EP1965912A1 - Procede de preparation d'un catalyseur contenant une zeolithe modifiee et son utilisation en oligomerisation des olefines legeres - Google Patents

Procede de preparation d'un catalyseur contenant une zeolithe modifiee et son utilisation en oligomerisation des olefines legeres

Info

Publication number
EP1965912A1
EP1965912A1 EP06831068A EP06831068A EP1965912A1 EP 1965912 A1 EP1965912 A1 EP 1965912A1 EP 06831068 A EP06831068 A EP 06831068A EP 06831068 A EP06831068 A EP 06831068A EP 1965912 A1 EP1965912 A1 EP 1965912A1
Authority
EP
European Patent Office
Prior art keywords
zeolite
process according
preparation process
catalyst
protonated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP06831068A
Other languages
German (de)
English (en)
Inventor
Laurent Simon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1965912A1 publication Critical patent/EP1965912A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/24Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
    • B01J29/68Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/12Catalytic processes with crystalline alumino-silicates or with catalysts comprising molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/12After treatment, characterised by the effect to be obtained to alter the outside of the crystallites, e.g. selectivation
    • B01J2229/123After treatment, characterised by the effect to be obtained to alter the outside of the crystallites, e.g. selectivation in order to deactivate outer surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/26Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/69Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst

Definitions

  • the present invention relates to a process for the preparation of a catalyst based on a modified zeolite having small and / or pore means, that is to say having a maximum pore opening diameter of less than or equal to at 7 A, in order to obtain a catalyst advantageously used in various chemical conversion processes for hydrocarbons. More particularly, the invention also relates to the use of said catalyst containing said modified zeolite in a process for oligomerization of a light olefinic feedstock.
  • zeolites with a shape selectivity such as zeolite ZSM-5 for the olefin oligomerization reaction has been known for a long time.
  • the process for oligomerization of olefins of Mobil developed in the 1980s described inter alia in US Patents 4,150,062 and US 4,227,992 uses a ZSM-5 zeolite for the conversion of butenes to oligomers.
  • the products obtained have a very low degree of connection and make jet fuel and diesel cuts of good qualities. This process gives very low yield in diesel cut (cut obtained after distillation of Poligomerate between 200 0 C - 36O 0 C), it is used mainly to produce jet fuel.
  • US Pat. No. 4,402,867 describes a method for preparing a zeolite-based catalyst comprising a step of depositing in the aqueous phase at least 0.3% by weight of amorphous silica inside the pores of the zeolite.
  • US Pat. No. 4,996,034 describes a process for substitution of aluminum atoms present in a zeolitic framework with silicon atoms, said process being carried out in one step in an aqueous medium using fluorosilicate salts.
  • No. 4,451,572 describes the preparation of a zeolitic catalyst comprising a step of depositing organosilicic materials in the vapor or liquid phase, the targeted zeolites being large-pore zeolites, in particular zeolite Y.
  • US Pat. No. 5,057,640 describes a process for the oligomerization of propylene using a catalyst containing a zeolite of Si / Al ratio greater than 12 and a stress index (Cl) of between 1 and 12 and in which at least 0.1 % by weight of silica with respect to weight of the zeolite was added.
  • the catalyst referred to in this US Pat. No. 5,056,640 has an n-hexane adsorption of 1% less than on the starting material.
  • the present invention relates to a process for the preparation of a catalyst containing at least one modified zeolite, said zeolite having, before being modified, a maximum pore opening diameter of less than or equal to 7 ⁇ , said process comprising at least: a) a step of introducing at least one metal chosen from the metals of groups VIB and VIII of the periodic table of elements on a support based on at least one protonated zeolite, b) a step of treating said zeolite in the presence of at least one molecular compound containing at least one silicon atom, said compound having a diameter greater than the maximum pore opening diameter of said zeolite is deposited on the outer surface of said zeolite in the gas phase, c) at least one heat treatment step.
  • Said zeolite is preferably chosen from zeolites of structural type MEL, MFI, ITH, NES, EUO, ERI, IRON, CHA, MFS, MWW, MTT, TON and MOR.
  • the present invention also relates to the use of said catalyst in a process for oligomerizing an olefinic feedstock containing hydrocarbon molecules having 2 to 12 carbon atoms per molecule.
  • a catalyst comprising a modified zeolite, prepared according to a process comprising at least a) a step of introduction of at least one metal chosen from the metals of groups VIB and VIII of the classification periodic element on a support based on at least one protonated zeolite, b) a step of treating said zeolite in the presence of at least one molecular compound containing at least one silicon atom, said compound having a diameter greater than the diameter maximum opening pore of said zeolite, c) at least one heat treatment step, leads to improved catalytic performance, particularly in terms of yield and selectivity of the diesel cut in an oligomerization reaction of an olefinic feedstock containing hydrocarbon molecules having 2 to 12 carbon atoms per molecule, preferably 3 to 7 carbon atoms per molecule, and very preferably containing from 4 to 6 carbon atoms per molecule.
  • Such a catalyst makes it possible to significantly increase the efficiency of the diesel cut relative to that obtained by using a catalyst of the state of the art.
  • the cetane number which reflects the linearity of the hydrocarbon chains present in the diesel cut and which represents the quality of the diesel cut, is also advantageously improved compared with that usually presented by a diesel cut obtained by this reaction.
  • the use of the catalyst as described above in a process for oligomerizing an olefinic feed containing hydrocarbon molecules having from 2 to 12 carbon atoms per molecule, preferably from 3 to 7 carbon atoms per molecule, and very preferably containing from 4 to 6 carbon atoms per molecule allows the production of an oligomer of very good quality which can advantageously after distillation at the appropriate cutting point, be integrated in the diesel pool of a refinery.
  • the present invention relates to a process for the preparation of a catalyst containing at least one modified zeolite, said zeolite having, before being modified, a maximum pore opening diameter of less than or equal to 7 ⁇ , said process comprising at least: a) a step of introducing at least one metal selected from the metals of groups VIB and VIII of the periodic table of elements on a support based on at least one protonated zeolite, b) a step of treating said zeolite in the presence of at least one molecular compound containing at least one silicon atom, said compound having a diameter greater than the maximum pore opening diameter of said zeolite is deposited on the outer surface of said zeolite in the gas phase; least one heat treatment step.
  • the initial zeolite which has not yet been modified to be contained in the catalyst prepared according to the process of the invention, has a maximum pore opening diameter of less than or equal to 7 A and Preferred zeolite is selected from zeolites defined in the "Atlas of Zeolite Structure Types" classification, W. M Meier, DH Oison and Ch. Baerlocher, 5th revised edition, 2001, Elsevier "to which reference is made also the present application but may also be any zeolite having a maximum pore opening diameter of less than or equal to 7 A.
  • the zeolites listed in the "Atlas of Zeolite Structure Types" are classified according to their structural type All zeolites having a maximum pore opening diameter of less than or equal to 7 A and preferably less than 6.5 A are suitable for carrying out the preparation process according to the invention and in particular for the implementation process step b) of the process according to the invention.
  • the maximum pore opening diameter of a zeolite corresponds to the maximum dimension of the "ring dimensions" mentioned in the "Atlas of Zeolite Structure Types" for each of the structural types.
  • the zeolite initially used, before being modified, to be contained in the catalyst prepared according to the process of the invention has either one or channels whose opening is defined by a ring with 10 oxygen atoms.
  • a zeolite having at least channels whose opening is defined by a ring of 12 oxygen atoms (12 MR) is particularly suitable for carrying out the process for preparing the catalyst according to the invention provided that it has a maximum pore opening diameter less than or equal to 7 A.
  • a zeolite of structural type MOR which has both channels whose opening is defined by an 8-atom oxygen ring (8 MR) and channels whose opening is defined by a ring of 12 oxygen atoms (12 MR) is suitable for carrying out the preparation process according to the invention.
  • MOR structural type zeolites have a maximum pore opening diameter of 7.0 ⁇ .
  • the zeolite modified according to the different steps of the process according to the invention, initially contains, that is to say, before being modified, at least silicon and aluminum in a proportion such that the Si / Si atomic ratio Ai is preferably between 2 and 200, more preferably between 5 and 100 and even more preferably between 8 and 80. It advantageously contains at least one other element W, different from silicon and aluminum, integrating tetrahedral form into the framework of the zeolite.
  • said element W is chosen from iron, germanium, boron and titanium and represents a weight portion of between 5 and 30% of all the constituent atoms of the zeolitic framework other than the oxygen atoms.
  • the zeolite then has a ratio (Si + W) / Al of between 2 and 200, preferably of between 5 and and 100 and very preferably between 8 and 80, W being defined as above.
  • the zeolite modified according to the different steps of the process according to the invention is preferably chosen from zeolites of structural type MEL, MFI, ITH, NES, EUO, ERI, IRON, CHA, MFS, MWW, MTT, TON and MOR and of very preferably chosen from zeolites of structural type MFI, MOR and FER.
  • zeolites of structural MEL type zeolite ZSM-11 is preferred.
  • zeolites of structural type MFI zeolite ZSM-5 is preferred.
  • zeolites of ITH structural type zeolite ITQ-13 is preferred (US 6,471,941).
  • zeolites of structural NES type zeolite NU-87 is preferred.
  • zeolites of EUO structural type zeolite EU-1 is preferred.
  • zeolites of structural type ERI zeolite erionite is preferred.
  • zeolites of structural type FER structural type ferrierite zeolites and ZSM-35 are preferred.
  • zeolites of structural type CHA zeolite chabazite is preferred.
  • zeolites of structural MFS type zeolite ZSM-57 is preferred.
  • the MCM-22 zeolite is preferred.
  • zeolites of MTT structural type zeolites of MTT structural type
  • zeolite ZSM-23 is preferred.
  • zeolites of structural type TON zeolite ZSM-22 is preferred.
  • mordenite zeolite is preferred.
  • the first step of the catalyst preparation process according to the invention is either step a) or step b).
  • Step b), whether before or after step a), is preferably followed immediately by step c).
  • the zeolite used for carrying out the first step of the process for preparing the catalyst according to the invention that is to say employed for the implementation of step a) carried out in the presence of at least one metal of groups VIB and / or VIII of the periodic table of elements or for the implementation of step b) carried out in the presence of at least one molecular compound containing at least one silicon atom having a well-defined diameter, present in calcined form and contains at least one proton such that it is in its protonated form (hydrogen form H + ) in which the cation content other than H + is less than 30% of the total number of cations, preferably less than 20% and very preferably less than 15% based on the total number of cation on the zeolite.
  • the zeolite to be modified is in its raw form of synthesis, still containing the structuring agent.
  • organic material used to prepare it calcination may be carried out said zeolite at a temperature between 300 and 700 0 C, preferably between 400 and 600 0 C and if the zeolite contains one or more metal (s) alkali / alkaline earth, proceed to one or more ion exchange (s) (s) by a solution containing at least one ammonium salt, for example ammonium nitrate NH 4 NO 3 , so as to remove at least partly, preferably almost completely, an alkaline cation present in the zeolite.
  • ammonium salt for example ammonium nitrate NH 4 NO 3
  • a step of calcination under dry air flow, at a temperature generally between approximately 400 and 500 0 C, is then intended to generate the formation of protons in the zeolite by desorption of ammonia thus leading to the hydrogen form of the zeolite, ready for the implementation of the first step of the preparation process according to the invention.
  • the zeolite used for carrying out the first step of the process for preparing the catalyst according to the invention is an acidic zeolite containing between 70 and 100%, preferably between 80 and 100% and very preferably between 85 and 100% proton form H + compensation cations, the rest of the cations being preferably chosen from the metals of groups IA and NA of the periodic table of elements, and more particularly said cation is chosen from Na + , Li + cations, K + , Rb + , Cs + , Ba 2+ and Ca 2+ .
  • Step a) of the process for preparing the catalyst according to the invention is a step of introducing at least one metal chosen from the metals of groups VIB and VIII of the periodic table of the elements on a carrier based on minus a protonated zeolite.
  • said metal chosen from metals of groups VIB and VIII of the periodic table of elements is chosen from nickel, iron, palladium, ruthenium and chromium, very preferably from nickel and chromium.
  • the Group VIII metal is nickel. Of the Group VIB metals, chromium is preferred.
  • the deposition of at least one metal chosen from Group VIB and VIII metals is generally carried out by dry impregnation, by excess impregnation or by ion exchange (s) according to methods well known to those skilled in the art, preferably by ion exchange (s).
  • ion exchange introduction of nickel it is preferred to use an aqueous solution containing nickel under the oxidation state + 2, for example nickel sulphate.
  • the weight content of the metal chosen in groups VIB and VIII, introduced on the zeolite support is advantageously between 0.01 and 10% by weight, and preferably between 0.1 and 5% by weight relative to the weight of the catalyst prepared according to method of the invention.
  • the support based on at least one protonated zeolite consists entirely of said protonated zeolite, which has in terms of maximum pore opening diameter, structure and chemical composition, the characteristics described above.
  • the support based on at least one protonated zeolite consists of said protonated zeolite shaped with a matrix and optionally a binder.
  • the method for preparing the catalyst according to the invention comprises a step b) of selectivation of the zeolite, in its protonated form, said selectivation step can be carried out either before the step of introducing at least one metal of the groups VIB and / or VIII according to said step a) after said step a).
  • selectivation is meant in the sense of the present invention, the neutralization of the acidity of the outer surface of each of the crystals of the zeolite.
  • the neutralization of the acidity can be done by any method known to those skilled in the art. Conventional methods generally employ, for specific selectivation of acidic sites on the outer surface of zeolites, molecules whose kinetic diameter is greater than the pore opening diameter of the zeolite.
  • step b) of selectivation consists in treating the zeolite, in its protonated form, possibly previously subjected to said step a), in the presence of at least one molecular compound containing at least one silicon atom whose diameter is greater than the maximum pore opening diameter of the zeolite to be treated according to step b).
  • the process for preparing the catalyst according to the invention comprises only one step b).
  • the molecules generally used to passivate or selectivize the outer surface of the zeolite are compounds containing atoms that can interact with the outer surface sites of each of the zeolite crystals.
  • the molecules used according to the invention are organic or inorganic molecules containing one or more silicon atom (s).
  • the protonated zeolite, possibly previously subjected to said step a) is subjected to a treatment step in the presence of at least one molecular compound containing at least a silicon atom.
  • Said step b) allows the deposition of a layer of said molecular compound containing at least one silicon atom on the outer surface of the zeolite which will be transformed after step c) into an amorphous silica layer on the outer surface of each of the crystals of the zeolite.
  • the molecular compound containing at least one silicon atom is chosen from compounds of formula Si-R 4 and Si 2 -Re where R may be either hydrogen, an alkyl, aryl or acyl group, an alkoxy group (O-R 1 ), a hydroxyl group (-OH) or a halogen, preferably an alkoxy group (OR 1 ) .
  • the group R may be either identical or different.
  • the molecular compound containing at least one silicon atom used in step b) of the process according to the invention may be a compound of silane, disilane, alkylsilane, alkoxysilane or siloxane type.
  • said molecular compound has a composition of general formula Si- (OR ') 4 where R' is an alkyl, aryl or acyl group, preferably an alkyl group and very preferably an ethyl group.
  • Said molecular compound used for the implementation of step b) of the process according to the invention has a diameter greater than the maximum pore opening diameter of the zeolite and preferably comprises at most two silicon atoms per molecule.
  • the tetraethylorthosilicate (TEOS) molecular compound of formula Si (OCH 2 CH 3 ) 4 which has a diameter equal to 9.6 ⁇ , is very advantageous for carrying out step b) of the process according to the invention.
  • TEOS is advantageous when it is a question of treating a structural type zeolite MOR having a maximum pore opening diameter of 7 ⁇ , a zeolite of structural type MFI having a maximum pore opening diameter of 5.6 ⁇ or a zeolite of structural type FER having a maximum pore opening diameter of 5.4 ⁇ .
  • step b) of the process according to the invention which consists in treating the protonated zeolite, possibly previously subjected to step a), in the presence of at least one molecular compound containing at least one silicon atom is carried out by depositing said compound on the outer surface of the zeolite.
  • step b) is carried out by depositing said molecular compound containing at least one silicon atom in the gas phase.
  • Step b) according to the process of the invention is carried out in a fixed bed reactor.
  • the zeolite Prior to the gas phase deposition (CVD) reaction in said fixed bed reactor, the zeolite is preferably activated. Activation of the zeolite in the fixed bed reactor is carried out under oxygen, in air or under an inert gas, or in a mixture of air and inert gas or oxygen and inert gas.
  • the activation temperature of the zeolite is advantageously between 100 and 600 ° C., and very advantageously between 300 and 55 ° C.
  • the molecular compound containing at least one silicon atom to be deposited on the outer surface of each of the crystals of the zeolite is sent into the vapor phase reactor, said molecular compound being diluted in a carrier gas which can be either hydrogen (H 2 ), or air, or Argon (Ar), either helium (He) or again nitrogen (N 2 ), preferably the carrier gas is an inert gas selected from Ar, He, and N 2 .
  • Said molecular compound containing at least one silicon atom is deposited on the outer surface of said zeolite in the vapor phase, in the absence of any hydrocarbon compound.
  • the temperature of the zeolite bed during the deposition is preferably between 10 and 300 ° C., and very preferably between 50 and 200 ° C.
  • the partial pressure, in the gas phase, of the molecular compound to be deposited on the surface is preferably between 0.001 and 0.5 bar, and very preferably between 0.01 and 0.2 bar
  • the duration of the deposit is preferably between 10 minutes and 10 hours and very preferably between 30 minutes and 5 hours and even more preferably between 1 and 3 hours.
  • the molecular compound containing at least one silicon atom is decomposed by a heat treatment which is carried out at a temperature preferably between 200 and 700 ° C, more preferably between 300 and 500 ° C.
  • Said heat treatment step is carried out under air, under oxygen, under hydrogen, under nitrogen or under argon or under a mixture of nitrogen and argon.
  • the duration of this treatment is advantageously between 1 and 5 hours.
  • an amorphous silica layer is deposited on the outer surface of each of the crystals of the zeolite.
  • the inner surface of each of the crystals of the zeolite is preferably free of a deposit of an amorphous silica layer.
  • the maximum pore opening diameter of the modified zeolite, present in the catalyst prepared according to the process of the invention is preferably unchanged compared with that of the initial zeolite still unmodified. Consequently, the modified zeolite contained in the catalyst prepared according to the process of the invention preferably has a maximum pore opening diameter of less than or equal to 7 ⁇ and preferably less than 6.5 ⁇ .
  • the metal chosen from the metals of groups VIB and VIII may be introduced either substantially completely onto the matrix, partly on the zeolite and partly on the matrix, or, preferably, almost completely on the zeolite, this being done, in the manner known to those skilled in the art, by the appropriate choice of parameters used during said deposition, such as for example the nature of the precursor of said metal.
  • step a) of the process according to the invention consists solely of said protonated zeolite (first embodiment of the invention).
  • step a)) whose characteristics in terms of maximum pore opening diameter, structure, chemical composition are in accordance with what has been said above in the present description, the metal chosen from metals of groups VIB and VIII is introduced directly onto the protonated zeolite which is preferably in the form of a powder.
  • the shaping of the protonated zeolite with a matrix and optionally a binder is carried out during a step d).
  • Said step d) of shaping can take place either directly after step a) of introduction of the metal on the protonated zeolite and prior to the implementation of steps b) and c) of the process of the invention or after the steps a), b) and c) of the process according to the invention is again after the implementation of said steps b) and c) and before the implementation of said step a) when said steps b) and c) of the according to the invention are carried out before step a).
  • the matrix used for the shaping of the protonated zeolite is an amorphous or poorly crystallized porous mineral matrix of oxide type.
  • alumina silica, silica-alumina, clays, in particular natural clays such as kaolin or bentonite, magnesia, titanium oxide, boron oxide, zirconia, aluminum phosphates, titanium phosphates, zirconium phosphates and coal.
  • a matrix among the aluminates Preferably, the matrix is an alumina in all its forms known to those skilled in the art, and preferably gamma alumina.
  • the shaping of said zeolite with at least one matrix is generally such that the catalyst is in the form of cylindrical or multi-lobed extrusions such as bilobed, trilobed, straight-lobed or twisted, but may possibly be such that the catalyst is in the form of crushed powders, tablets, rings, balls, wheels.
  • the conditions for shaping the zeolite, the choice of the matrix, optionally the preliminary grinding of the zeolite, the peptization process, the addition of pore-forming agents, the mixing time, the extrusion pressure if the catalyst is extruded, the speed and the drying time are determined for each matrix according to the well-known rules of the skilled person.
  • the shaping of the zeolite with at least one matrix as described above can be carried out at different stages of the process according to the invention. More particularly, when the support based on said zeolite used during step a) consists of said zeolite shaped with a matrix, the shaping is carried out prior to the implementation of step a) of the process of the invention.
  • the shaping is carried out either directly after said step a) and before the implementation of steps b ) and c), or after the implementation of said steps b) and c) and before the implementation of said step a) when said steps b) and c) precede said step a), or even after the implementation steps a), b) and c).
  • one of the preferred methods for preparing the catalyst according to the invention consists in exchanging a protonated zeolite with at least one metal chosen from Group VIB and VIII metals, preferably with nickel under its +2 oxidation state.
  • Said ion exchange step is followed by a step of activating the zeolite at a temperature of between 300 and 55O 0 C and then the zeolite is treated at a temperature of between 50 and 200 ° C. in the presence of tetraethylorthosilicate (TEOS) vapor deposited on the outer surface of said zeolite.
  • TEOS tetraethylorthosilicate
  • the TEOS is decomposed by a heat treatment generally carried out at a temperature between 300 and 500 ° C in air.
  • a zeolite modified in protonated form and having an amorphous silica layer on its external surface is thus obtained.
  • Said modified zeolite is then shaped by extrusion by mixing it in a wet matrix gel (generally obtained by mixing at least one acid and a matrix powder), for example alumina, for a period of time necessary to obtaining a good homogeneity of the dough thus obtained, for example for about ten minutes, and then passing said dough through a die to form extrudates, for example having a diameter of between 0.4 and 4 mm inclusive preferably between 0.4 and 2.5 mm inclusive and more preferably between 0.8 and 2.0 mm inclusive.
  • the extrudates thus shaped then undergo drying for a few hours at about 120 ° C.
  • the catalyst prepared according to the process of the invention and comprising a modified zeolite in hydrocarbon chemical conversion processes and in particular in a process for oligomerization of an olefinic feed containing hydrocarbon molecules having 2 to 12 carbon atoms per molecule.
  • the feedstock used for carrying out said oligomerization process contains hydrocarbon molecules containing from 3 to 7 carbon atoms per molecule, and very preferably containing from 4 to 6 carbon atoms per molecule.
  • the catalyst prepared according to the process of the invention is treated according to said steps a), b) and c) ex-situ: it is introduced into the reactor to carry out the oligomerization of hydrocarbon molecules containing from 3 to 7 carbon atoms per molecule once said steps a), b) and c) of the process for preparing the catalyst according to the invention have been carried out.
  • the feed used in the oligomerization process according to the invention contains from 20 to 100% by weight, and preferably from 25 to 80% by weight of olefins.
  • Possible sources for the olefinic feedstock used in the oligomerization process of the invention are the light cut of the fluid catalytic cracking (FCC), the steam cracker and the etherification unit effluents.
  • FCC fluid catalytic cracking
  • Said oligomerization process is preferably carried out under the following operating conditions: the total pressure is between 0.1 and 10 MPa and preferably between 0.3 and 7 MPa, the temperature is between 40 and 600 ° C. and preferentially between 100 and 400 ° C., the hourly space velocity (WH) is between 0.01 and 100 h -1 and preferably between 0.4 and 20 h -1 .
  • the oligomerization process corresponds to an addition limited to essentially 2 to 6 monomers or base molecules, said monomers being olefins.
  • Example 1 Preparation of a catalyst based on a modified zeolite ZSM-5.
  • the zeolite is stripped for 2 h at 150 ° C. to evacuate the unreacted TEOS.
  • the decomposition of TEOS is under air at 45O 0 C for 3 hours.
  • a modified zeolite Z1, in protonated form, of structural type MFI and having an amorphous silica layer on its external surface is thus obtained.
  • Zeolite Z1 is then shaped by extrusion with an alumina gel so as to obtain, after drying at 120 ° C. and calcination at 450 ° C. under dry air, a catalyst which contains 60% by weight of zeolite modified with Z1 and 40% by weight. alumina.
  • Example 2 Preparation of a catalyst based on a modified MOR zeolite.
  • the zeolite is stripped for 2 hours at 150 ° C. to evacuate the unreacted TEOS.
  • the decomposition of TEOS is under air at 450 ° C for 3 hours.
  • a zeolite modified Z2, in protonated form, of structural type MOR and having an amorphous silica layer on its external surface is thus obtained.
  • Zeolite Z2 is then shaped by extrusion with an alumina gel so as to obtain, after drying at 120 ° C. and calcination at 450 ° C. in dry air, a catalyst which contains 60% by weight of modified zeolite Z2 and 40% by weight. alumina.
  • Example 3 Preparation of a catalyst based on a modified FER zeolite.
  • the zeolite is stripped for 2 hours at 150 ° C. to evacuate the unreacted TEOS.
  • the decomposition of TEOS is under air at 450 ° C for 3 hours.
  • a zeolite modified Z3, in protonated form, of structural type FER and having an amorphous silica layer on its external surface is thus obtained.
  • Zeolite Z3 is then shaped by extrusion with an alumina gel so as to obtain, after drying at 120 ° C. and calcination at 450 ° C. under dry air, a catalyst which contains 60% by weight of zeolite modified with Z3 and 40% by weight. alumina.
  • Example 4 Preparation of a catalyst based on a ZSM-5 zeolite not exchanged with a metal.
  • Zeolite Z4 is then shaped by extrusion with an alumina gel so as to obtain, after drying at 120 ° C. and calcination at 45 ° C. in dry air, a catalyst which contains 60% by weight of zeolite Z4 and 40% by weight of water. alumina.
  • Example 5 Preparation of a catalyst based on a non-metal exchanged zeolite MOR.
  • Zeolite Z5 is then shaped by extrusion with an alumina gel so as to obtain, after drying at 120 ° C. and calcination at 450 ° C. in dry air, a catalyst which contains 60% by weight of zeolite Z5 and 40% by weight of alumina.
  • Example 6 (comparative): Preparation of a catalyst based on an iron zeolite not exchanged with a metal.
  • Zeolite Z6 is then shaped by extrusion with an alumina gel so as to obtain, after drying at 120 ° C. and calcination at 450 ° C. under dry air, a catalyst which contains 60% by weight of zeolite Z6 and 40% by weight of water. alumina.
  • Example 7 Preparation of a catalyst based on a modified MFI zeolite.
  • the temperature of the reactor is then reduced to 15O 0 C, then a partial pressure of 0.15 bar of TEOS [ If (OCH 2 CH 3 ) 4 ] is added to the nitrogen stream.
  • TEOS If (OCH 2 CH 3 ) 4 ] is added to the nitrogen stream.
  • the zeolite is stripped for 2 hours at 150 ° C. to evacuate the unreacted TEOS.
  • the decomposition of TEOS is under air at 450 ° C. for 3 hours.
  • a modified zeolite Z7, in protonated form, of structural type MFI and having an amorphous silica layer on its external surface is thus obtained.
  • Zeolite Z7 is then shaped by extrusion with an alumina gel so as to obtain, after drying at 120 ° C. and calcination at 450 ° C. under dry air, a catalyst which contains 60% by weight of Z7 modified zeolite and 40% by weight. alumina.
  • Example 8 Catalytic Evaluation of Catalysts Based on Z1, Z2 Modified Zeolites Z3 and Z7 and based zeolites Z4, Z5 and Z6 in oligomerization of light olefins.
  • Table 1 Performance of catalysts based on the MFI zeolite.
  • Catalyst Catalyst Catalyst Converter based on Z1 base Z4 base Z7
  • Table 2 Performance of catalysts based on the FER zeolite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

On décrit un procédé de préparation d'un catalyseur contenant au moins une zéolithe- modifiée, ladite zéolithe présentant avant d'être modifiée un diamètre d'ouverture de pores maximal inférieur ou égal à 7 Å, ledit procédé comportant au moins a) une étape d'introduction d'au moins un métal choisi parmi les métaux des groupes VIB et VIII de la classification périodique des éléments sur un support à base d'une zéolithe protonée, b) une étape de traitement de ladite zéolithe en présence d'au moins un composé moléculaire contenant au moins un atome de silicium, ledit composé présentant un diamètre supérieur au diamètre d'ouverture maximal des pores de ladite zéolithe, c) au moins une étape de traitement thermique.

Description

PROCEDE DE PREPARATION D'UN CATALYSEUR CONTENANT UNE ZEOLITHE MODIFIEE ET SON UTILISATION EN OLIGOWIERISATION DES OLEFINES LEGERES
Domaine technique
La présente invention se rapporte à un procédé de préparation d'un catalyseur à base d'une zéolithe modifiée présentant des petits et / ou des moyens pores, c'est-à-dire présentant un diamètre d'ouverture de pores maximal inférieur ou égal à 7 A, afin d'obtenir un catalyseur avantageusement mis en oeuvre dans différents procédés de conversion chimiques des hydrocarbures. Plus particulièrement, l'invention se rapporte également à l'utilisation dudit catalyseur contenant ladite zéolithe modifiée dans un procédé d'oligomérisation d'une charge oléfinique légère.
Etat de la technique antérieure
L'emploi de zéolithes à sélectivité de forme comme la zéolithe ZSM-5 pour la réaction d'oligomérisation des σléfines est connue depuis longtemps. Le procédé d'oligomérisation des oléfines de Mobil développé dans les années 1980 décrit entre autre dans les brevets US 4,150,062 et US 4,227,992 utilise une zéolithe de type ZSM-5 pour la conversion des butènes en oligomères. Les produits obtenus ont un degré de branchement très bas et font des coupes de jet fuel et de diesel de bonnes qualités. Ce procédé donnant de très faible rendement en coupe diesel (coupe obtenue après distillation de Poligomérat entre 2000C - 36O0C), il est utilisé principalement pour produire du jet fuel.
Plusieurs brevets ont déjà fait état de méthodes pour modifier des zéolithes. En particulier, le brevet US 4,402,867 décrit une méthode de préparation d'un catalyseur à base de zéolithe comprenant une étape consistant à déposer en phase aqueuse au moins 0,3% poids de silice amorphe à l'intérieur des pores de la zéolithe. Le brevet US 4,996,034 décrit un procédé de substitution d'atomes d'aluminium présents dans une charpente zéolithique par des atomes de silicium, ledit procédé étant réalisé en une étape en milieu aqueux utilisant des sels de fluorosilicates. Le brevet US 4,451,572 décrit la préparation d'un catalyseur zéolithique comprenant une étape de dépôt de matières organosiliciques en phase vapeur ou liquide, les zéolithes visées étant des zéolithes à larges pores, en particulier la zéolithe Y.
Le brevet US 5,057,640 décrit un procédé d'oligomérisation du propylène mettant en oeuvre un catalyseur contenant une zéolithe de rapport Si/Ai supérieur à 12 et d'indice de contrainte (Cl) compris entre 1 et 12 et dans lequel au moins 0,1% en poids de silice par rapport au poids de la zéolithe a été ajouté. Le catalyseur visé dans ce brevet US 5,057640 présente une adsorption de n-hexane de 1 % de moins que sur le matériau de départ.
Résumé
La présente invention concerne un procédé de préparation d'un catalyseur contenant au moins une zéolithe modifiée, ladite zéolithe présentant avant d'être modifiée un diamètre d'ouverture de pores maximal inférieur ou égal à 7 Â, ledit procédé comportant au moins : a) une étape d'introduction d'au moins un métal choisi parmi les métaux des groupes VIB et VIII de la classification périodique des éléments sur un support à base d'au moins une zéolithe protonée, b) une étape de traitement de ladite zéolithe en présence d'au moins un composé moléculaire contenant au moins un atome de silicium, ledit composé présentant un diamètre supérieur au diamètre d'ouverture maximal des pores de ladite zéolithe est déposé sur la surface externe de ladite zéolithe en phase gazeuse, c) au moins une étape de traitement thermique.
Ladite zéolithe est de préférence choisie parmi les zéolithes de type structural MEL, MFI, ITH, NES, EUO, ERI, FER, CHA, MFS, MWW, MTT, TON et MOR.
La présente invention concerne aussi l'utilisation dudit catalyseur dans un procédé d'oligomérisation d'une charge oléfinique contenant des molécules hydrocarbonées ayant de 2 à 12 atomes de carbone par molécule.
Intérêt
II a été découvert, de manière surprenante, qu'un catalyseur comprenant une zéolithe modifiée, préparé selon un procédé comportant au moins a) une étape d'introduction d'au moins un métal choisi parmi les métaux des groupes VIB et VIII de la classification périodique des éléments sur un support à base d'au moins une zéolithe protonée, b) une étape de traitement de ladite zéolithe en présence d'au moins un composé moléculaire contenant au moins un atome de silicium, ledit composé présentant un diamètre supérieur au diamètre d'ouverture maximal des pores de ladite zéolithe, c) au moins une étape de traitement thermique, conduit à des performances catalytiques améliorées, notamment en termes de rendement et de sélectivité de la coupe diesel dans une réaction d'oligomérisation d'une charge oléfinique contenant des molécules hydrocarbonées ayant de 2 à 12 atomes de carbone par molécule, de préférence de 3 à 7 atomes de carbone par molécule, et de manière très préférée contenant de 4 à 6 atomes de carbone par molécule. En particulier, un tel catalyseur permet d'augmenter notablement le rendement de la coupe diesel par rapport à celui obtenu en employant un catalyseur de l'état de la technique. L'indice de cétane qui traduit la linéarité des chaînes hydrocarbonées présentes dans la coupe diesel et qui représente la qualité de la coupe diesel est également avantageusement amélioré par rapport à celui que présente généralement une coupe diesel obtenue par cette réaction. L'utilisation du catalyseur tel que décrit ci-dessus dans un procédé d'oligomérisation d'une charge oléfinique contenant des molécules hydrocarbonées ayant de 2 à 12 atomes de carbone par molécule, de préférence de 3 à 7 atomes de carbone par molécule, et de manière très préférée contenant de 4 à 6 atomes de carbone par molécule permet la production d'un oligomérat de très bonne qualité qui peut avantageusement après distillation au point de coupe approprié, être intégré au pool diesel d'une raffinerie.
Description de l'invention
La présente invention a pour objet un procédé de préparation d'un catalyseur contenant au moins une zéolithe modifiée, ladite zéolithe présentant avant d'être modifiée un diamètre d'ouverture de pores maximal inférieur ou égal à 7 Â, ledit procédé comportant au moins : a) une étape d'introduction d'au moins un métal choisi parmi les métaux des groupes VlB et VIlI de la classification périodique des éléments sur un support à base d'au moins une zéolithe protonée, b) une étape de traitement de ladite zéolithe en présence d'au moins un composé moléculaire contenant au moins un atome de silicium, ledit composé présentant un diamètre supérieur au diamètre d'ouverture maximal des pores de ladite zéolithe est déposé sur la surface externe de ladite zéolithe en phase gazeuse, c) au moins une étape de traitement thermique.
Conformément à l'invention, la zéolithe initiale, n'ayant pas encore été modifiée pour être contenue dans le catalyseur préparé selon le procédé de l'invention, présente un diamètre d'ouverture de pores maximal inférieur ou égal à 7 A et de manière préférée inférieur à 6,5 A. Ladite zéolithe est choisie parmi les zéolithes définies dans la classification "Atlas of Zeolite Structure Types", W. M Meier, D. H. Oison and Ch. Baerlocher, 5th revised édition, 2001 , Elsevier" auquel se réfère également la présente demande mais peut également être toute zéolithe présentant un diamètre d'ouverture de pores maximal inférieur ou égal à 7 A. Les zéolithes répertoriées dans I' "Atlas of Zeolite Structure Types" y sont classées selon leur type structural. Toutes les zéolithes présentant un diamètre d'ouverture de pores maximal inférieur ou égal à 7 A et de manière préférée inférieur à 6,5 A conviennent pour la mise en oeuvre du procédé de préparation selon l'invention et en particulier pour la mise en oeuvre de l'étape de traitement b) du procédé selon l'invention. Selon l'invention, le diamètre d'ouverture de pores maximal d'une zéolithe correspond à la dimension maximale des ouvertures de pores ("ring dimensions") mentionnées dans I' "Atlas of Zeolite Structure Types" pour chacun des types structuraux. De manière avantageuse, la zéolithe initialement utilisée, avant d'être modifiée, pour être contenue dans le catalyseur préparé selon le procédé de l'invention présente soit un ou des canaux dont l'ouverture est définie par un anneau à 10 atomes d'oxygène (10 MR), soit un ou des canaux dont l'ouverture est définie par un anneau à 12 atomes d'oxygène (12 MR) soit encore à la fois un ou des canaux dont l'ouverture est définie par un anneau à 8 atomes d'oxygène (8 MR) et un ou des canaux dont l'ouverture est définie par un anneau à 10 atomes d'oxygène (10 MR)1 soit encore à la fois un ou des canaux dont l'ouverture est définie par un anneau à 8 atomes d'oxygène (8 MR) et un ou des canaux dont l'ouverture est définie par un anneau à 12 atomes d'oxygène (12 MR), soit encore à la fois un ou des canaux dont l'ouverture est définie par un anneau à 8 atomes d'oxygène (8 MR) et un ou des canaux dont l'ouverture est définie par un anneau à 10 atomes d'oxygène (10 MR) et un ou des canaux dont l'ouverture est définie par un anneau à 12 atomes d'oxygène (12 MR), lesdits canaux pouvant être interconnectés. Une zéolithe présentant au moins des canaux dont l'ouverture est définie par un anneau à 12 atomes d'oxygène (12 MR) convient particulièrement pour la mise en oeuvre du procédé de préparation du catalyseur selon l'invention dès lors qu'elle présente un diamètre d'ouverture de pores maximal inférieur ou égal à 7 A. En particulier, une zéolithe de type structural MOR qui présente à la fois des canaux dont l'ouverture est définie par un anneau à 8 atomes d'oxygène (8 MR) et des canaux dont l'ouverture est définie par un anneau à 12 atomes d'oxygène (12 MR) convient pour la mise en oeuvre du procédé de préparation selon l'invention. Les zéolithes de type structural MOR présentent un diamètre d'ouverture de pores maximal de 7,0 Â.
La zéolithe, modifiée selon les différentes étapes du procédé selon l'invention, contient initialement, c'est-à-dire avant d'être modifiée, au moins du silicium et de l'aluminium dans une proportion telle que le rapport atomique Si/Ai est préférentiellement compris entre 2 et 200, de manière plus préférée compris entre 5 et 100 et de manière encore plus préférée compris entre 8 et 80. Elle contient avantageusement au moins un autre élément W, différent du silicium et de l'aluminium, s'intégrant sous forme tétraédrique dans la charpente de la zéolithe. De préférence, ledit élément W est choisi parmi le fer, le germanium, le bore et le titane et représente une portion pondérale comprise entre 5 et 30% de l'ensemble des atomes constitutifs de la charpente zéolithique autre que les atomes d'oxygène. La zéolithe présente alors un rapport (Si+W)/AI compris entre 2 et 200, de préférence compris entre 5 et 100 et de manière très préférée compris entre 8 et 80, W étant défini comme précédemment.
La zéolithe modifiée selon les différentes étapes du procédé selon l'invention est de préférence choisie parmi les zéolithes de type structural MEL, MFI, ITH, NES, EUO, ERI, FER, CHA, MFS, MWW, MTT, TON et MOR et de manière très préférée choisie parmi les zéolithes de type structural MFI, MOR et FER. Parmi les zéolithes de type structural MEL, la zéolithe ZSM-11 est préférée. Parmi les zéolithes de type structural MFI, la zéolithe ZSM-5 est préférée. Parmi les zéolithes de type structural ITH, la zéolithe ITQ-13 est préférée (US 6,471,941). Parmi les zéolithes de type structural NES, la zéolithe NU-87 est préférée. Parmi les zéolithes de type structural EUO, la zéolithe EU-1 est préférée. Parmi les zéolithes de type structural ERI, la zéolithe erionite est préférée. Parmi les zéolithes de type structural FER, les zéolithes ferriérite et ZSM-35 sont préférées. Parmi les zéolithes de type structural CHA, la zéolithe chabazite est préférée. Parmi les zéolithes de type structural MFS, la zéolithe ZSM-57 est préférée. Parmi les zéolithes de type structural MWW, la zéolithe MCM- 22 est préférée. Parmi les zéolithes de type structural MTT, la zéolithe ZSM-23 est préférée. Parmi les zéolithes de type structural TON, la zéolithe ZSM-22 est préférée. Parmi les zéolithes de type structural MOR, la zéolithe mordénite est préférée. Ces zéolithes et leur mode de préparation sont bien connus de l'Homme du métier.
Conformément à l'invention, la première étape du procédé de préparation du catalyseur selon l'invention est soit l'étape a) soit l'étape b). L'étape b), qu'elle soit réalisée avant ou après l'étape a) est de préférence suivie immédiatement de l'étape c).
La zéolithe employée pour la mise en oeuvre de la première étape du procédé de préparation du catalyseur selon l'invention, c'est-à-dire employée pour la mise en oeuvre de l'étape a) réalisée en présence d'au moins un métal des groupes VIB et/ou VIII de la classification périodique des éléments ou pour la mise en oeuvre de l'étape b) réalisée en présence d'au moins un composé moléculaire contenant au moins un atome de silicium ayant un diamètre bien déterminé, se présente sous forme calcinée et contient au moins un proton de telle sorte qu'elle se trouve sous sa forme protonée (forme hydrogène H+) dans laquelle la teneur en cation autre que H+ est inférieure à 30% du nombre total de cations, de préférence inférieure à 20 % et de manière très préférée inférieure à 15 % par rapport au nombre total de cation sur la zéolithe. Dans le cas où préalablement à la mise en oeuvre de la première étape du procédé de préparation du catalyseur selon l'invention (étape a) ou étape b)) la zéolithe à modifier se trouve sous sa forme brute de synthèse, contenant encore le structurant organique utilisé pour la préparer, on pourra procéder à une calcination de ladite zéolithe à une température comprise entre 300 et 7000C, de préférence entre 400 et 6000C puis si la zéolithe contient un ou plusieurs métal(aux) alcalins/alcalino-terreux, on procédera à un ou plusieurs échange(s) ionique(s) par une solution contenant au moins un sel d'ammonium, par exemple le nitrate d'ammonium NH4NO3, de manière à éliminer au moins en partie, de préférence pratiquement totalement, un cation alcalin présent dans la zéolithe. Une étape de calcination sous flux d'air sec, à une température généralement comprise entre environ 400 et 5000C, a ensuite pour but de générer la formation des protons dans la zéolithe par désorption d'ammoniaque conduisant ainsi à la forme hydrogène de la zéolithe, prête pour la mise en oeuvre de la première étape du procédé de préparation selon l'invention.
La zéolithe employée pour la mise en oeuvre de la première étape du procédé de préparation du catalyseur selon l'invention est une zéolithe acide contenant entre 70 et 100%, de préférence entre 80 et 100% et de manière très préférée entre 85 et 100% de cations de compensation de forme protonique H+, le reste des cations étant choisi de manière préférée parmi les métaux des groupes IA et NA de la classification périodique des éléments, et plus particulièrement ledit cation est choisi parmi les cations Na+, Li+, K+, Rb+, Cs+, Ba2+ et Ca2+.
L'étape a) du procédé de préparation du catalyseur selon l'invention est une étape d'introduction d'au moins un métal choisi parmi les métaux des groupes VIB et VIII de la classification périodique des éléments sur un support à base d'au moins une zéolithe protonée. De préférence, ledit métal choisi parmi les métaux des groupes VIB et VIlI de la classification périodique des éléments est choisi parmi le nickel, le fer, le palladium, le ruthénium et le chrome, de manière très préférée parmi le nickel et le chrome. De manière très avantageuse, le métal du groupe VIII est le nickel. Parmi les métaux du groupe VIB, le chrome est préféré. Pour la préparation du catalyseur selon l'invention, le dépôt d'au moins un métal choisi parmi les métaux des groupes VIB et VIII est généralement effectué par imprégnation à sec, par imprégnation par excès ou par échange(s) ionique(s) selon les méthodes bien connues de l'Homme du métier, de préférence par échange(s) ionique(s). S'agissant de l'introduction par échange ionique du nickel, il est préféré d'utiliser une solution aqueuse contenant le nickel sous le degré d'oxydation + 2, par exemple le sulfate de nickel. La teneur pondérale du métal choisi dans les groupes VIB et VIII, introduit sur le support zéolithique, est avantageusement comprise entre 0,01 et 10% poids, et préférentiellement entre 0,1 et 5% poids par rapport au poids du catalyseur préparé selon le procédé de l'invention. Selon un premier mode de mise en oeuvre de l'étape a) du procédé de l'invention, le support à base d'au moins une zéolithe protonée est entièrement constitué de ladite zéolithe protonée, laquelle présente en termes de diamètre d'ouverture maximal des pores, de structure et de composition chimique, les caractéristiques décrites ci-dessus. Selon un deuxième mode de mise en oeuvre de l'étape a) du procédé de l'invention, le support à base d'au moins une zéolithe protonée est constitué de ladite zéolithe protonée mise en forme avec une matrice et éventuellement un liant.
Le procédé de préparation du catalyseur selon l'invention comprend une étape b) de sélectivation de la zéolithe, se présentant sous sa forme protonée, ladite étape de sélectivation pouvant être réalisée soit avant l'étape d'introduction d'au moins un métal des groupes VIB et/ou VIII conformément à ladite étape a) soit après ladite étape a). Par "sélectivation", on entend au sens de la présente invention, la neutralisation de l'acidité de la surface externe de chacun des cristaux de la zéolithe. La neutralisation de l'acidité peut se faire par toute méthode connue de l'Homme du métier. Les méthodes conventionnelles emploient généralement, pour réaliser la sélectivation spécifique des sites acides de la surface externe des zéolithes, des molécules dont le diamètre cinétique est supérieur au diamètre de l'ouverture des pores de la zéolithe. Plus précisément, l'étape b) de sélectivation consiste à traiter la zéolithe, se présentant sous sa forme protonée, éventuellement préalablement soumise à ladite étape a), en présence d'au moins un composé moléculaire contenant au moins un atome de silicium dont le diamètre est supérieur au diamètre d'ouverture maximal des pores de la zéolithe à traiter selon l'étape b). De préférence, le procédé de préparation du catalyseur selon l'invention ne comprend qu'une seule étape b).
Les molécules généralement utilisées pour passiver ou sélectiver la surface externe de la zéolithe sont des composés contenant des atomes pouvant interagir avec les sites de surface externe de chacun des cristaux de la zéolithe. Les molécules utilisées selon l'invention sont des molécules organiques ou inorganiques contenant un ou plusieurs atome(s) de silicium. Aussi, conformément à l'étape b) de traitement du procédé selon l'invention, la zéolithe protonée, éventuellement préalablement soumise à ladite étape a), est soumise à une étape de traitement en présence d'au moins un composé moléculaire contenant au moins un atome de silicium. Ladite étape b) permet le dépôt d'une couche dudit composé moléculaire contenant au moins un atome de silicium à la surface externe de la zéolithe qui se transformera après l'étape c) en une couche de silice amorphe sur la surface externe de chacun des cristaux de la zéolithe. De manière préférée, le composé moléculaire contenant au moins un atome de silicium est choisi parmi les composés de formule Si-R4 et Si2-Re où R peut être soit de l'hydrogène, soit un groupe alkyle, aryle ou acyle, soit un groupe alkoxy (O- R1), soit un groupe hydroxyl (-OH) soit encore un halogène, de préférence un groupe alkoxy (O-R1). Au sein d'une même molécule Si-R4 ou Si2-Re, le groupement R peut être soit identique soit différent. Par exemple, on pourra d'après les formules décrites ci-dessus choisir des composés moléculaires de formule Si2H6 ou Si(C2H5)3(CH3). Ainsi, le composé moléculaire contenant au moins un atome de silicium employé dans l'étape b) du procédé selon l'invention peut être un composé de type silane, disilane, alkylsilane, alkoxysilane ou siloxane. De manière très préférée, ledit composé moléculaire présente une composition de formule générale Si-(OR')4 où R' est un groupement alkyle, aryle ou acyle, de préférence un groupement alkyle et de manière très préférée un groupement éthyle. Ledit composé moléculaire employé pour la mise en oeuvre de l'étape b) du procédé selon l'invention présente un diamètre supérieur au diamètre d'ouverture maximal des pores de la zéolithe et comprend de préférence au plus deux atomes de silicium par molécule. Le composé moléculaire tétraéthylorthosilicate (TEOS) de formule Si(OCH2CH3)4, qui présente un diamètre égal à 9,6 Â, est très avantageux pour la mise en oeuvre de l'étape b) du procédé selon l'invention. En particulier, le TEOS est avantageux lorsqu'il s'agit de traiter une zéolithe de type structural MOR présentant un diamètre d'ouverture de pores maximal de 7 Â, une zéolithe de type structural MFI présentant un diamètre d'ouverture de pores maximal de 5,6 Â ou une zéolithe de type structural FER présentant un diamètre d'ouverture de pores maximal de 5,4 Â.
Ladite étape b) du procédé selon l'invention qui consiste à traiter la zéolithe protonée, éventuellement préalablement soumise à l'étape a), en présence d'au moins un composé moléculaire contenant au moins un atome de silicium est réalisée par dépôt dudit composé sur la surface externe de la zéolithe. Conformément à l'invention, ladite étape b) est réalisée en procédant au dépôt dudit composé moléculaire contenant au moins un atome de silicium en phase gazeuse.
L'étape b) selon le procédé de l'invention est réalisée dans un réacteur à lit fixe. Préalablement à la réaction de dépôt en phase gazeuse (CVD) dans ledit réacteur à lit fixe, la zéolithe est préférentiellement activée. L'activation de la zéolithe dans le réacteur à lit fixe est réalisée sous oxygène, sous air ou sous gaz inerte, ou sous un mélange d'air et de gaz inerte ou d'oxygène et gaz inerte. La température d'activation de la zéolithe est avantageusement comprise entre 100 et 6000C, et très avantageusement entre 300 et 55O0C. Le composé moléculaire contenant au moins un atome de silicium devant être déposé sur la surface externe de chacun des cristaux de la zéolithe est envoyé dans le réacteur en phase vapeur, ledit composé moléculaire étant dilué dans un gaz vecteur qui peut être soit de hydrogène (H2), soit de l'air, soit de l'Argon (Ar), soit de l'hélium (He), soit encore de l'azote (N2), préférentiellement le gaz vecteur est un gaz inerte choisi parmi Ar, He, et N2. Ledit composé moléculaire contenant au moins un atome de silicium est déposé sur la surface externe de ladite zéolithe en phase vapeur, en l'absence de tout composé hydrocarboné. Pour obtenir une couche de silice amorphe de qualité optimale sur la surface externe de la zéolithe, il est nécessaire de bien choisir les conditions opératoires pour le dépôt du composé moléculaire contenant au moins un atome de silicium. En particulier, la température du lit de zéolithe pendant le dépôt est préférentiellement comprise entre 10 et 3000C, et très préférentiellement comprise entre 50 et 2000C, la pression partielle, dans la phase gaz, du composé moléculaire à déposer sur la surface externe de la zéolithe est préférentiellement comprise entre 0,001 et 0,5 bar, et très préférentiellement comprise entre 0,01 et 0,2 bar, la durée du dépôt est préférentiellement comprise entre 10 minutes et 10 heures et très préférentiellement comprise entre 30 minutes et 5 heures et encore plus préférentiellement entre 1 et 3 heures.
Conformément à l'étape c) du procédé selon l'invention, le composé moléculaire contenant au moins un atome de silicium est décomposé par un traitement thermique lequel est réalisé à une température préférentiellement comprise entre 200 et 700°C, plus préférentiellement entre 300 et 5000C. Ladite étape de traitement thermique est mise en oeuvre sous air, sous oxygène, sous hydrogène, sous azote ou sous argon ou sous un mélange d'azote et d'argon. La durée de ce traitement est avantageusement comprise entre 1 et 5 heures. A l'issue dudit traitement thermique, une couche de silice amorphe est déposée sur la surface externe de chacun des cristaux de la zéolithe. Conformément à l'invention, la surface interne de chacun des cristaux de la zéolithe est de préférence dépourvue d'un dépôt d'une couche de silice amorphe. Le diamètre d'ouverture de pores maximal de la zéolithe modifiée, présente dans le catalyseur préparé selon le procédé de l'invention, est préférentiellement inchangé par rapport à celui de la zéolithe initiale encore non modifiée. En conséquence, la zéolithe modifiée contenue dans le catalyseur préparé selon le procédé de l'invention, présente préférentiellement un diamètre d'ouverture de pores maximal inférieur ou égal à 7 A et de manière préférée inférieur à 6,5 Â.
Dans le cas où le support à base d'au moins une zéolithe protonée utilisé pour la mise en oeuvre de l'étape a) du procédé selon l'invention est constitué de ladite zéolithe protonée mise en forme avec une matrice et éventuellement avec un liant (deuxième mode de mise en oeuvre de l'étape a)), le métal choisi parmi les métaux des groupes VIB et VIII peut être introduit soit pratiquement totalement sur la matrice, soit en partie sur la zéolithe et en partie sur la matrice, soit, de préférence pratiquement totalement sur la zéolithe, ceci s'effectuant, de la manière qui est connue de l'Homme du métier, par le choix approprié des paramètres utilisés lors dudit dépôt, comme par exemple la nature du précurseur dudit métal. Dans le cas où le support à base d'au moins une zéolithe protonée utilisé pour la mise en oeuvre de l'étape a) du procédé selon l'invention est constitué uniquement de ladite zéolithe protonée (premier mode de mise en oeuvre de l'étape a)) dont les caractéristiques en termes de diamètre d'ouverture maximal des pores, de structure, de composition chimique sont conformes à ce qui a été dit plus haut dans la présente description, le métal choisi parmi les métaux des groupes VIB et VIII est introduit directement sur la zéolithe protonée se présentant de préférence sous la forme d'une poudre. La mise en forme de la zéolithe protonée avec une matrice et éventuellement un liant est réalisée au cours d'une étape d). Ladite étape d) de mise en forme peut avoir lieu soit directement après l'étape a) d'introduction du métal sur la zéolithe protonée et préalablement à la mise en oeuvre des étapes b) et c) du procédé de l'invention soit après les étapes a), b) et c) du procédé selon l'invention soit encore après la mise en oeuvre desdites étapes b) et c) et avant la mise en oeuvre de ladite étape a) lorsque lesdites étapes b) et c) du procédé selon l'invention sont réalisées avant l'étape a).
La matrice employée pour la mise en forme de la zéolithe protonée, ladite mise en forme étant réalisée soit préalablement à l'étape a) du procédé de l'invention lorsque le support à base de ladite zéolithe est constitué de ladite zéolithe mise en forme avec une matrice soit au cours de l'étape d) du procédé selon l'invention lorsque le support à base de ladite zéolithe protonée est constitué uniquement de ladite zéolithe, est une matrice minérale poreuse amorphe ou mal cristallisée de type oxyde. Elle est choisie parmi l'alumine, la silice, la silice-alumine, les argiles, notamment les argiles naturelles telles que le kaolin ou la bentonite, la magnésie, l'oxyde de titane, l'oxyde de bore, la zircone, les phosphates d'aluminium, les phosphates de titane, les phosphates de zirconium et le charbon. On peut également choisir une matrice parmi les aluminates. De manière préférée, la matrice est une alumine sous toutes ses formes connues de l'Homme du métier, et de préférence l'alumine gamma. La mise en forme de ladite zéolithe avec au moins une matrice est généralement telle que le catalyseur se présente sous la forme d'extrudés cylindriques ou polylobés tels que bilobés, trilobés, polylobés de forme droite ou torsadée, mais peut éventuellement être telle que le catalyseur se présente sous la forme de poudres concassées, de tablettes, d'anneaux, de billes, de roues. Les conditions de mise en forme de la zéolithe, le choix de la matrice, éventuellement le broyage préalable de la zéolithe, le procédé de peptisation, l'ajout d'agent porogènes, le temps de malaxage, la pression d'extrusion si le catalyseur est mis sous forme d'extrudés, la vitesse et le temps de séchage sont déterminées pour chaque matrice selon les règles bien connues de l'Homme du métier. La mise en forme de la zéolithe avec au moins une matrice telle que décrite ci-dessus peut être réalisée à différents stades du procédé selon l'invention. Plus particulièrement, lorsque le support à base de ladite zéolithe utilisé au cours de l'étape a) est constitué de ladite zéolithe mise en forme avec une matrice, la mise en forme est réalisée préalablement à la mise en oeuvre de l'étape a) du procédé de l'invention. Lorsque le support à base de ladite zéolithe utilisé au cours de l'étape a) est constitué uniquement de ladite zéolithe, la mise en forme est réalisée soit directement à l'issue de ladite étape a) et avant la mise en oeuvre des étapes b) et c), soit après la mise en oeuvre desdites étapes b) et c) et avant la mise en oeuvre de ladite étape a) lorsque lesdites étapes b) et c) précèdent ladite étape a), soit encore après la mise en oeuvre des étapes a), b) et c).
Par exemple, une des méthodes préférées de préparation du catalyseur selon l'invention consiste à échanger une zéolithe protonée avec au moins un métal choisi parmi les métaux des groupes VIB et VIII, de préférence avec du nickel sous son degré d'oxydation +2. Ladite étape d'échange ionique est suivie d'une étape d'activation de la zéolithe à une température comprise entre 300 et 55O0C puis la zéolithe est traitée à une température comprise entre 50 et 2000C en présence de tétraéthylorthosilicate (TEOS) déposé en phase vapeur sur la surface externe de ladite zéolithe. Le TEOS est décomposé par un traitement thermique réalisé généralement à une température comprise entre 300 et 500°C sous air. On obtient ainsi une zéolithe modifiée sous forme protonée et comportant une couche de silice amorphe sur sa surface externe. Ladite zéolithe modifiée est ensuite mise en forme par extrusion en la malaxant dans un gel humide de matrice (obtenu généralement par mélange d'au moins un acide et d'une poudre de matrice), par exemple d'alumine, pendant une durée nécessaire pour l'obtention d'une bonne homogénéité de la pâte ainsi obtenue, par exemple pendant une dizaine de minutes, puis à passer ladite pâte à travers une filière pour former des extrudés, par exemple de diamètre compris entre 0,4 et 4 mm bornes incluses, de préférence entre 0,4 et 2,5 mm bornes incluses et de préférence encore entre 0,8 et 2,0 mm bornes incluses. Les extrudés ainsi mis en forme subissent alors un séchage pendant quelques heures à environ 1200C en étuve et une dernière étape de calcination, par exemple pendant environ 2 heures à environ 4000C. Ils sont généralement constitués de 10 à 90% poids, de préférence de 30 à 80% poids de ladite zéolithe modifiée, le complément étant formé d'une matrice. Un autre objet de l'invention est l'utilisation du catalyseur préparé selon le procédé de l'invention et comportant une zéolithe modifiée dans des procédés de conversion chimique d'hydrocarbures et en particulier dans un procédé d'oligomérisation d'une charge oléfinique contenant des molécules hydrocarbonées ayant de 2 à 12 atomes de carbone par molécule. De manière préférée, la charge utilisée pour la mise en oeuvre dudit procédé d'oligomérisation contient des molécules hydrocarbonées contenant de 3 à 7 atomes de carbone par molécule, et de manière très préférée contenant de 4 à 6 atomes de carbone par molécule. Le catalyseur préparé selon le procédé de l'invention est traité conformément auxdites étapes a), b) et c) ex-situ : il est introduit dans le réacteur pour réaliser l'oligomérisation de molécules hydrocarbonées contenant de 3 à 7 atomes de carbone par molécule une fois que lesdites étapes a), b) et c) du procédé de préparation du catalyseur selon l'invention ont été effectuées. La charge employée dans le procédé d'oligomérisation selon l'invention contient de 20 à 100 % en poids, et de préférence de 25 à 80% en poids d'oléfines.
Des sources possibles pour la charge oléfinique utilisée dans le procédé d'oligomérisation de l'invention sont la coupe légère du craquage en lit fluidisé (fluid catalytic cracking, FCC), du vapocraqueur et les effluents d'unités d'éthérification.
Ledit procédé d'oligomérisation est préférentiellement mis en oeuvre dans les conditions opératoires suivantes : la pression totale est comprise entre 0,1 et 10 MPa et préférentiellement entre 0,3 et 7 MPa, la température est comprise entre 40 et 6000C et préférentiellement entre 100 et 4000C, la vitesse spatiale horaire (WH) est comprise entre 0,01 et 100 h"1 et préférentiellement entre 0,4 et 20 h"1.
On précise que, selon l'invention, le procédé d'oligomérisation correspond à une addition limitée à essentiellement 2 à 6 monomères ou molécules de base, lesdits monomères étant des oléfines.
Les exemples qui suivent illustrent la présente invention sans en limiter la portée.
EXEMPLES
Exemple 1 (invention) : Préparation d'un catalyseur à base d'une zéolithe ZSM-5 modifiée.
40 g de zéolithe H-ZSM-5 (Si/Ai = 45) sont imprégnés par échange d'ion avec une solution de 500 ml contenant 4,3 g/l de sulfate de nickel. L'échange ionique est réalisé pendant 24 h à 800C. Après filtration et lavages, la zéolithe ainsi échangée avec le nickel est séchée une nuit à 120°C. Elle est ensuite introduite dans un réacteur à lit fixe où elle est d'abord soumise à une activation sous flux d'azote à 45O0C. La température du réacteur est ensuite ramenée à 150°C, puis une pression partielle de 0,15 bar de TEOS [Si (OCH2CH3)4] est ajoutée dans le flux d'azote. Après 2 h de réaction, la zéolithe est strippée pendant 2 h à 15O0C pour évacuer le TEOS n'ayant pas réagi. La décomposition du TEOS se fait sous air à 45O0C pendant 3 heures. On obtient ainsi une zéolithe modifiée Z1 , sous forme protonée, de type structural MFI et comportant une couche de silice amorphe sur sa surface externe.
La zéolithe Z1 est ensuite mise en forme par extrusion avec un gel d'alumine de manière à obtenir après séchage à 120 0C et calcination à 450°C sous air sec un catalyseur qui contient 60 % poids de zéolithe modifiée Z1 et 40 % poids d'alumine.
Exemple 2 (invention) : Préparation d'un catalyseur à base d'une zéolithe MOR modifiée.
40 g de zéolithe H-MOR (Si/Ai = 55) sont imprégnés par échange d'ion avec une solution de 500 ml contenant 4,3 g/l de sulfate de nickel. L'échange ionique est réalisé pendant 24 h à 800C. Après filtration et lavages, la zéolithe ainsi échangée avec le nickel est séchée une nuit à 1200C. Elle est ensuite introduite dans un réacteur à lit fixe où elle est d'abord soumise à une activation sous flux d'azote à 450°C. La température du réacteur est ensuite ramenée à 1500C, puis une pression partielle de 0,15 bar de TEOS [Si (OCH2CH3)4] est ajoutée dans le flux d'azote. Après 2 h de réaction, la zéolithe est strippée pendant 2 h à 150°C pour évacuer le TEOS n'ayant pas réagi. La décomposition du TEOS se fait sous air à 450°C pendant 3 heures. On obtient ainsi une zéolithe modifiée Z2, sous forme protonée, de type structural MOR et comportant une couche de silice amorphe sur sa surface externe. La zéolithe Z2 est ensuite mise en forme par extrusion avec un gel d'alumine de manière à obtenir après séchage à 120 0C et calcination à 4500C sous air sec un catalyseur qui contient 60 % poids de zéolithe modifiée Z2 et 40 % poids d'alumine.
Exemple 3 (invention) : Préparation d'un catalyseur à base d'une zéolithe FER modifiée.
40 g de zéolithe H-FER (Si/Ai = 26) sont imprégnés par échange d'ion avec une solution de 500 ml contenant 4,3 g/l de sulfate de nickel. L'échange ionique est réalisé pendant 24 h à 80°C. Après filtration et lavages, la zéolithe ainsi échangée avec le nickel est séchée une nuit à 12O0C. Elle est ensuite introduite dans un réacteur à lit fixe où elle est d'abord soumise à une activation sous flux d'azote à 4500C. La température du réacteur est ensuite ramenée à 1500C, puis une pression partielle de 0,15 bar de TEOS [Si (OCH2CH3)4] est ajoutée dans le flux d'azote. Après 2 h de réaction, la zéolithe est strippée pendant 2 h à 1500C pour évacuer le TEOS n'ayant pas réagi. La décomposition du TEOS se fait sous air à 450°C pendant 3 heures. On obtient ainsi une zéolithe modifiée Z3, sous forme protonée, de type structural FER et comportant une couche de silice amorphe sur sa surface externe. La zéolithe Z3 est ensuite mise en forme par extrusion avec un gel d'alumine de manière à obtenir après séchage à 120 0C et calcination à 4500C sous air sec un catalyseur qui contient 60 % poids de zéolithe modifiée Z3 et 40 % poids d'alumine.
Exemple 4 (comparatif) : Préparation d'un catalyseur à base d'une zéolithe ZSM-5 non échangée avec un métal.
40 g de zéolithe H-ZSM-5 (Si/Ai = 45) sont introduits dans un réacteur à lit fixe où ils sont d'abord soumis à une activation sous flux d'azote à 4500C. La température du réacteur est ensuite ramenée à 1500C, puis une pression partielle de 0,15 bar de TEOS [Si (OCH2CH3)4] est ajoutée dans le flux d'azote. Après 2 h de réaction, la zéolithe est strippée pendant 2 h à 1500C pour évacuer le TEOS n'ayant pas réagi. La décomposition du TEOS se fait sous air à 4500C pendant 3 heures. On obtient ainsi une zéolithe Z4, sous forme protonée, de type structural MFI et comportant une couche de silice amorphe sur sa surface externe. La zéolithe Z4 est ensuite mise en forme par extrusion avec un gel d'alumine de manière à obtenir après séchage à 120 0C et calcination à 45O0C sous air sec un catalyseur qui contient 60 % poids de zéolithe Z4 et 40 % poids d'alumine.
Exemple 5 (comparatif) : Préparation d'un catalyseur à base d'une zéolithe MOR non échangée avec un métal.
40 g de zéolithe H-MOR (Si/Ai = 55) sont introduits dans un réacteur à lit fixe où ils sont d'abord soumis à une activation sous flux d'azote à 4500C. La température du réacteur est ensuite ramenée à 1500C, puis une pression partielle de 0,15 bar de TEOS [Si (OCH2CHa)4 ] est ajoutée dans le flux d'azote. Après 2 h de réaction, la zéolithe est strippée pendant 2 h à 1500C pour évacuer le TEOS n'ayant pas réagi. La décomposition du TEOS se fait sous air à 4500C pendant 3 heures. On obtient ainsi une zéolithe Z5, sous forme protonée, de type structural MOR et comportant une couche de silice amorphe sur sa surface externe. La zéolithe Z5 est ensuite mise en forme par extrusion avec un gel d'alumine de manière à obtenir après séchage à 120 0C et calcination à 4500C sous air sec un catalyseur qui contient 60 % poids de zéolithe Z5 et 40 % poids d'alumine.
Exemple 6 (comparatif) : Préparation d'un catalyseur à base d'une zéolithe FER non échangée avec un métal.
40 g de zéolithe H-FER (Si/Ai = 26) sont introduits dans un réacteur à lit fixe où ils sont d'abord soumis à une activation sous flux d'azote à 4500C. La température du réacteur est ensuite ramenée à 15O0C, puis une pression partielle de 0,15 bar de TEOS [Si (OCH2CH3)4 ] est ajoutée dans le flux d'azote. Après 2 h de réaction, la zéolithe est strippée pendant 2 h à 1500C pour évacuer le TEOS n'ayant pas réagi. La décomposition du TEOS se fait sous air à 45O0C pendant 3 heures. On obtient ainsi une zéolithe Z6, sous forme protonée, de type structural FER et comportant une couche de silice amorphe sur sa surface externe. La zéolithe Z6 est ensuite mise en forme par extrusion avec un gel d'alumine de manière à obtenir après séchage à 120 0C et calcination à 4500C sous air sec un catalyseur qui contient 60 % poids de zéolithe Z6 et 40 % poids d'alumine.
Exemple 7 (invention) : Préparation d'un catalyseur à base d'une zéolithe MFI modifiée. 40 g de zéolithe H-ZSM-5 (Si/Ai = 45) sont imprégnés par échange d'ion avec une solution de 500 ml contenant 20 g/l d'acétate de chrome. L'échange ionique est réalisé pendant 24 heures à 700C. Après filtration et lavages, la zéolithe ainsi échangée avec le chrome est séchée une nuit à 1200C, puis calcinée pendant 2h sous air à 5500C. Elle est ensuite introduite dans un réacteur à lit fixe où elle est d'abord soumise à une activation sous flux d'azote à 4500C. La température du réacteur est ensuite ramenée à 15O0C, puis une pression partielle de 0,15 bar de TEOS [Si (OCH2CH3)4] est ajoutée dans le flux d'azote. Après 2 h de réaction, la zéolithe est strippée pendant 2 h à 150°C pour évacuer le TEOS n'ayant pas réagi. La décomposition du TEOS se fait sous air à 4500C pendant 3 heures. On obtient ainsi une zéolithe modifiée Z7, sous forme protonée, de type structural MFI et comportant une couche de silice amorphe sur sa surface externe.
La zéolithe Z7 est ensuite mise en forme par extrusion avec un gel d'alumine de manière à obtenir après séchage à 120 0C et calcination à 4500C sous air sec un catalyseur qui contient 60 % poids de zéolithe modifiée Z7 et 40 % poids d'alumine.
Exemple 8 : évaluation catalvtiαue des catalyseurs à base des zéolithes modifiées Z1, Z2. Z3 et Z7 et à base des zéolithes Z4, Z5 et Z6 en oliqomérisation des oléfines légères.
Les performances des catalyseurs préparés selon les exemples 1 à 7 ci-dessus ont été évaluées dans la réaction d'oligomérisation d'une coupe oléfinique légère contenant 58% d'oléfines en C4 dans un mélange de paraffines.
Les conditions opératoires de tests sont les suivantes :
Température : 230°C
Pression : 6 MPa
WH (h"1) [volume de catalyseur / débit volumique de charge] : 1 h"1 Les catalyseurs sont préalablement activés in situ sous N2 à 4500C pendant 2 heures. Les performances des catalyseurs à base de la zéolithe de type structural MFI sont données dans le tableau 1.
Tableau 1 : Performances des catalyseurs à base de la zéolithe MFI.
Catalyseur à Catalyseur à Catalyseur à base de Z1 base de Z4 base de Z7
(invention) (comparatif) (invention)
Conversion C4 oléfinique (%) 99 99 99
Rendement coupe essence (%) 55 60 52
Rendement coupe diesel (%) 45 40 48
Indice de cétane 46,7 44,6 46,5
Les performances des catalyseurs à base de la zéolithe de type structural FER sont données dans le Tableau 2.
Tableau 2 : Performances des catalyseurs à base de la zéolithe FER.
Catalyseur à Catalyseur à base de Z3 base de Z6 (invention) (comparatif)
Conversion C4 oléfinique (%) 85 85
Rendement coupe essence (%) 60 61
Rendement coupe diesel (%) 40 39
Indice de cétane 39,2 36,2
Les performances des catalyseurs à base de la zéolithe de type structural MOR sont données dans le Tableau 3. Tableau 3 : Performances des catalyseurs à base de la zéolithe MOR.
Catalyseur à Catalyseur à base de Z2 base de Z5
Conversion C4 oléfinique (%) 99 99
Rendement coupe essence (%) 42 44
Rendement coupe diesel (%) 58 56
Indice de cétane 42,4 39,3
Les performances catalytiques présentées dans les tableaux 1 , 2 et 3 démontrent que les catalyseurs comprenant une zéolithe modifiée et préparés selon le procédé de l'invention permettent d'augmenter notablement le rendement en coupe diesel lorsqu'ils sont testés dans une réaction d'oligomérisation des oléfines légères. La qualité de ce gazole, mesuré par son indice de cétane (IC), est aussi amélioré par rapport à celui présenté par une coupe diesel obtenue au moyen d'un catalyseur comprenant une zéolithe qui n'a pas été modifiée conformément au procédé de l'invention.

Claims

REVENDICATIONS
1. Procédé de préparation d'un catalyseur contenant au moins une zéolithe modifiée, ladite zéolithe présentant avant d'être modifiée un diamètre d'ouverture de pores maximal inférieur ou égal à 7 Â, ledit procédé comportant au moins : a) une étape d'introduction d'au moins un métal choisi parmi les métaux des groupes VIB et VIII de la classification périodique des éléments sur un support à base d'au moins une zéolithe protonée, b) une étape de traitement de ladite zéolithe en présence d'au moins un composé moléculaire contenant au moins un atome de silicium, ledit composé présentant un diamètre supérieur au diamètre d'ouverture maximal des pores de ladite zéolithe est déposé sur la surface externe de ladite zéolithe en phase gazeuse, c) au moins une étape de traitement thermique.
2. Procédé de préparation selon la revendication 1 tel que ladite zéolithe contient, avant d'être modifiée, au moins du silicium et de l'aluminium dans une proportion telle que le rapport atomique Si/Ai est compris entre 2 et 200.
3. Procédé de préparation selon la revendication 1 ou la revendication 2 tel que ladite zéolithe est choisie parmi les zéolithes de type structural MEL, MFI, ITH, NES, EUO, ERI, FER, CHA, MFS, MWW, MTT, TON et MOR.
4. Procédé de préparation selon la revendication 3 tel que ladite zéolithe est choisie parmi les zéolithes de type structural MFI, MOR et FER.
5. Procédé de préparation selon l'une des revendications 1 à 4 tel que ledit métal choisi parmi les métaux des groupes VIB et VIII de la classification périodique des éléments est choisi parmi le nickel, le fer, le palladium, le ruthénium et le chrome.
6. Procédé de préparation selon la revendication 5 tel que ledit métal est choisi parmi le nickel et le chrome.
7. Procédé de préparation selon l'une des revendications 1 à 6 tel que ledit support à base d'au moins une zéolithe protonée employé pour la mise en oeuvre de ladite étape a) est entièrement constitué de ladite zéolithe protonée.
8. Procédé de préparation selon la revendication 7 tel qu'il comprend une étape de mise en forme de ladite zéolithe protonée avec une matrice et éventuellement un liant.
9. Procédé de préparation selon l'une des revendications 1 à 6 tel que ledit support à base d'au moins une zéolithe protonée employé pour la mise en oeuvre de ladite étape a) est constitué de ladite zéolithe protonée mise en forme avec une matrice et éventuellement un liant.
10. Procédé de préparation selon l'une des revendications 1 à 9 tel que ledit composé moléculaire contenant au moins un atome de silicium est choisi parmi les composés de formule Si-R4 et Si2-Re où R peut être soit de l'hydrogène, soit un groupe alkyle, aryle ou acyle, soit un groupe alkoxy (O-R1), soit un groupe hydroxyl (-OH) soit encore un halogène, R étant identique ou différent.
11. Procédé de préparation selon l'une des revendications 1 à 10 tel que ledit composé moléculaire présente une composition de formule générale Si-(OR')4 où R' est un groupement alkyle, aryle ou acyle.
12. Procédé de préparation selon l'une des revendications 1 à 11 tel que ladite étape b) est réalisée en procédant au dépôt dudit composé moléculaire contenant au moins un atome de silicium en phase gazeuse.
13. Procédé de préparation selon la revendication 12 tel que ladite étape b) est réalisée dans un réacteur à lit fixe.
14. Utilisation d'un catalyseur préparé selon l'une des revendications 1 à 13 dans un procédé d'oligomérisation d'une charge oléfinique contenant des molécules hydrocarbonées ayant de 2 à 12 atomes de carbone par molécule.
15. Utilisation d'un catalyseur selon la revendication 14 telle que ledit procédé d'oligomérisation est mis en oeuvre à une température comprise entre 40 et 6000C, avec une pression totale comprise entre 0,1 et 10 MPa et une vitesse spatiale horaire (WH) comprise entre 0,01 et 100 h"1.
EP06831068A 2005-12-20 2006-11-03 Procede de preparation d'un catalyseur contenant une zeolithe modifiee et son utilisation en oligomerisation des olefines legeres Ceased EP1965912A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0513209A FR2894850B1 (fr) 2005-12-20 2005-12-20 Procede de preparation d'un catalyseur contenant une zeolithe modifiee et son utilisation en oligomerisation des olefines legeres
PCT/FR2006/002466 WO2007080240A1 (fr) 2005-12-20 2006-11-03 Procede de preparation d'un catalyseur contenant une zeolithe modifiee et son utilisation en oligomerisation des olefines legeres

Publications (1)

Publication Number Publication Date
EP1965912A1 true EP1965912A1 (fr) 2008-09-10

Family

ID=36870085

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06831068A Ceased EP1965912A1 (fr) 2005-12-20 2006-11-03 Procede de preparation d'un catalyseur contenant une zeolithe modifiee et son utilisation en oligomerisation des olefines legeres

Country Status (5)

Country Link
US (1) US7847037B2 (fr)
EP (1) EP1965912A1 (fr)
JP (1) JP5577036B2 (fr)
FR (1) FR2894850B1 (fr)
WO (1) WO2007080240A1 (fr)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2931703B1 (fr) * 2008-05-28 2013-05-03 Inst Francais Du Petrole Procede de preparation d'une zeolithe cationique par echange ionique
WO2010010879A1 (fr) * 2008-07-23 2010-01-28 三井化学株式会社 Catalyseur pour l’oligomérisation d’éthylène et son utilisation
EP2269734A1 (fr) 2009-07-03 2011-01-05 BP Corporation North America Inc. Catalyseur modifié à base de zéolite
EP2272939B1 (fr) 2009-07-03 2012-09-12 BP Corporation North America Inc. Procédé d'oligomérisation d'alcènes
FR2951193B1 (fr) * 2009-10-13 2011-12-09 Inst Francais Du Petrole Procede d'hydrocraquage mettant en oeuvre une zeolithe modifiee
ES2749501T3 (es) 2010-05-14 2020-03-20 Bp Oil Int Procedimiento de oligomerización de alquenos
WO2012033562A1 (fr) 2010-09-07 2012-03-15 Exxonmobil Chemical Patents Inc. Extrudats comprenant des catalyseurs zéolites et leur utilisation dans des procédés d'oligomérisation
US20120197053A1 (en) * 2010-09-21 2012-08-02 Synfuels International., Inc. System and method for the production of liquid fuels
EP2495032A1 (fr) 2011-03-03 2012-09-05 Umicore Ag & Co. Kg Catalyseur SCR doté d'une résistance aux hydrocarbures améliorée
CN103402634B (zh) * 2011-03-03 2018-10-26 尤米科尔股份公司及两合公司 用于氮氧化物的选择性催化还原的催化活性材料和催化转化器
ES2443539B1 (es) 2012-07-19 2014-12-04 Consejo Superior De Investigaciones Científicas (Csic) Proceso de oligomerización de alquenos utilizando la zeolita ITQ-39
EP2698199A1 (fr) * 2012-08-14 2014-02-19 Saudi Basic Industries Corporation Procédé de dimérisation d'oléfines
US9663415B2 (en) 2012-11-12 2017-05-30 Uop Llc Process for making diesel by oligomerization of gasoline
US9834492B2 (en) 2012-11-12 2017-12-05 Uop Llc Process for fluid catalytic cracking oligomerate
US10508064B2 (en) 2012-11-12 2019-12-17 Uop Llc Process for oligomerizing gasoline without further upgrading
WO2014074833A1 (fr) 2012-11-12 2014-05-15 Uop Llc Procédé de fabrication d'essence par oligomérisation
US9567267B2 (en) 2012-11-12 2017-02-14 Uop Llc Process for oligomerizing light olefins including pentenes
US9522375B2 (en) 2012-11-12 2016-12-20 Uop Llc Apparatus for fluid catalytic cracking oligomerate
US9914673B2 (en) 2012-11-12 2018-03-13 Uop Llc Process for oligomerizing light olefins
US9644159B2 (en) 2012-11-12 2017-05-09 Uop Llc Composition of oligomerate
US9434891B2 (en) 2012-11-12 2016-09-06 Uop Llc Apparatus for recovering oligomerate
US9522373B2 (en) 2012-11-12 2016-12-20 Uop Llc Apparatus for oligomerizing light olefins
US9441173B2 (en) 2012-11-12 2016-09-13 Uop Llc Process for making diesel by oligomerization
JP6201518B2 (ja) * 2013-08-21 2017-09-27 東ソー株式会社 C5−c6化合物を製造するための触媒
US9732285B2 (en) 2013-12-17 2017-08-15 Uop Llc Process for oligomerization of gasoline to make diesel
US9670425B2 (en) 2013-12-17 2017-06-06 Uop Llc Process for oligomerizing and cracking to make propylene and aromatics
RU2633882C1 (ru) * 2016-07-20 2017-10-19 Акционерное Общество "Газпромнефть - Московский Нпз" (Ао "Газпромнефть - Мнпз") Цеолитсодержащий катализатор олигомеризации и способ его приготовления
FR3054545A1 (fr) * 2016-07-28 2018-02-02 Ifp Energies Now Nouveau procede d'oligomerisation des olefines
FR3058414B1 (fr) * 2016-11-08 2019-08-16 IFP Energies Nouvelles Procede de deshydratation isomerisante d'un alcool primaire non lineaire sur un catalyseur comprenant une zeolithe de type fer et un liant aluminique
FR3089518B1 (fr) 2018-12-10 2020-11-20 Ifp Energies Now Procede ameliore de conversion d’une charge lourde en distillats moyens faisant appel a un enchainement d’unites d’hydrocraquage, de vapocraquage et d’oligomerisation
FR3089519B1 (fr) 2018-12-10 2020-11-20 Ifp Energies Now Procédé amélioré de conversion d’une charge lourde en distillats moyens faisant appel à un enchainement d’unités d’hydrocraquage, de craquage catalytique de naphta et d’oligomérisation
WO2020264207A1 (fr) * 2019-06-27 2020-12-30 Gevo, Inc. Oligomérisation d'oléfines d'origine biologique par l'intermédiaire d'un catalyseur de zéolite de type chabazite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115088A (ja) * 1985-11-13 1987-05-26 Res Assoc Util Of Light Oil 芳香族炭化水素の製造方法
EP0600483A1 (fr) * 1992-12-03 1994-06-08 Tosoh Corporation Procédé d'élimination d'oxides d'azote de gaz d'échappement à teneur élevée en oxygène

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542251A (en) * 1984-02-27 1985-09-17 Chevron Research Company Oligomerization of liquid olefin over a nickel-containing silicaceous crystalline molecular sieve
IT1197828B (it) * 1986-09-24 1988-12-06 Eniricerche Spa Procedimento per la dimerizzazione di olefine
JPH083099B2 (ja) * 1986-10-14 1996-01-17 昭和シェル石油株式会社 軽質オレフインの低重合方法
US4868146A (en) * 1987-12-23 1989-09-19 Mobil Oil Corporation Zeolite catalyst composition and synthesis method
GB9011411D0 (en) * 1990-05-22 1990-07-11 Shell Int Research Metals-containing zeolites,a process for preparing such zeolites and their use in catalytic processes
US5057640A (en) * 1991-01-02 1991-10-15 Mobil Oil Corp. Propylene oligomerization over silica modified zeolites
US5349113A (en) * 1993-02-25 1994-09-20 Mobil Oil Corp. Shape selective hydrocarbon conversion over pre-selectivated, activated catalyst
US6576582B1 (en) * 1993-05-28 2003-06-10 Exxonmobil Oil Corporation Binderless ex situ selectivated zeolite catalyst
JPH10202109A (ja) * 1997-01-17 1998-08-04 Tokyo Gas Co Ltd NOx含有排ガス浄化用触媒、その製造方法及びその浄化方法
US6346498B1 (en) * 1997-12-19 2002-02-12 Exxonmobil Oil Corporation Zeolite catalysts having stabilized hydrogenation-dehydrogenation function
US6051519A (en) * 1998-02-10 2000-04-18 Phillips Petroleum Company Ethylbenzene reduction catalyst composition and processes therefor and therewith
JP2003326169A (ja) * 2002-03-08 2003-11-18 Rikogaku Shinkokai オリゴマー化触媒及びそれを用いたオリゴマーの製造方法
US7307480B2 (en) * 2002-10-31 2007-12-11 Qualcomm Incorporated Low latency frequency switching
US7049260B2 (en) 2003-06-03 2006-05-23 Chevron Phillips Chemical Company Lp Selective para-xylene production via methylation of toluene with methanol in the presence of modified HZSM-5 catalyst
ES2244345B1 (es) * 2004-05-28 2007-03-01 Universidad Politecnica De Valencia Procedimiento y catalizador para transalquilacion/dealquilacion de compuestos organicos.
FR2887538B1 (fr) * 2005-06-28 2008-01-04 Inst Francais Du Petrole Procede de traitement d'une zeolithe a petits et/ou moyens pores et son utilisation en oligomerisation des olefines legeres

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115088A (ja) * 1985-11-13 1987-05-26 Res Assoc Util Of Light Oil 芳香族炭化水素の製造方法
EP0600483A1 (fr) * 1992-12-03 1994-06-08 Tosoh Corporation Procédé d'élimination d'oxides d'azote de gaz d'échappement à teneur élevée en oxygène

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2007080240A1 *

Also Published As

Publication number Publication date
WO2007080240A1 (fr) 2007-07-19
JP5577036B2 (ja) 2014-08-20
JP2009519824A (ja) 2009-05-21
US20090240008A1 (en) 2009-09-24
FR2894850B1 (fr) 2008-02-01
FR2894850A1 (fr) 2007-06-22
US7847037B2 (en) 2010-12-07

Similar Documents

Publication Publication Date Title
WO2007080240A1 (fr) Procede de preparation d'un catalyseur contenant une zeolithe modifiee et son utilisation en oligomerisation des olefines legeres
EP1899269B1 (fr) Procede d'oligomérisation d'une charge oléfinique
FR2931818A1 (fr) Procede d'oligomerisation des olefines legeres utilisant un catalyseur a base d'un materiau amorphe a porosite hierarchisee et organisee
FR2754809A1 (fr) Zeolithe im-5, son procede de preparation et ses applications catalytiques
FR2931708A1 (fr) Catalyseur a base d'un materiau cristallise a porosite hierarchisee et organisee et son utilisation en oligomerisation des olefines legeres
WO2008090268A1 (fr) Deshydratation du methanol en dimethyl ether employant des catalyseurs a base d'une zeolithe supportee sur du carbure de silicium
EP0855369B1 (fr) Zéolithe au phosphore de type structural CON, sa préparation et son utilisation en craquage catalytique
EP0196965B1 (fr) Nouveau catalyseur d'isomérisation de coupes riches en paraffines normales
EP1932819B1 (fr) Procédé d'isomérisation des composés C8 aromatiques en présence d'un catalyseur comprenant une zéolithe EUO modifiée
EP0962251B1 (fr) Procédé pour l'amélioration du point d'écoulement et catalyseur a base d'au moins une zéolithe MTT, TON, FER
EP0938530B1 (fr) Procede pour l'amelioration du point d'ecoulement de charges paraffiniques avec un catalyseur a base de zeolithe nu-86
FR2765206A1 (fr) Zeolithe eu-1, catalyseur et procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines
FR2660578A1 (fr) Catalyseur a base d'une faujasite de haut rapport si:al de synthese et son application aux reactions de catalyse acide realisees sur des charges hydrocarbonees.
FR2950896A1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch mettant en oeuvre un catalyseur a base de carbure de silicium
FR2765236A1 (fr) Procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines avec un catalyseur a base de zeolithe nu-87 modifiee
FR2765207A1 (fr) Zeolithe nu-85, catalyseur et procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines
EP0500413B1 (fr) Utilisation d'un catalyseur de type galloaluminosilicate en aromatisation des hydrocarbures contenant entre 2 et 7 atomes de carbone par molecule
FR2744717A1 (fr) Utilisation en dismutation et/ou transalkylation d'hydrocarbures alkylaromatiques d'un catalyseur a base de zeolithe omega renfermant au moins un metal des groupes iia ivb, iib ou iva
FR2951192A1 (fr) Procede de production de distillat moyen a partir de cires fischer tropsch utilisant un catalyseur a base de zeolithe modifiee
EP0967013B1 (fr) Catalyseur à base d'une zéolithe MTT, TON ou FER et d'un élément du groupe VB et son utilisation pour l'amélioration du point d'écoulement de charges hydrocarbonées
WO2013153317A1 (fr) Procédé de deparaffinage de charges hydrocarbonées utilisant un catalyseur a base de zeolithe izm-2
FR2765209A1 (fr) Zeolithe eu-1, catalyseur et procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines
FR2765237A1 (fr) Catalyseur a base de zeolithe nu-87 modifiee et procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines
FR2756296A1 (fr) Procede pour l'amelioration du point d'ecoulement de charges paraffiniques avec un catalyseur a base de zeolithe nu-86 desaluminee
FR2672886A1 (fr) Utilisation d'un catalyseur de type galloaluminosilicate en aromatisation des hydrocarbures contenant entre 5 et 7 atomes de carbone par molecule.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100406

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20161106