb(V), V(V), Ta(V), Hf(V), de préférence Al(III), Ce(III), Ce(IV), Zr(IV) ou Ti(IV), ou une terre rare telle que Y(III), La(III) et Eu(III), le chiffre entre parenthèse étant la valence de l'atome M ;
    • n représente l'état de coordination de l'atome M ;
    • m représente le nombre de liaisons de coordination entre le chélatant L et le métal M ;
    • a et b sont des nombres entiers tels que ma+mb≤n.
  • Dans les formules (1) et (2), chaque ((R')p-F) et ((R')p-F') sont des groupes non hydrolysables, F étant une fonction présentant de préférence une affinité pour une éventuelle matrice organique ou hybride, et F' étant une fonction présentant de préférence une affinité pour la surface des nanoblocs élémentaires.
  • Dans la formule (3), (L-F) et (L-F') représentent chacun un groupe complexant le métal M via L et présentent respectivement une fonction F ayant de préférence une affinité pour une éventuelle matrice organique ou hybride, et une fonction F' présentant de préférence une affinité pour la surface des nanoblocs élémentaires.
  • Le ou les nanoblocs élémentaires peuvent être sous forme de clusters ou de nanoparticules, de préférence de nanoparticules de taille allant de 2 à 100 nm, mieux encore de 2 à 50 nm, et encore mieux de 2 à 20 nm, le diamètre de ces nanoparticules pouvant être mesuré par diffraction des rayons X et diffusion des rayons X aux petits angles, microscopie à transmission (ou TEM) ou diffusion de la lumière.
  • Ces nanoblocs élémentaires sont essentiellement à base d'au moins un oxyde métallique, l'oxyde métallique étant choisi par exemple, parmi les oxydes d'aluminium, de cérium IV, de silicium, de zirconium et de titane. Plusieurs procédés de synthèse peuvent être utilisés pour les préparer.
  • Un premier procédé consiste à les synthétiser à partir de sels métalliques, par précipitation. Des agents complexants peuvent être introduits dans le milieu réactionnel pour contrôler la taille des nanoblocs élémentaires formés et assurer leur dispersion dans le solvant par fonctionnalisation de 80 à 100 % de la surface des nanoblocs avec des agents complexants monodentates ou polydentates, tels que par exemple, acide carboxylique, β-dicétone, β-cétoester, α-ou β-hydroxyacide, phosphonate, polyamine et acide aminé. Le rapport pondéral entre les composantes minérale et organique est compris notamment entre 20 et 95 %.
  • Les nanoblocs élémentaires peuvent également être obtenus à partir d'au moins un alcoxyde ou halogénure de silicium, d'aluminium, de zirconium, de titane ou de cerium (IV), via des processus hydrolytiques ou non hydrolytiques. Dans le cas d'un processus hydrolytique, on réalise l'hydrolyse contrôlée d'au moins un précurseur alcoxyde ou halogénure de silicium, d'aluminium, de zirconium, de titane ou de cerium (IV) de formule générale :

            M1(Z1)n1     (4),

            (R1')x1M1(Z1)n1-x1     (5)

            (L1 m1)x1M1(Z1)n1-m1x1     (6),

    ou

            (R1O)3Si-R2-Si(OR1)3     (7),

    formules (4), (5), (6) et (7) dans lesquelles :
    • M1 représente Al(III), Ce(IV), Si(IV), Zr(IV) ou Ti(IV), le chiffre entre parenthèse étant la valence de l'atome M1 ;
    • n1 représente la valence de l'atome M1 ;
    • x1 est un nombre entier allant de 1 à n1-1 ;
    • Z1 représente un atome d'halogène ou -OR1 ;
    • R1 représente un groupe alkyle, de préférence comprenant 1 à 4 atomes de carbone ;
    • R1' représente un groupe non hydrolysable choisi parmi les groupes alkyle, notamment en C1-4 ; les groupes alcényle en particulier en C2-4 ; les groupes alcynyle en particulier en C2-4 ; les groupes aryle en particulier en C6-10 ; les groupes méthacryle et méthacryloxy(alkyle en C1-10) ; et les groupes époxyalkyle ou époxyalcoxyalkyle dans lesquels le groupe alkyle est linéaire, ramifié ou cyclique, en C1-10, et le groupe alcoxy comporte de 1 à 10 atomes de carbone ;
    • L1 est un ligand complexant monodentate ou polydentate, de préférence polydentate ;
    • m1 représente l'indice d'hydroxylation du ligand L1 ; et
    • R2 représente un groupement non hydrolysable divalent choisi parmi les groupes alkylène de préférence en C1-4, les groupes alcénylène en particulier en C2-4, les groupes alcynylène en particulier en C2-4 les groupes arylène en particulier en C6-10, les groupes méthacryle et méthacryloxy(alkyle en C1-10), et les groupes époxyalkyle ou époxyalcoxyalkyle dans lesquels le groupe alkyle est linéaire, ramifié ou cyclique, en C1-10, et le groupe alcoxy comporte de 1 à 10 atomes de carbone.
  • De préférence, R1 représente un groupe méthyle ou éthyle ; R1' représente un groupe non hydrolysable choisi parmi les groupes méthyle, éthyle, propyle, butyle, vinyle, 1-propényle, 2-propényle, butényle, acétylényle, propargyle, phényle, naphthyle, méthacryle, méthacryloxypropyle, glycidyle et glycidyloxy(alkyle en C1-10) ; et L1 est un ligand complexant choisi parmi les acides carboxyliques, les β-dicétones, les β-cétoesters, les α et β-hydroxyacides, les acides aminés et les phosphonates.
  • Par hydrolyse contrôlée, on entend une limitation de la croissance des espèces formées par contrôle de la quantité d'eau introduite dans le milieu et éventuellement par introduction d'un agent complexant de l'atome central métallique, ceci afin de réduire la réactivité des précurseurs.
  • Les nanoblocs élémentaires sont de préférence sous forme de nanoparticules amorphes ou cristallisées. Leur fonctionnalisation est réalisée soit directement au cours de leur synthèse, soit au cours d'une deuxième étape suivant leur synthèse, en présence d'un agent de fonctionnalisation tel que défini ci-dessus, et de préférence au cours d'une deuxième étape. On parle respectivement de pré- ou post-fonctionnalisation.
  • Selon l'invention, le taux de fonctionnalisation est de préférence supérieur à 50 %, mieux encore supérieur à 80 %.
  • Les matériaux nanostructurés selon l'invention, tels que définis ci-dessus, peuvent comprendre en outre une matrice polymère ou hybride inorganique/organique, de préférence hybride de type sol/gel.
  • Une fois les nanoblocs élémentaires synthétisés et fonctionnalisés, ils peuvent être introduits dans ladite matrice matrice. Cette matrice va servir de connecteur grâce auquel les blocs élémentaires vont former un réseau tridimensionnel.
  • Les matrices hybrides inorganiques/organiques sont typiquement obtenues par polycondensation d'au moins un alcoxyde métallique ou halogénure métallique, en présence d'un solvant, et éventuellement d'un catalyseur. Les alcoxydes métalliques ou halogénures métalliques employés sont choisis de préférence parmi ceux ayant pour formules générales :

            M'Z'n'     (8)

            R"x'M' Z'n'-x'     (9)

            L'm'x'M' Z'm'x'     (10)

            Z'n'-1M'-R"'-M Z'n'-1     (11)

    dans lesquelles :
    • n'représente la valence de l'atome métallique M', de préférence 3, 4 ou 5 ;
    • x' est un nombre entier allant de 1 à n'-1 ;
    • M' représente un atome métallique de valence III tel que Al ; de valence IV tel que Si, Ce, Zr et Ti ; ou de valence V tel que Nb. De préférence M' est le silicium (n'=4), le cérium (n'=4) ou le zirconium (n'=4), et encore plus préférentiellement le silicium ;
    • Z' représente un groupe hydrolysable choisi parmi les atomes d'halogènepar exemple, F, Cl, Br et I, de préférence Cl et Br ; les groupes alcoxy de préférence en C1-4, tels que méthoxy, éthoxy, n-propoxy, i-propoxy et butoxy ; les groupes aryloxy en particulier en C6-10, tels que phénoxy ; les groupes acyloxy en particulier en C1-4, tels que acétoxy et propionyloxy ; et les groupes alkylcarbonyle en C1-10 comme acétyle. De préférence, Z' représente un groupe alcoxy, et plus particulièrement un groupe éthoxy ou méthoxy ;
    • R" représente un groupement non hydrolysable monovalent choisi parmi les groupes alkyle de préférence en C1-4, par exemple, méthyle, éthyle, propyle et butyle ; les groupes alcényle en particulier en C2-4, tels que vinyle, 1-propényle, 2-propényle et butényle ; les groupes alcynyle en particulier en C2-4 tels que acétylényle et propargyle ; les groupes aryle en particulier en C6-10, tels que phényle et naphthyle ; les groupes méthacryle et méthacryloxy(alkyle en C1-10) tel que méthacryloxypropyle ; et les groupes époxyalkyle ou époxyalcoxyalkyle dans lesquels le groupe alkyle est linéaire, ramifié ou cyclique, en C1-10, et le groupe alcoxy comporte de 1 à 10 atomes de carbone, tels que glycidyle et glycidyloxy(alkyle en C1-10). R" représente de préférence un groupe méthyle ou glycidyloxy(alkyle en C1-10) comme glycidyloxypropyle ;
    • R'" représente un groupement non hydrolysable divalent choisi parmi les groupes alkylène de préférence en C1-4, par exemple, méthylène, éthylène, propylène et butylène ; les groupes alcénylène en particulier en C2-4, tels que vinylène, 1-propénylène, 2-propénylène et buténylène ; les groupes alcynylène en particulier en C2-4 tels que acétylénylène et propargylène ; les groupes arylène en particulier en C6-10, tels que phénylène et naphthylène ; les groupes méthacryle et méthacryloxy(alkyle en C1-10) tel que méthacryloxypropyle : et les groupes époxyalkyle ou époxyalcoxyalkyle dans lesquels le groupe alkyle est linéaire, ramifié ou cyclique, en C1-10, et le groupe alcoxy comporte de 1 à 10 atomes de carbone, tels que glycidyle et glycidyloxy(alkyle en C1-10). R"' représente de préférence un groupe méthylène ou glycidyloxy(alkyle en C1-10) comme glycidyloxypropyle ; et
    • L' représente un ligand complexant de préférence polydentate ,
    • m' représente l'indice d'hydroxylation du ligand L', avec m'=1 lorsque L' est un ligand monodentate, et m' ≥ 2 lorsque L' est un ligand polydentate.
  • Dans un mode de réalisation préféré, la matrice est obtenue à partir d'un mélange d'au moins trois alcoxydes de silicium :

            Si(OR1)4

            R2Si(OR1)3 et

            R3R4Si(OR1)2

    dans lesquels :
    • R1 représente un groupe méthyle ou éthyle,
    • R2 et R3 représentent chacun un groupe (méth)acrylate, vinyle, époxyalkyle ou époxyalcoxyalkyle dans lesquels le groupe alkyle est linéaire, ramifié et/ou cyclique, en C1-10, et le groupe alcoxy comporte de 1 à 10 atomes, par exemple le groupe 3,4-époxycyclohexyléthyle ou glycidyloxy(alkyle en C1-10) tel que glycidyloxypropyle, et
    • R4 représente un groupe alkyle en C1-10 tel que méthyle.
  • De préférence, la proportion du précurseur R2Si(OR1)3 est majoritaire, tandis que celle du précurseur R3R4Si(OR1)2 est minoritaire, par exemple de 5 à 30 % en poids par rapport au poids total du mélange de précurseurs.
  • Dans un mode de réalisation particulier, la matrice peut être préparée à partir des trois alcoxydes de silicium R3R4Si(OR1)2, R2Si(OR1)3 et Si(OR1)4, par exemple en une proportion respective de 10 %, 60 % et 30 % en poids par rapport au poids total du mélange de précurseurs.
  • Le solvant est constitué majoritairement d'eau. De préférence, il comprend 80 à 100 % en poids d'eau par rapport au poids total du solvant, et éventuellement un alcool en C1-4, de préférence l'éthanol ou l'isopropanol.
  • Le catalyseur est de préférence un acide, mieux encore l'acide acétique, ou du CO2.
  • La solution à déposer peut être composée majoritairement d'un mélange de silanes, par exemple de 5 à 30 % en poids, de préférence de l'ordre de 20 % en poids par rapport au poids total de la solution. Le rapport molaire d'acide par rapport au silicium est préférentiellement autour de 1 %. Les rapports molaires des nanoblocs élémentaires fonctionnalisés ajoutés par rapport au silicium sont de préférence inférieurs à 20 %. Par exemple, ils sont préférentiellement de 5 % et de 10 % pour l'oxyde de cérium et l'oxyde de zirconium respectivement.
  • Les matériaux nanostructurés tels que décrits ci-dessus, peuvent comprendre en outre d'autres nanoblocs élémentaires fonctionnalisés ou non, différents de ceux définis ci-dessus.
  • Un autre objet de l'invention consiste en un procédé de préparation de matériaux nanostructurés selon l'invention.
  • Les matériau nanostructurés selon l'invention peuvent être préparés selon un procédé comprenant notamment les étapes consistant à :
    • d'une part
      1. a) préparer les nanoblocs élémentaires par un processus hydrolytique ou non, à partir d'au moins un alcoxyde métallique tel que décrit ci-dessus, et
      2. b) fonctionnaliser les nanoblocs élémentaires au moyen d'un agent de fonctionnalisation tel que décrit ci-dessus,
    • éventuellement d'autre part à
      • c) préparer la matrice hybride organique/inorganique par voie sol-gel, à partir des trois alcoxydes de silicium tels que définis ci-dessus, la préparation par voie sol-gel se faisant en présence d'un solvant, et éventuellement d'un catalyseur tels que décrits ci-dessus,
    • puis éventuellement
      • d) mélanger les nanoblocs élémentaires fonctionnalisés obtenus à l'étape b) et la matrice obtenue à l'étape c).
  • Dans l'étape de fonctionnalisation b), on mélange de préférence, les ingrédients suivants dans l'ordre indiqué ci-dessous,
    1. 1) les nanoblocs élémentaires obtenus à l'étape a), dispersés dans le solvant, de préférence l'eau
    2. 2) un acide, de préférence l'acide nitrique, de manière à ajuster le pH de la suspension à un pH acide, de préférence entre 3 et 4, et
    3. 3) le mélange d'au moins deux agents de fonctionnalisation, ajouté de préférence goutte à goutte,
    puis on maintient la suspension sous agitation, de préférence pendant au moins 24h.
  • Au moins un additif tel que décrit ci-dessus peut être éventuellement ajouté lors de l'étape a) ou lors de l'étape d) ou lors des deux étapes a) et d).
  • Dans le cas où un additif est ajouté lors de l'étape a), il peut se former un matériau final de l'étape d) de type noyau/enveloppe, le noyau étant constitué par l'additif et l'enveloppe étant constituée par un nanobloc élémentaire.
  • Les additifs pouvant être utilisés dans l'invention sont notamment des agents tensioactifs pour améliorer la mouillabilité du sol sur le substrat métallique, tels que les polymères non ioniques fluorés vendus sous les marques commerciales FC 4432 et FC4430 par la société 3M ; des colorants, par exemple la rhodamine, la fluorescéine, le bleu de méthylène et l'éthyl-violet ; des agents de réticulation comme la (3-triméthoxysilylpropyl)diéthylènetriamine (ou DETA) ; des agents de couplage tels que l'aminopropyltriéthoxysilane (APTS) ; des nanopigments ; des inhibiteurs de corrosion tels que le benzotriazole ; ou leurs mélanges
  • Ce procédé s'effectue dans des conditions dites douces, c'est-à-dire à température ambiante de l'ordre de 20 à 25 °C, et sous pression atmosphérique.
  • L'invention a encore pour objet un article comprenant un substrat métallique, par exemple en titane, en aluminium ou en un de leurs alliages, et au moins un revêtement constitué d'au moins un matériau nanostructuré tel que défini ci-dessus.
  • Des exemples de substrats métalliques utilisés pour être revêtus par le matériau nanostructuré décrit ci-dessus, sont le titane, l'aluminium et leurs alliages respectifs, comme par exemple le titane TA6V, l'aluminium de la famille 2000, plus particulièrement l'Al 2024 plaqué ou non plaqué, l'aluminium de la famille 7000, plus particulièrement l'Al 7075 ou 7175 et l'aluminium de la famille 6000 ou 5000.
  • Les revêtements de telles surfaces métalliques, obtenus à partir des matériaux nanostructurés tels que décrits ci-dessus permettent notamment d'obtenir une protection contre la corrosion, une résistance aux rayures, coloration et caractère hydrophobe modulable à souhait, tout en adhérant bien à la surface du substrat métallique.
  • En outre, ces revêtements sont déposés au moyen de techniques simples à mettre en oeuvre sur les surfaces métalliques, par exemple par trempage dans un bain, dépôt sur substrat en rotation (ou spin-coating), aspersion, enduction laminaire ou dépôt au pinceau. En outre, ces techniques utilisent des produits compatibles avec l'environnement.
  • L'article selon l'invention peut être préparé par un procédé de revêtement classique qui comprend une étape de trempage dans un bain, de dépôt sur substrat en rotation, d'aspersion, d'enduction laminaire ou de dépôt au pinceau d'au moins un matériau nanostructuré tel que défini ci-dessus.
  • L'invention et les avantages qu'elle apporte seront mieux compris grâce aux exemples de réalisation donnés ci-après à titre indicatif.
  • EXEMPLES Exemple 1 : Préparation d'une solution pour l'élaboration de nanoparticules à partir de SiO2/GPTMS/DMDES (NBB1).
  • On a dilué 10 g. de suspension commerciale de nanoparticules de silice (silice colloïdale à 30 % en poids dans l'eau, vendue sous la marque commerciale Ludox® par la société Sigma-Aldrich, diamètre moyen de particules=12 nm) avec 50 g. d'eau déminéralisée. On a ajusté le pH de la suspension de silice à 4 par ajout d'une solution de HNO3 (1 mol/l (ou M)). On a ensuite ajouté, goutte à goutte, un mélange de 30,3 g. de 3-glycidoxypropyltriméthoxysilane (GPTMS) et de 4 g. de diméthyldiéthoxysilane (DMDES) à la suspension. Puis on a laissé le tout sous agitation à température ambiante pendant 24 heures.
  • Exemple 2 : Préparation d'une solution pour l'élaboration de nanoparticules à partir de SiO2-NH2/GPTMS/DMDES (NBB2)
  • On a dispersé 10 g. de suspension commerciale de nanoparticules de silice (silice colloïdale à 30 % en poids dans l'eau, vendue sous la marque commerciale Ludox® par la société Sigma-Aldrich, diamètre moyen de particules=12 nm) dans 60 g. d'eau déminéralisée. On a ajusté le pH de la suspension de silice à 9 par ajout d'une solution de HCl (1 M). On a ajouté 20 % en poids par rapport au poids total du mélange, d'aminopropyltriéthoxysilane. On maintenu la suspension sous agitation pendant 2h à température ambiante. On a isolé les particules par filtration puis on les a lavées à l'éthanol par centrifugation (3 fois 20 min à 10 000 tours/min) et enfin fait sécher à température ambiante pendant 8h.
    On a dispersé 3 g. de nanoparticules fonctionnalisées NBB2 dans 60 g. d'eau déminéralisée. On a ajusté le pH de la suspension de silice à 4 par ajout d'une solution de HNO3 (1 M). On a ensuite ajouté goutte à goutte un mélange de 30,3 g. de GPTMS et de 4 g. de DMDES à la suspension. Puis on a laissé le tout sous agitation à température ambiante pendant 24 heures.
  • Exemple 3 : Préparation d'une solution pour l'élaboration de nanoparticules à partir de Al2O3/GPTMS/DMDES (NBB3)
  • On a dispersé 3 g. de nanoparticules Al2O3 (sous la forme de poudre vendue sous la marque commerciale Meliorum Technologies, diamètre moyen de particules=10 nm) dans 50 g. d'eau déminéralisée. On a ajusté le pH de la suspension d'oxyde d'aluminium à 4 par ajout d'une solution de HNO3 (1 M). Ensuite on a ajouté goutte à goutte un mélange de 30,3 g. de GPTMS et de 4 g. de DMDES à la suspension. Puis on a laissé le tout est laissé sous agitation à température ambiante pendant 24 heures.
  • Exemple 4 : Préparation d'une solution pour l'élaboration de nanoparticules à partir de ZrO2/GPTMS/DMDES (NBB4)
  • On a dispersé 30 g. de suspension commerciale de nanoparticules d'oxyde de zirconium (suspension colloïdale à 10 % en poids dans l'eau, vendue sous la marque commerciale Pinnacle Zirconium Dioxyde® par la société Applied Nanoworks, diamètre moyen de particules=3-5 nm) dans 20 g. d'eau déminéralisée. On a ensuite ajouté goutte à goutte un mélange de 30,3 g. de GPTMS et de 4 g. de DMDES à la suspension. Puis on a laissé le tout est laissé sous agitation à température ambiante pendant 24 heures.
  • Exemple 5 : Préparation d'une solution pour l'élaboration de nanoparticules à partir de SiO2/GPTMS/DMDES + CeO2-NH2 (NBB5).
  • On a ajouté 1,65 g. d'acide 6-aminocaprique à 9,65 ml d'une solution de nanoparticules d'oxyde de cérium commercialisées par Rhodia (sous la marque commerciale Rhodigard W200, pH=8,5) (rapport molaire carboxylate/Ce=1). 4 heures après, on a ajouté 8 ml de cette suspension à la solution des NBB1 de l'exemple 1.
  • Exemple 6 : Préparation d'une solution pour l'élaboration de nanoparticules à partir de SiO2-NH2/GPTMS/DMDES + CeO2-NH2 (NBB6).
  • On a opéré de la même manière que dans l'exemple 5 en remplaçant la solution des NBB1 par la solution des NBB2 de l'exemple 2.
  • Exemple 7 : Préparation d'une solution pour l'élaboration de nanoparticules à partir de Al2O3/GPTMS/DMDES + CeO2-NH2 (NBB7).
  • On a opéré de la même manière que dans l'exemple 5 en remplaçant la solution des NBB1 par la solution des NBB3 de l'exemple 3.
  • Exemple 8 : Préparation d'une solution pour l'élaboration de nanoparticules à partir de ZrO2/GPTMS/DMDES + CeO2-NH2 (NBB8).
  • On a opéré de la même manière que dans l'exemple 5 en remplaçant la solution des NBB1 par la solution des NBB4 de l'exemple 4.
  • Exemple 9 : Préparation d'une solution pour l'élaboration de nanoparticules à partir de SiO2/GPTMS/DMDES + CeO2-NH2 + ZrO2
  • On a agité un mélange tétrapropoxyzirconium (TPOZ)/CH3COOH/H2O (9.75g/5g/3.75g) 30 minutes avant d'être ajouté à la solution obtenue à l'exemple 5.
  • Exemple 10 : Préparation d'une solution pour l'élaboration de nanoparticules à partir de SiO2/GPTMS/DMDES + CeO2-NH2 + ZrO2 + DETA + colorant.
  • On a ajouté goutte à goutte 6,63 g. d'une solution d'agent de réticulation, la (3-triméthoxysilylpropyl)diéthylènetriamine (DETA) de formule (OMe)3Si(CH2)3NH(CH2)2NH(CH2)2NH2, puis on a laissé la solution opaque reposer pendant 1 nuit à température ambiante sous agitation vive et régulière pour devenir de nouveau limpide. Enfin juste avant le dépôt, on a ajouté 50 mg à la solution d'un colorant, la rhodamine B, en quantité telle que sa concentration dans la solution finale soit d'environ 10-3M.
  • On a préparé un substrat en alliage Al 2024 T3 non plaqué de dimensions 125 mm x 80 mm x 1,6 mm, pour une surface totale de 1 dm2 juste avant le dépôt, selon une méthodologie connue de l'homme de métier comme le dégraissage alcalin suivi d'un décapage chimique acide.
    On a déposé le film sur le substrat par immersion (dip-coating) pendant 2 minutes et avec une vitesse de retrait 0,68 cm.s-1, puis on l'a fait sécher en étuve 1h à 110 °C.
  • Exemple 11 : Préparation d'une solution en vue de l'élaboration d'une matrice TMOS/GPTMS/DMDES + ZrO2 + DETA + colorant.
  • A 65 ml d'une solution aqueuse d'acide acétique 0,05 M, on a ajouté goutte à goutte, sous agitation, à température ambiante, le mélange de 9,3 g. de tétraméthoxysilane (TMOS), 37,4 g. de 3-glycidoxypropyltriméthoxysilane (GPTMS) et 4,9 g. de diméthyldiéthoxysilane (DMDES). On a conservé cette solution sous agitation à température ambiante pendant un jour.
    On a ajouté ensuite un mélange constitué d'une solution de tétrapropoxyzirconium (TPOZ) à 70% dans le propanol/CH3COOH/H2O en un rapport pondéral de 11,7g/6g/4,5g, préalablement agité pendant 30 minutes. On a agité la solution finale à température ambiante pendant 30 minutes, puis on a ajouté 7,96 g. de (3-triméthoxysilylpropyl)diéthylènetriamine goutte à goutte comme agent réticulant. On a laissé le tout pendant 15 heures à température ambiante sous agitation vive et régulière. On a ensuite ajouté 60 mg de rhodamine B en quantité telle que sa concentration dans la solution finale soit d'environ 10-3M.
  • On a préparé un substrat juste avant le dépôt de la même manière que dans l'exemple 10.
    On a déposé un film sur le substrat par immersion (dip-coating) pendant 2 minutes et avec une vitesse de retrait 0,68 cm.s-1, puis on l'a fait sécher en étuve 1 h. à 110 °C.

Claims (20)

  1. Matériau nanostructuré comprenant au moins un nanobloc élémentaire à base de silice, d'alumine, de zircone, d'oxyde de titane ou de cérium (IV), fonctionnalisé avec au moins deux agents de fonctionnalisation de formule (1), (2) ou (3) :

            Z4-xSi((R')p-F)x     (1)

            Z4-x-y(F'-(R')p)ySi((R')p-F)x.     (2)

            Zn-ma-mb(F'-L)maM(L-F)mb     (3)

    dans lesquelles :
    chaque Z représente, indépendamment l'un de l'autre, un atome d'halogène ou un groupement -OR ;
    R représente un groupe alkyle de préférence en C1-4 ;
    x et y sont des nombres entiers allant de 1 à 3 à condition que 4-x≥1 pour la formule (1) et 4-x-y≥0 pour la formule (2) ;
    chaque R' représente, indépendamment l'un de l'autre, un groupe espaceur organique choisi parmi les groupes alkylène de préférence en C1-4, alcénylène notamment en C2-4, et arylène en C6-10 ;
    p est égal à 0 ou 1 ;
    chaque F est choisi parmi les groupes alkyle notamment en C1-4, les groupes alcényle en particulier en C2-4, les groupes alcynyle en particulier en C2-4, les groupes aryle en particulier en C6-10, les groupes méthacryle ou méthacryloxy(alkyle en C1-10), les groupes époxyalkyle ou époxyalcoxyalkyle dans lesquels le groupe alkyle est linéaire, ramifié ou cyclique, en C1-10, et le groupe alcoxy comporte de 1 à 10 atomes de carbone, les groupes halogénoalkyle en C2-10, les groupes perhalogénoalkyle en C2-10, les groupes mercaptoalkyle en C2-10, les groupes aminoalkyle en C2-10, les groupes amino(alkyle en C2-10)amino(alkyle en C2-10), les groupes di(alkylène en C2-10)triamino(alkyle en C2-10) et les groupes imidazolyl(alkyle en C2-10) ;
    chaque F' et L sont chacun un ligand complexant monodentate ou polydentate, de préférence polydentate ;
    M représente Al(III), Ce(III), Ce(IV), Zr(IV), Ti(IV), Sn(IV), Nb(V), V(V), Ta(V), Hf(V), ou une terre rare telle que Y(III), La(III) et Eu(III), le chiffre entre parenthèse étant la valence de l'atome M ;
    n représente l'état de coordination de l'atome M ;
    m représente le nombre de liaisons de coordination entre le chélatant L et le métal M ;
    a et b sont des nombres entiers tels que ma+mb≤n.
  2. Matériau nanostructuré selon la revendication 1, caractérisé en ce que M représente Al(III), Ce(III), Ce(IV), Zr(IV) ou Ti(IV).
  3. Matériau nanostructuré selon la revendication 1 ou 2, caractérisé en ce que :
    R représente un groupe méthyle ou éthyle ;
    R' représente un groupe espaceur organique choisi parmi les groupes méthylène, éthylène, propylène, butylène, vinylène, 1-propénylène, buténylène, phénylène et naphtylène ;
    F représente un groupe non hydrolysable choisi parmi les groupes méthyle, éthyle, propyle, butyle, vinyle, 1-propényle, 2-propényle, butényle, acétylényle, propargyle, phényle, naphthyle, méthacryle, méthacryloxypropyle, glycidyle, glycidyloxy(alkyle en C1-10), chloropropyle, perfluoropropyle, mercaptopropyle, 3-aminopropyle, 3-[(2-aminoéthyl)amino]propyle et 3-[diéthylènetriamino]propyle ; et
    F' et L sont choisis parmi les acides carboxyliques, les β-dicétones, les β-cétoesters, les α et β-hydroxyacides, les acides aminés, une polyamine, l'acide phosphonique et les phosphonates.
  4. Matériau nanostructuré selon l'une quelconque des revendications précédentes, caractérisé en ce que le nanobloc est sous forme de nanoparticules présentant une taille allant de 2 à 100 nm.
  5. Matériau nanostructuré selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les nanoblocs élémentaires sont obtenus à partir d'au moins un alcoxyde ou halogénure de silicium, d'aluminium, de zirconium, de titane ou de cérium (IV), via un processus hydrolytique, ledit alcoxyde ou halogénure répondant à l'une des formules suivantes :

            M1(Z1)n1     (4),

            (R1')x1M1(z1)n1-x1     (5)

            (L1 m1)x1M1(Z1)n1-m1x1     (6),

    ou

            (R1O)3Si-R2-Si(OR1)3     (7),

    formules (4), (5), (6) et (7) dans lesquelles :
    M1 représente Al(III), Ce(IV), Si(IV), Zr(IV) ou Ti(IV), le chiffre entre parenthèse étant la valence de l'atome M1 ;
    n1 représente la valence de l'atome M1 ;
    x1 est un nombre entier allant de 1 à n1-1 ;
    Z1 représente un atome d'halogène ou -OR1 ;
    R1 représente un groupe alkyle, de préférence comprenant 1 à 4 atomes de carbone ;
    R1' représente un groupe non hydrolysable choisi parmi les groupes alkyle, notamment en C1-4, les groupes alcényle en particulier en C2-4, les groupes alcynyle en particulier en C2-4, les groupes aryle en particulier en C6-10, les groupes méthacryle et méthacryloxy(alkyle en C1-10), et les groupes époxyalkyle ou époxyalcoxyalkyle dans lesquels le groupe alkyle est linéaire, ramifié ou cyclique, en C1-10, et le groupe alcoxy comporte de 1 à 10 atomes de carbone ;
    L1 est un ligand complexant monodentate ou polydentate, de préférence polydentate ;
    m1 représente l'indice d'hydroxylation du ligand L1 ; et
    R2 représente un groupement non hydrolysable divalent choisi parmi les groupes alkylène de préférence en C1-4, les groupes alcénylène en particulier en C2-4, les groupes alcynylène en particulier en C2-4 les groupes arylène en particulier en C6-10, les groupes méthacryle et méthacryloxy(alkyle en C1-10), et les groupes époxyalkyle ou époxyalcoxyalkyle dans lesquels le groupe alkyle est linéaire, ramifié ou cyclique, en C1-10, et le groupe alcoxy comporte de 1 à 10 atomes de carbone.
  6. Matériau nanostructuré selon la revendication 5, caractérisé en ce que R1 représente un groupe méthyle ou éthyle ; R1' représente un groupe non hydrolysable choisi parmi les groupes méthyle, éthyle, propyle, butyle, vinyle, 1-propényle, 2-propényle, butényle, acétylényle, propargyle, phényle, naphthyle, méthacryle, méthacryloxypropyle, glycidyle et glycidyloxy(alkyle en C1-10) ; et L1 est un ligand complexant choisi parmi les acides carboxyliques, les β-dicétones, les β-cétoesters, les α et β-hydroxyacides, les acides aminés l'acide phosphonique et les phosphonates.
  7. Matériau nanostructuré selon l'une quelconque des revendications précédentes, comprenant en outre une matrice polymère ou hybride organique/inorganique.
  8. Matériau nanostructuré selon la revendication 7, caractérisé en ce que la matrice est une matrice hybride organique/inorganique obtenue par polycondensation d'au moins un alcoxyde métallique ou halogénure métallique en présence d'un solvant, et éventuellement d'un catalyseur.
  9. Matériau nanostructuré selon la revendication 8, caractérisé en ce que l'alcoxyde métallique ou halogénure métallique a pour formule générale :

            M'Zn'     (8)

            R"x'M' Z'n'-x'     (9)

            L'm'x'M' Z'm'x'     (10)

            Z'n-1M'-R"'-M Z'n-1     (11)

    dans lesquelles :
    n'représente la valence de l'atome métallique M', de préférence 3, 4 ou 5 ;
    x' est un nombre entier allant de 1 à n'-1 ;
    M' représente un atome métallique de valence III tel que Al, de valence IV tel que Si, Ce, Zr et Ti, ou de valence V tel que Nb ;
    Z' représente un groupe hydrolysable choisi parmi les atomes d'halogène, les groupes alcoxy de préférence en C1-4, les groupes aryloxy en particulier en C6-10, les groupes acyloxy en particulier en C1-4, et les groupes alkylcarbonyle en C1-10 ;
    R" représente un groupement non hydrolysable monovalent choisi parmi les groupes alkyle de préférence en C1-4, les groupes alcényle en particulier en C2-4, les groupes alcynyle en particulier en C2-4, les groupes aryle en particulier en C6-10, les groupes (méth)acryle, méthacryloxy(alkyle en C1-10), et les groupes époxyalkyle ou époxyalcoxyalkyle dans lesquels le groupe alkyle est linéaire, ramifié ou cyclique, en C1-10, et le groupe alcoxy comporte de 1 à 10 atomes de carbone ;
    R'" représente un groupement non hydrolysable divalent choisi parmi les groupes alkylène de préférence en C1-4, les groupes alcénylène en particulier en C2-4, les groupes alcynylène en particulier en C2-4 les groupes arylène en particulier en C6-10, les groupes méthacryle et méthacryloxy(alkyle en C1-10), et les groupes époxyalkyle ou époxyalcoxyalkyle dans lesquels le groupe alkyle est linéaire, ramifié ou cyclique, en C1-10, et le groupe alcoxy comporte de 1 à 10 atomes de carbone ; et
    L' représente un ligand complexant de préférence polydentate ,
    m' représente l'indice d'hydroxylation du ligand L'.
  10. Matériau nanostructuré selon la revendication 9, caractérisé en ce que :
    n' est égal à 4 ;
    x' est un nombre entier allant de 1 à 3 ;
    M' représente un atome de silicium, de cérium ou de zirconium ;
    Z' représente un groupe hydrolysable choisi parmi Cl et Br, les groupes méthoxy, éthoxy, n-propoxy, i-propoxy, butoxy, phénoxy, acétoxy, propionyloxy et acétyle ;
    R" représente un groupement non hydrolysable monovalent choisi parmi les groupes méthyle, éthyle, propyle, butyle, vinyle, 1-propényle, 2-propényle, butényle, acétylényle, propargyle, phényle, naphthyle, méthacryle, méthacryloxypropyle, glycidyle et glycidyloxy(alkyle en C1-10) ;
    R"' représente un groupement non hydrolysable divalent choisi parmi les groupes méthylène, éthylène, propylène, butylène, vinylène, 1-propénylène, 2-propénylène, buténylène, acétylénylène, propargylène, phénylène, naphthylène, méthacryle, méthacryloxypropyle, glycidyle et glycidyloxy(alkyle en C1-10) ; et
    L' représente un acide carboxylique, une β-dicétone, un β-cétoester, un α ou β-hydroxyacide, un acide aminé, l'acide phosphonique ou un phosphonate.
  11. Matériau nanostructuré selon l'une quelconque des revendications précédentes, comprenant en outre au moins un nanobloc élémentaire fonctionnalisé différent de celui défini à la revendication 1, ou non fonctionnalisé.
  12. Procédé de préparation d'un matériau nanostructuré selon l'une quelconque des revendications 1 à 6, comprenant les étapes consistant à :
    (a) préparer les nanoblocs élémentaires par un processus hydrolytique ou non-hydrolytique à partir d'au moins un alcoxyde métallique ou halogénure métallique tel que défini dans les revendications 5 et 6, et
    (b) fonctionnaliser les nanoblocs élémentaires au moyen d'un agent de fonctionnalisation, tel que défini dans la revendication 1.
  13. Procédé de préparation d'un matériau nanostructuré selon l'une quelconque des revendications 7 à 10, comprenant d'une part, le procédé selon la revendication 12, et d'autre part, les étapes consistant à :
    (c) préparer la matrice hybride organique/inorganique par voie sol-gel, à partir d'au moins un alcoxyde métallique tel que défini dans la revendication 9 ou 10, la préparation par voie sol-gel se faisant en présence d'un solvant, et éventuellement d'un catalyseur,
    puis à
    (d) mélanger les nanoblocs élémentaires fonctionnalisés obtenus à l'étape b) et la matrice obtenue à l'étape c).
  14. Procédé de préparation selon la revendication 12 ou 13, caractérisé en ce qu'au moins un additif est ajouté lors de l'étape a) ou lors de l'étape d) ou lors des deux étapes a) et d).
  15. Procédé de préparation selon la revendication 14, caractérisé en ce qu'un additif est ajouté lors de l'étape a) et que le matériau final de l'étape d) est de type noyau/enveloppe, le noyau étant constitué par l'additif et l'enveloppe étant constituée par un nanobloc élémentaire.
  16. Procédé de préparation selon la revendication 14 ou 15, caractérisé en ce que l'additif est choisi parmi des agents tensioactifs pour améliorer la mouillabilité du sol sur le substrat métallique, des colorants, des agents de réticulation, des agents de couplage, des inhibiteurs de corrosion et leurs mélanges.
  17. Utilisation du matériau nanostructuré selon l'une quelconque des revendications 1 à 11, dans l'aéronautique et l'aérospatiale, comme revêtement protecteur de surfaces métalliques.
  18. Article caractérisé en ce qu'il comprend un substrat métallique et au moins un revêtement constitué d'au moins un matériau nanostructuré selon l'une quelconque des revendications 1 à 11.
  19. Article selon la revendication 18, caractérisé en ce que le substrat métallique est en titane, en aluminium ou en un de leurs alliages.
  20. Procédé de préparation d'un article selon la revendication 18 ou 19, caractérisé en qu'il comprend une étape de trempage dans un bain, de dépôt sur substrat en rotation, d'aspersion, d'enduction laminaire ou de dépôt au pinceau d'au moins un matériau nanostructuré selon l'une quelconque des revendications 1 à 11.
EP08154099.9A 2007-04-06 2008-04-04 Matériau nanostructuré particulier, comme revêtement protecteur de surfaces métalliques. Revoked EP1978055B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0754375A FR2914631B1 (fr) 2007-04-06 2007-04-06 Materiau nanostructure particulier, comme revetement protecteur de surfaces metalliques.

Publications (2)

Publication Number Publication Date
EP1978055A1 EP1978055A1 (fr) 2008-10-08
EP1978055B1 true EP1978055B1 (fr) 2018-03-28

Family

ID=38698384

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08154099.9A Revoked EP1978055B1 (fr) 2007-04-06 2008-04-04 Matériau nanostructuré particulier, comme revêtement protecteur de surfaces métalliques.

Country Status (4)

Country Link
US (1) US20080245260A1 (fr)
EP (1) EP1978055B1 (fr)
JP (1) JP2009024158A (fr)
FR (1) FR2914631B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11965063B2 (en) 2018-06-04 2024-04-23 EMPA Eidgenoessische Matereialpruefungs- und Forschungsanstalt Method for preparing a siloxane based polymeric liquid material and materials made therefrom

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3480054B2 (ja) * 1994-08-03 2003-12-15 神鋼電機株式会社 短剱状物品の整送装置
FR2899906B1 (fr) * 2006-04-13 2008-06-27 Eads Ccr Groupement D Interet Utilisation d'un materiau nanostructure, comme revetement protecteur de surfaces metalliques
WO2009059382A1 (fr) * 2007-11-09 2009-05-14 Pacific Polymers Pty Ltd Modification hydrophobe de matières de charge minérales et systèmes polymères mixtes
EP2151481A1 (fr) * 2008-08-01 2010-02-10 Chemische Werke Kluthe GmbH Solution aqueuse et procédé de revêtement de surfaces métalliques et utilisation d'acide silique modifié ou de composition de concentré pour la préparation d'une solution de revêtement aqueuse
CA2689947C (fr) * 2008-10-24 2016-01-12 Trent University Revetements pour les substrats sujets a la corrosion
CN101760736B (zh) * 2008-12-26 2013-11-20 汉高(中国)投资有限公司 一种镀锌钢板表面处理剂和一种镀锌钢板及其制备方法
JP4793456B2 (ja) * 2009-02-20 2011-10-12 トヨタ自動車株式会社 熱伝導性絶縁樹脂成形体
CN102341463B (zh) * 2009-03-13 2014-06-11 阿克佐诺贝尔化学国际公司 硅烷化二氧化硅水分散体
DE102010030111A1 (de) 2009-08-11 2011-02-17 Evonik Degussa Gmbh Wässrige Silansysteme für den Blankkorrosionsschutz und Korrosionsschutz von Metallen
BR112012012923A2 (pt) * 2009-12-03 2017-03-07 Basf Se uso de nanopartículas oxídicas, processo para proteger superfícies metálicas da corrosão, superfícies metálicas, e, composição anticorrosão
US20120308775A1 (en) * 2010-12-09 2012-12-06 You Seung M Hydrophilic surfaces and process for preparing
CN103100426B (zh) * 2011-11-09 2015-02-18 中国石油化工股份有限公司 一种氧化铝载体的制备方法
US9676948B2 (en) 2013-03-26 2017-06-13 Momentive Performance Materials Inc. Coating composition and method for determining the uniformity and thickness of a no-rinse silane pretreatment
WO2015001461A1 (fr) * 2013-07-02 2015-01-08 Jozef Stefan Institute Compositions sol-gel hybrides et revêtements anticorrosion les utilisant
JP6347597B2 (ja) * 2013-12-05 2018-06-27 東京応化工業株式会社 シリカ系被膜形成用組成物及びこれを用いたシリカ系被膜の製造方法
US9688866B2 (en) * 2013-12-27 2017-06-27 Industrial Technology Research Institute Method of manufacturing hydrophobic antifouling coating material and method of forming hydrophobic antifouling coating film
CN103922744A (zh) * 2014-03-14 2014-07-16 天津理工大学 一种高韧性纳米黑瓷材料的制备方法
JPWO2016009617A1 (ja) * 2014-07-16 2017-05-25 日本曹達株式会社 シラン系コーティング組成物
US10280770B2 (en) * 2014-10-09 2019-05-07 Rolls-Royce Corporation Coating system including oxide nanoparticles in oxide matrix
CN109414672B (zh) 2016-07-14 2021-10-26 阿克苏诺贝尔化学品国际有限公司 可热膨胀热塑性微球及其制备方法
US10246594B2 (en) 2016-07-20 2019-04-02 The Boeing Company Corrosion inhibitor-incorporated layered double hydroxide and sol-gel coating compositions and related processes
US10246593B2 (en) 2016-07-20 2019-04-02 The Boeing Company Sol-gel coating compositions including corrosion inhibitor-encapsulated layered double hydroxide and related processes
US10428226B2 (en) 2016-07-20 2019-10-01 The Boeing Company Sol-gel coating compositions and related processes
US10421869B2 (en) 2017-01-09 2019-09-24 The Boeing Company Sol-gel coating compositions including corrosion inhibitor-encapsulated layered metal phosphates and related processes
EP3564197A1 (fr) 2018-05-04 2019-11-06 Merck Patent GmbH Couleurs céramiques
US11320738B2 (en) * 2018-06-27 2022-05-03 Taiwan Semiconductor Manufacturing Co., Ltd. Pattern formation method and material for manufacturing semiconductor devices
EP4073146B1 (fr) 2019-12-11 2024-02-21 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Matériau liquide polymérisé à base de siloxane et son procédé de préparation
EP3835338A1 (fr) 2019-12-11 2021-06-16 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Matériau liquide polymérisé à base de siloxane et son procédé de préparation
KR20220161276A (ko) * 2020-02-04 2022-12-06 캐보트 코포레이션 액체-기반 적층 제조를 위한 조성물
CN115038759A (zh) * 2020-02-14 2022-09-09 赢创有限公司 防腐蚀套装和由其形成的防腐蚀剂
WO2021198487A1 (fr) 2020-04-03 2021-10-07 Nouryon Chemicals International B.V. Microsphères thermiquement expansibles préparées à partir de monomères d'origine biologique
EP4126334A1 (fr) 2020-04-03 2023-02-08 Nouryon Chemicals International B.V. Microsphères thermiquement expansibles préparées à partir de monomères d'origine biologique

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1163784B (de) 1962-03-30 1964-02-27 Degussa Verfahren zur Oberflaechenbehandlung von hochdispersen Oxyden
US6265029B1 (en) 1995-05-04 2001-07-24 William Lewis Low-cost, user-friendly hardcoating solution, process and coating
US6287639B1 (en) 1996-11-15 2001-09-11 Institut für Neue Materialien Gemeinnützige GmbH Composite materials
US20030041779A1 (en) 2001-08-25 2003-03-06 Degussa Ag Surface coating composition comprising silicon compounds
US6620514B1 (en) 1998-04-09 2003-09-16 Institut Für Neue Materialien Gem. Gmbh Nanostructured forms and layers and method for producing them using stable water-soluble precursors
US6689468B2 (en) 2000-10-05 2004-02-10 Degussa Ag Organosilicon nanocapsules
WO2004020532A1 (fr) 2002-08-28 2004-03-11 Degussa Ag Silice
WO2006010388A1 (fr) 2004-07-29 2006-02-02 Degussa Ag Nanocomposites de silanes aqueux
WO2006045713A1 (fr) 2004-10-25 2006-05-04 Ciba Specialty Chemicals Holding Inc. Nanoparticules fonctionnalisees

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3093910B2 (ja) * 1993-08-02 2000-10-03 松下電工株式会社 無機コーティング材の塗装方法
JPH1088010A (ja) * 1996-09-17 1998-04-07 Nippon Paint Co Ltd 硬化性樹脂組成物
US5750197A (en) 1997-01-09 1998-05-12 The University Of Cincinnati Method of preventing corrosion of metals using silanes
US5993967A (en) * 1997-03-28 1999-11-30 Nanophase Technologies Corporation Siloxane star-graft polymers, ceramic powders coated therewith and method of preparing coated ceramic powders
JPH11166156A (ja) * 1997-12-04 1999-06-22 Matsushita Electric Works Ltd 低温硬化性無機塗料とそれを用いた塗装品
DE19813709A1 (de) * 1998-03-27 1999-09-30 Inst Neue Mat Gemein Gmbh Verfahren zum Schutz eines metallischen Substrats vor Korrosion
US6162547A (en) 1998-06-24 2000-12-19 The University Of Cinncinnati Corrosion prevention of metals using bis-functional polysulfur silanes
KR20020019089A (ko) * 1999-06-16 2002-03-09 니혼 야마무라 글라스 가부시키가이샤 코팅조성물
US6905772B2 (en) * 2000-05-23 2005-06-14 Triton Systems, Inc. Abrasion and impact resistant coating compositions, and articles coated therewith
US7018463B2 (en) * 2003-07-24 2006-03-28 Lens Technology I, Llc Abrasion resistant coating composition
FR2858420B1 (fr) * 2003-07-29 2005-11-25 Essilor Int Article d'optique comprenant un empilement anti-reflets multicouches et procede de preparation
DE10351902A1 (de) * 2003-11-06 2005-06-16 Damixa A/S Wasserleitender Körper
FR2899906B1 (fr) * 2006-04-13 2008-06-27 Eads Ccr Groupement D Interet Utilisation d'un materiau nanostructure, comme revetement protecteur de surfaces metalliques

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1163784B (de) 1962-03-30 1964-02-27 Degussa Verfahren zur Oberflaechenbehandlung von hochdispersen Oxyden
US6265029B1 (en) 1995-05-04 2001-07-24 William Lewis Low-cost, user-friendly hardcoating solution, process and coating
US6287639B1 (en) 1996-11-15 2001-09-11 Institut für Neue Materialien Gemeinnützige GmbH Composite materials
US6620514B1 (en) 1998-04-09 2003-09-16 Institut Für Neue Materialien Gem. Gmbh Nanostructured forms and layers and method for producing them using stable water-soluble precursors
US6689468B2 (en) 2000-10-05 2004-02-10 Degussa Ag Organosilicon nanocapsules
US20030041779A1 (en) 2001-08-25 2003-03-06 Degussa Ag Surface coating composition comprising silicon compounds
WO2004020532A1 (fr) 2002-08-28 2004-03-11 Degussa Ag Silice
WO2006010388A1 (fr) 2004-07-29 2006-02-02 Degussa Ag Nanocomposites de silanes aqueux
WO2006045713A1 (fr) 2004-10-25 2006-05-04 Ciba Specialty Chemicals Holding Inc. Nanoparticules fonctionnalisees

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"AEROSIL® - Fumed Silica - Technical Overview", AEROSIL® BROCHURE, December 2015 (2015-12-01), XP055459143
"Ethylene oxide", WIKIPEDIA, 29 November 2018 (2018-11-29), XP055541640, Retrieved from the Internet <URL:https://en.wikipedia.org/w/index.php?title=ethylene_oxide&oldid=871272019>
"Ethylene", WIKIPEDIA, 11 December 2018 (2018-12-11), XP055541634, Retrieved from the Internet <URL:https://en.wikipedia.org/w/index.php?title=ethylene&oldid=873151833>
"Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed.", 1982, article JOAN D. WILLEY: "Amorphous Silica", pages: 766 - 781, XP055541689
"LUDOX® Colloidal Silica in Catalyst Applications", LUDOX® BROCHURE, 2015, XP055541673
"Titanium dioxide", WIKIPEDIA, 1 April 2007 (2007-04-01), XP055541702, Retrieved from the Internet <URL:https://en.wikipedia.org/w/index.php?title=titanium_dioxide&oldid=119468453>
.: "High-purity dispersible boehmites", Retrieved from the Internet <URL:https://www.sasolgermany.de/index.php?id=dispersible_aluminas0>
.: "Levasil® 200S/30", PRODUCT DATA SHEET
KANG ET AL.: "Characteristics of Thin Film of Nano-Hybrid Synthesized from Acrylic Resin and Colloidal Silca-Silane Sol", MATERIALS SCIENCE FORUM, vol. 510-511, 2006, pages 218 - 221, XP055541664
RALPH I. ILER: "The Chemistry of Silica", 1979, pages: 344 - 351, XP055474758
VREUGDENHIL ET AL.: "Nanostructured silicon Sol-Gel surface treatments for AI 2024-T3 protection", JOURNAL OF COATINGS TECHNOLOGY, vol. 71, no. 915, April 2001 (2001-04-01), pages 35 - 43, XP055541708

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11965063B2 (en) 2018-06-04 2024-04-23 EMPA Eidgenoessische Matereialpruefungs- und Forschungsanstalt Method for preparing a siloxane based polymeric liquid material and materials made therefrom

Also Published As

Publication number Publication date
JP2009024158A (ja) 2009-02-05
FR2914631A1 (fr) 2008-10-10
FR2914631B1 (fr) 2009-07-03
US20080245260A1 (en) 2008-10-09
EP1978055A1 (fr) 2008-10-08

Similar Documents

Publication Publication Date Title
EP1978055B1 (fr) Matériau nanostructuré particulier, comme revêtement protecteur de surfaces métalliques.
EP2010612B1 (fr) Utilisation d&#39;un materiau nanostructure, comme revetement protecteur de surfaces metalliques
EP2076570A2 (fr) Revetements mesostructures pour application en aeronautique et aerospatiale.
JP4746323B2 (ja) 腐食に対して保護する金属の被覆のための組成物
EP1849835B1 (fr) Corps composite organique-inorganique
US8715405B2 (en) Sol for sol-gel process coating of a surface and coating method by sol-gel process using same
KR101020526B1 (ko) 금속의 부식 방지
JP5579269B2 (ja) 裸腐食保護及び金属の腐食保護のための水性シラン系
WO2009136044A2 (fr) Revêtements mésostructurés comprenant un agent texturant particulier, pour application en aéronautique et aérospatiale
EP2766508B1 (fr) Procédé de traitement anticorrosion d&#39;un substrat métallique solide
WO2009092725A2 (fr) Particules enrobees et fonctionnalisees, polymere les contenant, leur procede de preparation et leurs utilisations
WO2013054066A1 (fr) Procédé de traitement anticorrosion d&#39;un substrat métallique solide et substrat métallique susceptible d&#39;être obtenu par un tel procédé
EP3347140B1 (fr) Procédé d&#39;application d&#39;un revêtement anticorrosion sur une pièce métallique, composition de revêtement aqueux, revêtement anticorrosion de pièces métalliques et pièce métallique revêtue
JP5238934B2 (ja) 水系ジルコニウム防食剤、それを用いた金属の防食方法及び水系ジルコニウム防食剤の製造方法
JP4221811B2 (ja) 表面処理粉体及び粉体の表面処理方法
JP2023117724A (ja) プライマー組成物及び皮膜形成方法
RO137831A2 (ro) Compoziţii hibride filmogene cu proprietăţi antireflexie şi de autocurăţare şi procedeu de obţinere
WO2020180575A1 (fr) Composition de revêtement protecteur et substrat métallique revêtu comprenant celle-ci
WO2007068809A1 (fr) Poudre pouvant etre redispersee de dispersions de particules minerales stabilisees avec un polymere

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20080929

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SANCHEZ, CLEMENT

Inventor name: CAMPAZZI, ELISA

Inventor name: LANCELLE-BELTRAN, EMMANUELLE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EUROPEAN AERONAUTIC DEFENCE AND SPACE COMPANY EADS

Owner name: UNIVERSITE PIERRE ET MARIE CURIE (PARIS VI)

Owner name: CENTRE NATIONAL POUR LA RECHERCHE SCIENTIFIQUE (CN

17Q First examination report despatched

Effective date: 20090325

AKX Designation fees paid

Designated state(s): DE GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171116

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008054571

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CENTRE NATIONAL POUR LA RECHERCHE SCIENTIFIQUE (CN

Owner name: UNIVERSITE PIERRE ET MARIE CURIE (PARIS 6)

Owner name: AIRBUS (SAS)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602008054571

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: AKZO NOBEL CHEMICALS INTERNATIONAL BV

Effective date: 20181222

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: NOURYON CHEMICALS INTERNATIONAL B.V.

Effective date: 20181222

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: NOURYON CHEMICALS INTERNATIONAL B.V.

Effective date: 20181222

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 602008054571

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 602008054571

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200420

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200427

Year of fee payment: 13

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20200618

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20200618